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Abstract— We demonstrate that Steiner-tree Wire-
length (StWL) correlates with Routed Wirelength (rWL)
much better than the more common Half-Perimeter
Wirelength (HPWL) objective. Therefore, we develop
a technique to optimize StWL in global and detail
placement without a significant runtime penalty. This new
optimization, along with congestion-driven whitespace
distribution, improves overall Place-and-Route results,
making the use of HPWL unnecessary. Additionally, our
empirical results provide ample evidence that the fidelity
of net length estimates is more important than their
accuracy in Place-and-Route. The new data structures
that make our min-cut algorithms fast can also be useful
in multi-level analytical placement.

Our placement algorithm ROOSTER outperforms best
published results for Dragon, Capo, FengShui, mPL-
R/WSA and APlace in terms of routed wirelength by
10.7%, 5.6%, 9.3%, 5.5% and 4.2% respectively. Via
counts, especially important at 90nm and below, are
improved by 15.6% over mPL-R/WSA and 11.9% over
APlace.

I. INTRODUCTION

Recently there has been much interest in estimating
the amount of improvement that is left in placement
optimization [9]. The gap between optimal and practi-
cally achievable solutions is usually explained by the
difficulty of optimization and shortcomings of individ-
ual algorithms. In this work we point out another major
source of sub-optimality in Physical Design — mini-
mizing wrong objective functions, whether optimally
or not. In the short term, this source of sub-optimality
seems fairly easy to address, as confirmed by our
empirical results. We improve placement algorithms by
leveraging existing research on Steiner trees.

Our main contribution is a series of optimiza-
tion techniques for Steiner-tree Wirelength (StWL)
in global and detail placement without a significant
runtime penalty, making the use of Half-Perimeter
Wirelength unnecessary. We draw on recent works in
min-cut placement, particularly the terminal propaga-
tion technique from [27], improved in [10], which
better correlates small net-cut with small HPWL. We
generalize this technique and show that with adequate
data structures it reduces StWL in global placement
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TABLE I
TRADITIONAL WORK ON PLACEMENT DOES NOT OPTIMIZE OR

EVEN REPORT THE OBJECTIVES MOST PERTINENT FOR
PLACE-AND-ROUTE. IT IS PARTICULARLY DIFFICULT TO

OPTIMIZE OBJECTIVES THAT ARE MEASURED relative TO A GIVEN
INDUSTRIAL ROUTER. WE IMPROVE KEY OBJECTIVES BY

DEPARTING FROM THE TRADITIONAL HPWL OPTIMIZATION.
(?) OPTIMIZING CONGESTION per se APPEARS OF LIMITED USE.

efficiently. To our knowledge, minimization of StWL
in min-cut bisection has not been attempted before,
particularly the net-vector technique [16] cannot cap-
ture Steiner-tree lengths in bisection or quadrisection
(for more details see Section II-A). There has also
been work in weighting the HPWL of individual nets
based on their pin counts [11]. Later work improved on
these weighting techniques [4]. The authors of [5] find
that these weighted wirelength techniques are reason-
able predictors of routed wirelength, but that smaller
weighted wirelength can translate into larger routed
wirelength making the use of weighted wirelength as
an optimization “questionable.”

Our Steiner-tree driven detail placer leverages the
speed of the recent FLUTE package [12]. The closest
work in detail placement [18] models single-trunk
Steiner trees to reduce congestion in FPGAs. While
effective, this technique requires exorbitant amounts
of runtime. Instead, our detail placer considers optimal
Steiner trees and is nevertheless quite fast.

We also build upon recent work in congestion-
driven placement that uses congestion maps. In [31],
congestion maps are built after global placement, and
annealing moves are applied to minimize a congestion
metric. Another technique, known as WSA [23], is
applied after detail placement. It identifies areas with
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Fig. 1. HPWL (left), Steiner WL (center) and Rectilinear Minimal
Spanning Tree (MST) WL (right) for a 5-pin net.

high congestion and injects whitespace into these areas
in a top-down fashion. Our work uses congestion maps
from [30] to allocate whitespace in a manner similar
to WSA but proactively, during global placement. As
a result, our placer ROOSTER (Rigorous Optimization
Of Steiner-Trees Eases Routing) produces the best
known routed wirelengths on the IBMv2 benchmarks
[31].

At the 90nm technology node and below, increased
via resistance, manufacturing variability and manufac-
turing defects require unprecedented attention to vias.
In particular, via resistance may vary by more than
other important circuit parameters — in some tech-
nologies a difference of 30 times has been observed
between neighboring vias. Therefore, manufacturers
prefer and sometimes require vias to be doubled, since
this averages out the variation. To this end, we point
out that a range of easy-to-implement detail placement
algorithms (those of the cell-shifting variety) tend to in-
crease via counts, even when they improve routability.
ROOSTER avoids them and exhibits the smallest via
counts on standard benchmarks among all published
results and our runs of recent placement tools.

In the remainder of this paper, Section II de-
scribes previous work on VLSI placement. Section
III discusses choosing the right objective to optimize
in placement and outlines a first implementation in
floorplanning. Sections IV and V introduce the re-
alization of Steiner-tree modeling in min-cut plac-
ers and Steiner-driven detail placement, respectively.
Section VI outlines whitespace allocation to improve
routability. Experimental results are given in Section
VII, and Section VIII concludes and motivates further
applications of our techniques.

II. BACKGROUND AND PREVIOUS WORK

Traditionally, placement and routing are treated as
two separate and independent optimization problems.
Standard-cell placement is generally seen as the prob-
lem of finding non-overlapping row- and site-aligned
positions for cells while minimizing the wirelength of
the design. Currently, HPWL is the estimate of choice
for wirelength minimization in placement because it is
computationally easy and exactly estimates Rectilinear
Steiner Minimal Tree (RSMT) length for 2- and 3-
pin nets. Unfortunately, routers construct routed wires
using Steiner trees whose length is under-approximated
by HPWL. Figure 1 shows how HPWL, RSMT, and

Fig. 2. Propagation of the terminals of a net to the sides of
the bin above and below the proposed cutline. The net has five
fixed terminals: four above and one below the cutline. The net
also has movable cells which are represented by the cell with
a dashed outline. The four fixed terminals above the cutline are
propagated to the black circle at the top of the bin while the one fixed
terminal below the cutline is propagated to the black circle below
the cutline. The movable cells remain unpropagated. Note that the
net is inessential since terminals are propagated to both sides of the
cutline.

Minimal Spanning Tree (MST) length differ for a given
5-pin net. Note that the shortest vertical segment in the
RSMT is not included in the HPWL of the net. Since
RSMT construction is an NP-complete problem [15],
it has been generally regarded as too computationally
demanding for use in placement [16]. To illustrate how
a placer optimizes its chosen objective, we describe a
specific technique – top-down min-cut placement.

A. Top-down Min-cut Placement

Top-down placement algorithms seek to decompose
a given placement instance into smaller instances by
subdividing the placement region, assigning modules to
subregions and cutting the netlist hypergraph [5]. Min-
cut placers generally use either bisection or quadri-
section to divide the placement area and netlist. The
netlist division step is commonly implemented with
the Fiduccia-Mattheyses heuristic and derivatives [6],
[14], or alternatively with quadratic placement and
geometric partitioning [3].

Placement bins. Each hypergraph partitioning in-
stance is induced from a rectangular region, or bin, in
the layout. In this context a placement bin represents
(i) a placement region with allowed module locations
(sites), (ii) a collection of circuit modules to be placed
in this region, (iii) all signal nets incident to the
modules in the region, and (iv) fixed cells and pins
outside the region that are adjacent to modules in the
region (terminals). Top-down placement can be viewed
as a sequence of passes where each pass examines all
bins and divides some of them into smaller bins. These
smaller bins collectively contain the entire layout area
and cells of the original instance. When placement bins
are divided, careful choice of vertical or horizontal cut
direction influences wirelength and routing congestion
in resulting placement solutions [29].

Terminal propagation and inessential nets. Proper
handling of terminals is essential to the success of
top-down placement approaches [7], [13], [16], [28].
When a particular placement bin is split into mul-
tiple subregions, some of the cells inside may be
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tightly connected to cells outside of the bin. Ignoring
such connections can adversely affect the quality of
a placement since these connections can account for
significant amounts of wirelength. On the other hand,
these terminals are irrelevant to the classic partition-
ing formulation as they cannot be freely assigned
to partitions. A compromise is possible by using an
extended formulation of “partitioning with fixed termi-
nals”, where the terminals are considered to be fixed in
(“propagated to”) one or more partitions, and assigned
zero areas (original areas are ignored). Nets which
are propagated to both partitions in bi-partitioning
are considered “inessential” since they will always be
cut and can be safely removed from the partitioning
instance to improve runtime [7]. Terminal propagation
is typically driven by geometric proximity of termi-
nals to subregions/partitions. Figure 2 depicts terminal
propagation for a net with several fixed terminals.
This particular net is inessential as it has terminals
propagated to both sides of the cutline.

