Optimizing Non-Monotonic Interconnect using
Functional Simulation and Logic Restructuring

Stephen M. Plaza, Igor L. Markov, and Valeria M. Bertacco
The University of Michigan, Department of EECS
2260 Hayward Ave., Ann Arbor, MI 48109-2121
{spl aza, i mar kov, val eri a}@mi ch. edu

Abstract— The relatively poor scaling of interconnect in mod-
ern digital circuits necessitates a number of design optinziations,
which must typically be iterated several times to meet the sgci-
fied performance objectives. Such iterations are often dueotthe
difficulty of early delay estimation, especially before plaement.
Therefore, effective logic restructuring to reduce interonnect

netlist with the goal of reducing wire detours. In addition,
topographical information has been used to guide current
synthesis tools [40]. Due to the importance and inherent
difficulty of estimating the impact of placement and routing
on interconnect, researchers suggested the idea of nrangai

a companion placement estimate throughout the logic syn-
thesis process [10], [15], [26]. However, interconnectssv

delay has been a major challenge in physical synthesis, a pb&
during which more accurate delay estimates can be finally
gathered. In this work, we develop a new approach that en-

hances modern high-performance logic synthesis techniqeeavith
flexibility and accuracy in the physical domain. This approah is
based on (1) a novel criterion based on path monotonicity, i
identifies those interconnects amenable to optimization tlough
logic restructuring and (2) a synthesis algorithm relying o logic
simulation and placement information to identify placed sibcir-
cuits that hold promise for interconnect reduction. Experiments
indicate that our techniques find optimization opportunities and
improve interconnect delay by11.7% on average at less thar2%
wirelength and area overhead.

logic transformations are still limited by the accuracy bét
estimates available. Furthermore, guiding logic synthési
conservative delay estimates, as in [14], can lead to toansf
mations that do not improve critical path delay but increase
area and power consumption.

While performing aggressive logic restructuring using
global information is desired to exploit better estimatet®
in the design flow, such accounts have eluded published
literature. One particular complication is that the lindite

amount of flexibility found in combinational circuits muse b
combined with physical aspects of performance optimiratio
In this paper, we introduce a post-placement solution that
tion of overall circuit delay, the focus of design methodplds enables aggressive optimization while minimizing chantges
shifting from logic optimization to interconnect optimtian. the physical netlist. We consider a wide range of changdssto t
While this transition has been occurring for over a decadercuit structure while also tracking their impact on ploadi
meeting performance objectives is becoming more and mg@r&rameters of the circuit.

difficult. In recent years, a few successful methodologies our contributions are as follows:

achieved timing closure by combining netlist level miniayiz
tion in logic synthesis with post-placement physical ojitan
tions. This family of solutions is known as physical synikes
Related strategies, including interconnect buffering] [2ate

I. INTRODUCTION
As interconnect contributes an increasingly significaat{r

1) A novel metric for efficiently identifyingnon-monotonic
paths in the circuit, that locates regions where restructur
ing provides the greatest gains. This metric generalizes

sizing [18], and relocation [1], successfully improvedaielin
[8], [11], [32], [17], post-placement resynthesis achibdelay
improvement with limited placement perturbation, but thes
techniques are limited to simple signal substitution tfans
mations. As the major portion of the critical delay is siifti
into interconnect [38], poor design choices during syrithes
cannot be easily corrected by limited scale post-placement
optimizations. Therefore, more accurate delay models have
been developed to guide logic synthesi¥ire-load models 3)
that estimate delay by considering the capacitive load ofiea
net were effective until wire capacitance and resistancarne
predominant. Further knowledge of the impact of placemant o
wirelength was consequently needed by synthesis algasithm

2)

the metric in [4] and considers longer paths.

A generic and powerful technique for discovering logic
transformations using functional simulation, which also
facilitates fast re-evaluation of physical parameters: Ou
technique does not require local equivalence between
the optimized subcircuit and the original, but uses
simulation and satisfiability to ensure that the circuit's
functionality is unmodified.

A suite of powerful algorithms that efficiently exploit a
circuit's don’t-cares and avoid heavy-weight techniques
traditionally used in logic synthesis, while allowing
tighter integration with placement and a more realistic
delay calculation.

To meet the challenge of performance optimization at theln our methodology, we first identify detoured wires that

130nm technology node and beyond, the traditional desife@ on critical paths. The example in Figure 1 shows a
flow transformed from several discrete optimization phas&mng critical path with several wire detours. As mentioned
(such as logic synthesis followed by place-and-route) atoin [4], many critical paths cannot be improved through cell
more holistic strategy. In [14] wirelength estimation wasar- relocation and better timing-driven placement. Furtheemno
porated in logic synthesis by constructing a highly plateatthe inaccuracy of timing estimates before detailed placgme
_ _ o limits the effectiveness of techniques from [14] in elinting
Copyright (c) 2008 IEEE. Personal use of this material isnpied.

However, permission to use this material for any other psepomust be path non'mOUOtoniCitwve t‘?‘rget _these non'.monOtoni(? paths
obtained from the IEEE by sending an email to pubs-permisg@ieee.org. for resynthesis by generating different logic topologikatt

node functionality with BDDs would require a prohibitive
memory footprint.

In Section I, we review the use of simulation to guide
logic optimization and summarize state-of-the-art sysithe
strategies. In Section Ill, we introduce our interconnegt o
timization strategy. In Section IV, we propose a metric for
finding circuit paths that require restructuring. Section V
introduces a novel physically-aware synthesis approaah th
uses simulation. Empirical validation is presented in ®ect
VII, and we summarize our work in Section VIII.

Il. BACKGROUND

f ig. 1. .A”DeEXSamp'e from [8] of a non-monotone critical patteaplacement hic saction describes how functional simulation can be
or circuit .

used to characterize the behavior of internal nodes in the

improve circuit delay. To efficiently find these topologies$ircuit and guide logic optimization. We then discuss aestat
we abstract away circuit complexity using logic simulatiorPf-the-art approach for logic synthesis, currently lirditeo
Through logic simulation, we partially characterize the bdhe logic domain that provides essential components for our
havior of each node in the subcircuit wittsignature[8], [7], Physical synthesis algorithms.
[28]. We then use these signatures to determine whetheia log
transformation generating the desired topology is possibl A simulation and Satisfiability

In the example of Figure 2, we show that by applying our
technique, a subcircuit with a long critical path can be gran
formed to a functionally-equivalent subcircuit with sneall
critical path delay. Unlike most techniques from logic sy
thesis, our circuit restructuring can work directly on magp
circuits with complex standard cells. Another novel featig
our extensive use of circuit flexibility due to signal maskin
by downstream logic, also known as observability don'tesar
(ODC). Additionally, our approach uses controllabilityrdio
cares (CDC),i.e, circuit flexibility due to upstream logic.
Compared to work in [34], our approach exploits global don’
cares to enhance logic restructuring.[17], redundancy ad-

A nodeF' in a Boolean network can be viewed as a function
of primary inputs. Such a node can be characterized by its
n§ignature Sr, for K input vectorsX; - - - X.

Definition 1: Sp = {F(X4),..., F(Xk)} whereF(X;) =
{0,1} indicates the output of” for a given input vector.

