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Abstract— In a realistic design flow, circuit and system
optimizations must interact with physical aspects of the
design. For example, improvements in timing and power
may require replacing large modules with variants that
have different power/delay trade-off, shape and connec-
tivity. New logic may be added late in the design flow,
subject to interconnect optimization. To support such
flexibility in design flows we develop a robust system
for performing Engineering Change Orders (ECOs). In
contrast with existing stand-alone tools that offer poor
interfaces to the design flow and cannot handle a full
range of modern VLSI layouts, our ECO-system reliably
handles fixed objects and movable macros in instances
with widely varying amounts of whitespace. It detects
geometric regions and sections of the netlist that require
modification and applies an adequate amount of change
in each case. Given a reasonable initial placement, it
applies minimal changes, but is capable of re-placing
large regions to handle pathological cases. ECO-system
can be used in the range from high-level synthesis, to
physical synthesis and detail placement.

I. INTRODUCTION

In his keynote talk at ISPD 2006, Cadence CTO Ted
Vucurevich expressed the need for “re-entrant, hetero-
geneous, incremental, and hierarchical” tools for EDA
to handle the challenges of next-generation designs
[21]. However, the importance of this problem has
been realized much earlier, as Cong and Sarrafzadeh
surveyed the state-of-the-art in incremental physical
design techniques in 2000 and found these techniques
to be largely “unfocused and incomplete” [15]. Kahng
and Mantik also found disconnects between the relative
strengths of incremental optimizers and perturbation
techniques [26]. They conclude that CAD tools of
the time “may not be correctly designed for ECO-
dominated design processes” [26]. Recent work by
Kahng and Reda suggests that certain types of netlist
transformations are not handled well by re-placement
from scratch, which also motivates incremental tools
[27]. Considerable progress has been made since 2000,
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e.g., in incremental placement [2], [4], [8], [17], [22],
[23], [30]–[34], [38], but there is no common agree-
ment on the main tasks solved by incremental tools and
how these tasks should be solved. While incremental
physical design is not new, it remains a difficult, high-
value goal.

We focus on incremental placement legalization and
improvement in large-scale layout. The need for such
legalization typically arises in two contexts. The first
is the separation of placement into global and detail,

Macro move, HPWL = 10.08e8 Greedy legalization, HPWL = 10.55e8

ECO-system,  HPWL = 9.85e8 ECO-system with routable whitespace, HPWL = 9.92e8

Fig. 1. Legalization of a macro move in the ICCAD’04-Faraday
design DSP1 [1]. In the top-left image, the left-most macro is moved
toward the north-west corner of the design. This move causes overlap
with standard cells and also areas of empty space below and to
the right of the macro. The remaining three images are zoomed-
in legal placements of this design. In the top-right image, a greedy
algorithm which tries to minimize cell movement is applied. Overlap
is removed, but the empty space below and to the right of the
macro remain unutilized which can be detrimental to routability. The
bottom-left image shows the placement as legalized by our tool ECO-
system. ECO-system improves wirelength and makes use of much
of the area vacated by the macro. Lastly, the bottom-right image
shows how ECO-system can distribute cells and whitespace so as to
ensure routability and/or satisfy minimum whitespace constraints.
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where rough placements are produced first and incre-
mentally improved to avoid overlaps and fit into cell
sites. This is common for analytical placers (APlace
[28], mPL [11]) that approximate site constraints,
while partitioning-driven tools (Capo [39], PolarBear
[16]) and annealing-based tools (mPG [12], Parquet
[3]) adopt correct-by-construction frameworks and re-
quire little post-processing.

However, the second context for legalization ap-
pears entirely unavoidable. During physical synthesis,
timing-critical gates may be powered up and other
gates may be powered down. These changes affect
gate size and typically create overlaps [31]. Buffer
insertion often leads to similar area violations, which
must be resolved by legalization. The success of such
legalization depends on how much the areas have
changed, in what patterns, and the strength of a given
legalizer. In particular, the legalization of mixed-size
and block-based designs with obstacles remains very
challenging [36].

Our work is focused on the design of a powerful
and robust ECO tool that applies adequate amounts
of replacement, in the right locations, to accommodate
necessary design changes. To be useful in high-level
and physical synthesis, such a tool must be able to
entirely replace sections of the netlist, e.g., logic added
to the design.

While practical considerations call for an interaction
between global placers and legalizers, traditional work
on ECO and detail placement focuses on stand-alone
tools incapable of global placement. An attractive, but
yet unexplored solution would be to extend an existing
global placer to an incremental mode where it would
automatically identify layout regions and sections of
the netlist that need repair, but preserve satisfactory
regions. In this work, we propose such an extension,
identify and develop new components that allow a
global placer to act like a powerful ECO tool, and
develop a competitive implementation based on the
open-source Capo tool.

As this tool can always resort to calling global
placement on the entire design, it robustly handles
a full range of modern designs, including those with
obstacles and movable macros. Time-consuming global
placement is not used when the initial placement is
good.

We formulate the basic requirements for ECO place-
ment and offer relevant algorithms. Our tool, ECO-
system, is many times faster than a global placer
and increases wirelength only slightly. ECO-system
outperforms APlace’s native legalizer on APlace global
placements by over 1% in HPWL while running four
times faster. ECO-system supports extensive cell re-
sizing producing legal results that mirror the original
with virtually the same HPWL while having minimal
impact on timing. Unlike WSA [30], [31], we handle

TABLE I

A COMPARISON OF SEVERAL LEGALIZATION AND INCREMENTAL

PLACEMENT TECHNIQUES. FOR EACH OF THE TECHNIQUES, ITS

COMPATIBILITY WITH FIXED OBJECTS OR MACROS AS WELL AS

WHAT GENERAL TECHNIQUES IT USES ARE LISTED.

ECO-SYSTEM IS COMPARED WITH XDP [17] IN SECTION VI.

(†) SUPPORT OF THE FEATURE BY THIS TECHNIQUE IS UNCLEAR.

SEE SECTION II-A FOR MORE DETAILS.

(‡) RECENT VERSIONS OF CAPO, THE BASIS OF ECO-SYSTEM,

USE LINEAR PROGRAMMING AND NETWORK FLOWS IN DETAIL

PLACEMENT, BUT THEY ARE BEYOND THE SCOPE OF THIS WORK.

Capo Diffusion DOMINO WSA XDP ECO-
[39] [33], [38] [18] [30], [31] [17] system

Fixed-object
support

X X † X

Macro support X † † X X

WhitespaceFe
at

ur
es

redistribution
X X

Cell swapping X X

Greedy
legalization

X X X X X

Linear
programming

X ‡

Network flows X X ‡
Sliding-windowTe

ch
ni

qu
es

us
ed

optimization
X X X

obstacles and displace cells an order of magnitude less.
The rest of the paper is structured as follows. In

Section II we review previous work. Key requirements
and a likely interface are discussed in Section III. We
present ECO-system in Section IV. Support for high-
level and physical synthesis is discussed in Section V.
In Section VI we show empirical results and conclude
in Section VII.

II. PREVIOUS WORK

Below we describe existing work on incremental
techniques and relevant aspects of global placement.