Minimizing HPWL through weighted net-cut.
The authors of [27] also note the inaccuracy of rep-
resenting the wirelength objective of placement by the
min-cut objective in partitioning. Optimizing HPWL
directly through partitioning can provide improvements
over the simple min-cut objective. The authors intro-
duce a new terminal propagation technique in their
placer THETO that allows the partitioner to better
map net-cut to HPWL. The terminal propagation in
THETO differs from traditional terminal propagation
in that each original net may be represented by one
or two nets in the partitioned netlist, depending on the
configuration of the net’s terminals. Two special cases
— nets with no terminals and inessential nets — are
treated the same as in traditional terminal propagation.
Five other cases are analyzed in [27], based on the
configuration of terminals relative to the centers of the
child bins, and proper weight computation is described
(one case requires two nets). This way weighted net-cut
better represents the “HPWL degradation” seen after
partitioning. Empirically, this terminal propagation and
net weighting are shown to reduce HPWL in min-cut
placement.

This technique is simplified in [10] and reduced to
the calculation of three wirelengths per net per parti-
tioning instance (see more details in Section IV). Our
key observation is that this calculation is sufficiently
general to facilitate the minimization of wirelength
estimates other than HPWL.

Using multi-way partitioning. In an attempt to
improve basic recursive bisection, many researchers
have noted that it eventually produces multi-way par-
titions which could be alternatively achieved by direct
methods using wirelength-like multi-way objectives. In
[16], the authors make use of quadrisection and show
how several different cost functions other than cut

can be optimized efficiently, although with overhead
greater than that of bisection. One such cost function
is the Minimum Spanning Tree (MST) length which
they note is a far more accurate predictor of routed
wirelength than net-cut. The authors note that in order
for a wirelength evaluator to be feasible for placement
optimization, it must have evaluation complexity equal
to or lesser than MST. On the other hand, the authors
claim that their techniques can apply to “arbitrarily
complicated per-net placement objectives” [16].

The net-vector technique includes the computation
of 2p integer costs per optimization objective defined
for p partitions (p = 4 in [16] because quadrisection is
used). It then looks up these costs during partitioning.
Unfortunately, such look-ups require the discretization
of pin locations and cannot account for the location
of fixed terminals with as much precision as our work.
Furthermore, the Steiner-tree objective on a discretized
2x2-grid does not differ from the discretized MST
objective, hence it appears that optimizing StWL would
require at least 16-way partitioning with large net-
vector tables. However, no 16-way geometric partition-
ers can be found in the literature that are competitive
to recursive bisection. In our work, Steiner trees are
built on the fly for each configuration, but the overall
runtime remains reasonable.

B. Estimating Congestion and Routed Wirelength

Congestion Maps. There have been many recent
advances in estimating routing congestion. Most have
come in the form of more accurate and faster conges-
tion maps [22], [30]. In this work, we make use of
the congestion mapping techniques presented in [30]
which assumes that routers attempt to route nets with
the fewest number of bends possible. The technique
models two-pin nets in only L and Z shapes, unlike
other methods that consider all possible shortest paths
between two pins equally. Empirically, the authors
of [30] have found that some routers are able to
find routes with one bend 60% of the time and two
bend routes for the majority of other nets. Thus, one-
bend and two-bend routes are weighted this way in
their maps. Empirical results show that such estimates
correlate well with actual routing usage in the Magma
Place-and-Route flow [30].

Rectilinear Steiner Minimal tree evaluators. The
problem of constructing Rectilinear Steiner Minimal
trees is known to be NP-hard [15]. Specifically, it is
the problem of connecting a given set of points in the
Manhattan plane by a minimum-length tree, which can
use additional branching (Steiner) points. This problem
admits polynomial-time approximations and practical
heuristics. Three such algorithms with available source
code are Batched Iterated 1-Steiner (BI1ST) [20], Fast-
Steiner [19], and FLUTE [12]. BI1ST, albeit the oldest
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and slowest of these algorithms, generally produces
the best solutions overall. FLUTE, the most recent and
fastest algorithm, is provably optimal for instances with
nine points or fewer. FastSteiner falls in the middle in
terms of both speed and solution quality.

C. Achieving Routable Placements

It is well-known that a placement with small HPWL
may be unroutable due to uneven routing demand and
ensuing wiring congestion. For this reason, modern
placers must explicitly account for routing congestion
in order to produce routable placements. In [31],
congestion maps are built after global placement, and
annealing moves are applied to minimize a congestion
metric. Another technique known as WSA [23] is
applied after detail placement. WSA uses congestion
maps to identify areas with high congestion and injects
whitespace into these areas in a top-down fashion.
After whitespace allocation, cells typically overlap
each other and legalization is required. After legal-
ization, window based detail placement techniques are
applied to reduce wirelength that was increased during
whitespace allocation and legalization. Cell bloating
[26] and cell spreading [23] are used to tie whitespace
to specific cells, rather than to fixed regions as in
techniques based on congestion maps.1

III. CHOOSING THE PROPER OBJECTIVE

In this section we seek a wirelength estimator that
adequately captures routed wirelength and is suitable
for efficient optimization. While the former appears
within reach, the latter turns out more difficult.

A. Estimating Net Length

A priori wirelength estimation is the subject of
extensive literature [4]. In this work we are mainly
interested in evaluating and using simple per-net es-
timators, such as weighted HPWL, identified previ-
ously as a reasonable compromise between HPWL and
Rectilinear Steiner Minimal Tree (RSMT) evaluators
[4]. However, experiments described in [5] reveal poor
correlation between total weighted HPWL and total
routed WL in placement. Therefore, we do not consider
weighted HPWL as a potential objective in our work.

On the positive side, recent progress on fast RSMT
evaluators [12], [19] opens the possibility of using
them in optimization. HPWL and RSMT WL (aka
Steiner WL) share the same drawback — they both
underestimate routed wirelength (rWL), due to detours,
pin access problems, etc. A common response to this

1Cell bloating artificially increases the width of cells because their
heights are determined by rows. However, the peak demand for
horizontal tracks does not decrease because cells are not spread
vertically. To the contrary, by spreading cells horizontally cell
bloating increases the overall demand for horizontal tracks.
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Fig. 3. Comparing the accuracy of routed wirelength (rWL)
estimators HPWL (left lines), StWL (middle) and MST WL (right)
for nets with 4-20 pins in the vga lcd design from the IWLS 2005
benchmarks [17]. StWL was calculated using FastSteiner [19].

issue is to use the Minimal Spanning Tree length
(MSTWL) [16]; this is relatively easy to compute and
does not exceed Steiner WL by more than 50%. There-
fore, we also include MSTWL in our experiments.

To test our intuition, we perform the following
experiment. We analyze a placement of the vga lcd
design from the IWLS 2005 series of benchmarks
[17] which was routed without violation by Cadence
WarpRoute. The vga lcd design has 124,031 stan-
dard cells and 124,098 nets. For each net with 4-20
pins, we plot the ratios of HPWL, StWL and MSTWL
(length of the MST of the net) to routed net length vs.
the pin count of the net. See Figure 1 for a comparison
of HPWL, StWL and MSTWL for a 5-pin net. StWL
was calculated using FastSteiner [19]. Statistics for 2-
and 3-pin nets are not shown as HPWL and StWL
produce identical numbers. For each net, three values
are plotted in Figure 3: HPW L

rW L (in green, left), StW L
rW L

(in blue, middle) and MSTW L
rW L (in purple, right). Nets

are separated by their pin counts. In some cases,
HPWL and StWL have ratios greater than 1.0. This
is due to routers making use of internal wiring within
cells that does not count toward reported wirelength.
The discrepancy is exacerbated by wide pins present
in many cell libraries, as well as by logically and
electrically equivalent pins.

