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Abstract— In this work we describe significant improvements
to core routing technologies and outperform the best results from
the ISPD ‘07 Global Routing Contest and ICCAD 2007 in terms
of route completion and total wirelength.

I. INTRODUCTION

Despite being one of the first areas of EDA to be automated
in the 1960s, VLSI routing remains an area of active research
and development as evidenced by a growing body of literature
[2], [6], [15], [32], [33], recent collaboration between Cadence
and IBM on routing technology [27], as well as the ISPD ‘07
Global Routing Contest organized by IBM Austin Research
Laboratory [18]. Current efforts in routing are motivated by
challenges present at the nanometer scale including: (i) very
large wiring databases that require lean data structures and
extremely efficient algorithms, (ii) sophisticated design rules
that must be abstracted away during initial routing passes,
(iii) relatively unreliable vias whose resistance may vary by
up to 30 times [37], which requires via doubling [23], [25]
and motivates additional effort to minimize via counts, (iv)
signal integrity constraints and the dramatic impact of lateral
capacitance on interconnect delay, which lead to wire density
constraints, and (v) considerations of chemical mechanical
polishing (CMP) that also lead to density constraints [8].

The ISPD ‘07 routing contest challenged the research
community by distributing 16 very large routing benchmarks
derived from recent chip layouts. Thanks to the wide participa-
tion in the contest and the public availability of the results, we
observed an important trend which is illustrated in Figure 1 —
routers that achieve low wirelength often suffer high violation
counts, and routers that minimize violations often produce high
wirelengths. Therefore, a key focus of our work is on adequate
pricing of routing resources to balance interconnect length and
congestion in multi-million gate designs, in a way that also
allows to trade-off other nanoscale objectives and constraints.
Additionally, the effective handling of vias, multiple metal
layers and other aspects of nanoscale routing pose a series
of algorithmic, implementation, benchmarking and integration
challenges.

In this work we develop a high-performance routing tech-
nique based on Discrete Lagrange Multipliers (DLM), while
pointing out inaccuracies, limitations and pitfalls of the related
technique known as negotiated-congestion routing [28]. In
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Fig. 1. Routed wirelength vs. violations for all competing routers on 2-d
ISPD ‘07 benchmarks [18]. Note that violation counts are shown on a log-
scale where 0 cannot be plotted, so completely legal solutions are depicted
with exactly 1 violation. Relatively few solutions submitted to the contest
were legal (35%), but they are generally a cut above the rest. Of the illegal
solutions, as violations increase, routed wirelength decreases. To emphasize
the trend, a linear least-squares fit of the data has been added for the illegal
solutions.

particular, DLM offers a natural way to handle net weights and
timing optimization in routing, and explains several empirical
effects observed in negotiated-congestion techniques such as
the last-gasp problem and the relative simplicity of 2-d formu-
lations compared to multi-layer (3-d) formulations. Proposed
algorithms are implemented in FGR1, a high-performance
global router for nanometer scale designs.

Our key contributions are:

• A routing technique based on Discrete Lagrange Multi-
pliers (DLM) which provides a natural way to handle net
weights and timing optimization in global routing. FGR
handles two- and three-dimensional routing of ASICs
with up to 870,000 nets.2

• Extensions of A*-search to restructure net topologies so
as to avoid congestion and circumvent obstacles.

• Improved wirelength on the ISPD ‘07 Global Routing
Contest suite [18]. FGR produces smaller wirelengths
than the winners of the contest on every benchmark, and

1“Fairly Good Router”
2This is almost an order of magnitude greater than what has been reported

in the literature for most ASIC and FPGA routers. In the 32-bit address space,
FGR scales up to 1,000,000 nets, but can also be compiled to run in the 64-bit
address space.
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Fig. 2. Pictorial representations of the global routing grid. The images on the
left and in the middle show how the layout is abstracted into a regular grid of
GCells. GCells are represented by vertices, with adjacent vertices connected
by graph edges. Capacities on edges that join GCells can be defined as the
number of routing tracks that cross GCell boundaries. The image at the right
shows that horizontal and vertical connections on different layers with vias
connecting them.

is able to route without overflows every benchmark that
the winners routed without overflows. In terms of wire-
length, FGR outperforms BoxRouter 1.0 [6] by 10.6%
and MaizeRouter [29] by 9.1%. We also achieve shorter
wirelength than Archer [31] and BoxRouter 2.0 [7] on
every benchmark, and obtain best violation counts on
newblue1 of 234 – 41.4% better than BoxRouter 2.0.

• Violation-free routing of all ISPD ‘98 IBM benchmarks,
unlike routers in previous literature. FGR uses 35% less
runtime than BoxRouter 1.0 and produces solutions with
2.7% smaller wirelength.

• Thorough empirical evaluation of several routing strate-
gies and algorithms including net decomposition by MST
vs. Steiner trees and layer assignment for 3-d routing
problems vs. direct 3-d maze routing. We identify pre-
viously unreported bottlenecks, such as the “last gasp”
problem in negotiated-congestion routing, and propose
solutions.

This paper is organized as follows. Section II, reviews
relevant background and previous work. Section III describes
the architecture of the FGR router, the mathematical basis for
its key algorithms, and important insights into the integration
of major components. We benchmark FGR against state of the
art in Section IV and conclude in Section V.

II. BACKGROUND AND PREVIOUS WORK

Routing plays a key role in VLSI physical design as it
determines the specific shape and layout of interconnect,
impacting performance, power and manufacturability. Routing
is traditionally divided into the two steps of global and detail
routing.

Global and Detail Routing. During global routing, com-
plex design rules are abstracted away and a design is divided
into a regular grid (see Figure 2). Routes are created for each
net that connect adjacent grid cells. Capacities are assigned to
pairs of adjacent grid cells to model limited routing resources
between the cells. Since different metal layers may use distinct
wire pitches, routing capacities at each layer may differ to
reflect this. A global routing solution is legal if all nets are
connected and all capacity constraints are satisfied.

Detail routing takes a global routing solution with a small
number of capacity violations (overflows), or none at all,
and assigns wires to routing tracks while enforcing spacing
constraints and more sophisticated design rules. Starting with

slightly illegal global routes can make detail routing consid-
erably more difficult, therefore a global router must minimize
violations and wirelength, seeking to avoid violations entirely
when possible.

Traditional algorithms for detail routing often assume a
specific, small number of metal layers and operate in isolated
layout regions — channels or switch-boxes. However, over-
the-cell routing with six or more metal layers made many such
algorithms obsolete and lead to the adoption of similar graph-
theoretical techniques in global and detail routing, perhaps
with different layout, resource and delay models.

In our experience with Cadence WarpRoute, three quarters
of total runtime is spent in detail routing, but the quality
of global routes profoundly affects the runtime and success
of detail routing. A recent proposal [32] suggests invoking
a fast global router during global and detail placement, so
as to mitigate wiring congestion early. This application is
particularly attractive for sub-130nm technology nodes where
lateral capacitance of wires is a major contributor to intercon-
nect delay. In this context, accurate timing analysis requires
information about regions through which a given net passes
as well as wire density in these regions [41].