A carefully-designed testbench or constrained-random sim
ulator can be used to generate vectiirsand derive signatures
for each node in a circuit. For a network withnodes, the time
complexity of generating signatures for the whole netwark i
E(K «n). The functional non-equivalence of two nodes can

e determined by the followingSr # S¢ = F # G.

dition and removal (RAR) are used to improve circuit timing. 100 ol
However, these rewiring techniques consider only a sulfset o " ! :

. : Fand G’s
our tran_sfor_matlor_ls, w_here we use re(_jundancy and physical Z@'“ 001/ signatures
information in conjunction to directly guide the resyntisesf =201 o equivalent up

on't cares to don’t cares

fanout cone

subcircuits containing multiple cells. jbﬂté

simulation-guided
optimization

100 10 . .
circuit
117 simplified

011 001

shortened

critical path and
more routable

layout

F=((AC)B)D :>Resynthe5is F = (AD)(BC)

Fig. 2. The resynthesis of a non-monotone path can produah shorter
critical paths and improve routability. Signatures can be efficiently created and manipulated by
Our experiments indicate that large circuits often contaiaking advantage of bit-parallel operations. Thereforgad
many long critical paths that can be effectively targetethwisignatures can be used to efficiently identify potential enod
our restructuring. Improving these paths results in censisquivalences in a circuit by deriving a hash index for each
tent delay improvements df1.7% on average with minimal signature [19]. Sinc&r = S¢ does not imply thatF' = G,
degradation to other performance parameteusthermore, we this potential equivalence must be verifiedg, using a SAT
achieve almost twice the delay improvement of that achievedlver, as explained below.
by RAR-based timing optimization®©ur techniques are fast The signature is apartial characterization of a node’s
and scale to large designs, whereas completely charaotgriZzunctionality. Furthermore, the signature encodes all ke t

G’s fanout

Fig. 3. Optimization by merging equivalent nodes in the eneg of don't-
cares. 3-bit signatures are shown at the output of each gate.

node’s CDCs under the input vectors applied. The signauréhe number of logic levels. Several drawbacks of these tech-
partial characterization enables fast and aggressivenati niques are discussed in [22], including limited scalapilifo
tions without requiring a fully specified truth table. Hoveey this end, the authors of [22] introduced an efficient syrithes
unlike traditional, correct-by-construction optimizats, these strategy calledewriting. Logic rewriting is performed over a
speculative transformations must be validated by a formaétlist representation called an And-Inverter Graph (AI®)],
proof mechanism. Hence, the efficiency of [19], [23] dependghere each node represents an AND gate and complemented
on the underlying engines which formally verify the equivafdotted) edges represent inverters. In logic rewriting, dbal-
lence of nodes with identical signatures. ity of different functionally-equivalent implementatisrior a
Recent advances in SAT solvers,g, learning, non- small logic block in a circuit is assessed. In Figure 4, the
chronological backtracking, and watched literals [24]0][3 left transformation leads to a reduction in area. By using a
have made SAT a more scalable alternative to BDDs ftechnique calledtructural hashing19], nodes in other parts
equivalence checking. The equivalence of two nodésnd of the circuit can be reused. In the right example, there is a
G, in a network can be determined by constructing’@® R- global reduction in area by reusing available gates. Howeve
based miter [5] between them and asserting the outputa® structural hashing requires that the circuit be represeate

shown in the following formula: an AIG and is not viable on mapped circuits.
(F=G)& (Vi F(X;)eG(X;)#1) (1) The increasing significance of wire delay is addressed by
providing more accurate delay models to logic synthesisnfr
where(J, X; is the set of all possible input vectors. using wire-load models to maintaining companion placesient

In [19], input vectors are generated dynamically frommo]. The delay model is used to modify the literal reduction
counter-examples returned by SAT checks proving# G. objective so that transformations or rewrites that imprthe
The dynamic input vectors improve the quality of the signatelay according to the model are favored. However, deldy est
tures by limiting situations wher§p = S¢; despitel” # G. mation is becoming more inaccurate before detailed planeme

and routing as the actual interconnect routes become more
B. Logic Optimizations with Signatures important. This trend suggests that new synthesis algosth

Simulation is an effective means for quickly identifyingiea Should be applied after placement and routing because lspecu
didates for optimization. In [28], [37], signatures weredgo five optimizations can actually increase delay while negét
additionally encode ODCs to enable circuit simplificatiorda impacting other performance metrics like area.
optimization by merging equivalent nodes. Consider therexa

ple in Figure 3 which shows a circuit where logic simulation I1l. OUR APPROACH
produces the signatures shown. Notice that through efficien) _]
don’t-care computation using a fast linear-time simuta{i28] In this paper, we introduce a new synthesis approach that

of downstream nodes, don't-care values can be determimed#§counts for physical aspects of performance optimization
some of the signature’s positions. In the example, thesa-doyVe illustrate our approach in Figure 5. Starting from a
cares suggest a potential circuit simplification by merging fUlly placed circuit, we identify critical paths using stat
nodes. The optimization will need to be verified by a formdiming analysis. We then apply a novel metric introduced in
proof engine. Section IV that finds subcircuits for which restructuringith
Despite these advantages, signature-based optimizatiensProvide the greatest improvements. Next, we perform logic
limited, and general synthesis algorithms have not been nulation using an even d'St“bUt'O'” of input vectors and
veloped. A key contribution of this work is the applicatiorf€nerate signatures that encode don’t-cares to obtaintialpar

of signatures to enable logic restructuring while relying ocharacterization of the functional behavior of the circUising
available don’t-care computation algorithms. this functional information encoded in signatures alonghwi

the physical constraints, we efficiently derive a topololgstt
is logically equivalent to the original subcircuit but elghs
better performance. Finally, we legalize the altered plaamst
and update the timing information in the circuit. As a result
we tailor our path-monotonicity metric to find portions otth

C. Logic Rewriting

critical path resulting in the greatest delay improvemelrts

L S e addition, our techniques can target other objectives ab wel
*:Q Using signatures for restructuring is advantageous becaus

- Example 1 Example 2

logic simulation provides a more scalable functional repre
tation than BDDs. Furthermore, signatures can charaeteriz
Fig. 4. Two examples of AIG rewriting. With structural hasij it is possible internal nodes for netlists mapped to standard cells as well
in the second example to reuse external nodes and minimizeubgraph. g5 for technology-independent netlists. In contrast, tgcl

Performing scalable logic optimization requires efficientewriting strategy in [22] does not operate on technology-
netlist manipulation, typically involving only a small sef mapped circuits and does not take physical information into
gate primitives. Given a set of Boolean expressions thatcount. We also improve solution quality by considering
describe a circuit, the goal of synthesis optimization is tmore don’t-cares while being directly guided by physical
minimize the number of literals in the expressions alondiwitconstraints.

find non- . loglc. PN
. simulation/ / N
montonic . VA b .
detailed paths signature i use signatures and reduced critical
placement , / physical constraints \\\\ path delay

to find optimal

/
| . [IEAN
| topologies N
| |
SEIg =
\ /
-3 L//
\ /

Fig. 5. Our approach to optimizing interconnect. First, denitify non-monotonic critical path interconnect, andntlvee restructure these paths to improve
delay. Such netlist transformations include gate cloning,are substantially more general. They do not requiretti@subcircuits in question be equivalent.
Instead, they use simulation and satisfiability to ensua¢ the entire circuit remains equivalent to the original.