A. Incremental techniques

Previous work on legalization, incremental place-
ment and detail placement can be broken into three
fairly distinct stages: i) cell spreading, ii) legalization
through simple end-case techniques, and iii) refine-
ment of the legalized placement. For the first stage,
several algorithmic paradigms have been applied in
the literature such as network flows [8], [17], [18],
[32], linear programming [17], top-down whitespace
injection [30], [31] and diffusion gradients [38]. For
end-case legalization, generally placers use greedy
movement of cells such as in Capo [39], the Tetris
legalizer [22] in FengShui [5], and greedy packing in
DOMINO [18]. Lastly, placement refinement is done
in sliding windows of one or more rows using optimal
end-case placers based on branch-and-bound [9] or
dynamic programming [23], as well as cell swapping
such as in FastPlace [37].
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One major theme in much of the literature is min-
imizing the total movement of cells in the design
during legalization [8]. While our legalizer achieves
remarkably small total/average movement, we point
out that in general this does not always lead to minimal
increase in interconnect parameters as shown in [7].
A legalization with minimal total cell displacement
may cause a few cells to move a great distance.
Better timing may be achieved by legalization with
greater average movement, and even if the average
movement is the same, there can be many alternative
replacements.

Cell spreading. The term “cell spreading” has been
used by several authors in different contexts. In partic-
ular, several papers describe algorithms that do not take
interconnect into account, while ECO-system includes
interconnect optimization. Some of these publications
do not describe the handling of movable and especially
fixed obstacles, while ECO-system handles both, as
confirmed by our experiments.

DOMINO [18] legalizes by splitting cells into pieces
of identical sizes, solving a flow formulation to min-
imize movement, and finally reassembling the cell
pieces. This limits the effectiveness of DOMINO to
cells of similar sizes. Existing implementations of
DOMINO do not account for obstacles and shift all
cells to the left, limiting their applicability to modern
placement instances, such as those from the ISPD’05
contest [35]. Flow-based legalization methods such as
those used in [8], [32] divide the core area into regions
and redistribute cells between neighboring regions until
no region has more cell area than available site area.
These techniques can handle movable macros by fixing
them early in the legalization process.

In [30], [31] cells are incrementally placed by inject-
ing whitespace in a top-down fashion. The placement
region is divided into a regular grid with geometric
bisection steps (based only on the size and shape of
the region, not taking into account the cells, macros
or fixed obstacles therein), and whitespace is injected
based on some particular objective (routing congestion
in [30], gate sizing and buffer insertion in [31]).
Whitespace injection is done by shifting the geometric
cut-lines to change the whitespace balance in regions.
When cut-lines are shifted, the positions of the cells in
the affected regions are scaled. Whitespace injection
can cause significant overlap due to scaling, especially
in the presence of fixed obstacles or movable macros as
in the ISPD 2005 Contest benchmarks [35]. To remove
these overlaps, a standard legalization step must be
applied followed by window-based detail placement to
recover HPWL. It is unclear how well this technique
may work on difficult block-packing instances [36].
In addition, the most current implementation of this
technique, WSA, does not support macros. The tech-
nique may also fail in cases of extreme overlap, such as

global placement by analytical placers, as large areas of
the placement will be essentially random. The authors
of [31] report an average displacement of 2.1% of the
core half-perimeter per cell, whereas the displacements
observed with our technique are an order of magnitude
smaller.

The diffusion technique of [38] legalizes by dividing
the core area into a regular grid. Cells move from
areas of high congestion to lower congestion (moving
around fixed obstacles) and their directions and speeds
are determined by solving equations similar to those in
the process of chemical diffusion [38]. New placements
are generated at each time step of the diffusion and the
first solution which satisfies area constraints is taken
to minimize runtime and cell movement [38]. End-
case legalizers work within the grid regions to produce
a final legal placement, but this may be impaired by
difficult block-packing instances [36]. The work in [33]
improves that in [38], but does not measure its impact
on wirelength, congestion or timing.

The XDP technique [17] uses a combination of con-
straint graphs, network flows, linear programming and
greedy cell movement for legalization of mixed-size
designs. Overlaps between macros are legalized first by
building constraint graphs until all macros can legally
fit into the core. After the constraint graph is finalized,
a linear programming instance is built and solved to
remove macro overlap and move macros minimally.
It is unclear if this technique supports fixed macros.
Standard cells are legalized with a greedy heuristic
similar to that of FengShui [5], with the addition of
flow-based methods [8], [32] as necessary. After legal-
ization, window-based detail placement techniques are
used to improve HPWL. XDP is currently the detail
placement technique used by the placer mPL6 [10],
and is evaluated in our experiments.

Greedy legalization. FengShui [5] uses a simple
packing algorithm by Hill [22] that is reminiscent
of the Tetris game. Such legalization fares poorly in
designs with large amounts of whitespace, as shown by
the results of the ISPD 2005 Placement Contest. Capo
uses two greedy legalizers for its global placements:
one for macros and another for standard cells [39]. The
macro overlap legalizer tries to move macros as little
as possible so as not to affect neighboring standard
cells. If space is available, standard cells are legalized
via shifting. Otherwise cells are swapped between rows
greedily until no row is overfull. Fixed obstacles are
handled implicitly as they fracture rows [39].

Macro legalization. It was shown that a fixed-
outline floorplanner based on Simulated Annealing
with sequence pairs could be used to remove overlap
[2]. Techniques in [45] improve on [2] and show
how to legalize with minimal perturbation. Removal
of overlap between macros can be especially difficult
given hard instances of block-packing [36]. To handle
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such instances, the authors of [36] modify B*-trees
to account for obstacles. Recently, FLOORIST [34]
has been proposed which uses constraint satisfaction
to remove macro overlap.

B. Min-cut placement

ECO-system uses the top-down min-cut placement
framework [5], [16], [36], [39], [40], [42]. Recent
techniques for min-cut placement [13], [43] have pro-
duced some of the best placements in the ISPD 2006
contest [25] and the most routable placements on
IBMv2 netlists [40]. In traditional min-cut algorithms,
a placement is viewed as a series of placement bins,
the first of which encompasses the core area and
contains all movable cells. Based on number of cells
in a placement bin, the placer either bisects the bin or
places the bin’s cells with an end-case placer.

When bisecting a bin, a min-cut placer proceeds by
selecting a temporary cut-line for the bin based on
the size and shape of the bin. Based on the amount
of cell and site area in the bin, the placer determines
partitioning tolerances. Given the tolerance, the placer
uses a balanced min-cut partitioner to determine how
to divide the cells between its child bins. Using the
partitioning solution, the placer determines a final cut-
line based on whitespace allocation techniques and
divides the bin into child bins for further processing.

III. REQUIREMENTS OF

INCREMENTAL PLACEMENT

Design optimizations that require incremental place-
ment can alter a design in many ways [19] such as (see
also Section V):

• Changing cell dimensions or net
weights/criticalities

• Adding/Removing various constraints, such as
density (to promote routability), regions (to ad-
dress timing), etc.

• Inserting/Removing cells (with or w/o initial lo-
cations), nets or macros

• Adding/Moving obstacles (memories, IP blocks,
RTL macros, etc.)

Generally these transformations create illegality in
localized regions of a design and/or create opportu-
nities for improving an existing placement. All of
these transformations can be dealt with by performing
placement from scratch, but this is undesirable: i)
replacement can be slow, ii) the transformations may
assume that they are applied to the current layout,
and placement from scratch may invalidate them, and
iii) the current layout may include intangibles such as
designer intent, or be optimized for novel objectives
not accounted for by the placement tool. Cong and
Sarrafzadeh point out that incremental placers need to

Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While(queue not empty)
2 Dequeue a bin
3 If(bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cut-line which has

the smallest net-cut considering
cell area balance constraints

7 If(cut-line causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cut-line
10 Improve net-cut of partitioning with

single pass of Fiduccia-Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cut-line and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If(bin small enough)
17 Process end case
18 Else
19 Bi-partition the bin into child bins
20 Mark child bins to place from scratch
21 Enqueue each child bin

Fig. 2. Our ECO algorithm. Lines 3-15 and 20 are different from
traditional min-cut placement.

be able to trade off potentially several design objectives
when operating on a placement [15].