Maze Routing connects pairs of terminals on the routing
grid using standard search techniques such as BFS and Di-
jkstra’s algorithm [12]. More than 50% of nets in modern
designs connect only two pins. BFS can find the shortest path
between a source location and a target location, if one exists,
but cannot handle routing segments with non-trivial weights.
Dijkstra’s algorithm can handle non-negative costs of routing
segments, but is at least several times slower than BFS. A*-
search is a minor modification to Dijkstra’s algorithm that
significantly improves speed during 2-d and 3-d routing [16].
In A*-search, a lower bound of the distance to the target is
added to node priority in Dijkstra’s algorithm. Straight-line
distance is commonly used as a lower bound.

Pattern Routing [21] is a technique that severely restricts
the number of ways in which a net can be routed to simplify
the routing process. For example, L-shape routing seeks to
implement each two-pin net with a single bend. This technique
is surprisingly useful in ASIC routing and justified by via
minimization. Empirical studies [43] show that in a fully-
routed design a majority of all 2-pin nets take on L-shapes.
In global routing, where minor detours are abstracted away,
L-shapes are even more prevalent. Two-bend routes are often
called Z-shapes, but generic pattern-based routing can consider
any finite number of routing topologies for each net, and
selects one of them. It is particularly amenable to Integer
Linear Programming formulations [6], as described later in
the section.

Multi-pin nets. Most global routing algorithms decompose
nets with three or more pins into two-pin subnets at the
beginning of global routing as this eases maze routing. This
decomposition has been traditionally done using Minimal
Spanning Tree (MST) algorithms, but using fast and ex-
tremely accurate Rectilinear Steiner Minimal Tree (RSMT)
construction algorithms has become increasingly popular in
the literature [6], [32], [33]. Four decompositions of a 5-pin
net by Steiner trees and MSTs are shown in Figure 3.
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Fig. 3. Decomposition of a 5-pin net by minimal Steiner tree (a), MST (b) and
MSTs with sharing (c)&(d). The choice of (c) or (d) depends on congestion.
The minimal Steiner tree (a) contains 5 flat subnets and 1 L-shaped subnet,
whereas the shared MST (d) has 2 flat subnets and 3 L-shaped subnets which
gives it greater flexibility.

The RSMT tool FLUTE [9] is used by BoxRouter 1.0 [6],
BoxRouter 2.0 [7] and FastRoute [32], [33]. FLUTE uses
look-up tables for nets with nine or fewer pins and quickly
builds optimal trees for such nets [9]. For larger nets, a
divide-and-conquer method is employed [9]. FastSteiner [19]
is another RSMT algorithm that is more scalable than most
RSMT algorithms. FastSteiner does not guarantee optimality,
but frequently produces solutions with smaller total wirelength
than FLUTE for nets with more than nine pins. In Section
IV-C we compare MST with sharing to a combination of
FLUTE and FastSteiner, and find that Steiner constructors lead
to smaller routed length but greater via counts.

Rip-up-and-re-route (RRR) takes an initial, usually illegal,
routing solution and iterates greedy one-net-at-a-time routing
passes for nets that compete for routing resources, but may
change the ordering each time in hope to better reconcile these
nets. In each iteration, nets that pass through congested regions
are “ripped up” (all resources for the net are removed from
the routing grid) and are rerouted with a maze router to use
lesser congested regions. Major differences between various
implementations [6], [13], [15], [28], [32], [33] include which
nets are ripped up and rerouted at each iteration, the order in
which to rip up nets and reroute them, if nets are allowed to
be rerouted through areas that are already congested, and the
costs associated with routing through a particular routing edge
given its current congestion.

Congestion Amplification [15] was recently introduced as
an improvement to pricing of routing resources during RRR.
Many routers that employ RRR do not penalize nets for going
through uncongested regions, and then drastically increase cost
once a routing edge is full. The authors of [15] propose to
use a more gradual linear cost function for edges before they
become full in order to spread wires from areas that are likely
to become congested. In addition, when congestion estimates
are calculated after each iteration of RRR, regions with high
congestion have their estimates artificially increased (ampli-
fied) and regions with low congestion have their estimates
decreased. This provides a greater incentive for maze routers to
avoid highly congested regions, often at the cost of increased
wirelength.

Negotiated-congestion Routing (NCR) [28] was intro-
duced in the mid-1990s for global routing in FPGAs and is
used in VPR (the dominant place-and-route tool for FPGAs)
[3], but has not seen much use in the ASIC literature. NCR

builds upon RRR by gradually making routing edges that are
consistently congested more expensive, encouraging the maze
router to choose alternative routes when they are available.
The cost ce of routing edge e

ce = (be + he) · pe (1)

is a function of the base cost (be), added cost reflecting
congestion history (he), and penalty for current congestion
(pe) [28]. NCR seeks to minimize

∑

e
ce.

To begin negotiated-congestion routing, each net is routed
using the smallest possible wirelength regardless of edge ca-
pacities. Next, rip-up-and-re-route proceeds. At the beginning
of a RRR iteration, the historical cost he of all over-capacity
routing edges is increased:

hk+1
e =

{

hk
e + hinc if e is overfull

hk
e

otherwise
(2)

where hinc is a constant. The choice of hinc affects con-
vergence time and solution quality: higher values lead to
faster convergence but higher routed wirelength. After cost
adjustment, each net of the design is individually ripped up
and rerouted by a maze router. The authors suggest that only
nets passing through congested regions need to be rerouted
and this approach is used in FGR. The ordering of nets during
rip-up-and-re-route is the same for each iteration, but can be
chosen arbitrarily, according to the authors of [28], because
the gradual cost increase in congested areas removes ties
that require sophisticated net ordering techniques in traditional
RRR implementations.

Reported implementations of NCR do not handle multi-
layer routing and via minimization — key aspects of nanoscale
ASIC layout. Additionally, NCR has not been validated in the
literature at the scale of large ASIC netlists.

Multi-level routing techniques work similarly to those in
partitioning [20] and placement [5]. The original routing prob-
lem is effectively made simpler through a series of coarsening
stages where routing grid cells are combined and many nets
become subsumed within a single cell. This adds a hierarchy
to the routing formulation. At the top of the hierarchy is
the coarsest form of the routing problem which is small
enough to be solved with sophisticated techniques that may not
scale to large routing instances such as multi-commodity flow
based techniques [2], [16], described below. Essential to the
coarsening stage is the proper aggregation of routing resources
so that routing solutions at higher levels closely resemble valid
routing solutions at lower levels.