IV. IDENTIFYING NON-MONOTONE PATHS where R and C are the wire resistance and capacitance

To maximize the effectiveness of our post-placement opteespectively andr;,, ; andCy,, s are the intrinsic resistance and
mizations, we target timing critical parts of the designtthanput capacitance of the bufferdist(a,b) is the rectilinear
are amenable to restructuring. In this section, we intredudistance betweem and b. Unlike the distance calculation
our fast Dynamic Programming (DP) algorithm for findingvhere the ideal path length betweenand b can be equal
paths in logic that areon-monotongor paths that are not to the actual path length, the optimal buffered wire between
optimally short. Unlike the work in [4], we consider paths ofi and b has delay< AT(b) — AT (a). We only attempt to
arbitrary lengths and scale to many more segments in peactioptimize paths with large NMFs.
We propose two models for computing path monotonicity: (1)
wirelength-based and (2) delay-based. Non-monotonicspath. Calculating Non-monotone Factors

indicate regions where interconnect and/or delay may beWe now present our algorithm for calculating the NMF

reduced by post-placement optimization. of all k-hop paths in a circuit, for a givelr > 2. Our
experiments indicate that the greatest NMFs are often veder

A. Paih Monotonicity on relatively short paths, and optimizing such paths brings
First, static timing analysis is performed to enable ouagel greatest benefits.

based monotonicity calculation and identify critical arehn
critical paths. We use a timing analyzer whose interconne
delay calculation is based on Steiner-tree topologiesymed
by FLUTE [12]' and the D2M delay metric [2] that is known
to be more accurate than Elmore delay. Before focusi
on critical paths, we will describe a general approach th

anputs
Nodes nodes: netlist
Dist K: length of paths considered
output
9 NMF: NMF between each node
Aloid genNMF(Nodes nodes, Dist KJ

examines the monotonicity of every path. We definerba-
monotone factor (NMF) for the path{x1, ..., 2 } with respect
to a given cost metric (such as wirelength or delay) as fatow

k—1
1

NMF=——r—— c(zp,z, 2

Cideal(IlaIk) ngl (+1) ()

where c(a,b) defines the actuatost betweena and b and

levelize(nodes);
for_each nodelin nodes
for_eachnode2in range(nodel+1, nodel+K)
c.idealarray[nodel,node?2] =_eal(nodel, node2);
for_eachnodelin nodes
subtot[] = 0;
for_eachnode2in range(nodelucc, nodelsucc+K)
subtothodelnode = max(subtothodelnode2pred

+ c(node2pred node3);
factor = subtot / ddealarrayjpodelnode2;
NMF[nodelnode2 = factor;

cidear defines an optimal cost. WheNM F' = 1, the path is
monotone under the cost metric. We explore two definitions f
cost, one based on rectilinear distance and another on.del
For the rectilinear case;(a,b) is the rectilinear distance
between celk andb while ¢;4eq: (a, b) is the optimal rectilinear

distance assuming a monotonic path. For the delay-base¢ne non-monotone factor can be efficiently computed for
definition, c(a, b) is the AT'(b) — AT (a), where AT is arrival gyery path using a)(K * n)-time algorithm forn nodes
time. We definec;qc.; as the delay of an optimally bufferedin the circuit, as shown in Figure 6. First, the circuit is
path betweer. andb as described by [25] and given by thQeyelized. Then,c;geq is computed for node pairings with
following formula: a connecting path ok k hops, and the values are stored
o =5— =5~ In c.deal _array. All pairs are traversed again, and the
Cideat (0,) = dist(a, b) (Rous O+ RChuys + 2Rb“f0b“fR(?) subt ot is generated by computing the maximum cost from
nodelto node2through a recurrence relation. The NMF is
computed for the subpathinodel, node2}, by dividing the

i

Fig. 6. Generating non-monotone factors fok-#op paths.

ITiming-driven Steiner trees can be easily used instead [3].

of decomposing a node with BDDs, the authors provide an
algorithm for resynthesizing logic that can work on mapped
netlists using different standard-cell libraries. No &gy is
considered for exploiting global circuit don't-cares whic
could be used to enhance the quality of the decompositions
considered. In [35]sets of pairs of functions to be distin-
guished (SPFDs) are introduced as a way of representing
a node’s functionality which can be used to exploit circuit
flexibility in logic optimization. In [31], the authors proge

a technique that uses SPFDs to find a logic implementation
given a topological constraint, but their resynthesis apph
does not incorporate physical parameters such as timing and
is limited to only a few neighboring levels of logic to reduce
Fig. 7. Calculating the non-monotone factor for pdih #}. The matrix the memory and computational requirements of SPFDs. In
shows computations performed while executing the algurith Figure 6. an alternative strategy to reduce the memory requireménts o
SPFDs, the authors in [36] choose a subset of SPFDs for a
node using simulation and compatibility don’t-cares in gi¢o
rewriting application.

total cost,subt ot , by c_i deal [nodel, node2] . In Figure
7, we illustrate a subcircuit being traversed usinggba _NVF
function wherek = 3 and the currentodel is d. The matrix In our work, we use logic signatures to expose circuit

indicates the NMFs already computed with #, and nodes ngf,tionality. Our approach is advantageous because tze da
lying on the same path with. Because we traverse thegqrres involved in our technique do not need to reptesen
graph in levelized ordew, b, c have already been examined,y, oynonential amount of information. This is generally the

Notice, that nodes that are farther tharhops away are not »qe regardless of the underlying functionality. Througgid
examined (indicated b’ in the matrix). For nodd, the non- gjnjiation we can encode global circuit don't-cares which a

monotone factor is computed for padhv, by determining all not limited by levels of logic or required to be compatible.

the incoming sub-paths t first. Furthermore, our approach encodes the distinguishingirbits
a compact data structure with logic signatures so that these
V. PHYSICALLY-AWARE LOGIC RESTRUCTURING operations can be performed with bitwise parallelism. This

We optimize the subcircuits that are identified by the paifi Particularly beneficial in our development of a novel goal
monotonicity metric as illustrated in Figure 8. We first sele driven synthesis technique where fast evaluation of tagiotd
a region of logic determined by the non-monotonic patfPnstraints while exploiting don't-cares is essentialighty
for resynthesis. We then use signatures to find an alterif@uPle physical optimization and logic synthesis.
tive implementation with a topology that improves physical Given an extracted subcircuit withinputs,{as, a, ..., ax }
parameters and that is logically equivalent to the origin@Nd OutputF” to resynthesize, we express a candidate re-
implementation (up to the signatures). This implementaiso Structuring as a directed gragh- with x incoming edges,
then formally verified by performing SAT-based equivalenc@n€ outgoing edgé’, andn internal vertices. We would like
checking between the original and new netlists. to determine whether there is a labeling;, of n vertices
Previous work on improving path monotonicity used logi¥/ith gatesg € G such thatF" is logically equivalent to the
replication [16]. However, the technique is restricted he t SUPCircuitZz- thatimplements’ with respect to the outputs
topology of the extracted subcircuit, and its optimizatane ©f the circuit. We define théogical feasibility of T as:
independent of the subcircuit’s functionality. Furthereoas Definition 2: T is logically feasible iff
observed in [16], gate relocation sometimes cannot improve dg-onset(Tpe) = Onset(F))
path monotonicity. In the following, we introduce the theoWhereonset represents where the subcircuit produceor
retical framework to resynthesize a subcircuit given a get 80 INPUt combination. This definition can be relaxed by
inputs and a target output by introducing a concept Ca"é‘&)ns!dermg its relation within the (_:are_-set which could be
logical feasibility We then introduce an algorithm for con-considerably smaller tha due to circuit don't-cares.

structing subcircuits using signatures and physical caimgs ~ Definition 3: T is logically feasible up to circuit don’t-
to optimize the interconnect. cares iff Ses onset(Tre) Udce(F) = onset(F) U de(F)
wheredc is the don’t-care set.