Figure 3 shows that HPWL is a poor estimator of
routed net length — it can significantly under-estimate
rWL and includes a great amount of noise since the
range of ratios to rWL is large. As one might expect,
StWL typically underestimates routed net length as
well, but its range of ratios in the figure is significantly
smaller than for MST. This means that with a proper
correction, StWL may be a more accurate estimate
than MST. 2 More importantly, given two nets, StWL

2Figure 3 suggests that MST is the most accurate estimator of
routed net length on average for the router used on this design
because the ranges of ratios for MST are centered at 1.0.
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Bench- Max Edge Avg Edge #Nets with
mark #Macros #Nets Degree Degree Degree > 3
ami33 33 123 34 3.4797 8
ami49 49 408 24 2.2892 19
n10 10 118 4 2.1017 2
n30 30 349 3 2.0716 0
n50 50 485 4 2.1650 1

n100 100 885 4 2.1164 5
n300 300 1893 6 2.3022 47

Bench- Minimizing HPWL Minimizing Steiner WL
mark HPWL StWL Time (s) HPWL StWL Time (s)
ami33 83267 105857 1.20 83434 103566 35.44
ami49 913680 934291 2.90 932408 951646 13.67
n10 56767 56841 0.12 57169 57277 0.45
n30 172614 172614 1.07 170527 170527 3.78
n50 204061 204100 3.16 207151 207193 9.70
n100 339423 339545 12.76 340396 340502 37.05
n300 764859 766389 122.98 760575 761968 299.32
Ratio 1.000 1.000 1.000 1.004 1.001 4.590

TABLE II
FIXED-OUTLINE FLOORPLANNING TO MINIMIZE HPWL VERSUS

STEINER WL. ALL STWLS WERE CALCULATED USING THE

STEINER EVALUATOR FLUTE [12]. ALL WIRELENGTH AND

RUNTIME MEASURES ARE AVERAGED OVER 50 RUNS.
OPTIMIZING STEINER WL INCREASES RUNTIME BY A MINIMUM

OF 2.43X FOR n300 AND A MAXIMUM OF 29.53X FOR ami33.

estimates can predict more reliably which net will have
longer routed length, i.e., StWL has higher fidelity.
Further experiments described in the Appendix have
shown that the fidelity of net length estimates, rather
than their accuracy is key in placement. Indeed we have
independently verified using MSTWL as an optimiza-
tion objective is worse than StWL for routability and
may be less effective than HPWL in certain situations
(see Table XII and discussion in Section VII).

B. Impact of Steiner-tree Evaluation

As a first attempt at optimizing Steiner WL, we
replaced the HPWL subroutine of the fixed-outline
annealing-based floorplanner Parquet with FLUTE
[12], a very fast Steiner-tree evaluator. The choice of
floorplanning for this experiment is explained by its
relative simplicity. It also clearly illustrates the impact
of optimizing Steiner length on runtime and solution
quality in circuit layout.

Table II shows the netlist statistics for some common
floorplanning benchmarks as well as runtimes and
wirelengths with and without the use of FLUTE. All
runtimes and wirelengths are averages over 50 runs. As
is evident from the table, blindly replacing an HPWL
evaluator with a Steiner-tree evaluator, even one as fast
as FLUTE, can result in a huge increase in runtime
when nets have nontrivial pin count. Trivial pin count
for any Steiner evaluator is three or fewer since Steiner
length is the same as HPWL in such instances. All the
nets in the n30 benchmark have trivial pin count, but
we observe a 3.53x increase in runtime. The reason
for this runtime increase is that calling a Steiner-tree
evaluator requires nontrivial overhead (most notably

the removal of duplicate points which requires sorting)
as compared to Parquet’s HPWL evaluator which is
hand-tuned for speed [8].

The data in the table is also quite striking in that
it shows that optimizing for Steiner length was not
particularly effective, as Steiner wirelength and HPWL
were both increased across all of the benchmarks. This
shows that what one may think is an obvious method
to reduce Steiner wirelength may not be all that useful.
One possible explanation of this strange result is that
Steiner WL is not a convex objective. Thus, it may
require a longer annealing schedule than a convex
objective like HPWL, whereas in our experiments the
annealing schedule was fixed.

Our empirical results suggest that Simulated An-
nealing is not compatible with Steiner WL evaluation
as Simulated Annealing relies on frequent net length
computation, making Steiner WL calculation the bot-
tleneck. Furthermore, Simulated Annealing appears to
be ineffective in optimizing Steiner WL as Steiner
WL increased on average in our experiments. We
pursue a different approach and, surprisingly, manage
to optimize Steiner WL with only a modest runtime
penalty.

IV. MINIMIZING TOTAL STEINER-TREE LENGTH
IN GLOBAL PLACEMENT

In this section, we describe new techniques to
minimize Steiner wirelength in min-cut placement. In
addition to the overall methods that make minimizing
Steiner wirelength possible, we present data structures
new to min-cut placement that keep runtimes practical.
These global placement techniques alone can reduce
routed wirelength by up to 7%, as demonstrated in
Figure 7.

A framework for minimizing StWL. To minimize
total StWL during min-cut placement, we capture it
using the weighted net-cut objective used in partition-
ing. In the case of HPWL minimization, this has been
accomplished in [27] with a 7-case analysis. A differ-
ent group reduced this technique to the calculation of
three wirelengths per net when building a partitioning
instance and verified resulting empirical improvements
[10]. To be clear, the three wirelengths that must
be calculated per net (w1, w2 and w12) completely
determine the connectivity and costs of all nets in the
derived partitioning hypergraph [10].

While the formulation from [10] is more compact
than the one from [27], we also note that it is far more
general. For each net in a partitioning instance, one
must calculate the cost of all nodes on the net being
placed at the center of partition 1 (w1), the cost of all
nodes on the net being placed at the center of partition
2 (w2) and the cost of all nodes on the net being
split between the centers of partitions 1 and 2 (w12).
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Fig. 4. Calculating the three costs for weighted terminal propagation
with StWL: w1 (left), w2 (middle), and w12 (right). The net has
five fixed terminals: four above and one below the proposed cutline.
For the traditional HPWL objective, this net would be considered
inessential. Note that the structure of the three Steiner trees may be
entirely different, which is why w1, w2 and w12 must be evaluated
independently.

For each net of the netlist hypergraph relevant to the
partitioning instance, two nets are created in the parti-
tioning hypergraph: one with weight w12−max(w1,w2)
|w1−w2| and the other with weight |w1−w2| [10]. The
new net with weight w12 −max(w1,w2) connects all
of the movable objects (non-terminals) of the original
net. The new net with weight |w1 −w2| connects all
of the movable objects of the original net to one of
the fixed terminals in either partition 1 or 2. This
new net connects to the terminal in partition 2 when
w1 > w2 and to the terminal in partition 1 when
w1 < w2. If either net has weight 0, it is discarded
from the problem. The authors of [10] show, assuming
w12 ≥max(w1,w2), that this net weighting scheme ties
minimizing HPWL directly to minimizing the weighted
net-cut of the partitioning hypergraph.

The points required to calculate w1 for a net are the
positions of the terminals on the net plus the center of
partition 1. Similarly, the points required to calculate
w2 are the positions of the terminals plus the center of
partition 2. Lastly, the points to calculate w12 are the
positions of the terminals on the net plus the centers
of both partitions. See Figure 4 for an example of
cost calculation. Clearly, the StWL of the set of points
necessary to calculate w12 is at least as large as that of
w1 and w2 since it contains an additional point. Since
StWL satisfies the assumptions made by the authors
of [10], weighted partitioning can be used to minimize
StWL. To our knowledge, such a framework has not
been known in min-cut placement until now.

The simplicity of this framework for minimizing
StWL is deceiving. In particular, the propagation of
terminal locations to the current placement bin and the
removal of inessential nets [7] — standard techniques
for HPWL minimization — cannot be used when min-
imizing StWL. Moving terminal locations drastically
impacts Steiner-tree topology and can make StWL
estimates poor. Nets that are considered inessential
in HPWL minimization are not necessarily inessen-
tial when considering StWL because there are many
Steiner trees of different lengths that have the same
bounding box. Figure 4 illustrates a net that is inessen-
tial for HPWL minimization but essential for StWL
minimization.

Pointsets with multiplicities. Building Steiner trees
for each net during partitioning is a computationally
expensive task. Table II in Section III-B shows how
expensive a naive replacement of HPWL with Steiner-
tree evaluation can be in floorplanning. Even travers-
ing nets to collect all relevant point locations when
building Steiner trees can be very time-consuming.
Therefore, the main challenge in supporting StWL
minimization is to develop efficient data structures and
limit additional runtime during placement.