In addition to preserving the original placement, a
legalizer must also be able to completely replace sec-
tions of the placement that are deemed too suboptimal
after design alterations. For example, if all of the cells
are moved on top of one another at the center of the
placement area, the legalizer should have the ability to
replace all of the cells as the initial placement gives
little useful information about a legal placement of the
design. While this example is not typical of legalization
as a whole, it is quite possibly the case for small
sections of an illegal placement. This pathological case
is not considered by most legalization techniques (such
as those described in Section II).

Take for example the case when new cells are
added to a design. If the new cells are added to
isolated regions of the design, such as during buffer
insertion, traditional techniques that perturb the design
only slightly are most likely appropriate. Yet, timing
optimization may call for pipelining of a multiplier
or changing an adder to a different type. Adding a
significant amount of new logic to an already placed
and optimized design will require the functionality of
a full-blown placer rather than just cell spreading to
avoid degrading the design’s wirelength and timing
characteristics.

IV. TOP-DOWN LEGALIZATION

To develop a strong ECO tool, we build upon an
existing global placement framework and must choose
between analytical and top-down. The main consid-
erations include robustness, the handling of movable
macros and fixed obstacles, as well as consistent
routability of placements and the handling of density
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Fig. 3. Fast legalization by ECO-system. The image on the left
illustrates choosing a vertical cut-line from an existing placement.
Nets are illustrated as red lines. Cells are individually numbered
and take 2 or 3 sites each. Cut-lines are evaluated by a left-to-
right sweep (net cuts are shown above each line). A cut-line that
satisfies partitioning tolerances and minimizes cut is found (thick
green line). Cells are assigned to “left” and “right” according to the
center locations. On the right, placement bins are subdivided using
derived cut-lines until i) a bin contains no overlap and is ignored for
the remainder of the legalization process or, ii) the placement in the
bin is considered too poor to be kept and is replaced from scratch
using min-cut or analytical techniques.

constraints. Based on recent empirical evidence [36],
[40], [42], the top-down framework appears a some-
what better choice. Indeed the 2 out of 9 contestants
in the ISPD 2006 Competition that satisfied density
constraints were top-down placers. However, analytical
algorithms can also be integrated into our ECO-system
when particularly extensive changes are required. We
base ECO-system on the open-source min-cut placer
Capo [39] and plan to distribute it with Capo as well.

A. General framework

The goal of ECO-system is to reconstruct the inter-
nal state of a min-cut placer that could have produced
a given placement without the expense of global
placement. Given this state, we can choose to accept
or reject previous decisions based on our own criteria
and build a new placement for the design. If many of
the decisions of the placer were good, we can achieve a
considerable runtime savings. If many of the decisions
are determined to be bad, we can do no worse in
terms of solution quality than placement from scratch.
After this modified global placement, we use a subset
of Capo’s detail placement to guarantee legality. An
overview of the application of ECO-system to an illegal
placement is depicted in Figure 3. See the algorithm
in Figure 2.

To rebuild the state of a min-cut placer, we must
reconstruct a series of cut-lines and partitioning solu-
tions efficiently. To extract a cut-line and partitioning
solution from a given placement bin, we examine all
possible cut-lines as well as the partitions they induce.
We start at one edge of the placement bin (left edge
for a vertical cut and bottom edge for a horizontal
cut) and move towards the opposite edge. For each
potential cut-line encountered, we maintain the cell
area on either side of the cut-line, the partition induced
by the cut-line and the net cut.

B. Fast cut-line selection

For simplicity, assume that we are making a vertical
cut and are moving the cut-line from the left to the right
edge of the placement bin (the techniques necessary
for a horizontal cut are analogous). Pseudo-code for
choosing the cut-line is shown in Figure 4. To find
the net cut for each possible cut-line efficiently, we
first calculate the bounding box of each net contained
in the placement bin from the original placement. We
create two lists with the left and right x-coordinates
of the bounding boxes of the nets and sort them in
increasing x-order. While sliding the cut-line from left
to right (in the direction of increasing x-coordinates),
we incrementally update the net-cut and amortize the
amount of time used to a constant number of operations
per net over the entire bin. We do the same with the
centers of the cells in the bin to incrementally update
the cell areas on either side of the cut-line as well as
the induced partitioning. While processing each cut-
line, we save the cut-line with smallest cut that is legal
given partitioning tolerances. An example of finding
the cut-line for a partitioning bin is shown in Figure
3.

Once a partitioning has been chosen, we accept or
reject it based on how much it can be improved by
a single pass of a Fiduccia-Mattheyses partitioner
with early termination (which takes only several
seconds even on the largest ISPD’05 circuit). 1 The
intuition is that if the constructed partitioning is not
worthy of reuse, a single Fiduccia-Mattheyses pass
could improve its cut non-trivially. If the Fiduccia-
Mattheyses pass improves the cut beyond a certain
threshold, we discard the solution and bisect the entire
bin from scratch. If this test passes, we check legality:
if a child bin is overfull, we discard the cut-line and
bisect from scratch.

C. Scalability

Pseudo-code for the cut-line location process used
by ECO-system is shown in Figure 4. The runtime of
the algorithm is linear in the number of pins incident
to the bin, cells incident contained in the bin, and
possible cut-lines for the bin. Since a single Fiduccia-
Mattheyses pass takes also takes linear time [20], the
asymptotic complexity of our algorithm is linear. If we
let P represent the number of pins incident to the bin, C
represent the number of cells in the bin and L represent
the number of potential cut-lines in the bin, the cut-
line selection process runs in O(P +C + L) time. In
the vast majority of cases, P > C and P > L, so the
runtime estimate simplifies to O(P).

The number of bins may double at each hierar-
chy layer, until bins are small enough for end-case

1We do not assume that the initial placement was produced by a
min-cut algorithm.
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Input: placement bin, balance constraint
Output: x-coord of best cut-line
1 numCutlines =

1+ b(rightBinEdgeX−leftBinEdgeX)/cellSpacingc
2 Create three arrays of size numCutlines:

LEFT, RIGHT, AREA
3 Set all elements of LEFT, RIGHT, and AREA to 0
4 Foreach net
5 Calculate x-coord of left- and right-most pins
6 leftCutlineIndex =

max(0,d(leftPinX−leftBinEdgeX)/cellSpacinge)
7 rightCutlineIndex =

max(0,d(rightPinX−leftBinEdgeX)/cellSpacinge)
8 if(leftCutlineIndex < numCutlines)
9 LEFT[leftCutlineIndex]+ = 1
10 if(rightCutlineIndex < numCutlines)
11 RIGHT[rightCutlineIndex]+= 1
12 Foreach cell
13 Calculate x-coord of the center of the cell
14 cutlineIndex =

max(0,d(centerX−leftBinEdgeX)/cellSpacinge)
15 if(cutlineIndex < numCutlines)
16 AREA[cutlineIndex]+ =cellArea
17 Set X = leftBinEdge, CURCUT = 0, BESTCUT = ∞