After the coarsest level of the hierarchy has been routed,
iterative refinement of the current routing solution begins. The
problem is un-coarsened by one level and the current solution
is adapted to the finer routing grid. This stage is nontrivial as
nets can gain additional pins as the routing grid is refined and
new nets that were previously subsumed by routing cells will
become visible and need to be routed from scratch. This refine-
ment process iterates until the finest level of the hierarchy, the
original routing problem, has been successfully routed. Multi-
level routers in the literature generally have smaller runtimes
than flat techniques and show higher completion rates [10],
[11].
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Combinatorial optimization techniques. Other sophisti-
cated techniques for routing have been proposed, such as the
use of multi-commodity flows (MCF) [2], [16] and integer lin-
ear programming (ILP) [6]. Both of these techniques attempt
to route nets simultaneously in order to avoid the problems
associated with net ordering.

There are a variety of ILP formulations for routing. Many
require that multi-pin nets be divided into a small number of
two-pin topologies. For each two-pin net, one sets up several
constraints to ensure that the pins are connected. Constraints
are also added so that the number of nets passing through each
routing segment does not exceed the capacity. Solving this
formulation for all nets simultaneously will optimally solve
the given routing problem if possible, but has its drawbacks
including difficulty expressing non-linear delay models.

Multi-commodity flow (MCF) techniques take a different
approach to solve the ILP formulation by relaxing it into
a linear programming (LP) formulation. An approximation
algorithm which successively adjusts routing edge weights and
builds new weighted Steiner trees per net at each iteration
is used to solve the LP. ILP-based BoxRouter 1.0 has been
compared to a recent MCF-based router [6] and found to
be superior in speed and solution quality. Additionally, MCF
techniques offer less flexibility in terms of objective functions
and constraints than the RRR and NCR frameworks.

FastRoute [32], [33] uses a simplified, more greedy form of
RRR and finishes orders of magnitude faster than other routers.
However, it was able to legally route only 6 of 16 benchmarks
at the ISPD ‘07 contest [18], while other routers completed
up to 12 benchmarks without violations. Additionally, on the
easier ISPD ‘98 benchmarks, it routes fewer benchmarks than
FGR (see Table III).

FastRoute 1.0 [32] first uses FLUTE to decompose nets and
estimate congestion in the design, then attempts to restructure
Steiner trees to avoid congestion. FastRoute 2.0 [33] features
the following modification of RRR. When a single subnet
is ripped up, the net to which the subnet belongs will be
separated into two connected components. It becomes the
maze router’s job to connect the two components of the net
in the least costly way. While this optimization allows the
router to move Steiner points away from congested regions,
it invalidates the point-to-point lower bound on which A*-
search relies. Hence, the slower Dijkstra’s algorithm must be
used instead.

BoxRouter 1.0 [6] avoids fine-grain net ordering in con-
gested regions through the use ILP formulations. BoxRouter
1.0 decomposes nets using Steiner trees produced with FLUTE
but never re-examines their decomposition. Next it performs
a pass of pattern routing that identifies the most congested
rectangular region, where it formulates an ILP to route as many
nets using L-shapes as possible. Remaining nets are routed by
the maze router, using as few resources outside the region as
possible. Next, the region is expanded, and an incremental ILP
formulation is used. This cycle repeats until the entire layout
is covered by the expanding region.

Multilevel Advanced Routing System (MARS) [11] is
a multi-level router based on the techniques first presented
in [10] with several important enhancements. The first is

that MARS performs accurate resource reservation during
the coarsening phase of multi-level routing. This takes into
account those nets which are subsumed into the coarsened
routing grid and removes resources for them. This results in
more accurate resource counts at higher levels of the routing
hierarchy which better represent the original routing problem.
The second enhancement is that MARS divides multi-pin nets
using congestion-driven Steiner trees. At each level of the
routing hierarchy, each net is examined and new Steiner trees
are built to divide multi-pin nets. First MSTs are built for each
net using the routing grid and not purely based on HPWL.
Next, the edges of the MST for a particular net are sorted
based on length and maze search is performed to join the
edge to any other part of the existing tree. The new attachment
points become Steiner points, and the Steiner tree for the net is
formed from all of the paths found during maze search. Lastly,
MARS uses historical costs based on congestion, calculated
differently than in NCR, to price routing edges during maze
routing.

III. HIGH-PERFORMANCE GLOBAL ROUTING

In this section we describe the architecture of FGR, the
mathematical basis for its key algorithms, and important
implementation insights.

A. Basic Algorithmic Framework

Routing algorithms must carefully balance wirelength min-
imization and congestion. Some detours may be necessary to
avoid routing violations and overcapacity GCells, but exces-
sive detouring leads to overconsumption of routing resources,
aggravating congestion. In particular, the results of the ISPD
‘07 routing contest [18] show that some routers are good at
finding violation-free solutions, some are good at minimizing
wirelength, but few are good at both. This trend is illustrated
in Figure 1 which shows routed wirelength vs. violation count
for 2-d solutions submitted to the contest. A likely source of
this inflexibility is the common use of uniform, predetermined
rules in all regions of the chip as in FastRoute [32], [33] and
the Chi dispersion router [15].

In continuous optimization, dynamic pricing of constraint
satisfaction can be modeled by Lagrange multipliers — a
mathematical method for optimizing a multivariate function
subject to a number of constraints [22]:

minx∈X W (x)
subject to Ce(x) = 0, 1 ≤ e ≤ n

(3)

The constrained optimization is reduced to the unconstrained
optimization of the Lagrangian function F

F (x, λ) = W (x) +

n
∑

e=1

λeCe(x) (4)

where λ = (λ1, . . . , λn) are positive real-valued Lagrange
multipliers. In the case of routing, Ce(x) represents the
overflow penalty of routing edge e. W (x) represents the total
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wirelength of routing solution x and is usually defined as a
sum over nets or routing edges

W (x) =
m
∑

i=1

Ri(x) =
n
∑

e=1

Be(x) =
n
∑

e=1

(

∑

net i uses e

be

)

(5)

where Ri(x) is the number of segments used by net i and
Be(x) is the number of nets passing through edge e. Thus
Equation 4 can be rewritten

F (x, λ) =

n
∑

e=1

(

Be(x) + λeCe(x)
)

(6)

Here both original unknowns x and the Lagrange multipliers
{λe} are considered variables subject to optimization. For
large, sparse, convex problems, iterative techniques are used,
such as steepest descent, Newton’s method, etc. In particular,
Lagrange multipliers are updated additively as follows

λk+1 = λk + αC(xk) (7)

where α > 0 is a line-search parameter. Note the similarity
in the update of the Lagrange multipliers and how he is
updated in Equation 2. While routing instances are large,
sparse problems, they are discrete and non-convex. This calls
for a different iterative optimization procedure, such as greedy
search, hill-climbing or rip-up-and-re-route. However, since
Lagrange multipliers remain continuous, the same update rule
can be adopted.

Interpreting Equation 6 for a single edge e using the notation
of NCR, ce is derived as

ce = be + he · pe (8)

which is different than Equation 1 [28], but also is more intu-
itive since it preserves the base cost. Therefore FGR uses this
Discrete Lagrange Multiplier (DLM) formulation instead of
NCR which was used in FGR’s ISPD ‘07 contest submission.
To compute pe, FGR uses a new penalty function introduced in
Section III-B below. Furthermore, the justification of dynamic
cost updates through DLMs explains the results shown in
Sections III-E, III-F and IV.