To keep runtime reasonable when building Steiner
trees for partitioning, we propose a simple yet highly
effective data structure — pointsets with multiplicities.
For each net in the hypergraph, we maintain two lists.
The first list contains all the unique pin locations on the
net that are fixed. A fixed pin can represent terminals,
and fixed and placed objects in the core area. The
second list contains all the unique pin locations on
the net that are movable, i.e., all other pins that are
not on the fixed list. We maintain a unique list of
points so that we don’t pass any redundant points to
Steiner evaluators which may increase their runtime.
To do so efficiently, we keep the lists sorted. For both
lists, in addition to the location of the pin, we keep
the number of pins that corresponds to a given point.
Before legalization in detail placement, cell overlap can
cause pins to have the same location.

Maintaining the number of real pins that corresponds
to a point in a pointset (i.e., the multiplicity of that
point) is necessary for efficient update of pin locations
during placement. If a pin changes position during
placement, the pointsets for the net connected to the
pin must be updated. First, the original position of the
pin must be removed from the movable point set. To
remove the pin, one performs a binary search on the
pointset. As multiple pins can have the same position,
especially early in placement, without pointset the
entire net would need to be traversed to see if any
other pins share the same position as the pin that is
moving. However, multiplicities make this information
available in constant time. After the pin’s location is
found in the pointset, its multiplicity is reduced by
1. If this results in the position having a multiplicity
of 0, the position is removed entirely. Insertion of the
pin’s new position is similar: first, a binary search is
performed on the pointset. If the position is present, it’s
multiplicity is increased by 1. Otherwise, the position
is added in sorted order with multiplicity 1.

Steiner weighted min-cut step by step. Pseudocode
for minimizing Steiner wirelength in global placement
is illustrated in Figure 5. At the beginning of min-
cut placement, all movable cells are placed at the
center of the first placement bin which encompasses
the core area. Next, all the fixed and movable pointsets
are initialized. To initialize a pointset, we sort it and
change duplicates to multiplicities in a linear-time pass.
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Variables: queue of placement bins
Initialize queue with top-level placement bin
Initialize pointsets with all movable pins at the
center of the top-level placement bin and
fixed pins at their fixed locations

1 While (queue not empty)
2 Dequeue a bin
3 If (bin small enough)
4 Process bin with end-case placer
5 Update pointsets for all nets affected by

cell placement (make movable pins fixed)
6 Else
7 Choose a cut-line for the bin
8 Calculate the centers of the child bins
9 Build a partitioning hypergraph from netlist

and cells contained in the bin
10 Foreach (net adjacent to a cell in the bin)
11 Build a list of terminal pin locations on

the net by combining all points from the
net’s fixed pointset and points from the
net’s movable pointset outside the bin

12 Calculate w1 from terminal locations
and center of child bin 1 using
Steiner evaluator(s)

13 Calculate w2 from terminal locations
and center of child bin 2 using
Steiner evaluator(s)

14 Calculate w12 from terminal locations
and centers of child bins 1 and 2
using Steiner evaluator(s)

15 Adjust w1,w2,and w12 for consistency
16 Add two nets to partitioning hypergraph

whose weights and connectivity are
determined by w1,w2,and w12

17 Bisect the bin into two child bins
18 Update pointsets for all nets affected

by cell movement
19 Enqueue each child bin

Fig. 5. Minimizing StWL in top-down min-cut global placement.

Before a partitioning instance is built for a bin, all
nets that are incident to the bin must be examined in
any min-cut placer. Usually any cell that is outside
of the bin would be propagated to the border of the
bin. We skip this step as this reduces the accuracy
of the Steiner measurements. Instead we collect all
the locations of terminals on this net. This includes
all the fixed pins in addition to any movable pins
that are outside of this bin. At this step, other placers
would check to see if the bounding box of terminals
would contain the centers of the potential child bins (or
would be checking for this condition while gathering
the terminals on this net) and stop without adding this
net to the partitioning problem. If this condition holds,
the net is inessential to partitioning when optimizing
for HPWL, but may not be inessential when optimizing
for Steiner WL. Thus we cannot skip this net before
calculating its three costs.

We calculate the three costs for each net by making
calls to a particular Steiner evaluator. If the number of
unique points that needs to be passed to the Steiner
evaluator is larger than a certain threshold, we use
HPWL evaluation instead purely for speed concerns.
MST WL can be used for these large nets, but we
have found routed wirelength degradation as compared
to using HPWL (see Table XII). After making calls
to the Steiner evaluator, we make checks to ensure
consistency of the costs since the evaluators we are us-

Global Placement Task Runtime
Partitioning 53.56%
Partitioning problem construction 29.50%
End-case Placement 7.77%
Congestion Maps 6.44%
Pointset Maintenance 0.86%
Miscellaneous 1.87%

TABLE III
RUNTIME BREAKDOWN OF GLOBAL PLACEMENT WHEN

MINIMIZING STWL FOR IBM01-EASY OF THE IBMV2
SERIES OF BENCHMARKS [31]. “PARTITIONING PROBLEM

CONSTRUCTION” INCLUDES RUNTIME FOR STEINER WL
EVALUATORS.

Bench- Whitespace Metal
mark # Cells # Nets easy hard layers
ibm01 12028 11753 14.88% 12.00% 4
ibm02 19062 18688 9.58% 4.72% 5
ibm07 44811 44681 10.05% 4.70% 5
ibm08 50672 48230 9.97% 4.84% 5
ibm09 51382 50678 9.76% 4.88% 5
ibm10 66762 64971 9.78% 4.92% 5
ibm11 68046 67422 9.89% 4.67% 5
ibm12 68735 68376 14.78% 9.94% 5

TABLE IV
STATISTICS OF THE IBMV2 BENCHMARKS [31].

ing are approximation algorithms for building RSMTs.
For example we ensure that w1 ≤ w12 by setting w1 =
min(w1,w12) and similarly for w2. Also, we make sure
that w12 is no larger than min(w1,w2)+ the rectilinear
distance between the centers of the child bins. This is
necessarily true because one has a tree that connects to
all the terminals on the net and the center of partition
1, one can easily connect to the center of partition 2
with a single edge.

After constructing the partitioning instance with
properly weighted nets, the partitioner runs and pro-
duces a solution. A cutline is selected based on the
partitioning (see Section VI for more details), and
new bins are constructed for the next cycle of min-cut
placement to continue. When a new bin is constructed,
cells that belong to that bin are placed at its center
and all pointsets for nets incident to the bin must be
updated. Since the pointset structures are sorted and
have multiplicities, moving a pin to a new location
takes time logarithmic in the number of pins on a
net. Without multiplicities, the entire pointset would
need to be rebuilt from scratch due to the removal
of duplicates. Empirically, building and maintaining
the pointset data structures takes less than 1% of
the runtime of global placement, shown in Table III.
Pointsets must also be updated when bin is placed —
movable pins get reassigned to the fixed-pin pointset.
Note that partitioning only causes a movable pin to
change position, and fixed pointsets are unaffected.

Performance. After implementing net-weighting



8

Bench- Minimizing HPWL Minimizing Steiner WL
mark HPWL StWL Time (s) HPWL StWL Time (s)

ibm01e 0.523 0.602 205 0.526 0.590 271
ibm01h 0.514 0.592 204 0.523 0.587 266
ibm02e 1.487 1.745 483 1.526 1.716 738
ibm02h 1.441 1.694 470 1.471 1.654 725
ibm07e 3.482 3.854 1134 3.484 3.747 1480
ibm07h 3.322 3.682 1092 3.401 3.659 1444
ibm08e 3.630 4.300 1484 3.757 4.241 2304
ibm08h 3.608 4.258 1446 3.646 4.131 2268
ibm09e 3.065 3.465 1207 3.130 3.408 1599
ibm09h 2.991 3.390 1179 3.037 3.313 1565
ibm10e 6.016 6.736 1918 6.088 6.619 2541
ibm10h 5.826 6.542 1885 5.830 6.356 2519
ibm11e 4.591 5.003 1740 4.608 4.888 2109
ibm11h 4.430 4.843 1679 4.478 4.757 2064
ibm12e 8.193 9.109 2235 8.321 8.990 3016
ibm12h 7.983 8.907 2215 7.966 8.621 2957
Ratio 1.000 1.000 1.000 1.014 0.972 1.364

TABLE V
IMPROVING STEINER WL WITH FASTSTEINER [19]. AVERAGE

HPWL, STEINER WL AND PLACEMENT RUNTIMES ARE SHOWN

FOR THE IBMV2 BENCHMARKS [31]. RESULTS ARE THE

AVERAGE OF FIVE INDEPENDENT RUNS. ALL WIRELENGTHS ARE

IN METERS. OPTIMIZING STWL DECREASES STWL BY 2.8%,
INCREASES RUNTIME BY 36% AND INCREASES HPWL BY 1.4%.

based on pointsets, we compared three different Steiner
evaluators to see their impact on runtime and solution
quality. Based on the results discussed in the Appendix,
we have chosen FastSteiner [19] for global placement,
due to its reasonable runtime and consistent perfor-
mance on large nets. Table V shows that the use of
FastSteiner with our techniques lead to a reduction
of StWL on IBMv2 benchmarks [31] by nearly 3%
on average while using 36% additional runtime. Since
min-cut placers are fast and extremely scalable, this is
a very encouraging result.