BESTX = ∞, LEFTPARTAREA = 0
18 For(I = 0;I < numCutlines;I+ =1,X+ =cellSpacing)
19 CURCUT+ =LEFT[I]
20 CURCUT−=RIGHT[I]
21 LEFTPARTAREA+ =AREA[I]
22 If(CURCUT < BESTCUT and

LEFTPARTAREA satisfies balance constraint)
23 BESTCUT = CURCUT
24 BESTX = X
25 Return BESTX

Fig. 4. Algorithm for finding the best vertical cut-line from a
placement bin. Finding the best horizontal cut-line is largely the
same process. Note that the runtime of the algorithm is linear in the
number of pins incident to the bin, cells contained in the bin, and
possible cut-lines for the bin.

placement. End-case placement is generally a constant
amount of runtime for each bin, so it does not affect
asymptotic calculations. Assume that ECO-system is
able to reuse all of the original placement. Since ECO-
system performs bisection, it will have O(logC) layers
of bisection before end-case placement. At layer i,
there will be O(2i) bins, each taking O

(

P
2i

)

time. This
gives a total time per layer of O(P). Combining all
layers gives O(P logC). Empirically, the runtime of the
cut-line selection procedure (which includes a single
pass of a Fiduccia-Mattheyses partitioner) is much
smaller than partitioning from scratch. On large bench-
marks, cut-line selection requires 5% of ECO-system
runtime time whereas min-cut partitioning generally
requires 50% or more of ECO-system runtime.

D. Handling macros and obstacles

With the addition of macros, the flow of top-
down placement becomes more complex. We adopt
the technique of “floorplacement” which proceeds as
traditional placement until a bin satisfies criteria for
block-packing [36], [39]. If the criteria suggest that
the bin should be packed rather than partitioned, a
fixed-outline floorplanning instance is induced from
the bin where macros are treated as hard blocks and
standard cells are clustered into soft blocks. The floor-
planning instance is given to a Simulated Annealing-

based floorplanner to be solved. If macros are placed
legally and without overlap, they are considered fixed.
Otherwise, the placement bin is merged with its sibling
bin in the top-down hierarchy and the merged bin is
floorplanned. Merging and re-floorplanning continues
until the solution is legal.

We add a new floorplanning criterion for our le-
galization technique. If no macros in a placement bin
overlap each other, we generate a placement solution
for the macros of the bin to be exactly their placements
in the initial solution. If some of the macros overlap
with each other, we let other criteria for floorplanning
decide. If block-packing is invoked, we must discard
the placement of all cells and macros in the bin and
proceed as described in [39].

During the cut-line selection process, some cut-
line locations are considered invalid — namely those
that are too close to obstacle boundaries but do not
cross the obstacles. This is done to prevent long and
narrow slivers of space between cut-lines and obstacle
boundaries. Ties for cut-lines are broken based on the
number of macros they intersect. This helps to reduce
overfullness in child bins allowing deeper partitioning,
which reduces runtime.

E. Controlling overlaps, whitespace and congestion

We introduce techniques and user controls for ECO-
system and show how they can be used for reallocation
of whitespace and congestion improvement in the
original placement.

Relaxing overfullness constraints. One of the pri-
mary objectives of ECO-system is to reuse as much
relevant placement information as possible from a
given placement. As described above, it is possible to
find a cut-line which has a good cut but is not legal
due to space constraints. In these cases, ECO-system
must discard these good solutions and partition from
scratch.

In order to make better use of the given placement,
we propose the following addition to ECO-system. In
these situations, we allow ECO-system to shift the cut-
line to legalize the derived partition with respect to
area. Cut-line shifting is a technique commonly used
in the top-down min-cut placement for allocation of
whitespace [4], [30], [31], [40], [42]. The cut-line is
shifted as little as possible to make the derived parti-
tioning legal with respect to area. If it is impossible to
find an area-legal cutline, the derived partitioning must
be discarded and ECO-system proceeds normally.

If cut-line shifting is successful in correcting the
illegality, the original placement must be modified for
purposes of consistency. To do so, cells are scaled
proportionately within the placement bin based on their
original positions, the position of the originally chosen
cut-line and the position of the shifted cut-line in a
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Fig. 5. Shifting a cut-line chosen during ECO cut-line selection.
Unlike the WSA technique [30], [31], cut-line shifting during ECO
is not done on geometric cut-lines but instead on those cut-lines
which are chosen during fast cut-line selection. The image on the
left shows a placement that has been divided into bins during the
course of ECO-system. In the image on the right, the chosen cut-
line of the bottom-right bin is shifted to the right. The density of
vertical lines represents the initial placement and its scaling around
the moving cutline (shown in red).

manner similar to that in the WSA technique [30], [31].
As the centers of cells are used to determine in what
partitions cells belong during fast cut-line selection, we
shift cell locations based on center locations as well to
ensure that cut-line shifting will not change derived
partitions. We seek to shift cell locations and maintain
the following property: the relative position between
cells before and after shifting is maintained. Also, if a
cell were in the middle of a partition before shifting, it
should remain in the middle of a partition after shifting.
Let xL and xR represent the x-coordinates of the left
and right sides of the placement bin, xcut

orig and xcut
new

the x-coordinates of the original and new cuts, and,
lastly, xcell

orig and xcell
new the x-coordinates of the center of

a particular cell before and after shifting. We wish to
maintain the following ratios (for vertical partitioning):

xcell
orig − xL

xcut
orig − xL

=
xcell

new − xL

xcut
new − xL

, xcell
orig ≤ xcut

orig

xR − xcell
orig

xR − xcut
orig

=
xR − xcell

new

xR − xcut
new

, xcell
orig > xcut

orig

Solving for xcell
new :

xcell
new =







xL +
(

xcell
orig − xL

)

xcut
new−xL

xcut
orig−xL

, xcell
orig ≤ xcut

orig

xR −
(

xR − xcell
orig

)

xR−xcut
new

xR−xcut
orig

, xcell
orig > xcut

orig

The new y-coordinates of cells shifted during horizon-
tal partitioning are calculated analogously.

Figure 5 illustrates the scaling involved when a cut-
line is shifted. In the figure, the cut-line of the bottom-
right bin is shifted to the right. All objects to the
left and right of the cut-line are scaled appropriately.
Objects that were to the left of the original cut-line
remain to the left and are spread out and objects on
the right are packed closer together.

Shifting proportionately in this way maintains the
relative ordering of all the cells within the current
placement bin. Also the partitioning induced by the

cutline remains unchanged so ECO-system can proceed
as normal. Shifting the cut-line in this manner can
allow deeper ECO partitioning which can reduce both
runtime and cell displacement.

Satisfying density constraints. A common method
for increasing the routability of a design is to inject
whitespace into regions that are congested [4], [30].
One can also require a minimum amount of whitespace
(equivalent to a maximum cell density) in local regions
of the design to achieve a similar effect [42]. As one of
ECO-system’s legality checks is essentially a density
constraint (checking to see if a child bin has more
cell area assigned to it than it can physically fit), this
legality check is easy to generalize. The new criterion
for switching from using the initial placement and
partitioning from scratch is based on a child bin having
less than a threshold percent of relative whitespace,
which is controlled by the user.

The cut-line shifting feature of ECO-system can also
be used to satisfy density constraints. As ECO-system
proceeds, cut-lines can be shifted as described above to
implement a variety of whitespace allocation schemes
[30], [31], [40], [42]. Specifically, ECO-system can
implement the hierarchical whitespace injection of
WSA [30], [31]. WSA chooses cut-lines based only on
the geometry of a placement bin and shifts these cut-
lines from the top down. ECO-system chooses cut-lines
that are more natural to the original placement, shifts
cut-lines top-down, and also supports fixed objects and
movable macros. Figure 1 shows the power of the cut-
line shifting technique in redistributing whitespace for
routability after making a change to a placement that
causes significant overlap.