While Lagrangian relaxation has been suggested for global
routing before, all uses we are aware of are either (1) specific
to timing-driven routing and maintain net-centric Lagrange
multipliers [24], [30] or (2) focus on a single net at a time
[31]. These algorithms use conventional history-based rip-up
and re-route for the router’s main loop.3

In addition to being a rigorous mathematical technique, the
use of Lagrange multipliers often admits application-specific
interpretation. For example, it is used in macro-economics
to mathematically describe market pricing — in a market
economy, adequate resource pricing encourages consumers to
look for competitive alternatives, leaving the most expensive
resources to the consumers that gain most. A very similar
interpretation holds in the case of routing, and the “fairness”
of this pricing system is confirmed by good convergence
properties in practice, as illustrated in Figure 8.

3The authors of [24] briefly mention the similarity of history-based rip-up
and re-route to Lagrangian relaxation, but make no modifications to the NCR
formulation.

In the initial routing formulation (Equation 3) all nets
are treated equally when optimizing total wirelength, but in
many cases certain nets are more important than others for
optimization, as in timing-driven routing. Each net is assigned
a weight, and the goal is to optimize total weighted wirelength.
Weighted wirelength is written as

W ′(x) =

m
∑

i=1

wiRi(x) =

n
∑

e=1

B′

e(x) (9)

where wi is the weight of net i and B′

e
(x) is the total weight

of nets passing through routing edge e

B′

e
(x) =

∑

net i uses e

wi · be (10)

By replacing Be in Equation 6 with B′

e, the Lagrange relax-
ation becomes

F (x, λ) =

n
∑

e=1

((

∑

net i uses e

wi · be

)

+ λeCe(x)

)

(11)

As a result, the cost ce of edge e during maze routing is
different for different nets that may be routed through it and
must be rewritten as ce(i)

ce(i) = wi · be + he · pe (12)

Note that the original NCR formulation does not separate be

and makes it difficult to account for net weights.
To gauge the effectiveness of net weighting in DLM, we

choose a random subset of 10% of the nets of the ISPD
‘07 benchmark newblue2 and increase their weight from the
default of 1 to 2 and route from scratch. Distributions of
detours on the nets are shown in Figure 4. Detouring on the
nets with higher weight is reduced as is the overall detouring
on the design. Runtime and total wirelength are affected
negligibly. Thus using net weights is an effective method for
controlling detouring and on selected nets.

B. Congestion Penalty

Let re and ue represent the resources and current usage of
a routing edge e and define the relative overflow ωe = ue/re.
The congestion penalty term pe for edge e is computed as a
function of ωe.

pe =

{

exp
(

k(ωe − 1)
)

if ωe > 1
ωe otherwise

(13)

The exponential nature of our cost function for overfull
routing edges serves to amplify congestion and gives the maze
router incentive to avoid overfull edges when re-routing nets
(see Figure 5, where k = ln 5). We have studied 0 < k ≤ ln 10
and found that higher values of k reduce runtime, but increase
detouring and routed length. FGR uses k = ln 5 by default.
Instead of using uniform weights of 1 for routing edges to
create an initial routing solution, which is common in NCR,
FGR uses be + pe as the weight for edges to create an initial
solution, where pe is calculated on the fly per routing edge
according to Equation 13.
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Fig. 4. Cumulative distributions of detouring without (above) and with
(below) net weighting on the 2-d newblue2 benchmark. Net detours are
measured as a ratio of routed net length to Steiner wirelength as given by
FLUTE [9]. When weights are applied to a subset of the nets, detouring on
those nets is reduced significantly without increasing detouring of other nets.
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C. Via Pricing and Optimization

The closest previous works to ours — those on NCR — do
not consider via minimization because they focus on FPGA
routing. Nonetheless, given that the resistivity of tungsten
(the material of vias) is much higher than that of copper
and aluminum, vias are critical in timing-driven routing. An
unnecessarily large number of vias can hamper routability
because each via obstructs a section of its track. Furthermore,
the high variability in via parasitics [37] and the common
practice of post-route via doubling to improve yield [23], [25]
suggest that via minimization is a key issue in routing at
the nanometer scale. Table I illustrates just how significant
vias are in the ISPD ‘07 contest benchmarks. Vias represent
from 26% to 49% of the total cost of FGR’s solutions to the
2-d benchmarks. Comparing two-layer routing with 6-layer
routing, via counts approximately triple and account for 50%
to 74% of total cost.

To model the cost of vias, FGR treats them as segments in

TABLE I

ROUTED COST BREAKDOWN OF FGR’S SOLUTIONS TO THE ISPD ‘07

GLOBAL ROUTING CONTEST BENCHMARKS [18]. “FLUTE RATIO” IS

THE RATIO OF THE LENGTH OF ROUTING SEGMENTS USED TO THE

STEINER TREE LENGTH OF ALL NETS AS COMPUTED BY FLUTE [9]. VIAS

ACCOUNT FOR MORE THAN 25% OF TOTAL COST IN EVERY 2-D

BENCHMARK AND MORE THAN 50% OF TOTAL COST IN EACH 3-D

BENCHMARK, HIGHLIGHTING THE IMPORTANCE OF VIA MINIMIZATION.

Segment FLUTE Vias Total Via
Benchmark WL (e5) ratio (e5) cost (e5) cost %

adaptec1 2-d 35.88 1.0594 6.19 54.44 34.09%
adaptec1 3-d 36.37 1.0739 17.36 88.45 58.88%
adaptec2 2-d 33.21 1.0371 6.36 52.30 36.50%
adaptec2 3-d 33.74 1.0536 18.72 89.89 62.47%
adaptec3 2-d 96.09 1.0295 11.60 130.89 26.59%
adaptec3 3-d 97.02 1.0395 34.21 199.66 51.41%
adaptec4 2-d 90.02 1.0143 11.66 125.00 27.98%
adaptec4 3-d 91.28 1.0285 30.56 182.96 50.11%
adaptec5 2-d 102.79 1.0499 16.45 152.13 32.43%
adaptec5 3-d 103.89 1.0612 52.03 259.98 60.04%
newblue1 2-d 24.15 1.0400 7.76 47.42 49.07%
newblue1 3-d 24.15 1.0400 23.37 94.26 74.38%
newblue2 2-d 46.81 1.0179 9.90 76.51 38.82%
newblue2 3-d 47.91 1.0418 28.08 132.16 63.75%
newblue3 2-d 75.63 1.0253 11.20 109.23 30.76%
newblue3 3-d 75.63 1.0253 32.69 173.71 56.46%

the routing graph. These segments connect adjacent routing
layers as shown in Figure 2 and have unlimited capacity. Via
routing segments have a different base cost, usually higher than
that for regular segments. This flexibility allows FGR to price
vias in specific applications. For example, in the ISPD ‘07
contest one via is equivalent to three routing grid segments,
so the cost of vias in FGR is set to 3be.