A naive algorithm for determining the logical feasibility o
A. Determining Logical Feasibility with Signatures Tr requires that every possible labelidg* is tried. Forn
We introduce a goal-driven synthesis strategy that effitien vertices, this requires checkirig?|™ mappings. If the set of
finds a logic implementation for a given physical topology2-input logic functions is considered, there & mappings’
The major thrust of previous efforts in post-placement dogiFurthermore, performing equivalence checking betwégn
optimization involves the efficient encoding of logic fuibet- and /' is an NP-complete problem. Below, we discuss how

ality and, in particular, circuit don’t-cares. In [20], tlaeithors
Y P [] 2Although there ard 6 different two-input Boolean functions, the tautology

propOSEd_a teChnique to e_numerate through the.decommit@nd two one variable transfer functions along with the reydorm of each
of a particular node using BDDs. By encoding the way@nction do not need to be explicitly considered

2-hop non- construct topology with signatures signatures indicate reduced critical
monotonic path . and physical constraints functional correctness path delay
AT(A) > AT(B), AT(C) resynthesize F - 0001
A q F
0011 001 0011 Fl.nd 0001 AR Am
optimal 0011 0011 100
1001 :> Bl= topology :>
B B
1001
1001
fanout 1011 fanout verify with SAT and | 1011
Clo11 011 0011 1011 legalize solution (€18 fanout

duplicate logic for other
outputs in subcircuit

Fig. 8. Our flow for restructuring non-monotonic intercoonélNe extract a subcircuit determined by our non-monotométric and find topologies that are
logically equivalent using simulation. This new impleneitn is then verified by equivalence checking with an in@etal SAT solver.

signatures can be used to determine a set of inputs tpassible.In this paper, we greedily determine irredundant
implements a given function and how to quickly determineovers by first selecting signatures that cover the most PBDs

logical feasibility up to the signature approximation.
Pairs of bits to be distinguished:A function F' is said to

be dependent on an inpui if and only if:
Fo=0 ® Fo=1 #0 (4)

A similar relationship between a signatufg and input

and continuing until all PBDs are covered.

Determining logical feasibility with essential PBDs:We
now describe how the logical feasibility of a given topology
can be determined using signatures. Later, we explain how to
create such topologies and how to verify the signatureebase
abstraction. Our strategy considers the set of availalilesga

signaturesSy, ..., .S, can be established. In [7], it was observeds implementing all the 2-input logic functions, so thatreac
that a set of input signatures can implement a target signatinode n has exactly two input edges. In general, we do not

if and only if, every pair of different bits it ; is distinguished
by at least one5,,.

restrict our topologies to bianout-freerees, where a topology
is fanout-free if each nodein T» has only one outgoing edge.

Definition 4: A pair of bits to be distinguished (PBD) is a However, fanout-free topologigsvhere we make the addi-

pair {i,j} such thatSy (i) # S¢(j).

Definition 5: A candidate signaturesS, distinguishes a
PBD in Sy if S.(i) # S.(j) where{i,j} € SF”P where
S{PPis f's set of PBDs.

Example 1. Assume a target signa; = {0,0,1,1} and
candidatesS; = {0,0,0,1}, S; = {0,1,0,1}, and S5 =
{0,1,1,1}. The PBDs ofS; are{0,2},{0,3},{1,2},{1,3}
that need to be distinguished. Note that and S, together
cannot implement; because they do not distinguigh, 2}.
However, if all S, are used, there exists a function that giv
S¢. In this exampleS; = S5 - (516S52). O

tional constraint that each primary input has only one oiigo
edge) form a critical aspect of our goal-driven synthesis
strategy because, under a couple of assumptions, theygeodu
circuits with optimal area and timing such a fanout-free
circuit exists First, we assume that the area associated with
each node/gate in the topology is equal (since the implemen-
tation of the topology is unknown). Second, the delay thtoug
the subcircuit is determined by its path length through the
topology, where we assume that each wire corresponding to an
edge is optimally buffered. Therefore, fanout-free topgis

®Rave smaller area than their non-fanout free counterparts

when implementing a single-output functibacause they have

Essential PBDs:Input signtures form an irredundant covefewer internal nodesy(— 1 nodes). Furthermore, fanout-

of Sy's PBDs when 1) every PBD is covered by at least orfeee topologies have the same or smaller delay as non-fanout
S; and 2) removing one; results in at least one uncoveredree trees. The proof of this is straightforward because if a
PBD. The resultingS;s form the support of the function toreconvergent topology has optimal delay based on pathHengt
be resynthesized. We define a PBD that is distinguished bgnverting this topology to a fanout-free tree by removing
only one S; as anessentialPBD for S;. According to the edges and nodes will not increase path length.

definition of an irredundantover and PBDs, each; must In the next few paragraphs, we introduce an algorithm for
have at least one essential PBD (or else that input can determining logical feasibility on fanout-free circuitshere
discarded). Because there is at least one essential PBD dach primary input has only one outgoing edfe which
each input,S; is dependent oi; independent of the specificcan be performed with @(|SEBP |« y)-time algorithm using
implementation, if the following condition holds: signatures. Because logical feasibility is not always jdss

5 for a fanout-free tree that optimizes a particular perfaroga
criterion, we extend our synthesis techniques to handle arb
trary non-tree topologies.

Sp(si=0) & Sp(s=1) =1

In the case of the resynthesis of a functibias, ..., ay), we
note that the cardinality of theredundantcover can be less First, we associate a signature to each ingubf Tp.
than y becauseF' may be independent of afy up to don’t- These signatures implicitly handle controllability dendres
cares and the signature abstraction might not expose enoaghimpossible input combinations which will never occur in
essential PBDs. Furthermore, seveiratdundantcovers are the signatures. By simulating downstream nodes as in [28],

observability don’t-cares are derived ai#} is reduced to improvement over trying all possible gate combinationgwit
include only care values. If we assume that e&ihunder out considering PBDs. However, we note that in many cases
simulation distinguishes at least one essential PBD, we ndtie runtime complexity is linear.
the following for each2-input gate in a fanout-free topology: Theorem 3:The logical feasibility of any-input fanout-
Theorem 1:For input signatures; andS, and the2-input free T can be determined iI®(SLBP « x) time when K
function, ®, the signatureS; » = ®(S1,52) hasS; and S, simulation vectors completely specify the functionality /6.
essential PBDs. Proof. A fanout-free topology specifies a disjoint partition
Proof. Any cut throughTr gives a set of inputs that im- of the inputs. If an implementation exists with a disjoint
plementsF. Therefore, theSEPP must be distinguished by partitioning of inputs, each internal node corresponds to a
each cut inT% for a feasible topology. Since in a fanoutfunction that is specified independently of the rest of the
free topology,S; and S, do not reoccur in the topology, theimplementation. Therefore, when the signatures completel
output of the node combining; and S», S12, must contain specify /' (a complete truth table), each internal node is
their essential PBDs to distinguisty. O also completely specified. Because of this, each two-input
As a direct consequence, ea2hnput transformation pre- operation must preserve at ledstssential PBDs (the minimal
serves at least two essential PBDs. Furthermore, PBDs thamber of distinguishing bits @-input function can have)
only occur in bothS; and.S; must also be preserved to upholdind therefore only one function satisfies this relation.sBse
the invariant that every cut through the topology forms athere is only one such candidate function, the complexity of
input supportin a similar manner, the work in [31] upholdsfinding an implementation i©(SEZP « x). O
this invariant in constructing a subcircuit but consideP&Bs Although we often resynthesize functions with small sup-
instead.We note the following: ports and therefore small truth tables, a logic signaturesdo
Theorem 2:There are at most twa@-input Boolean func- not always completely specify a function’s behavior reaglt
tions (ignoring negated version of these functions) that cén a reduction in the number of bits that need to be distin-
preserve all the essential PBDs of the input signatures. guished. Also, the ability of simulation to quickly identif
Proof. A 2-input Boolean function hag row truth table with circuit don't-cares further reduces the number of bits that
output0 or 1. One essential PBD adds the following constrainfieed to be distinguished. By not having a completely spekifie
, , function, we facilitate multiple feasible implementatiorbe-
[®(a,b) = 2] A [®(a',0) =] spite the advantages of this flexibility in determining asibte
. . implementation, an intern@tinput operation may only need to
wherea, b, "%”dz are variables with valu or 1. In other preserve essential PBDs rather th&nwhich can increase the
words, two different rows of the truth table must have dm_ runtime of finding an implementation. However, in practice,