V. USING ECO-SYSTEM IN HIGH-LEVEL

AND PHYSICAL SYNTHESIS

We extend the proposed framework to offer users ef-
ficient access to the features of incremental placement
described in Sections III and IV as well as provide
greater user control and flexibility.

A. Additional user controls

We present further controls over ECO-system to vary
how much it is allowed to modify a given placement
as well as what regions of a placement are allowed to
be changed, which can both be beneficial to a designer.
We also illustrate how ECO-system can be used to re-
optimize placements based on changes to net weights.
This control can be extremely useful when critical nets
in a design change, for example.

Tunable aggressiveness. ECO-system accepts or
rejects derived partitioning solutions based on how
much a single pass of a Fiduccia-Mattheyses parti-
tioner can improve them. If the partitioner improves
the net cut by more than a threshold percentage, the
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New macro at center, HPWL = 10.08e8 Cell Displacements >2.5% of Core Semi-perimeter Post-processed by ECO-system, HPWL = 9.73e8

Fig. 6. Legalizing the placement of a new fixed obstacle at the center of the ICCAD’04-Faraday design DSP1 [1]. The picture in the
middle shows the movement of standard cells to make room for the obstacle. Many standard cells must move in order to accommodate the
obstacle, but ECO-system moves these cells on average only a short distance (1.27% of the core half-perimeter) and is able to improve
total HPWL.

partitioning solution is rejected. This threshold can be
adjusted by the user so as to prevent ECO-system from
performing large changes. If a designer wants ECO-
system to change the placement as little as possible, the
improvement threshold can be given as 100%. Tunable
aggressiveness also allows one to adjust the strength of
ECO-system legalization to better correlate with the
magnitude of design modifications [26].

User-defined locality. ECO-system operates auto-
matically on the given placement and quickly focuses
on sections of overlap. It may be the case that a
designer has performed optimization on only a small
portion of the design. Having our algorithm run over
the entire design to find this small area is poten-
tially wasteful. Thus we allow the user or a physical
synthesis tool to specify one or more regions of the
placement area to apply legalization. Combined with
whitespace control techniques described above, this
allows a designer to re-tune whitespace allocation to
reduce congestion in localized regions of the design.

While this control can be useful to designers to en-
sure that certain regions of a design remain untouched,
it is not a replacement for the automatic techniques
of ECO-system. Changes made to one region of a
design can affect the quality of the placement in a
separate area of the design. Patch-based replacement
of a design does not handle this situation well because
the patches must be supplied but may not be well-
defined. Also, the processing of given patches in a
particular order can make the legalization within the
first patch inconsistent with that in subsequent patches.
However, ECO-system can automatically narrow down
the regions that require extra work, partition them,
and simultaneously perform top-down legalization in
all regions to ensure consistency. Cut-line shifting in
ECO-system is truly hierarchical and allows ECO-
system to subsume other hierarchical techniques such
as WSA [30], [31] while also supporting fixed objects
and movable macros.

Changing net weights. Having a legal placement fa-

cilitates more precise static timing analysis and finding
timing-critical nets. To improve timing, weights can
be increased for nets with worst slack, and decreased
for non-critical nets. As ECO-system checks if the cut
of an induced partitioning solution can be improved
significantly, net weights are naturally integrated into
this test. With weighted cut, ECO-system recognizes
instances when the initial placement can be improved.

B. Placing new cells and macros

The addition of macros, IP blocks and embedded
memories to an already placed netlist can introduce
significant overlap as can be seen in Figure 6. Large
modules may need to be fixed due to alignment con-
straints and will appear as obstacles. Buffer insertion
is also a concern as numerous buffers may need to
be inserted. There are typically few legal locations
for buffer insertion, and, compounding the problem,
buffers must be placed precisely to be effective.

Our current technique can accommodate newly
added modules for which tentative initial placements
are given. All a designer would need to do is place new
modules roughly where they should go in the core,
and ECO-system will find legal positions for them
automatically. If new module locations are not known,
they can be found with simple analytical techniques.
Specifically, if an unplaced module is connected to
several placed modules, an initial location for the
module could be the average location of its neighbors.
This does not work well, however, when a cluster
of new logic is added to a design, especially in the
presence of macros and obstacles. For this reason, we
develop a technique to place unplaced modules within
ECO-system.

To handle new modules separately, one must be
able to detect them easily in a design. Some input
formats allow the user to specify modules which are
new with the keyword UNPLACED. For other input
formats without such a keyword, ECO-system checks
for modules that are placed outside of the core and
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marks them as being unplaced. ECO-system also tests
to see if several modules are placed at exactly the same
location which could indicate a cluster of new logic.
Modules placed in exactly the same location, such as a
default location like (0,0), are also treated as unplaced.

In each bin, if a cut-line and partitioning are de-
rived, unplaced modules are partitioned with a separate
partitioning call to assign them to child bins. If the
derived partitioning is not accepted, unplaced modules
are combined with the old modules, and placement
continues from scratch. In this way, unplaced modules
will migrate to good legal locations automatically. As
the locations for unplaced modules are chosen based
on current locations of all the modules in the design,
the final locations of unplaced modules will likely be
better than ones that were chosen based on the initial
placement.

If new modules are introduced into a design and
a user defines a region of the placement to work in,
there is some ambiguity in what ECO-system should
do with unplaced modules. All unplaced modules could
be placed inside the user-specified region, or ECO-
system could determine which of the unplaced modules
would best be placed in the region. Determining which
of the unplaced modules belong in a user-specified
rectangular region requires at most four calls to a
partitioner (since the region can be carved out with
four geometric cut-lines), so this will still be efficient.
To avoid uncertainty, the user is allowed to specify
which behavior is desired.

VI. EMPIRICAL RESULTS

We implemented ECO-system in C++ and ran it
on 3.2GHz Pentium Xeon machines. In this section
we present results dealing with the legalization of
benchmarks altered due to cell resizing, the effect
of ECO-system on the timing of resized benchmarks,
and using ECO-system to legalize various analytically-
generated global placements.

A. Legalization of Resized Netlists

For testing we use three suites of benchmarks. The
first suite of benchmarks are the ICCAD 2004 IBM-
MSwPins benchmarks: mixed-size netlists with non-
trivial macro sizes, aspect ratios and pin offsets [1]. We
placed all of the benchmarks with Capo 10 [42] and
chose the best of 2 runs. Next we randomly resized
the standard cells of the benchmark to simulate cell
sizing such that the total area of cells would remain
relatively constant. Each standard cell of the design
was randomly increased or decreased in size, but no
cell was decreased below the minimum cell size or
increased beyond the largest cell size.

The change in cell area and amount of overlap
introduced by the resizing is shown in Table II. The

resized benchmarks should have legal placements with
HPWL near that of the original benchmarks since total
cell area does not change appreciably. Discussions with
colleagues in the industry point out that cell resizing
is affected by a variety of factors, which are not as
random as in our experiments. The IBM-MSwPins
benchmarks do not contain enough information to
perform more intelligent resizing, so this experiment is
used primarily to evaluate ECO-system in the presence
of many movable macros.