The largest and smallest benchmarks (ibm01e and
ibm12e) differ by 5x in size, but HPWL minimization
consistently takes 75% of runtime for StWL minimiza-
tion, suggesting that the ratio remains approximately
constant regardless of the scale.

V. DETAIL PLACEMENT DRIVEN BY
STEINER TREE LENGTH

Sliding-window optimizations for HPWL during de-
tail placement are quite common in modern placers.
A recent technique of that variety models single-
trunk Steiner trees and has had success in improving
routability of FPGAs [18]. Unfortunately, it appears
very slow. We have implemented two types of sliding-
window optimizers directed at minimizing StWL using
the FLUTE Steiner evaluator [12]. The first optimizer
checks all possible linear orderings of small groups of
cells and pieces of whitespace exhaustively. For the
sake of efficiency, orderings of cells that are the same
except for permutations of whitespace pieces are only
evaluated once. Other than this simple optimization,
every cell ordering is generated and its StWL is
calculated using FLUTE. The ordering with the least

StWL is returned at the end of the procedure. Because
of the exponential rate of growth of the number of
permutations of n cells, namely n!, this exhaustive
enumeration technique only scales to 4-5 cells.

The second optimizer also does linear placement,
but uses a dynamic programming algorithm for an
interleaving optimization similar in spirit to that pre-
sented by Jariwala and Lillis [18]. Given k cells, the
algorithm splits the cells into groups A and B of sizes
n = k/2 and m = k − n, respectively. The order of
the cells in groups A and B is important and is the
same as the initial configuration to the optimizer. The
configurations that the algorithm examines are only
those where cells in groups A and B are interleaved,
but the relative order of cells from A and cells from
B remain unchanged. For example, say we have the
cells 1234abcd in this order. The ordering “1ab2cd34”
is a legal ordering for the algorithm to consider, but
the ordering “12a3bdc4” is not because c came before
d in group B previously, but c is now behind d.
The exact number of configurations that satisfy this
interleaved ordering is (n+m)!

n!m! which is much less than
the (n+m)! = k! possible configurations of the input.

First, the algorithm builds an n-by-m sized table
of partial solutions. Entry (i, j) of the table contains
the ordering with the best (smallest) StWL when
interleaving the first i elements of group A and the
first j elements of group B. The final answer is
thus stored in position (n,m) of the table after the
algorithm finishes. Table entries (i,0) and (0, j) are
trivial to calculate. The dynamic programming step
of the algorithm computes entry (i, j) from entries
(i−1, j) and (i, j−1). Element i of group A is added
to the solution from entry (i− 1, j) and the StWL of
the resulting placement is calculated from scratch with
FLUTE. Similarly, element j of group B is added to
the solution from entry (i, j−1) and the StWL of this
placement is calculated from scratch with FLUTE. The
best of these two solutions in terms of StWL is taken
to be the solution for entry (i, j). Calculating entries
in row-major (or column-major) order will guarantee
that all table entry dependencies are satisfied.

Since the algorithm proceeds by filling in the table,
the runtime of the algorithm is proportional to n ∗m
multiplied by the time to evaluate wirelength, while
considering (n+m)!

n!m! configurations. To speed up the
process of evaluating wirelength, pointsets with mul-
tiplicities (see Section IV) are used in interleaving as
well as exhaustive search. This dynamic programming
approach has been shown to produce the optimal
interleaving when HPWL is used for evaluation [18],
but we have found that it does not necessarily produce
min-StWL interleavings. On the other hand, it allows
for windows of size 8-9 which is nearly twice that of
exhaustive search.

Table VI evaluates detail placement on the IBMv2
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Bench- Steiner WL Routed WL % Total
mark improvement improvement runtime

ibm01e 1.047% 1.668% 11.66%
ibm01h 0.950% 4.046% 11.99%
ibm02e 0.735% 1.332% 10.89%
ibm02h 0.644% 0.363% 11.14%
ibm07e 0.647% 1.377% 11.51%
ibm07h 0.622% 3.288% 11.92%
ibm08e 0.553% 0.680% 11.27%
ibm08h 0.540% 1.620% 11.77%
ibm09e 0.716% 2.846% 13.00%
ibm09h 0.698% 3.041% 13.26%
ibm10e 0.662% 1.327% 12.42%
ibm10h 0.642% 0.225% 12.70%
ibm11e 0.639% 0.313% 11.65%
ibm11h 0.607% 0.273% 11.82%
ibm12e 0.682% -0.789% 11.11%
ibm12h 0.619% 0.423% 11.50%
Average 0.688% 1.387% 11.83%

TABLE VI
DETAIL PLACEMENT IMPROVES STEINER WL AND ROUTED WL.

AVERAGE IMPROVEMENTS AND RUNTIME (AS A FRACTION OF

TOTAL PLACEMENT TIME) ARE SHOWN FOR THE IBMV2
BENCHMARKS [31]. RESULTS ARE THE AVERAGE OF FIVE

INDEPENDENT RUNS.

benchmarks, with 4 cells per window during exhaustive
enumeration and 8 cells per window during inter-
leaving. Such detail placement alone reduces Steiner
WL by 0.69% and routed WL by 1.4% while only
consuming 11.8% of the total placement runtime.

VI. CONGESTION-BASED CUTLINE SHIFTING

In this section we introduce whitespace allocation
based on congestion estimates during min-cut place-
ment. This technique is essential to achieving routabil-
ity, but in some cases increases routed wirelength, as
seen in Figure 7.

One of the most important reasons that we use
bisection instead of quadrisection is the flexibility that
it allows in choosing the cutline of a partitioned bin.
Before partitioning, we first choose a direction for the
cutline, usually based upon the geometry of the bin.
We then choose a tentative cutline in that direction to
split the bin roughly in half.

After the partitioner returns a solution, we have the
flexibility to keep the cutline as it was chosen before
partitioning or to change it to optimize an objective.
The WSA [23] technique, applied after placement,
geometrically divides the placement area in half and
estimates the congestion in both halves of the layout.
It then allocates more area to the side with greater
routing demand, i.e. shifts the cutline, and proceeds
recursively on the two halves of the design. In WSA,
cells must be re-placed after the whitespace allocation.
However, we can avoid this re-placement because our
cells have not yet been placed and will be taken care
of naturally during the min-cut process.

Cutline shifting used to handle congestion necessi-
tates a slicing floorplan. The only work in the literature
that describes top-down congestion estimates and uses

them in placement assumes a grid structure [3]. There-
fore we develop the following technique: before each
round of partitioning, we overlay the entire placement
region on a grid. We choose the grid such that each
placement bin is covered by 2-4 grid cells. We then
build a congestion map using the last updated locations
of all pins. We choose the mapping technique from [30]
as it shows good correlation with routed congestion.

When cells are partitioned and their positions are
changed, the congestion values for their nets are up-
dated. Before cutline shifting, the routing demands and
supplies for either side of the cutline are estimated
with the congestion map. Given the bounding box
of a region, we estimate its demand and supply by
intersecting the bounding box with the grid cells of the
congestion map. Grid cells that partially overlap with
the given bounding box contribute only a portion of
their demand and supply based on the ratio of the area
of the overlap to the area of the grid cell. Using these,
we shift the cutline to equalize the ratio of demand to
supply on either side of the cutline.

To show the effectiveness of this dynamic version
of WSA, we plot congestion maps of placements of
ibm01h produced with and without our technique in
Figure 8. The left plot illustrates uniform whitespace
allocation and the right plot congestion-driven whites-
pace allocation. Our whitespace allocation technique
reduces the maximum congestion by 50% and the
number of overfull global routing cells from 3.95%
to 3.18% (as reported by an industry router). We also
post-process our placements with WSA and observe
mixed results, as discussed below (see Table IX).