\éallcges(.j Fﬁr a glvenal and l;] Whgre an essentt:al PBDf Sthis runtime penalty is minor because the topologies are
efined, there are onlg such assignments to that satisty typically small. Also, in many cases logical feasibilitynca

this constraint. The remaining rows in the truth table can still be determined ifO(SEEP « y) time depending on which

have any of4 possible output combinations. Therefore, thergi,[S need to be distinguished

is a _total of8 different functions that satisfy this Constraint. Although in this paper we use a functionally complete set
We \gnore negated versions of the Boqlean function SInge 2-input gates, our approach extends to other standard-cell
th_at negation can be pr(.)pagated. to the inputs of later galgs, jos We now explain how to accomodate larger cells.
Given t_hls, there ard dlstmq functions that can preserve oNgsirst e allow topologies where each node can have more
essential PBD. Howgver, since _two essential PBD_s _must 2n two incoming edges. Then, each node with more than
preserved, the following constraint needs to be satisfied: two incoming edges is decomposed into nodes that represent
2-input gates. Finally, this implementation is mapped tet s
[©(a,b) = 2] A[®(a',0) = 2| A [®(d,e) = y| A[(d, ") = ¥'| of library cells using structural matching.
(7) In some cases, a topology optimizing a certain performance
If {(a,b),(a’,b)} is disjoint from {(d,e),(d,e’)} , there are objective may be logically infeasible. Furthermore, soomect
only 4 possible output combinations efandy that satisfy the tions,e.g, z = a’b+ac (a multiplexor), cannot be implemented
constraints, wher of them are the negated form. This is alseising a fanout-free topology. Therefore, a viable techmiqu
the case if{(a,b), (a’,b)} is not disjoint from{(d, e), (d,e¢’)} must handle a broader family of topologies. In the case of
(it is impossible for two different functions to have essaint the multiplexor, notice that only signal has fanout, whilé
PBDs on the same two rows). Therefore, there are at most oalyd ¢ only occur once. We now describe how essential PBDs
2 distinct Boolean functions that can preserve the essenti@n be used to guide synthesis for non-tree topologies where
PBDs of its inputsd each operation preserves at least one of its inputs’ essenti
If the fanout-free tree is traversed in topological order, @BDs. This facilitates reconvergence and the implemenrtati
choice between two different 2-input gates is availablesteh of useful functions including multiplexors, as shown below
node. In the worst case, all possible combinations mustd tr Theorem 4:The logical feasibility of ann-node topology
to preserve all the essential PBDs giviag|SEPP|2X)-time Tr can be determined irO(|Sg|"?P « 3X) time for K
complexity (there arey — 1 nodes). For the typically small simulation vectors under the following conditions:
topologies that are considered for resynthesizing pastioh 1) At least one input to each node does not fanout to
the critical paths, this results in significant practicahtime another node at the same or greater logic level

2) Only implementations are considered where the si@-. Physically-guided Topology Construction
natures along each cut through the topology faam

. In addition to efficientlydeterminingthe logical feasibilit
irredundantcover3 y g g y

of various topologies, we propose an algorithm that uses
The logic level of a node is determined by the path from tt®BDs and physical constraints to efficientiynstructogically
node to the primary inputs with the greatest number of edggsasible topologies. In this paper, we guide our approairfgus
Proof. By traversing the graph in topological order, notelelay and physical proximity. In the example shown in Figure
that at least one essential PBD is transferred to the outpu®, we try to find an optimal restructuring to implement the
Also, when those implementations are considered where tagget functionF with the inputsa, b, andc, using signatures.
signatures along each cut of the topology faamirredundant The functionality of the original circuit is represented by
cover, each signature along the cut has at least one essesignatures, and a table is associated with each signal sjowi
PBD. The constraints in Equation 6 suggest that theretarghe PBDs that are distinguished. The non-essential PBDs for
distinct 2-input functions that preserve one essential PBRach input signature have light-gray background.

However, one of these functions will correspond to the

input identity functionj.e., a buffer (or inverter in the negated AT(c) > AT(a) > AT(b)

case). Ignoring this case, there @rdistinct functions can be
tried at each node, which requires no more tBartotal gate
combinations to determine logic feasibility.

Handling arbitrary topologies with no implementation con-
straints requires more computation whéfe gate combina-
tions are examined. However, in practice, our approach is
faster than the naive enumeration described at the begjnnin
of the section because the operations are performed on the

PBDs

{0,2}{0,3}|{0,4}

{1,2}]{1,3}|{1,4}

check logic feasibility
of a topology with OP(a,b)

not possible for
all 2-input gates

signatures, not over the whole truth table. Also, esseRid)s check logic feasibility

can still significantly prune the search space. Each cut stil ofatopology with OP(b.c)

must cover all of the PBDs. If an edge from internal node_ 2 F

or primary input does not appear past a certain logic level

leseesesesd

.
10,2}
(1,2}

possibll with \ﬁ

B. Sub-circuit Extraction XOR gate

the topology, its signature’s essential PBDs must be pveder -
across that level.

Oe

topology and implementation

E\><D consistent with functional simulation
// /‘
L a

27
Fig. 10. Signatures and topology constraints guide logstrueturing to
improve critical path delay. The figure shows the signatfioeshe inputs of
the topology to be derived along with the output. Each tableresents the
D\}/ - PBDs of the output that are distinguished. The topology that applieand
.~ //\D b is infeasible because it does not preserve essential PBDRsaofd b. A
G - feasible topology uses andc, followed by a.

extract sub-path
for resynthesis

[/f/ The example shows that the arrival time foris the
greatest, followed by, thenb. Therefore, we first consider
Fig. 9. Extracting a subcircuit for resynthesis from a nooretonic path. a topology where’s value is required later. We also consider
. . _ the proximity of the signals and therefore examine a topplog
Afts r |de_:1t|fy|nghthe mos;non-n;ono:]omc S]ath_’ wet ethrat(iklhere an operation betweenandb is performed. Notice that
a Eu. cwg{w aihs own n Ig(leI’e ,tvvthere the 'nguths 0 trfleall possible2-input operations are tried, the essential PBDs
f]u circuit are ;’ mcimmg ﬁ gesdo ¢ ehpa ?]n Th € outRyt not preserved and hence this is not a feasible topology. W
as outgoing edges rpm_t e end of the pat - 1N€ NPWE- consider another topology wherean be consumed later
and fanout of the subcircuit are treated as fixed cells, Wh'?@cause no topology exists wherés consumed las€or this
form the physical constraints. As shown in the figure, ology, we see that ali O R-gate will preserve the essential

there are outgoing edges at intermediate nodes in the P&BOos “We then easily determine that @R gate is needed
this logic is duplicated. In practice, we experience mirlim implementF

cel e ncrease becauselow cels re tubicted o Mo e invodce e pieutocode of ou
Y 9 algorithm for restructuring non-monotonic interconnect

3 _ o in Figure 11. After identifying the non-monotonic paths,
In general, a topology may have an implementation wedfundantovers.