We compare ECO-system to the legalizer of Capo
10, and the results are summarized in Table II. The
Capo legalizer runs quickly and produces legal place-
ments, but it increases HPWL by 3.93% on average.
ECO-system takes less than 16% of the original place-
ment time, and only increases HPWL by 0.61% on
average. By adding cut-line shifting to ECO-system
runtime is largely unaffected but the HPWL increase
is further reduced to 0.24%. We have also varied the
amount of overlap introduced into these benchmarks by
reducing the number of cells affected by our sizing.
We find that HPWL is relatively unaffected (HPWL
generally changes by less than 0.5%) by increasing
amounts of overlap for these designs.

The second set of benchmarks are from the ISPD
2005 Placement Contest [35]. They are a standard
cell benchmark suite with non-trivial fixed obstacles
throughout the placement area [35]. We placed all
of the benchmarks with APlace 2.04 [28] (the win-
ning placer of the contest) and randomly resized the
standard cells of the benchmark in the same way
as the IBM-MSwPins benchmarks as the ISPD 2005
benchmarks do not contain necessary information for
more intelligent resizing. As a result, the focus of this
experiment is to see how ECO-system performs on
very large-scale placement instances in the presence
fixed obstacles.

The change in cell area and amount of overlap
introduced by the resizing is shown in Table II. A
comparison of ECO-system to the legalizer of Capo 10
is summarized in Table II. Full data for the ISPD’05
benchmarks can be found in [41]. The Capo legal-
izer runs 40% faster than ECO-system, but increases
HPWL by 4.28% on average. ECO-system takes 14%
of the original placement time, and decreases HPWL
by 1.00%. Figure 7 depicts the benchmark adaptec3
before cell resizing and after legalization with ECO-
system. ECO-system’s placement is similar to the
original APlace 2.04 placement and does not move the
majority of cells far from their original locations. The
average displacement per cell is 0.28% of the half-
perimeter of the design which is an order of magnitude
less than WSA’s displacements [30], [31] and those
reported in [4]. Only 1.98% of the cells have non-
trivial displacements.

The third set of benchmarks on which we perform
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TABLE II

OVERLAP LEGALIZATION ON THE IBM-MSWPINS [1] AND ISPD’05 CONTEST BENCHMARKS [35]. “AREA RATIO” REPRESENTS THE

CHANGE IN TOTAL CELL AREA AFTER RESIZING. OVERLAP IS MEASURED AS % OF THE TOTAL MOVABLE CELL AND MACRO AREA.

FULL DATA FOR THE ISPD’05 BENCHMARKS CAN BE FOUND IN [41]. ECO-SYSTEM REQUIRES SIGNIFICANTLY MORE RUNTIME THAN

THE CAPO 10 LEGALIZER [39], AND APPROXIMATELY 16% OF THE ORIGINAL PLACEMENT TIME. ECO-SYSTEM INCREASES HPWL BY

0.61% ON AVERAGE WHILE THE CAPO 10 LEGALIZER INCREASES HPWL BY 3.93% ON THE IBM-MSWPINS BENCHMARKS. ON THE

ISPD’05 CONTEST BENCHMARKS ECO-SYSTEM decreases HPWL BY 1.00% ON AVERAGE WHILE THE CAPO 10 LEGALIZER

INCREASES HPWL BY 4.28%.

IBM-MSwPins Area Orig. Orig. Capo 10 Legalizer [39] ECO-system ECO-system /w shifting
Benchmarks Ratio Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time (s) HPWL Ratio Time (s) HPWL Ratio

ibm01 0.9982 248 2.48 7.35% 1.27 2.57 1.0371 44.4 2.48 0.9995 45.2 2.47 0.9957
ibm02 1.0008 463 5.12 5.56% 2.15 5.28 1.0328 77.3 5.13 1.0024 81.0 5.11 0.9980
ibm03 1.0011 661 7.58 5.83% 15.9 7.99 1.0543 128 7.54 0.9951 127 7.53 0.9934
ibm04 0.9990 728 8.61 8.13% 11.3 9.03 1.0482 149 8.67 1.0070 147 8.66 1.0055
ibm05 1.0017 593 10.14 13.54% 0.13 10.25 1.0114 141 10.32 1.0177 149 10.28 1.0139
ibm06 1.0018 846 6.78 7.36% 10.5 7.10 1.0469 152 6.82 1.0054 155 6.79 1.0019
ibm07 0.9997 1213 11.63 9.61% 16.4 12.16 1.0455 201 11.72 1.0081 210 11.69 1.0052
ibm08 1.0029 1492 13.42 8.50% 7.36 13.73 1.0232 211 13.54 1.0090 223 13.49 1.0054
ibm09 1.0025 1492 14.96 8.14% 14.8 16.06 1.0732 288 14.89 0.9954 296 14.82 0.9907
ibm10 0.9997 2476 31.79 4.53% 119 32.62 1.0260 387 31.54 0.9922 390 31.48 0.9903
ibm11 0.9993 2067 21.43 8.48% 26.3 22.56 1.0529 384 21.63 1.0092 411 21.44 1.0005
ibm12 0.9996 2903 38.52 5.91% 50.6 39.20 1.0175 379 37.95 0.9851 393 37.82 0.9819
ibm13 1.0014 2667 27.30 7.94% 55.3 28.61 1.0478 586 27.57 1.0101 587 27.31 1.0004
ibm14 1.0002 4954 40.00 13.49% 38.3 41.67 1.0417 734 40.70 1.0174 744 40.58 1.0144
ibm15 1.0016 6241 53.72 10.85% 63.1 56.48 1.0514 1127 54.68 1.0178 996 54.68 1.0178
ibm16 0.9997 7232 61.12 9.19% 36.2 62.74 1.0264 890 61.42 1.0050 907 61.20 1.0014
ibm17 0.9987 7558 70.52 14.09% 36.0 73.09 1.0365 983 71.65 1.0160 1009 71.45 1.0132
ibm18 1.0017 6897 46.46 15.91% 13.7 48.11 1.0354 1006 47.30 1.0182 1032 47.13 1.0145

Average 1.0005 1.0000 0.0102 1.0393 0.1551 1.0061 0.1558 1.0024

Data for ISPD’05 Benchmarks from [41]
Average 1.0004 1.0000 0.0415 1.0428 0.1234 0.9899 0.1138 0.9920

TABLE III

OVERLAP LEGALIZATION ON THE IWLS 2005 BENCHMARKS [24]. “AREA RATIO” REPRESENTS THE CHANGE IN TOTAL CELL AREA

AFTER RESIZING. OVERLAP IS MEASURED AS % OF THE TOTAL MOVABLE CELL AREA. ECO-SYSTEM DECREASES HPWL BY 1.81%

ON AVERAGE WHILE THE CAPO 10 LEGALIZER INCREASES HPWL BY 1.85%.