Assigning via segments non-zero costs in the routing grid
allows A*-search to naturally optimize via counts when find-
ing shortest paths. However, to use A*-search, an accurate
lower bound for path cost is also needed. One could ignore
vias in the lower bound calculation, but FGR uses the layer
difference of the source and target which is more accurate.

D. Interactions Between Single- and Multi-Net Routing

FGR initially decomposes nets using an RSMT or RMST
topology. However, given that congestion-driven Steiner trees
are not easy to construct and precise congestion in every
GCell is not known beforehand, it is important to modify net
topologies during multi-net routing.

Figure 6 compares the net decomposition and restructuring
techniques used by FGR to those in prior work. During DLM,
the most congested subnets are ripped up and rerouted by
A*-search. When ripping up a subnet with endpoints P1 and
P2, FastRoute 2.0 tries to reconnect the two components of
the net, not necessarily using P1 or P2, which requires a
more sophisticated lower bound than Manhattan distance to
use A*-search. When re-routing a subnet, FGR requires the
replacement segments to pass between P1 and P2, based on
the following result.

Theorem 1: Consider shortest paths between two trees em-
bedded into the routing grid. Let P1 and P2 be nodes arbitrarily
selected in the trees T1 and T2, respectively. If the costs of
routing edges taken by tree segments are set to zero, then
there is a one-to-one correspondence between (i) shortest paths
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Initial 
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Restructuring by RRR by DLM

Fig. 6. A comparison of the net decomposition techniques used by BoxRouter
1.0 [6], FastRoute 2.0 [33] and FGR. In Section IV-C, we compare the use
of RMSTs and RSMT in FGR.

between T1 and T2 and (ii) shortest paths between P1 and P2.

Proof: Assume ∃ a shortest path A → B joining T1 and T2

such that A ∈ T1 and B ∈ T2. ∃ unique non-self-intersecting
paths P1 → A and B → P2 consisting of edges contained in
T1 and T2, respectively. cost(P1 → A) = cost(B → P2) = 0.
Thus cost(P1 → A → B → P2) = cost(A → B). For
the sake of contradiction, assume P1 → A → B → P2

is not a shortest path; ∃4 path P1  P2 with
cost(P1  P2) < cost(A → B). P1  P2 connects T1 and
T2, so cost(P1  P2) ≥ cost(A → B). Contradiction.
Conversely, let P1 → P2 be a shortest path. Let C be the
last vertex along P1 → P2 such that C ∈ T1 and let D
be the first vertex along P1 → P2 such that D ∈ T2. ∃
unique non-self-intersecting paths P1 → C and D → P2

consisting of edges contained in T1 and T2, respectively.
cost(P1 → C) = cost(D → P2) = 0 ⇒ cost(P1 → P2) =
cost(C → D). Assume for the sake of contradiction C → D
is not a shortest path; ∃ path A  B, A ∈ T1, B ∈ T2,
with cost(A  B) < cost(C → D) = cost(P1 → P2). ∃
P1  A and B  P2 such that cost(P1  A) = cost(B  
P2) = 0 ⇒ cost(P1  A  B  P2) = cost(A  B) <
cost(P1 → P2). Contradiction. �

Temporary change of edge costs to 0 is easy to implement
during A*-search because nets are routed individually and any
cost adjustments can be reverted before considering other nets.
However, in order to use A*-search, a correct lower bound
must be supplied. FGR normally uses the 3-d Manhattan
distance multiplied by the minimum cost of any routing
segment. The naive solution — to ignore the 0-cost edges
— may produce estimates that are greater than the true cost,
which would cause A*-search to produce incorrect solutions.
However, literally setting an edge’s cost to zero forces the
lower bound will to be zero. Therefore, in our implementation
we set the cost of previously used edges to ε > 0, a small
value. We call this technique ε-sharing and illustrate it in
Figure 7, where FGR modifies the net topology to avoid
congestion.

While prior state-of-the-art routers (BoxRouter, FastRoute
and MaizeRouter) consistently start by decomposing multi-
pin nets with minimal Steiner trees, we believe that integra-
tion of ε-sharing into a powerful DLM framework facilitates
additional opportunities. As illustrated in Figure 3, Steiner
trees tend to generate net decompositions with many flat
subnets which offer no flexibility in routing. MSTs tend to

4Here,  denotes paths assumed to exist for the sake of contradiction.

Fig. 7. Re-routing a subnet and changing net topology in FGR. The shaded
boxes represent obstacles. The tree in (a) passes through a congested segment
in the middle which must be ripped up. The dashed arrows in (b) represent
several possible re-routings that a restructuring algorithm may consider. The
re-routings shown in (c) are two that FGR will consider during DLM. Paths
considered by FGR must start and end along the endpoints of the segment
that was removed. Both of these re-routings reuse routing segments from the
net and create new Steiner points if chosen. The use of temporary zero-cost
edges is required to preserve the efficiency of A*-search.

have fewer edges but with more flexibility, which can be
exploited by DLM to avoid congestion. Moreover, the gradual
addition of sharing to MSTs during DLM-based topology re-
structuring can generate high-quality congestion-driven Steiner
trees without the need to estimate congestion before routing.
Starting with minimal Steiner trees seems to require heavier
restructuring to achieve similar effects, and could not only
slow down maze routing, but also make RRR or DLM less
successful. Using RSMTs vs. RMSTs is covered in Section
IV-C.

E. Overcoming the “Last Gasp” Problem

Discrete Lagrange multipliers work well at the large scale
because the statistical behavior of numerous discrete variables
is not very different from the continuous case. However,
when only several violations remain, the routing task becomes
much more discrete. In our experiments with almost every
benchmark we have observed unusual behavior where FGR
spends many DLM iterations when its solution is nearly legal
before it is able to terminate with a completely legal solution.
Indeed, more than 75% of DLM’s iterations for the adaptec2
benchmark [18] take place when less than 0.01% of routing
segments have overflow. We term this undesirable behavior
the “last gasp” problem and illustrate it on the adaptec1 2-d
benchmark in Figure 8. To rectify this situation, we propose
the following improvement. When the percentage of routing
edges with overflow becomes small, restrict the maze router to
using only edges that have available space and weigh routing
edges only by their base cost be. Thus if there is any way to
route the net without causing overflow, it will be used to avoid
further rip-up iterations. Otherwise, default DLM is used. In
many cases this last phase of DLM reduces iterations without
impacting total routed wirelength.

F. 3-dimensional Routing

The difficulties experienced by DLM due to discreteness
also suggest that traditional 2-d routing may be considerably
easier than proper 3-d routing where smaller edge capacities
are spread through multiple routing layers. In other words,
aggregating edge capacities in one layer would encourage
continuous-like resource pricing, making it easier to satisfy
all constraints. This is consistent with what experimental
observations discussed in Section IV-D.
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Fig. 8. Violation count and wirelength on the 2-d ISPD ‘07 benchmark adaptec1 plotted as a function of (a) iteration number and (b) time. Violation counts
are plotted on a log-scale and decrease, while wirelength is plotted on a linear scale and monotonically increases. Note that the majority of DLM iterations
occur when 100 or fewer violations remain, but total wirelength noticeably increases during that phase.