However, we focus on implementations that do not use thisiméancy to Opti m ?e—l nter Conneclt re_StrU(?tureS a . portion of
improve the efficiency of our approach. the critical path. We first simplify the signatures by

si mpl i fy_signatures by noting that the size of the gies. The constraint states which wire pairs should not be
signature|Sr| can be reduced to the number of differentombined again. For instance, for the multiplexot a'b+ac,
input combinations that occur acro§$s, ...S;}. Thus, only a there is no implementation for a fanout-free topology with
subset of the signature is needed for restructuring bedhaseinputs {a,b,c}. If a and b form a wire pair, we see that
small subcircuits considered have a maximun2bpossible no implementation preserves its essential PBDs. Howewer, w
different input combinations, smaller than the number afan exploit Theorem 4 and consider implementations that can

simulation vectors appliet!. eliminate one of the inputs. In this case, if the implemearat
. - a’b is tried, the wireb does not need to reappear in the
void Optimize_circuit() { topology. Therefore, a constraint is added so that the sut
genNMF(): the topology are nowa’d, a, c}. With these inputs, a fanout-
num.tries = X; pology NOWa'o, a, cy. Wy nputs,
while(worstnmf > 1) free tree does exist which is logically feasible.
if (nckt == Optimizelnterconnect(worshmf)) If Optinize.lnterconnect returns a subcircuit, we
if ('check equiv(nckt)) check the equivalence of the entire circuit using a SAT eagin

E%fm%lsjlgnatures(); In the case where our candidate produces a functionally

updatenetlist(): different circuit (which is rare as shown in Section VII),
legalizeplacement():; we use the counter-example generated by SAT to refine our
updateNMF(); simulation hence improving the signatures’ quality. If the
resulting subcircuit passes verification, we update théshet
it) and legalize the placement. We update the timing informatio
simplify_signatures(F);
Constraints constrs: and the NM_Fs if a new qrmcal path is found, in whlch case
while(find_opt topology(constrs)) we select with the next highest NMF and restructure it.

if(nckt == checklogical feasibility())
(*nckt).optplace();
return nckt; D. Efficient Subcircuit Verification

constrs.add(nckt); . - e .
) () Because we use signatures to limit verification of optimiza-

tion candidates that are most likely correct, equivalermszk-

o) _ ing typically confirms the transformation. As in [9], we redin
We then add any timing or physical constraints, such @gnylation using counterexamples found by failed equivade

locations of the inputs and outputs of the subcircuit beingacks so as to reduces additional failed checks. We also

restructured. Irf i nd_opt -t opol ogy, we find a topology minimize the verification time due to equivalence checkigg b
that satisfies all the physical constraints and optimizéayde considering only the portions of logic that contributes he t

The topology is created by a greedy algorithm which derives@n't.cares used in the transformation. As explained if,[28
fanout-free topology from the current input wires. We exa@ni s\ era| don't-cares can exist within a few levels of logie W

each pair of wires, apply an arbitrary cell, and estimate thig,oke a SAT engine so that it considers only these necessary
delay to the output of the subcircuit. The topology is thepye|s of downstream logic. Additionally, we could restrice
greedily constructed so that wire pairs that produce earligyivalence checking to a window around the optimization
arrival times are consumed farther from the output of thgcation to further reduce verification time while still liging
topology. We will later discuss how to construct arbitraryspcs and ODCs in the circuit.
non-tree topologies. From this topology, we can get an Upper o vever, in practice, we observe that the SAT-based equiv-
bound for the best implementation possible that contaies thence checking requires a small percentage of runtime com-
exa_lmllned combmat!on. If a topqlogy can't be found thaﬁared to constructing optimal topologies even for our large
satisfies the constralnts,_the fun(_:t|_o_n retl_.lrns. . circuit examplesThis small runtime can be attributed to the
We then check the logical feasibility using PBDs and signgs ity of most of our structural transformations. Beaatise

tures incheck| ogi cal -feasi bi I i ty.Ifthe topology is g,cture of the original and modified circuits are simitiue
feasible, we associate the appropriate gate with eacha@nte gat jnstance can be greatly reduced in size and complexity.

placg the subcwcw_t. Qur placement routine cons@ers trey This limits the complexity of our approach, which tends not
legality of the subcircuit (we call a placement legalizeetdor to grow with the size of the overall circuit

the entire design). In our approach, we determine a loc#bion

each gate by placing it at the center of gravity of its inputd a

outputs and then sifting the gate to different nearby |oresi VI. ENHANCING RESYNTHESIS THROUGHGLOBAL
This sifting is done over all the gates over several passtis un SIGNATURE MATCHING

a locally optimal soll_Jtion is achieved_, which res:ults i.n N0 Our resynthesis strategy considers the inputs to a non-
overlaps. For the typically small subcircuits consider#i onotonic path for resynthesis. This strategy is convenien
requires little computational effort. because 1) the set of inputs can always implement the target

If the topology is not logically feasible, we addwnctional 4yt and 2) the inputs tend to be physically close to thgetar
constraint that will prevent the construction of similaptdo- output. However, local manipulations can be enhanced by

4In our experiments, we applg048 input vectors and restructure subcir—'ncorporatmg gIObaI !nformatlon, a§ n |09|C rewriting Wh
cuits with < 10 inputs. uses structural hashing [22]. In this section, we explaiw ho

}
Subckt* Optimize_Interconnect(Subckt FY

Fig. 11. Restructuring non-monotonic interconnect.

10

to exploit the same advantages as structural hashing, by gEaths while minimizing the size of the transformations édns

forming matching up to the signature abstraction. Furtloeen ered. We conducted several optimization passes until n@ mor

our approach is more powerful than logic rewriting becaugmins were achieved.

the signatures are matched up to global don’t-cares, and

our initial ph)_/smally’—gulded local rewriting over signaes A. Prevalence of Non-monotonic Interconnect

already exploits don’t-cares. We observe that our enhaaném

is no worse than the algorithm from [27] but appears more 0877

robust and predictable. "% To-6 hops (wirelength-based 98.1%

. NMF calculatiol 97.4%

Algorithm: We now outline how signature matching is used s 96.8%

in the resynthesis of non-monotonic paths:

96.3%
0] 91.2%

8
1) Find a set of candidate wires within a certain distance

of the output wire to be resynthesized. L 70 o

2) Check whether any of these wires’ signatures is equal ol % nop (delay-based distribution of pathsi
to the output signature up to don’t-cares. If a match i§ / NMF calculation) — 2-hop (11.6%)
found and the timing improves, replace the output wir& s /. " 3-hop (14.3%) ||
with the corresponding candidate wire. / —4-hop (18.8%)

3) While checking logic feasibility in topological order, * / 5-hop (24.0%) | —
check whether any of the internal wires of the topol- | 6-hop (31.3%)

ogy can be reimplemented by a candidate wire with a
matching signature so that the timing is improved. 2

1.0 1:5 2:0 2:5 3:0 3:5 4:0 4:5 5.0
The candidate wires are chosen by proximity to the output NMF
wire being resynthesized as determined by its HPWL. Ary9: 12. The above graph shows the percentage of paths whdEes\below
. . . ., & given value on the x-axis. Notice that longer paths tencetndn-monotonic
wire that has arrival time after the current output wire’'g

; ‘ ')) uas nd at least 1% of paths are 5 times the ideal minimal length.
arrival time is not considered. Unlike the resynthesis algo Our experiments indicate that circuits often contain man
that uses a simplified signature, for signature matching, we P y

consider the whole signature except for the don't-cares. @S)r:-.r;ot.notoryct:hpaths. In flguref12,t\r/]ve |Ilﬁstratlglalfu_nmbtatl|
this case, a single comparison between signatures can perbution of the percentage ot paihs whose S IS below

performed quickly and is more efficient than finding acommotrrl'e corresponding value on the x-axis. We generated these

set of inputs to both wires and then reducing the signatmresa[Verages over all the circuits in Table I. Each line repressen

the number of simulated different input combinations. Beti arodr;]ﬁezrerr:ct) psattfzj-Izngtshnex?r:rélne.c:él\/ejlgetrﬁ_g\; Zggnﬁ:\jeprergi?éh
our algorithm enhances the previous resynthesis stratedy P using wi 9 IC.

improves the timing of aimplementationwhereas topology e also show the cumulative distribution for the 4-hop delay
. . . S based NMF calculation used to guide our delay-based restruc
construction only considers the inputs to the subcircuit.

turing. Of particular interest is the percentage of monimton
paths,i.e., paths with NMF = 1.
VIlI. EXPERIMENTS Notice that smaller paths of 2-hops are mostly mono-

))) ~ tone, whereas the percentage of monotone paths decreases
We implemented and tested our algorithms with circuitg 239 \when paths with more logic levels are considered

from the IWLS 2005 benchmark suite [39], with designg.hop paths) This indicates that focusing optimizations on
utilization set to 70% to match recent practices in the itgus gy 4| paths only, as in [4], can miss several optimization
Our wire and gate characterizations are based on a:M18qpnortunities. It is also interesting to note that there are
technology library. We perform static timing analysis @sinpaths with considerably worse monotonicity having NMFs
the D2M delay metric [2] on Rectilinear Steiner Minimal,, 5 indicating regions where interconnect optimizations are
Trees (RSMTs) produced by FLUTE [12]; here FLUTE cafjeeded. We observe similar trends using our delay-based

be easily replaced by a timing-driven subroutine, but we dgetric. The inclusion of gate delay on these paths results in
not expect the overall trends in our experiments to Chan@?eater non-monotonicity when compared to the wirelength-

significantly. Our netlist transformations are verifiedngsa yetric. Although not shown, each individual circuit exhibi
modified version of MiniSAT [13] and placed using Capo 1Qjmilar trends.