VII. EXPERIMENTAL RESULTS

To test the quality of placements produced by
ROOSTER, we ran it on the IBMv2 suite of bench-
marks [31] and routed them using Cadence WarpRoute
2.4.41. All runs of placement and routing were per-
formed on 3.2GHz Intel Pentium 4 processors with
1GB of RAM. All runs of randomized placers, in-
cluding ROOSTER, are the average results for the
best of three independent placements (only the best
of the three independent placements is routed and the
results of three such sets of placements are averaged).
Statistics for the IBMv2 benchmarks are shown in
Table IV. The effectiveness of each of the approaches
that make up ROOSTER is depicted in Figure 7. A
comparison of ROOSTER against the best published
results for several competitive placers is shown in Table
VII. A ratio greater than 1.0 indicates that our results
are overall better for routing on this benchmark suite,
which is true for all the routed wirelengths and via
counts of previously published results.

Most of the placers whose best published results
are shown in Table VII have more recent binaries
which we evaluate in Table VIII. We ran Dragon 4.0
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ROOSTER mPL-R + WSA [23] APlace 1.0 /w cong [21] Capo 9.2 [24] Dragon 3.01 [31] FengShui 2.6 [2]
rWL #Vias #Vio. rWL #Vias #Vio. rWL #Vias #Vio. rWL #Vio. rWL #Vio. rWL #Vio.

ibm01e 0.733 122286 0 0.77 127969 0 0.80 152489 0 0.779 0 0.843 0 time-out 932
ibm01h 0.746 124307 0 0.75 129648 0 0.75 150947 0 0.773 23 0.917 84 time-out 2698
ibm02e 2.059 259188 0 1.89 284396 0 2.05 299306 0 2.183 0 2.085 0 2.201 0
ibm02h 2.004 262900 0 1.94 296290 0 2.14 315786 0 2.080 0 2.216 0 2.277 0
ibm07e 4.075 476814 0 4.29 548765 0 4.18 559354 0 4.534 0 4.495 0 4.756 77
ibm07h 4.329 489603 0 4.43 579157 0 4.29 586129 1 4.591 0 4.523 0 4.707 251
ibm08e 4.242 559636 0 4.58 661733 0 4.58 681884 0 4.553 0 4.601 0 4.458 0
ibm08h 4.262 574593 0 4.49 684910 0 4.63 699411 0 4.768 0 4.961 0 5.056 52
ibm09e 3.165 466283 0 3.50 549568 0 - - - 3.357 0 3.705 0 3.520 0
ibm09h 3.187 475791 0 3.65 570032 0 - - - 3.336 0 3.494 0 3.395 0
ibm10e 6.412 749731 0 6.84 873311 0 - - - 6.591 0 6.948 0 6.809 0
ibm10h 6.602 775018 0 6.76 902026 0 - - - 6.484 0 6.982 0 6.716 0
ibm11e 4.698 605807 0 5.16 714824 0 - - - 5.039 0 5.371 0 5.301 0
ibm11h 4.697 618173 0 5.15 745015 0 - - - 4.941 0 5.400 0 5.260 0
ibm12e 9.289 918363 0 10.5 1127925 0 - - - 9.895 0 10.459 0 10.147 33
ibm12h 9.289 938971 0 10.1 1107551 0 - - - 10.145 0 9.904 0 time-out 3418
Ratio 1.000 1.000 1.055 1.156 1.042 1.119 1.056 1.107 1.093

TABLE VII
A COMPARISON OF OUR WORK TO BEST PUBLISHED ROUTING RESULTS FOR SEVERAL PLACERS ON THE IBMV2 BENCHMARKS [31].

ALL ROUTED WIRELENGTHS (RWL) ARE IN METERS. A RATIO GREATER THAN 1.0 INDICATES THAT OUR RESULTS ARE OVERALL

BETTER FOR ROUTING ON THIS BENCHMARK SUITE. FOR ALL CASES, ROOSTER OUTPERFORMS BEST PUBLISHED ROUTING RESULTS

IN TERMS OF ROUTED WIRELENGTH AND VIA COUNT. PUBLISHED ROUTING DATA FOR APLACE 1.0 FOR IBM09-IBM12 IS

UNAVAILABLE. ROUTING DATA FOR CAPO 9.2, DRAGON 3.01 AND FENGSHUI 2.6 WERE TAKEN FROM [24] WHICH DID NOT CONTAIN

VIA COUNTS. ROUTING USES A 24-HOUR TIME-OUT. BEST LEGAL RWL AND VIA COUNTS ARE IN BOLD.

ROOSTER Latest mPL-R + WSA APlace 2.04 -R 0.5 FengShui 5.1
rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio. Time

ibm01e 0.733 122286 0 42 0.718 123064 0 11 0.790 158646 85 132 0.804 166459 1630 1337
ibm01h 0.746 124307 0 32 0.691 213162 0 11 0.732 161717 2 121 0.807 166578 1451 1310
ibm02e 2.059 259188 0 13 1.821 250527 0 11 1.846 254713 0 9 2.324 383169 726 474
ibm02h 2.004 262900 0 14 1.897 260455 0 13 1.973 268259 0 14 2.284 343198 148 184
ibm07e 4.075 476814 0 17 4.130 492947 0 21 3.975 500574 0 17 4.387 591002 137 84
ibm07h 4.329 489603 0 19 4.240 516929 0 26 4.141 518089 0 23 4.632 617327 486 244
ibm08e 4.242 559636 0 17 4.372 579926 0 23 3.956 588331 0 18 5.050 740719 19 112
ibm08h 4.262 574593 0 20 4.280 599467 0 26 3.960 595528 0 18 4.759 725147 16 59
ibm09e 3.165 466283 0 11 3.319 488697 0 17 3.095 502455 0 11 3.462 517701 0 13
ibm09h 3.187 475791 0 11 3.454 502742 0 19 3.102 512764 0 12 3.348 510144 0 13
ibm10e 6.412 749731 0 22 6.553 777389 0 30 6.178 782942 0 23 6.599 807032 0 24
ibm10h 6.602 775018 0 27 6.474 799544 0 33 6.169 801605 0 28 6.661 812593 0 27
ibm11e 4.698 605807 0 15 4.917 633640 0 22 4.755 648044 0 18 5.419 671225 0 22
ibm11h 4.697 618173 0 16 4.912 660985 0 25 4.818 677455 0 24 5.452 679690 0 22
ibm12e 9.289 918363 0 36 10.185 995921 0 57 8.599 921454 0 32 9.829 1172981 6 73
ibm12h 9.289 938971 0 43 9.724 976993 0 50 8.814 961296 0 50 10.333 1344067 466 448
Ratio 1.000 1.000 1.007 1.069 0.968 1.073 1.097 1.230

TABLE VIII
A COMPARISON OF OUR WORK TO THE MOST RECENT VERSION OF MPL-R + WSA, APLACE 2.04 AND FENGSHUI 5.1 ON THE IBMV2

BENCHMARKS [31]. ALL ROUTED WIRELENGTHS (RWL) ARE IN METERS. “TIME” REPRESENTS ROUTING RUNTIME IN MINUTES.
NOTE THAT WHILE APLACE 2.04 ACHIEVES OVERALL SMALLER WIRELENGTH THAN OUR PLACER, IT ROUTES WITH VIOLATIONS ON 2

OF THE 16 BENCHMARKS. BEST LEGAL RWL AND VIA COUNTS ARE IN BOLD.

in fixed-die mode, but it consistently crashed and we
are unable to show results for it. Table VIII shows
that the latest version of mPL-R + WSA has slightly
worse rWL (0.7%) when compared to ROOSTER
and 6.9% higher via count. Congestion-driven APlace
2.04 (using congestion parameter 0.5) has rWL 3.24%
smaller than ours, but 7.32% more vias and violations
on 2 of the 16 benchmarks.

Since our cutline shifting for congestion can be
viewed as a dynamic version of the WSA post-
processing technique, we were interested in seeing
how WSA or other detail placement techniques would
affect the routability of our placements. Table IX
shows that WSA is able to improve our wirelength by
approximately 1.0% with a 0.4% increase in via count.
Direct comparisons show that the most improvement

is obtained on the ibm01 and ibm02 benchmarks. In
contrast, the detail placers of Dragon 4.0 and FengShui
5.1 make the routability of our placements far worse
with increases in routed wirelength, via count and
violations.