Input: 2-d routing solution, 2dsol
Output: 3-d routing solution, 3dsol
1 foreach net n in 2dsol
2 foreach subnet s of n
3 route = 2dsol.getRoute(s)
4 currPoint = s.terminal1
5 currLayer = currPoint.layer
6 while(currPoint != s.terminal2)
7 nextPoint = route.getNextPoint(currPoint)
8 find nextLayer: the layer closest to

currLayer where adding an edge connecting
currPoint and nextPoint causes least overflow

9 add segment from currPoint to nextPoint
on layer nextLayer to 3dsol

10 add vias connecting
(currPoint.x,currPoint.y,currLayer) and
(currPoint.x,currPoint.y,nextLayer) to 3dsol

11 currPoint = nextPoint
12 currLayer = nextLayer
13 add vias connecting

(currPoint.x,currPoint.y,currLayer) and
(currPoint.x,currPoint.y,s.terminal2.layer)
to 3dsol

Fig. 9. Layer assignment in FGR.

FGR performs 3-d routing by first projecting the routing
instance onto a 2-d grid and aggregating the capacities of edges
that project onto each other. This grid contains a single layer of
horizontal wires and a single layer of vertical wires connected
by a layer of vias, such as the grid depicted at the right of
Figure 2. Capacities on higher layers may be smaller due to
increased pitch, but for each routing grid edge FGR calculates
the number of wires that are allowed to pass through it, which
takes wire widths and pitches into account. FGR routes this 2-
d problem instance as normal until a legal solution is found or
a runtime/iteration limit is reached. Next FGR performs layer
assignment for each routing segment used in the 2-d solution.

Theorem 2: If the 2-d instance generated as a result of the
aggregating process describe above has a legal solution and
via counts are unconstrained, the original 3-d instance must
have a legal solution.
Proof: 3-d routes can be constructed by the algorithm in
Figure 9. �

FGR’s method will produce a 3-d solution that uses exactly
the same number of routing segments as the 2-d solution, but
differ in via counts. Unfortunately the difference in via counts

is usually large and proportional to the number of layers in the
3-d instance. To counteract this phenomenon, FGR performs
full 3-d cleanup which consists of a single round of RRR for
every subnet to reduce vias. In this round of optimization, the
cost of each routing segment is much simpler than in DLM:
each routing segment is assigned a cost of 1 and vias are
priced as in Section III-C. It is easy to lower-bound the cost
of a path with these edge costs by the 3-d Manhattan distance,
so it is particularly amenable to A*-search. Each subnet is
ripped up and rerouted by the maze router individually, and
edges with no spare capacity are not allowed. While Theorem
2 is not a surprising result, the fact that direct 3-d routing is
less successful than 2-d routing with 3-d post-processing was
unexpected and, in fact, undermined FGR’s performance in
the ISPD ‘07 routing contest.

IV. EXPERIMENTAL RESULTS

We have implemented FGR in C++ without external li-
braries (compiled with GCC 3.4.5), but added optional inter-
face to the Steiner-tree packages FLUTE [9] and FastSteiner
[19] to compare them with MST decompositions. The core
algorithms and data structures of FGR were implemented in
one month. All runs were performed on 2.4 GHz Opteron
workstations running Linux. FGR was compiled in 32-bit
mode and was therefore limited to less than 4GB of RAM.

A. Performance on ISPD ‘98 Benchmarks

Table II describes the ISPD ‘98 IBM benchmarks and
compares FGR to BoxRouter 1.0 [6] in terms of runtime. Table
III compares FGR to BoxRouter 1.0 and FastRoute 2.0 [33]
in terms of solution quality. Unlike all previous routers in the
literature, FGR is able to route all of the IBM designs without
overflow. Both BoxRouter 1.0 and FastRoute 2.0, which report
the best results on this suite so far, produce solutions with over-
flow on 4 and 3 of the benchmarks, respectively. Overall, FGR
produces solutions with 2.7% less wirelength than BoxRouter
1.0 and 3.6% less wirelength than FastRoute 2.0. In addition,
FGR is faster than BoxRouter 1.0 on 7 of the 10 benchmarks
and uses 35% less runtime to complete the entire suite. Unlike
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TABLE II

STATISTICS OF THE ISPD ‘98 IBM BENCHMARK SUITE [17]. RUNTIMES

FOR BOXROUTER 1.0 [6] AND FGR 1.0 ARE GIVEN IN SECONDS. FGR IS

FASTER THAN BOXROUTER ON 7 OF THE 10 BENCHMARKS AND USES

35% LESS RUNTIME TO SOLVE THE ENTIRE SUITE.

Bench- Router runtime (s)
mark # nets Grid BoxRouter 1.0 FGR 1.0

ibm01 11507 64×64 6 10
ibm02 18429 80×64 25 13
ibm03 21621 80×64 13 5
ibm04 26163 96×64 18 29
ibm05 27777 128×64 37 6
ibm06 33354 128×64 25 18
ibm07 44394 192×64 39 20
ibm08 47944 192×64 68 18
ibm09 50393 256×64 50 20
ibm10 64227 256×64 73 92

Total 354 231

TABLE III

COMPARISON OF FGR 1.0 TO FASTROUTE 2.0 [33] AND BOXROUTER 1.0

[6] ON THE ISPD ‘98 IBM BENCHMARK SUITE [17]. FGR COMPLETES

ALL 10 OF THE BENCHMARKS WHILE BOXROUTER 1.0 AND FASTROUTE

2.0 LEAVE OVERFLOW ON 4 AND 3 OF THE BENCHMARKS, RESPECTIVELY.

IN TERMS OF ROUTED WIRELENGTH, FGR OUTPERFORMS BOXROUTER

1.0 BY 2.7% AND FASTROUTE 2.0 BY 3.6%.

Bench- BoxRouter 1.0 FastRoute 2.0 FGR 1.0 vs. Box- vs. Fast-
mark ovfl WL ovfl WL ovfl WL Router 1.0 Route 2.0

ibm01 102 65588 31 68489 0 63332 -3.44% -7.53%
ibm02 33 178759 0 178868 0 168918 -5.51% -5.56%
ibm03 0 151299 0 150393 0 146412 -3.23% -2.65%
ibm04 309 173289 64 175037 0 167101 -3.57% -4.53%
ibm05 0 409747 – – 0 409739 -0.00% –
ibm06 0 282325 0 284935 0 277608 -1.67% -2.57%
ibm07 53 378876 0 375185 0 366180 -3.35% -2.40%
ibm08 0 415025 0 411703 0 404714 -2.48% -1.70%
ibm09 0 418615 3 424949 0 413053 -1.33% -2.80%
ibm10 0 593186 0 595622 0 578795 -2.43% -2.83%

Average -2.71% -3.64%

the ISPD ‘07 contest benchmarks, the ISPD ‘98 benchmarks
feature only a single metal layer, making via minimization
unnecessary.