[6]. We have considered several different initial placetaen

for each circuit by varying a random seed in Capo and))

report results as averages over these placements. Owstnei Physically-aware Restructuring

transformations are legalized using the legalizer pravidg We show the effectiveness of our delay-based optimization

GSRC Bookshelf [41]. by reporting the delay improvements achieved over several
Our delay improvements are achieved by executing tle@cuits. In Table I, we provide the number of cells and nets

algorithm in Figure 11. We applie?048 random simulation for each benchmark. In theer f or mance columns, we give

patterns initially to generate the signatures. We consitlerthe percentage delay improvement, the runtime in seconds, a

paths of less than or equal4chops 6 nodes) using our delay- the percentage of equivalence-checking calls where catelid

based metric which allowed us to find many non-monotongtibcircuits preserved the functionality of the whole ditcu

11

Circuit Cell Net Performance Overhead 6.0 30% threshold
count | count || %delay | time | %equi %wire | %cells ’ “ K
mor | : /
sasc 563 | 568 41| 41| 100 || 235| 313 <ol
spi 3227 3277 10.9 949 82 4.53 0.73 estimated i;pper-bound
desarea 4881 | 5122 12.3 | 503 93 1.09 | 031 o delay jimprovement
tv80 7161 7179 9.1 1075 71 2.50 0.17 g 0] K
s35932 7273 7599 275 476 100 2.14 0.19 g J/
systemcaes| 7959 | 8220 139 | 748 95 0.89 -0.07 | & /o ~74% of delay optimizations
s38417 8278 8309 11.7 481 84 0.68 -0.21 E * . /
memctrl 11440 | 11560 92| 678 37 0.05 | -002| &* .
ac97 11855 | 11948 6.3 245 100 0.44 0.02 f / .
usb 12808 | 12968 12.2 605 80 0.30 0.06 § ,/'
DMA 19118 | 19809 14.5 845 65 0.16 0.08 g 20 P ¢ A
aes 20795 | 21055 6.4 | 603 100 0.13 0.01 | ¥ Y . LR
ethernet | 46771 | 46891 3.7 | 142 100 0.08 | 0.06 CORS o *
[average | [[11.7% | [8500 || 120% [034%] 19 ‘i’"" " AR
g . - - - e ‘0. . O: - ’,8
TABLE | \y “Q e P .
0.0
SIGNIFICANT DELAY IMPROVEMENT IS TYPICALLY ACCOMPANIED BY A 0.0 20 40 6.0 8.0 10.0 120 14.0 16.0
SMALL WIRELENGTH INCREASE. % estimated potential delay improvement

Fig. 13. The graph above illustrates that the largestal delay improve-
ments occur at portions of the critical path with the largestimatedgain
using our metric. The data points are accumulated gainse\athi by 400

. . di?erent resynthesis attempts when optimizing the ctecin Table I.
We also report the overhead of our techniques in terms o

mcreasgd vylrele_ngth and area (cell count)._ . independent initial placements optimized for total wirgjth.
Considering8 independently generated initial placement(%ompared to thesé4 wirelength-optimized placements, the

for each Ii'rcu't’ our .tecr_\mqueshgspgrg;/e delay|%y7% N pest placements achiever.0% smaller delay on average
average. For some Circuits, suc , several don't-care 5y saorve as proxies for timing-optimized placements in our

enhanced optimizations enab!ed even greater delay impm}é?periments. Starting with the best placements, our logic
ments. We observe the following: restructuring further decreased delay ©§%.
1) By optimizing only one output of a given subcircuit, we

greatly reduce the arrival time of that output, while only Cireutt ey e
slightly degrading performance of less critical outputs. sasc 138 | 121
2) Through our efficient use of don't-cares, severahput Zgisarea 12-2 ﬁ?
subcircuits could be restructured to require fewer than tv80 127 31
y inputs. $35932 231 | 218
. . . . systemcaes 10.1 4.0
3) As a special case of the previous point, sometimes an 538417 263 | 2.9
input to the subcircuit was functionally equivalent to the ?C%';lc”' 152,'2 gi
output of the subcircuit when don't-cares were consid- usb 108 | 00
ered, enabling delay reduction along with removal of g’e’\"SA 1?-; 2-3
unnecessary logic. Signatures are efficient in exploiting T T E = i 0 l
these opportunities.
TABLE I

4) The decomposition of large gates into smaller gate prim-
itives through our restructuring algorithm often produces

better topologies because we more prgcisely construct g, Figure 13, we demonstrate that our delay-based NMF
topology to meet the physical constraints. metric is effective at guiding optimization. Each data poin
5) We also expect gains due to the duplication and relocag,esents a different resynthesis try considering allhef t
tion of some cells. circuits in Table I. The x-axis shows the predicted percent-
We believe that further gains would be enabled by combinirge delay gain possible (determined by the optimal-buffere
buffering, relocation, and gate sizing strategies betweeme- delay). The y-axis indicates the actual gain. Data points
structuring optimizations. The runtime of our algorithnales that lie on the x-axis indicate resynthesis tries that did no
well for large circuits due to the use of logic simulation Be t improve delay (a better topology could not be found). The
main optimization engine. Furthermore, the high percemtag0% threshold line divides the graph so that the number of
of equivalence checking calls that verified the equivalesfce resynthesis attempts are equal on both sides. The diagoeal |
our transformationgas shown by colum®equi in Table indicates an upper-bound prediction for delay g&ecause
) indicates that signatures are effective at finding funetign some of the optimizations reduce the support of the original
equivalent candidates. The wirelength and cell-countlmad subcircuit, we can improve the delay beyond the estimate
are minimal because only a few restructurings are needed avitich considers all of the subcircuit’s inputs. Therefaame
the optimizations can simplify portions of logic. In someea of the data points are above the upper-bound line. On the
the number of cells is reduced. other hand, a resynthesis try produces a smaller than éstima
To check if our techniques provide comparable improvémprovement when the ideal topology is not logically feésib
ment when the initial placement is optimized for timing, wer when removing cell overlap degrades the quality of the
performed the following experiment. We first producéd initial placementAlthough the NMF and gain calculations do

EFFECTIVENESS OF OUR APPROACH COMPARED TRAR.

not directly incorporate circuit functionality74% of all delay [3]
gains are found on the right half of the graph. The corretatio ,
to our metric could be further improved by incorporating the

percentage of gain possible with respect to near-critiatthg {g}
. . . (71
C. Comparison with Redundancy Addition and Removal "

We compare our technique with timing optimizations using
RAR. We implement redundancy removal using signature
[28] to identify equivalent nodes up to don't-cares. In the
context of path-based resynthesis, the inputs to the subgir ol
along with signals that have earlier arrival time and aréimit [11]
a bounding box determined by the HPWL of the output, are
considered as candidates for rewiring. If one of these f8gnat2]
is equivalent to the output up to dont-cares in the circuit,
rewiring is performed and the timing improved. [13]

In Table Il, we show the delay improvement of our resynp
thesis strategy which uses global signature matching torred
dancy addition and removal. For this experiment, we rep
results on a random slice of initial placements from ouresuit
First, note that our technique is almost twice as effective §
improving delay. Furthermore, our results are more coastst [17]
than RAR over all the circuits and are never worse.