IWLS Area Orig. Orig. Capo 10 Legalizer [39] ECO-system
Benchmarks Ratio Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time (s) HPWL Ratio

aes core 1.0278 519 23.70 14.30% 0.2 23.91 1.0089 64.4 22.94 0.9679
ethernet 1.1122 3666 105.71 13.34% 0.5 108.73 1.0286 284 104.78 0.9912
mem ctrl 1.0508 404 16.29 13.24% 0.1 16.63 1.0209 32.6 15.95 0.9791

pci bridge32 0.9724 550 19.61 11.27% 0.2 20.09 1.0245 55.8 19.21 0.9796
usb funct 1.0901 346 15.93 13.82% 0.1 16.34 1.0257 39.3 15.72 0.9868
vga lcd 0.9841 15686 370.79 9.06% 1.1 371.76 1.0026 819 365.87 0.9867
Average 1.0383 1.0000 0.0001 1.0185 0.0612 0.9819

experiments with resizing is the IWLS 2005 suite
of benchmarks [24]. These benchmarks contain in-
formation such as the signal directions of pins, so
we were able to resize cells in a more realistic way
based on wire load. The benchmarks were first placed
using Capo 10 in ROOSTER mode [40] for routability.
Next, for each cell we calculated the Steiner length of
wires the cell drives. According to the theory of logic
effort, longer wires should be driven by larger cells
[44], so we increased the sizes of cells whose driven
lengths were longer than the median driven length
and decreased the size of cells whose driven lengths
were shorter than the median. The amount of overlap
introduced by this resizing method is shown in Table
III. We compare ECO-system to the Capo 10 legalizer

and find again that the Capo 10 legalizer is extremely
fast, but increases HPWL significantly (1.85%) while
ECO-system is able to reduce HPWL by 1.81% on
average. For this experiment we did not use ECO-
system’s cut-line shifting feature in order to preserve
Capo’s routability-driven whitespace allocation.

B. ECO-system’s Impact on Timing

One of the most important goals of an incremental
placer is to preserve the timing characteristics of a
design after timing optimizations have been performed
on the design. Recall that cell sizing and buffer in-
sertion decisions are based on circuit timing. If an
incremental placer moves cells too drastically, popular
timing optimizations can be less effective and eventu-
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TABLE IV

OVERLAP LEGALIZATION OF APLACE 2.04’S [28] GLOBAL PLACEMENTS OF THE ISPD’05 CONTEST BENCHMARKS [35].

OVERLAP IS MEASURED AS % OF THE TOTAL MOVABLE CELL AREA. ECO-SYSTEM PRODUCES LEGAL SOLUTIONS WITH

NEARLY THE SAME OR BETTER HPWL THAN APLACE 2.04’S LEGALIZER. APLACE’S LEGALIZER INCREASES HPWL BY

4.91% WHILE ECO-SYSTEM INCREASES HPWL BY 3.68% AND ONLY 2.35% WHEN USING SHIFTING. ECO-SYSTEM WITH

SHIFTING IS FASTER ON 7 OF THE 8 BENCHMARKS AND FOUR TIMES FASTER THAN APLACE’S LEGALIZER OVERALL.

Orig. Illegal APlace 2.04 Legalizer [28] ECO-system ECO-system /w shiftingBenchmark
Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time (s) HPWL Ratio Time (s) HPWL Ratio

adaptec1 7569 81.05 34.74% 1346 83.87 1.0348 1656 85.17 1.0508 1386 82.23 1.0146
adaptec2 6062 94.22 47.25% 2543 101.64 1.0788 2037 101.10 1.0730 1684 97.85 1.0385
adaptec3 15849 211.13 47.12% 11495 231.17 1.0949 4245 227.25 1.0763 3672 222.24 1.0526
adaptec4 15404 197.24 36.78% 15271 206.23 1.0456 3805 202.26 1.0255 3505 200.80 1.0180
bigblue1 8265 100.51 28.53% 2486 101.96 1.0144 1607 104.22 1.0369 1262 102.50 1.0198
bigblue2 13650 154.51 30.15% 14252 159.08 1.0296 3882 156.35 1.0119 3840 155.83 1.0086
bigblue3 30624 385.40 41.06% 38873 414.29 1.0750 12546 386.99 1.0041 10080 395.11 1.0252
bigblue4 61932 865.03 32.01% 56809 884.39 1.0224 11552 880.58 1.0180 10451 874.90 1.0114
Average 1.0000 0.8978 1.0491 0.2594 1.0368 0.2252 1.0235

ally degrade timing rather than improve it. Therefore,
we evaluate the impact of ECO-system on circuit
timing. For these experiments we resized the 20 of
the OpenCores designs that were part of the IWLS
2005 benchmark suite [24] in a realistic manner (as
described above) and evaluate timing characteristics
of the resized netlists before and after legalization by
ECO-system.

Circuit timing was evaluated using a Static Timing
Analysis engine which uses the D2M net delay model
(more accurate then Elmore) [6] for each net based on
Steiner trees produced by the FLUTE package [14].
The worst change in circuit delay for these designs was
an increase of 8.07%. The average change was 1.00%
while the best was a decrease of 7.37% of maximum
delay. Thus ECO-system is effective in preserving the
timing of a netlist by minimally impacting maximum
delay during legalization and in some cases can further
improve maximum delay. In this experiment ECO-
system is completely independent of the timing ana-
lyzer used and therefore our results are likely to hold
for other STA engines as well.

C. Legalizing Analytical Global Placements

Analytical placements generally contain a significant
amount of overlap after global placement, especially
so on the ISPD’05 Contest benchmarks given their
numerous fixed obstacles in the core region. As such,
we compare ECO-system to the APlace 2.04 legalizer
on APlace 2.04 global placements on the ISPD’05
Contest benchmarks. Table IV shows that APlace 2.04
global placements have overlap of approximately 30%
or more. APlace 2.04’s legalizer generally increases
HPWL by 4.91% while ECO-system increases HPWL
only 3.68% on average. ECO-system is also three times
faster than APlace’s legalizer. Adding cut-line shift-
ing improves ECO-system’s results, increasing HPWL
by only 2.35% while running four times faster than
APlace’s legalizer.

To illustrate the effectiveness of ECO-system in
redistributing whitespace to improve routability, we
placed the IBMv2 benchmark suite [47] with the
analytical placer mPL6 [10]. mPL6 global placements
were refined by ECO-system and then routed using
Cadence WarpRoute. In Table V we compare the
placements refined by ECO-system to those produced
by the detail placer of mPL6 (XDP [17]) in terms
of routed wirelength (Rt WL), via counts, violations,
and routing time (Rt Time). ECO-system improves
mPL6 global placements to the point where the router
completes in all cases, reducing routed wirelength by
1.1%, via counts by 7.8% and routing time by more
than half on average.

Lastly, to test the ECO-system’s routability improve-
ments in the presence of fixed obstacles, we test on
the ICCAD’04-Faraday benchmarks [1]. The Faraday
benchmarks are a suite of mixed-size benchmarks with
routing information based on netlists released by the
Faraday Corporation [1]. For our experiments, we fix
macros to their original locations as determined by
Silicon Ensemble Ultra v5.4.126 (details on the con-
struction of the benchmarks can be found in Appendix
A of [1]). We run mPL6 on the four benchmarks
with macros and produce global and detail placements
of each. As in the previous experiment, we compare
mPL6 detail placements to mPL6 global placements
refined by ECO-system. Results for this experiment
are shown in Table VI. ECO-system placements are
mostly routable with a few violations, but the mPL6
placements are completely unroutable. We were unable
to run the WSA technique on the mPL6 placements as
WSA does not support fixed obstacles, which we have
confirmed with the authors of WSA.

VII. CONCLUSIONS

Below we summarize our work, outline several
additional applications and articulate our contributions
to shared infrastructure for research in placement.
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Before Resizing HPWL = 231.2e6 Cell Displacements >1.5% of Core Semi-perimeter (1.93% of all cells) Postprocessed by ECO-system HPWL= 226.6e6

Fig. 7. When applied to resized netlist, ECO-system produces a placement (right) similar to the original placement (left). Fixed objects
are outlined in double black lines. The largest cell displacements are shown in red (center). Only displacements larger than 1.5% of the
half-perimeter of the design are shown. Average displacement is 0.28% of the design half-perimeter. The majority of the large displacements
form around the corners of the large, fixed obstacles. Many of these large displacements appear to be clustered, indicating small groups of
modules transported to another region of the core or spread to accommodate area increases.