The Faraday series of five mixed-size benchmarks
with routing information is derived from circuits re-
leased by the Faraday Corporation [1]. To see if
ROOSTER techniques are applicable when fixed ob-
stacles are present, we fixed the movable macros
in the design (as shown in Figure 6) and used the
resulting benchmarks with ROOSTER. All benchmarks
were routed using Cadence WarpRoute 2.4.41. A
comparison of ROOSTER placements to the original
placements of the benchmarks produced by Silicon
Ensemble Ultra v5.4.126 (details on the construction
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ROOSTER ROOSTER + WSA ROOSTER + Dragon 4.0 DP ROOSTER + FengShui 5.1 DP
rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio. Time rWL #Vias #Vio. Time

ibm01e 0.733 122286 0 42 0.718 122873 0 7 0.790 133498 0 92 0.850 162248 155 152
ibm01h 0.746 124307 0 32 0.725 124063 0 10 0.800 176562 36 166 0.858 176585 257 265
ibm02e 2.059 259188 0 13 2.000 256155 0 10 2.164 278854 0 19 2.215 347022 129 77
ibm02h 2.004 262900 0 14 1.978 262022 0 11 2.004 271237 0 33 2.234 345638 285 171
ibm07e 4.075 476814 0 17 3.953 470104 0 13 4.175 502808 0 19 4.498 581269 563 44
ibm07h 4.329 489603 0 19 4.091 489067 0 19 4.721 593629 76 21 4.885 617061 870 86
ibm08e 4.242 559636 0 17 4.231 559010 0 16 4.443 598266 0 18 4.662 684313 276 27
ibm08h 4.262 574593 0 20 4.240 577879 0 19 4.491 619733 0 36 4.794 714798 768 207
ibm09e 3.165 466283 0 11 3.200 473605 0 11 3.392 502967 0 11 3.718 573996 583 22
ibm09h 3.187 475791 0 11 3.205 480961 0 11 3.328 511174 0 12 3.688 587486 630 19
ibm10e 6.412 749731 0 22 6.420 755673 0 21 6.759 798405 0 23 7.214 905508 229 18
ibm10h 6.602 775018 0 27 6.544 781897 0 26 6.523 804478 0 29 6.943 911878 296 34
ibm11e 4.698 605807 0 15 4.746 613437 0 15 4.879 644060 0 15 5.308 735762 492 59
ibm11h 4.697 618173 0 16 4.716 625654 0 16 4.830 654948 0 16 5.288 755418 591 77
ibm12e 9.289 918363 0 36 9.333 930397 0 30 9.427 953405 0 39 9.888 1087932 10 44
ibm12h 9.289 938971 0 43 9.282 942551 0 39 9.260 966280 0 47 9.786 1102197 312 66
Ratio 1.000 1.000 0.990 1.004 1.041 1.089 1.114 1.248

TABLE IX
RESULTS WHEN APPLYING VARIOUS POST-PROCESSORS TO OUR PLACEMENTS FOR THE IBMV2 BENCHMARKS [31]. ALL ROUTED

WIRELENGTHS (RWL) ARE IN METERS. “TIME” REPRESENTS ROUTING RUNTIME IN MINUTES. WSA SHOWS IMPROVEMENT ON SOME

OF OUR PLACEMENTS, BUT INCREASES ROUTED WIRELENGTH AND VIA COUNTS ON THE LARGEST BENCHMARKS. THE DETAIL

PLACERS OF DRAGON 4.0 AND FENGSHUI 5.1 DECREASE THE ROUTABILITY OF OUR PLACEMENTS BY INCREASING RWL AND VIA

COUNT ON ALL BENCHMARKS AND THE ADDITION OF VIOLATIONS. BEST LEGAL RWL AND VIA COUNTS ARE IN BOLD.

ROOSTER + NanoRoute ROOSTER (w/o row orient) + NanoRoute AmoebaPlace + NanoRouteBenchmark rWL #Vias #Vio. Time rWL #Vias #Vio. Time rWL #Vias #Vio. Time
aes core 1.339 125939 2 32 1.271 126645 1 50 1.657 131049 1 28
ethernet 7.287 467777 1 27 6.145 413323 2 257 7.745 471800 1 28
mem ctrl 1.061 87276 0 22 0.890 89153 0 33 1.224 90067 0 21

pci bridge32 1.336 114880 0 35 1.176 115675 0 59 1.598 117326 2 35
usb funct 0.995 84717 0 19 0.860 85329 0 33 1.106 85739 0 19
vga lcd 25.906 1131591 2 57 24.447 1083504 1 173 25.405 1076178 2 90
Ratio 1.000 1.000 0.885 0.979 1.120 1.011

TABLE X
A COMPARISON OF ROOSTER TO CADENCE AMOEBAPLACE ON THE IWLS 2005 BENCHMARKS [17]. ALL ROUTED WIRELENGTHS

(RWL) ARE IN METERS. “TIME” REPRESENTS ROUTING RUNTIME IN MINUTES. ROOSTER IS OUTPERFORMS AMOEBAPLACE BY

12.0% IN RWL AND 1.1% IN VIA COUNTS (WITHOUT ORIENTATION CONSTRAINTS THE IMPROVEMENTS ARE 26.5% AND 3.2%,
RESPECTIVELY). BEST RWL AND VIA COUNTS ARE IN BOLD.

 dma HPWL= 4.445e+08, #Cells= 12682, #Nets= 12613  dsp1 HPWL= 9.756e+08, #Cells= 27145, #Nets= 28400  dsp2 HPWL= 9.404e+08, #Cells= 27125, #Nets= 28384  risc1 HPWL= 1.49e+09, #Cells= 33249, #Nets= 33762  risc2 HPWL= 1.43e+09, #Cells= 33249, #Nets= 33762 

(a) DMA (b) DSP1 (c) DSP2 (d) RISC1 (e) RISC2
Fig. 6. The ICCAD’04-Faraday benchmarks (with macros fixed) placed by ROOSTER. Objects with double outlines are fixed.

of the benchmarks can be found in Appendix A of
[1]) are shown in Table XI. Results for APlace 2.04
and mPL-R are not shown as they crashed on all but
the DMA benchmark (the only Faraday benchmark
without macros). Compared to the Silicon Ensemble
Ultra placements, ROOSTER improves routed WL by
11.2% and via counts by 4.8%.

Previous work has compared mPL-R/WSA and
APlace with Cadence QPlace and found mPL-R/WSA
to have the best results on IBMv2 benchmarks [23].
Since we now show better results than mPL-R/WSA,
ROOSTER should also compare favorably with QPlace
on the IBMv2 benchmarks. Capo has demonstrated
comparable performance to QPlace on another set of

industry benchmarks [5]. Since ROOSTER consider-
ably improves upon Capo, we expect similar improve-
ments over QPlace as well.

We also performed placement experiments on the
IWLS 2005 benchmarks [17]. Unlike the IBMv2
benchmarks which use a 0.25 µm cell library, the
IWLS 2005 benchmarks use a Cadence 0.18 µm li-
brary. Table X compares ROOSTER with Cadence
AmoebaPlace from SOC Encounter 4.1 on a few of
the IWLS 2005 designs. All of the benchmarks were
routed with Cadence NanoRoute. The two sets of
results for ROOSTER differ in how they handle cell
orientations in rows that have nontrivial orientations.
A full discussion on the orientations of standard cells
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Bench- ROOSTER Silicon Ensemble Ultra v5.4.126
mark rWL #Vias #Vio.Time rWL #Vias #Vio Time
DMA 0.554 116414 0 3 0.644 125328 0 3
DSP1 1.110 209274 0 5 1.224 204863 0 6
DSP2 1.067 194971 0 6 1.230 207521 0 6
RISC1 1.868 328699 5 9 1.957 345615 4 6
RISC2 1.786 324278 5 7 1.959 347515 2 5
Ratio 1.000 1.000 1.112 1.048

TABLE XI
ROUTING RESULTS ON THE FARADAY BENCHMARKS WITH

MOVABLE MACRO BLOCKS FIXED [1]. ALL ROUTED

WIRELENGTHS (RWL) ARE IN METERS. “TIME” REPRESENTS

ROUTING RUNTIME IN MINUTES. BEST RWL AND VIA COUNTS

ARE HIGHLIGHTED IN BOLD.