!

(18]

[19]
VIIl. CONCLUSIONS

Interconnect delay is becoming a major obstacle for achiegws]
ing timing closure, typically requiring numerous expeesie-
sign iterations. Current logic synthesis strategies ofearifice
other performance metrics to improve delay, requiring con¥??
putationally expensive algorithms and companion placésien[23]
Despite these efforts, extensive post-placement optifoiza
are still needed, especially since buffers will represelarge
fraction of standard cells in future technologies [29]. [25]
We propose a solution that improves the quality of delaiel
optimization without sacrificing other performance medric |,

To this end, we introduce a novel simulation-guided syrighes
strategy that is more comprehensive than current restingtu [28]
techniques. We develop a path-monotonicity metric to focugl
our efforts on the most important parts of a design. Oyg
optimizations lead tal1.7% delay improvement on average

over several different initial placements, while our detmsed
monotonicity metric indicated that5% of the paths analyzed [32]
were non-monotonic. We further observe delay improvements;

on placements initially optimized for delay, which are con-
sistent with our reported average improvement. We belieV!
that our approach offers an effective bridge between ctirrelsl
topological-based synthesis and lower-level physicattssis
approaches. It enables less conservative estimates aahg i
. . . 37l
design flow to improve other performance metrics and redut®
the amount of buffering required by shortening criticalhsat [38
Future work will explore the benefits of using our techniqug0
with other physical synthesis strategies such as buffering 41

[21]

[24]

[36]

PO 9O ®

REFERENCES

[1] A. Ajami and M. Pedram, “Post-layout timing-driven cgllacement using an
accurate net length model with movable steiner poinBAC '01, pp. 595-600.

[2] C. Alpert, A. Devgan, and C. Kashyap, “RC delay metric fperformance
optimization”, TCAD 01, pp. 571-582.

12

C. Alpert, A. Kahng, C. Sze, and Q. Wang, “Timing-driveteiser trees are
(practically) free”,DAC '06, pp. 389-392.

G. Beraudo and J. Lillis, “Timing optimization of FPGA gitements by logic
replication”, DAC '03, pp. 541-548.

D. Brand, “Verification of large synthesized designECCAD '93, pp. 534-537.
A. Caldwell, A. Kahng, and I. Markov, “Can recursive bisien alone produce
routable placements?DAC’00, pp. 693-698.

K.-H. Chang, I. Markov, and V. Bertacco, “Fixing desigma@s with counterex-
amples and resynthesisASP-DAC '07 pp. 944-949.

K.-H. Chang, I. Markov, and V. Bertacco, “Safe delay opization for physical
synthesis” ASP-DAC '07 pp. 628-633.

] K.-H Chang, D. Papa, I. Markov, and V. Bertacco, “InVer&n incremental

verification system with circuit similarity metrics and ervisualization”,ISQED
'07. pp. 487-494.

S. Chatterjee and R. Brayton, “A new incremental plaertmalgorithm and its
application to congestion-aware divisor extractiofCCAD '04, pp. 541-548.
C.-W Chang, C.-K Cheng, P. Suaris, and M. Marek-Sadawsf¥ast post-
placement rewiring using easily detectable functional mygtmies”, DAC '00, pp.
286-289.

C. Chu and Y.-C. Wong, “Fast and accurate rectilineaingr minimal tree
algorithm for VLSI design”ISPD’05 pp. 28-35.
(http://class.ee.iastate.edu/cnchu/flute.html)

N. Een and N. Sorensson, “An extensible SAT-solverSAT
(http://www.cs.chalmers.se/Cs/Research/FormalMestadihiSat/).

W. Gosti, A. Narayan, R. Brayton, and A. Sangiovanniéntelli, “Wireplanning
in logic synthesis”ICCAD '98, pp. 26-33.

W. Gosti, S. Khatri, and A. Sangiovanni-VincentelliAddressing the timing
closure problem by integrating logic optimization and plaent”, ICCAD '01,
pp. 224-231.

‘03

6] M. Hrkic, J. Lillis, and G. Beraudo, “An approach to pement-coupled logic

replication”, DAC '04.

Y.-Min. Jiang, A Krstic, K.-Ting Cheng, M. Marek-SadeWa, “Post-layout Logic
Restructuring For Performance Optimizatio®AC '97, pp. 662-665.

L. Kannan, P. Suaris, and H. Fang, “A methodology ancatlgms for post-
placement delay optimizationDAC’'94, pp. 327-332.

A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Rob&®olean reasoning
for equivalence checking and functional property verifaat, TCAD ‘02 pp.
1377-1394.

V. Kravets and K. Sakallah, “Resynthesis of multi-leva@rcuits under tight
constraints using symbolic optimizatiofCCAD '02, pp. 687-693.

C. Li, C-K. Koh, and P. Madden, “Floorplan managementrémental placement
for gate sizing and buffer insertionASP-DAC’05 pp. 349-354.

A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-avAIG rewriting: a fresh
look at combinational logic synthesisDAC '06, pp. 532-536.

A. Mishchenko, S. Chatterjee, R. Jiang, and R. BraytiRAIGs: A unifying
representation for logic synthesis and verificatioBERL Technical Report 'Q5
Berkeley. (http://www.eecs.berkeley.edwdlanmi/publications/).

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Mali€haff: engineering
an efficient SAT solver”DAC '01, pp. 530-535.

R. Otten and R. Brayton. “Planning for performancBAC '98, pp. 122-127.

M. Pedram and N. Bhat. “Layout driven logic restruchgridecomposition”,
ICCAD '91, pp. 134-137.

S. Plaza, I. Markov, and V. Bertacco, “Optimizing nommotonic interconnect
using functional simulation and logic restructuringSPD '08 pp. 95-102.

S. Plaza, K.-H Chang, I. Markov, and V. Bertacco, “Nodergers in the presence
of don't cares”,ASP-DAC '06 pp. 414-419.

P. Saxena, N. Menezes, P. Cocchini, and D. KirkpatriBlepeater scaling and its
impact on CAD”, TCAD 04, pp. 451-463.

J. Marques-Silva and K. Sakallah, “GRASP: A search ailgm for propositional
satisfiability”, IEEE Trans. Comp '99pp. 506-521.

] S. Sinha, A. Mishchenko, and R. Brayton, “Topologigaltonstrained logic

synthesis”ICCAD '02, pp. 679-686.

G. Stenz, B. Riess, B. Rohfleisch, and F. Johannes, figndiriven placement in
interaction with netlist transformationsISPD '97, pp. 36-41.

L.P.P.P van Ginneken, “Buffer placement in distritlt®C-tree networks for
minimal Elmore delay”|SCAS 90 pp. 865-868.

J. Werber, D. Rautenbach, and C. Szegedy, “Timing dpétion by restructuring
long combinatorial pathsICCAD '07, pp. 536-543.

S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A New Meétlo Express
Functional Flexibility”, TCAD '00, pp. 840-849.

Y.-S. Yang, S. Sinha, A. Veneris, and R. Brayton, “Autiiing logic rectification
by approximate SPFDs’ASP-DAC '07 pp. 402—407.

Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovannidéntelli, “SAT

sweeping with local observability don’t careDAC '06, pp. 229-234.

The International Technology Roadmap for Semiconaitsct2005 Edition, ITRS.
http://iw s.org/iw s2005/ benchmarks. ht m .

Synopsys DesignCompileint t p: / / www. synopsys. com

UMICH Physical Design Tools,

http://vlsicad. eecs. uni ch. edu/ BK/ PDt ool s/