TABLE V

IMPROVING THE ROUTABILITY OF ANALYTICAL PLACEMENTS USING ECO-SYSTEM. WE COMPARE THE ROUTABILITY OF MPL6 [10]

GLOBAL PLACEMENTS WHEN USING MPL6’S DETAIL PLACER (XDP [17]) VS. ECO-SYSTEM WITH CUT-LINE SHIFTING FOR DETAIL

PLACEMENT ON THE IBMV2 BENCHMARK SUITE [47]. BEST LEGAL ROUTED WIRELENGTH (RT WL) AND VIA COUNTS ARE

HIGHLIGHTED IN BOLD. ECO-SYSTEM PRODUCES ROUTABLE PLACEMENTS IN ALL CASES, REDUCES ROUTED WIRELENGTH BY 1.1%,

REDUCES VIA COUNTS BY 7.8%, AND CUTS ROUTING RUNTIME BY MORE THAN HALF ON AVERAGE.

XDP [17] ECO-systemBenchmark
Rt WL Vias Viols. Rt Time (m) Rt WL Vias Viols. Rt Time (m)

ibm01e 723961 150166 806 1052 745660 125177 0 22
ibm01h 735409 156414 348 654 701959 122995 0 70
ibm02e 1937102 261495 0 27 1822638 247396 0 13
ibm02h 2004969 324609 108 133 1933310 255647 0 18
ibm07e 3817994 497500 0 54 3555210 468105 0 22
ibm07h 3814735 569897 49 91 3658097 479911 0 25
ibm08e 3999658 587627 0 31 3970074 561636 0 24
ibm08h 3948739 591744 0 35 3914580 574135 0 28
ibm09e 2891305 483046 0 17 2956856 472863 0 17
ibm09h 2935006 490682 0 19 2965823 480363 0 18
ibm10e 5753519 773695 0 36 5888185 750270 0 30
ibm10h 5742241 778756 0 35 5762900 759962 0 31
ibm11e 4399838 637627 0 26 4438438 615691 0 23
ibm11h 4670094 645872 0 31 4634023 630791 0 25
ibm12e 8640070 972714 0 66 8697654 908164 0 42
ibm12h 8695922 977498 0 69 8726583 926119 0 53
Ratio 1.000 1.000 1.000 0.989 0.922 0.446

A. Summary of our work

Our main contribution is ECO-system — an al-
gorithmic framework designed to interface a wide
variety of circuit optimizations with their physical
environment. This framework offers, for the first time
in the literature, a strong and robust legalizer that can
handle a broad range of modern placement instances
with movable macros, fixed obstacles, etc. ECO-system
automatically focuses on regions of the layout and sec-
tions of the netlist that require changes, and performs
optimization of adequate strength in each case. ECO-
system can be combined with an external global placer
invoked when particularly large changes are required.
It can also be used in incremental re-synthesis, in high-
level and physical synthesis optimizations, and several
other contexts.

ECO-system includes all detail placement methods
implemented in Capo [36], [39], [40], [42], and can
similarly be grafted onto other top-down placers, such
as BonnPlace [46], PolarBear [16] or NTUPlace [25],
by performing a one-pass Fiduccia-Mattheyses test.
ECO-system can act like the WSA technique [30], and
can invoke any black-box global placement algorithm
when it decides that a particular bin must be replaced
from scratch.

The definitive success of ECO-system in legalizing
APlace and mPL6 global placements (Tables II, IV,
V and VI) allows one to answer a long-standing
question in placement — whether the slicing structure
of min-cut placements costs them HPWL. Given that
the placements produced by ECO-system are largely
slicing, the answer appears negative for standard-cell
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TABLE VI

IMPROVING THE ROUTABILITY OF ANALYTICAL PLACEMENTS IN THE PRESENCE OF FIXED OBSTACLES IN THE ISPD’04-FARADAY

BENCHMARK SUITE [1]. WE POSTPROCESS MPL6 [10] GLOBAL PLACEMENTS USING MPL6’S DETAIL PLACER AND, SEPARATELY, OUR

ECO-SYSTEM (WITH CUT-LINE SHIFTING). THE MPL6 DETAIL PLACER XDP [17] PRODUCES LARGELY UNROUTABLE PLACEMENTS.

XDP [17] ECO-systemBenchmark
Rt WL Vias Viols. Rt Time (m) Rt WL Vias Viols. Rt Time (m)

dsp1 1041556 233408 112883 12 1162096 202700 0 6
dsp2 - - - >24 hrs. 1117349 201598 0 6
risc1 2042695 342856 373088 71 2066426 344258 10 10
risc2 - - - >24 hrs. 1906434 337809 11 11

placement, but is likely to be positive when large
macros are involved, as suggested by results in [36].

We have analyzed requirements for an ECO place-
ment tool and implemented an interface based on ECO-
system applicable to high-level and physical synthesis,
allowing the designer to add and remove nets and
cells from a design, reallocate whitespace and large
macros (Figure 1), resize cells and re-weight nets while
retaining control of the amount of change performed
by ECO-system.

B. Additional applications

As ECO-system subsumes and generalizes the WSA
technique [30], [31] and outperforms the technique
from [4], ECO-system can also be used for the
same applications. In addition to our experiments that
demonstrate improvement in routability and support for
gate sizing, ECO-system can be used to support buffer
insertion in physical synthesis and floorplan resizing
during chip planning [31].

Another relevant application of ECO-system lies
in fault-tolerant reconfigurable computing. In this
paradigm, the digital system periodically invokes built-
in self-test and may identify components that recently
failed. To avoid using faulty components, the system
can be reconfigured to use only those resources that
remain operational.

ECO-system could be used to quickly reprogram
faulty chips in the following way. Obstacles are placed
in those areas of a circuit that have been determined
to have errors. ECO-system can be run on this mod-
ified design to remove all overlaps between the old
placement and the new fixed objects. The legalized
placement would then be free of errors as none of
the faulty parts would be used in the replacement.
ECO-system uses as much of the original placement as
possible so timing and other relevant circuit properties
would likely be preserved.

Algorithms used in ECO-system can also be used
to geometrically partition a layout so as to minimize
interconnect between partitions, as shown in Figure
3. With minimal communication between partitions,
physical design algorithms that are generally run after
placement (such as cell sizing, routing or buffer inser-

tion) can be parallelized, improving runtime on multi-
processor systems. In particular, it has been shown
that post-placement optimizations for timing can be
parallelized [29]. Empirical results show that runtime
can be decreased by up to five times when running on
a parallel machine with eight processors [29].

C. Our contributions to shared research infrastructure

All algorithms reported in this work will be available
to the research community in source code form, inte-
grated into the Capo placer — an established software
distribution used by over two hundred people and
requested several times during an average week in Fall
2006. The availability of ECO-system in this work will
significantly lower barriers for entry in two research
directions: (a) global placement, (b) physical synthesis.
Indeed, work in global placement has always been
complicated by the need to produce legal, routable
placements, but with the availability of a fast and reli-
able legalizer it becomes easy to evaluate new global
placement techniques without a significant infrastruc-
ture investment. Similarly, our software allows one to
experiment with physical synthesis optimizations (e.g.,
sizing, buffering) and placement-driven logic transfor-
mations (e.g., fanout optimization) while delegating
legalization to ECO-system.
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