Bench- HPWL replaced by MST StWL replaced by MST
mark rWL #Vias #Vio. Time rWL #Vias #Vio. Time

ibm01e 0.768 149073 40 188 0.754 136724 2 54
ibm01h 0.768 161339 121 231 0.764 157896 32 184
ibm02e 2.017 281313 2 18 2.012 254610 0 16
ibm02h 2.010 288491 9 48 2.185 312547 119 89
ibm07e 4.105 481189 0 26 4.102 475751 0 26
ibm07h 4.410 528926 18 44 4.214 527378 20 63
ibm08e 4.327 564834 0 28 4.301 559318 0 27
ibm08h 4.328 580717 0 33 4.395 618671 4 34
ibm09e 3.192 470294 0 17 3.267 470715 0 18
ibm09h 3.150 475043 0 18 3.230 478005 0 19
ibm10e 6.283 746000 0 32 6.538 794192 1 36
ibm10h 6.577 766170 0 38 6.559 765255 0 37
ibm11e 4.784 608935 0 25 4.798 608887 0 24
ibm11h 4.719 620048 0 24 4.750 619988 0 25
ibm12e 9.277 926201 0 64 9.347 916887 0 55
ibm12h 9.267 991382 1 57 9.301 980202 1 52
Ratio 1.007 1.051 1.015 1.050

TABLE XII
THE IMPACT OF REPLACING HPWL (FOR HIGH DEGREE NETS)
AND STWL (FOR ALL NETS) WITH MST AS THE WIRELENGTH

EVALUATOR FOR ROOSTER ON THE IBMV2 BENCHMARKS.
ALL ROUTED WIRELENGTHS (RWL) ARE IN METERS. “TIME”

REPRESENTS ROUTING RUNTIME IN MINUTES. THE RATIOS ARE

WITH RESPECT TO ROOSTER’S PERFORMANCE DESCRIBED IN

TABLE VII. LEGAL IMPROVEMENTS TO ROOSTER IN RWL AND

VIA COUNTS ARE HIGHLIGHTED IN BOLD.

and pin access is beyond the scope of this work,
but the version of ROOSTER that does not respect
nontrivial row orientations takes much longer to route
than the version that does but can achieve significantly
smaller routed wirelengths. ROOSTER improves upon
AmoebaPlace in rWL by 12.0% and 1.1% in via count.
This empirical comparison to a placement tool from
Cadence also suggests that our techniques are superior
to those published by Cadence in 1994 [11]. We did not
have success using APlace 2.04 and mPl-R on these
designs. APlace 2.04 completed global placement on
all but the largest benchmark, but terminated with an
error message during legalization. mPL-R crashed on
all of the benchmarks that were tried.

To see if the routed wirelength of ROOSTER place-
ments could be improved without dramatically increas-
ing its runtime, we attempted to add Minimal Spanning
Tree (MST) wirelength into the ROOSTER framework.
Recall that if a net has more than a certain threshold of
pins, 20 for our experiments, ROOSTER uses HPWL
to evaluate the net instead of a Steiner evaluator for
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Fig. 7. Impact of individual optimizations on the rWL produced
by ROOSTER. “V” indicates violations in routing.

reasons of speed. As MST wirelength is a more ac-
curate estimator of routed wirelength than HPWL and
is faster to calculate than StWL, we replaced HPWL
with MST wirelength for large nets when calculating
weights for partitioning.

Results of adding MST into ROOSTER are shown
in Table XII. As we can see, using MST in place
of HPWL in ROOSTER increases rWL by 0.7% and
via count by 5.1% while reducing routability as 6
benchmarks have violations. Since the fidelity of wire-
length evaluator is crucial, we performed an additional
experiment where all net weights were calculated using
MST WL. Table XII that this increases rWL by 1.5%
and via count by 5.0% and reduces routability on 7
benchmarks. These results reinforce our hypothesis
that Steiner WL is a better placement optimization
objective than MST wirelength.

VIII. CONCLUSIONS AND FURTHER WORK

We have presented techniques which leverage recent
advances in RSMT construction [12], [19] to optimize
Steiner wirelength in global and detail placement with
only a modest increase in runtime, which are currently
usable only in our placement algorithm ROOSTER
which is freely available as part of the UMpack
(http://vlsicad.eecs.umich.edu/BK/PDtools/). As the re-
sults of Figure 7 show, the optimization of Steiner
tree lengths in global placement is the main source of
improved wirelength. However, whitespace distribution
is critical to prevent routing violations, even at the
cost of increased wirelength. ROOSTER outperforms
best published routed wirelength results for Dragon,
Capo, FengShui, mPL-R/WSA and APlace by 10.7%,
5.6%, 9.3%, 5.5% and 4.2% respectively. Via counts,
especially important at 90nm and below, are improved
by 15.6% over mPL-R/WSA and 11.9% over APlace.
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Further improvements by others in Steiner-tree con-
struction and congestion maps can only make our
results better. In particular, if the FLUTE package
becomes faster and can process larger nets with high fi-
delity, our detail placement window sizes can increase.

Properly accounting for obstacles in placement is
an area that could benefit significantly from our StWL
minimization techniques. An obstacle-aware Steiner
evaluator could be used directly in our implementa-
tion for nontrivial improvement. In addition to han-
dling blockages, both Steiner-tree evaluators used in
ROOSTER (FLUTE [12] and FastSteiner [19]) can
handle arbitrary per unit-costs of horizontal and verti-
cal wires. This may provide a safer means of balancing
the demand for horizontal and vertical routing re-
sources (similarly motivated cut-line selection in min-
cut placement did not improve results in our tests).

Our technique may conceivably be extended to
improve circuit timing — this requires the ability
to estimate the per-net timing differential based on
Steiner trees which we already compute. Extensions to
optimize timing may require block-based static timing
analysis. Even more accessible would be a similar
extension to optimize dynamic power. In particular,
in designs with multiple clock domains, we could
optimize clock trees during global placement by esti-
mating the lengths of bounded-skew clock trees using
algorithms such as BST-DME.
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Fig. 8. Congestion maps for the ibm01h benchmark: uniform whitespace allocation (produced with Capo -uniformWS) is illustrated on
the left, congestion-driven allocation in ROOSTER is illustrated on the right. The peak congestion when using uniform whitespace is 50%
greater than that for our technique. When routed with Cadence WarpRoute, uniform whitespace produces 3.95% overfull global routing
cells and routes in just over 5 hours with 120 violations. ROOSTER’s whitespace allocation produces 3.18% overfull global routing cells
and routes in 22 minutes without violations.

APPENDIX. STEINER-TREE EVALUATORS:
RUNTIME, ACCURACY AND FIDELITY

After implementing our technique to reduce StWL
during global placement, we tested three different
Steiner-tree evaluators to see how they would affect
the runtime and solution quality of placement. The
three evaluators used were Batched Iterated 1 Steiner
(BI1ST) [20], FastSteiner [19] and FLUTE [12]. We
used each evaluator individually as well as combina-
tions of all three. When using more than one evaluator
at a time, we choose the smallest wirelength among all
estimates since RSMT estimators overestimate actual
RSMT length. Recall that FLUTE is known to be
optimal for nets with nine or fewer pins and also
much faster than other evaluators. Therefore, in mixed
evaluators for nets with four to nine pins we use
FLUTE exclusively.

Table XIII shows a runtime and solution quality
comparison for all eight possible combinations of
Steiner evaluator for the benchmark ibm01e. Runtimes
and wirelengths are averages of five independent runs.
The trends present for ibm01e are very similar for the
other IBMv2 benchmarks. It is clear from the table
that BI1ST gives the best solutions but uses the most
runtime for a single evaluator. FastSteiner is very close
to BI1ST in terms of solution quality, but uses much
less runtime. Of the three pure evaluators, FLUTE
is the least successful in terms of placement quality
but is the fastest. We decided to use FastSteiner in
global placement because it provided the best trade-
off in terms of solution quality and runtime across all
benchmarks.

Steiner Place Steiner Steiner
evaluator(s) time (s) WL WL Ratio

HPWL (no Steiner eval) 141 0.5955 1.0000
BI1ST + FastSteiner + FLUTE 202 0.5918 0.9937

BI1ST + FLUTE 186 0.5900 0.9907
BI1ST + FastSteiner 248 0.5893 0.9895

FLUTE 148 0.5886 0.9884
FLUTE + FastSteiner 158 0.5875 0.9866

FastSteiner 180 0.5875 0.9866
BI1ST 208 0.5861 0.9843

TABLE XIII
IMPACT OF STEINER EVALUATORS DURING GLOBAL PLACEMENT

(IBM01E). TOTAL STWL AND GLOBAL PLACEMENT RUNTIME

ARE LISTED FOR ALL COMBINATIONS OF THREE STEINER

EVALUATORS. IN SUCH COMBINATIONS, THE MINIMUM STEINER

LENGTH ESTIMATE IS USED IN WEIGHTED PARTITIONING.

Surprisingly, the mixed Steiner evaluators were out-
performed by individual evaluators and hurt solution
quality rather than improved it. This trend was even
stronger on larger benchmarks. In particular, Fast-
Steiner performed better than FastSteiner + FLUTE on
ibm07. Certainly using the best of three Steiner eval-
uators makes estimates more accurate, but our global
placement relies on differences between Steiner lengths
rather than the lengths themselves. This suggests that
the accuracy, measured by maximum error, of Steiner-
tree estimation is not as important as its fidelity, which
is defined as preserving relative magnitudes between
estimates.