B. Performance on ISPD ‘07 Benchmarks

Table IV shows statistics of the benchmarks used at the
ISPD ‘07 Global Routing Contest [18]. These benchmarks are
considerably larger than the ISPD ‘98 benchmarks and include
both two- and three-dimensional variants. These benchmarks
also feature non-trivial routing obstacles, and, consequently,
routing resources are not spread evenly throughout the layout
as in the ISPD ‘98 suite. Table IV also shows runtimes and
memory requirements for FGR on these benchmarks. In all
cases FGR stays within the 32-bit memory space and finishes
well under a given 24-hour timeout on all but the newblue1
and newblue3 benchmarks on which no router at the ISPD ‘07
contest was able to find a legal solution.5

Next, we compare FGR to the routers that scored best at the
ISPD ‘07 contest. Since an earlier version of FGR placed 1st
in the 2-d category, we exclude it from comparison (however,
the version we report improves upon FGR’s results in the

5FGR can be stopped much earlier, with only a slight increase in overflows.

TABLE IV

STATISTICS OF THE ISPD ‘07 GLOBAL ROUTING CONTEST BENCHMARKS

[18]. FOR FGR 1.0 WE LIST RUNTIME (IN MINUTES), THE NUMBER OF

ITERATIONS OF RIP-UP-AND-RE-ROUTE (WHICH ARE VERY SIMILAR FOR

2-D AND 3-D VARIANTS), AND MAXIMUM MEMORY USAGE, WHICH IS

SIGNIFICANTLY GREATER FOR 3-D THAN FOR 2-D VARIANTS.

Bench- FGR 1.0 on 2-d variants FGR 1.0 on 3-d variants
mark # nets Grid time (m) rip-ups time (m) memory

adaptec1 219794 324×324 451 557 430 869 MB
adaptec2 260159 424×424 56 2930 64 960 MB
adaptec3 466295 774×779 179 284 243 2393 MB
adaptec4 515304 774×779 19 47 55 2377 MB
adaptec5 867441 465×468 713 790 740 2309 MB
newblue1 331663 399×399 1441 983 1442 1154 MB
newblue2 463213 557×463 4 20 10 1621 MB
newblue3 551667 973×1256 1555 23 1501 3676 MB

TABLE V

COMPARISON OF BEST RESULTS OF FGR 1.1 TO THE OTHER TOP-3

ROUTERS AT THE ISPD ‘07 GLOBAL ROUTING CONTEST [18]. FGR

ROUTES AS MANY BENCHMARKS WITHOUT OVERFLOW AS THE WINNERS

OF THE CONTEST WITH 8.1% BETTER WIRELENGTH THAN THE BEST OF

BOXROUTER 1.0 [6] AND MAIZEROUTER [29] AND BEST OVERFLOW

RESULTS ON THE NEWBLUE1 2-D AND 3-D BENCHMARKS.

Best of BoxRouter and MaizeRouter FGR 1.1 (best-seen)
Bench- Overflow Cost Overflow Cost vs.
mark total max (e5) Router total max (e5) Best

#1 2-d 0 0 58.84 Box 0 0 53.71 -8.72%
#1 3-d 0 0 99.61 Maize 0 0 88.02 -11.64%
#2 2-d 0 0 55.69 Box 0 0 51.86 -6.88%
#2 3-d 0 0 98.12 Maize 0 0 89.96 -8.32%
#3 2-d 0 0 137.75 Maize 0 0 130.30 -5.41%

ad
ap

te
c

#3 3-d 0 0 214.08 Maize 0 0 200.14 -6.51%
#4 2-d 0 0 128.45 Maize 0 0 123.97 -3.49%
#4 3-d 0 0 194.38 Maize 0 0 178.90 -7.96%
#5 2-d 0 0 164.32 Box 0 0 151.47 -7.82%
#5 3-d 0 0 298.08 Box 0 0 260.53 -12.60%
#1 2-d 400 2 51.13 Box 234 2 46.42 -9.21%
#1 3-d 400 2 101.83 Box 238 2 90.68 -10.95%
#2 2-d 0 0 79.64 Maize 0 0 75.78 -4.85%

ne
w

bl
ue

#2 3-d 0 0 139.66 Maize 0 0 129.30 -7.42%
#3 2-d 32588 1236 114.63 Maize 38386 1196 107.28 -6.41%
#3 3-d 32840 1058 184.40 Maize 38398 400 163.41 -11.38%

Average -8.13%

contest on every benchmark). In Table V, we compare best-
seen results for FGR 1.1 to MaizeRouter [29] which placed 1st
in 3-d and 2nd in 2-d, and to BoxRouter 1.0 which placed 2nd
in 3-d and 3rd in 2-d. FGR produces smallest wirelengths on
every benchmark and is able to route without overflow every
benchmark that was legally routed at the contest. In particular,
FGR outperforms BoxRouter 1.0 in wirelength by 10.6% and
MaizeRouter by 9.1%. Comparing FGR 1.1 to most recent
routers, FGR 1.1 outperforms Archer [31] in wirelength by
10.1% and BoxRouter 2.0 [7] by 4.9%.

C. Steiner Trees vs. MSTs

Traditionally net decomposition has been done using Mini-
mal Spanning Tree (MST) algorithms, but fast and extremely
accurate Rectilinear Steiner Minimal Tree (RSMT) construc-
tion algorithms have become increasingly popular in the
literature [6], [32], [33]. FGR can use any well-formed net
decomposition, so we study how the choice of net decompo-
sition affects FGR’s overall results—we compare MST to a
combination of FLUTE [9] and FastSteiner [19] that returns
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TABLE VI

COMPARING NET DECOMPOSITION BY MST VS. STEINER TREES ON THE

ISPD ‘07 BENCHMARKS [18]. TIME TAKEN FOR DECOMPOSITION BY

MST OR STEINER TREES IS LESS THAN 1 MINUTE ON ALL BENCHMARKS

AND DOES NOT IMPACT RUNTIMES. WHILE USING STEINER TREE

DECOMPOSITIONS RESULTS IN A REDUCTION IN ROUTED SEGMENT

LENGTH OF 0.5%, IT INCREASES VIA COUNTS BY 1.8% AND THUS

INCREASES THE TOTAL COST OF ROUTING SOLUTIONS BY 0.7%.

DECOMPOSITION BY STEINER TREES INCREASES ROUTING TIME BY 22%.

Decomposition by MST Decomposition by Steiner trees
Benchmark Segment Vias Total Time Segment Vias Total Time

WL (e5) (e5) cost (m) WL (e5) (e5) cost (m)
adaptec1 2-d 35.88 6.19 54.44 451 35.78 6.24 54.49 403
adaptec1 3-d 36.37 17.36 88.45 430 36.26 18.04 90.37 395
adaptec2 2-d 33.21 6.36 52.30 56 33.10 6.43 52.38 170
adaptec2 3-d 33.74 18.72 89.89 64 33.62 19.37 91.72 168
adaptec3 2-d 96.09 11.60 130.89 179 95.55 11.67 130.57 222
adaptec3 3-d 97.02 34.21 199.66 243 96.42 35.49 202.90 281
adaptec4 2-d 90.02 11.66 125.00 19 89.37 11.72 124.53 18
adaptec4 3-d 91.28 30.56 182.96 55 90.59 31.59 185.35 58
adaptec5 2-d 102.79 16.45 152.13 713 102.56 16.63 152.45 771
adaptec5 3-d 103.89 52.03 259.98 740 103.62 53.78 264.97 796
newblue1 2-d 24.15 7.76 47.42 1441 24.00 7.74 47.22 1441
newblue1 3-d 24.15 23.37 94.26 1442 24.00 24.00 96.01 1442
newblue2 2-d 46.81 9.90 76.51 4 46.41 9.95 76.27 4
newblue2 3-d 47.91 28.08 132.16 10 47.51 29.08 134.75 10
newblue3 2-d 75.63 11.20 109.23 1555 75.24 11.15 108.71 1460
newblue3 3-d 75.63 32.69 173.71 1501 75.24 33.04 174.35 1462

Ratio -0.52% +1.81% +0.74% +22.0%

the better Steiner tree every time. FGR merges segments of
decomposed nets, as described in Section III-D, and produces
non-trivial Steiner trees even when given decompositions by
MSTs. The results on the ISPD ‘07 benchmarks are shown in
Table VI. Time taken for decomposition by MSTs or Steiner
trees is less than 1 minute on all benchmarks and does not
significantly impact runtimes. As expected, routed segment
length is smaller when Steiner tree algorithms are used. On
the other hand, using Steiner tree algorithms actually increases
via counts by 1.8% and causes total cost to increase by 0.7%.
All evidence we have seen suggests that MST decompositions
leave more flexibility than minimum Steiner trees, allowing
one to avoid some amount of detouring. Prior work has shown
that optimal Steiner trees for a given set of points can vary
widely, but specialized techniques can increase flexibility [4].
However, FLUTE and FastSteiner do not currently optimize
tree flexibility. In addition, Steiner points may inadvertently be
placed in congested areas by the Steiner tree constructor, caus-
ing increased congestion and detouring. Congestion-driven
Steiner trees could be helpful in this context, but apparently
MSTs already provide a good solution and can also be biased
to avoid congestion.

D. Layer Assignment vs. Full 3-d Routing

Section III-F above describes that FGR performs 3-d routing
by first flattening the routing instance onto a 2-d grid, routing
the new 2-d problem instance, and then converting the 2-
d solution into a 3-d solution by assigning layers to routed
segments, adding vias as necessary. FGR is also capable of
solving 3-d problems directly by using full 3-d maze routing,
and in Table VII we compare both methods. It is readily
apparent that full 3-d routing takes far longer than 2-d routing

TABLE VII

COMPARING LAYER ASSIGNMENT WITH FULL 3-D ROUTING ON THE 3-D

INSTANCES OF THE ISPD ‘07 BENCHMARKS [18]. TOTAL COST OF THE

BETTER OF THE TWO SOLUTIONS (COMPARED FIRST BY OVERFLOW THEN

BY TOTAL COST) FOR EACH BENCHMARK ARE HIGHLIGHTED IN BOLD.

Layer Assignment Full 3-d Routing
Bench- Total Segment Vias Total Time Total Segment Vias Total Time
mark ovfl WL (e5) (e5) cost (m) ovfl WL (e5) (e5) cost (m)

#1 0 36.37 17.36 88.45 430 1456 36.02 17.55 88.70 1453
#2 0 33.74 18.71 89.89 64 2 33.36 19.06 90.54 1444

ad
ap

te
c

#3 0 97.02 34.21 199.66 243 2 96.69 34.77 201.01 1487
#4 0 91.28 30.56 182.96 55 0 91.39 29.32 179.36 83
#5 0 103.89 52.03 259.98 740 5512 102.78 52.27 259.61 1462

ne
w

bl
ue #1 514 24.15 23.37 94.26 1442 1012 24.21 22.33 91.19 1447

#2 0 47.91 28.08 132.16 10 0 47.93 27.15 129.40 18
#3 39828 75.63 32.69 173.71 1501 51098 75.73 29.30 163.63 1827

with layer assignment, most likely because 3-d routing is more
complex. On the easiest benchmarks, adaptec4 and newblue2,
full 3-d routing takes at least 50% longer, but is able to
decrease via counts significantly and in turn improve total cost
by 2.0% and 2.1%, respectively. On the other hand, on the
benchmarks where FGR with layer assignment cannot find a
legal solution within 24 hours, newblue1 and newblue3, full 3-
d routing produces solutions with significantly more overflow
given the same timeout.

V. CONCLUSIONS

In this paper we have presented FGR, a high-performance
global router for nanometer scale designs. FGR’s implemen-
tation is very compact—core algorithms and data structures
require only 1200 lines of C++ code, which is available for
download from http://vlsicad.eecs.umich.edu/
BK/FGR/. FGR outperforms the best results from the ISPD
‘07 Global Routing Contest, as well as previous literature,
in terms of route completion, runtime and total wirelength.
In particular, FGR improves upon wirelengths produced by
BoxRouter 1.0 and MaizeRouter in March 2007 by 10.6%
and 9.1%, respectively. Comparing FGR 1.1 to most recent
routers, FGR 1.1 outperforms Archer in wirelength by 10.1%
and BoxRouter 2.0 by 4.9%. FGR is likely to boost research
in physical design, while also leading to better commercial
place-and-route tools [14].

The superficial similarity between negotiated-congestion
routing and Lagrangian relaxation was known to the authors
since 2001 and may have been observed by others, but we
were unable to find any discussion in the literature. More im-
portantly, by formulating Lagrange multipliers and explicitly
deriving cost updates, our work demonstrates a discrepancy
between the two approaches. The Lagrangian approach to
large-scale routing explains the last-gasp problem and shows
why multi-layer routing formulations are more difficult to
solve directly than two-dimensional routing. While negotiated-
congestion routing does not specify how to handle net weights,
we derive the necessary formulas for using net weights with
Lagrange multipliers.

Another key challenge is to integrate accurate congestion
modeling provided by FGR into global and detail placement.
This could be used to mitigate congestion early and provide
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accurate information about length of individual wires, which
is particularly important in timing-driven placement.

FGR’s core algorithms are directly relevant to detail routing
of ASICs and FPGAs, while its constraint-driven nature makes
it amenable to the handling of complex design rules. To this
end, a key challenge for future research is to develop a proto-
type of a detail routing tool based on negotiated-congestion
routing. Such a prototype would be particularly useful to
explore design rules and models expected at future technology
nodes as well as manufacturability and yield optimization
which are a focus of modern industrial tools.
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