
Simulation-based Bug Trace Minimization
with BMC-based Refinement ∗

Kai-hui Chang, Valeria Bertacco, Igor L. Markov
{changkh,valeria, imarkov}@eecs.umich.edu

Advanced Computer Architecture Lab, University of Michigan, Ann Arbor 48109

July 21, 2006

Abstract
Finding the cause of a bug can be one of the most time-consuming activities in design

verification. This is particularly true in the case of bugs discovered in the context of a ran-
dom simulation-based methodology, where bug traces, or counterexamples, may be several
hundred thousand cycles long. In this work we propose Butramin, a bug trace minimizer.
Butramin considers a bug trace produced by a random simulator or a semi-formal veri-
fication software and produces an equivalent trace of shorter length. Butramin applies a
range of minimization techniques, deploying both simulation-based and formal methods,
with the objective of producing highly reduced traces that still expose the original bug. We
evaluated Butramin on a range of designs, including the publicly available picoJava mi-
croprocessor, and bug traces up to one million cycles long. Our experiments show that in
most cases Butramin is able to reduce traces to a very small fraction of their initial sizes,
in terms of cycle length and signals involved. The minimized traces can greatly facilitate
bug analysis and reduce regression runtime.

Keywords – bug trace minimization, counterexample minimization, error diagnosis, verifi-
cation

1 Introduction

Modern integrated circuit design has reached unparalleled levels of size and overall complexity.
In this context, design verification has become a pivotal aspect of electronic design automation.
In fact, various estimates indicate that functional errors are still responsible for 40% of failures at
first tape-out, and that verification accounts for two thirds of the design cycle and effort [2, 17].

∗Copyright (c) 2006 IEEE. Personal use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

1

Resolving design bugs in the early development stages is, at the same time, a sophisticated
and time-consuming activity, as well as a crucial task for the project development and for the
success of a design team. With mask costs approaching a million dollars per set, being able to
find and fix bugs before first tape-out offers a significant economic advantage.

Among the techniques and methodologies available for functional verification, simulation-
based verification is prevalent in the industry because of its linear and predictable complexity
and its flexibility in being applied, in some form, to any design. A common methodology in this
context is random simulation. Random simulation involves connecting a logic simulator with
stimuli coming from a constraint-based random generator, that is, an engine that can automat-
ically produce random legal input for the design at a very high rate, based on a set of rules (or
constraints) derived from the specification document. In order to detect bugs, assertion state-
ments, or checkers, are embedded in the design and continuously monitor the simulated activity
for anomalies. When a bug is detected, the simulation trace leading to it is stored and can be re-
played at later times to analyze the conditions that led to the failure. Because of the randomized
nature of this methodology, and because it is usually applied in late design stages (when simple
bugs have already been flushed out), it is very common for the bug traces generated to be very
complex, often as much as hundreds of thousands of cycles long.

Another family of techniques attracting increasing attention from industry is that of semi-
formal verification. These tools combine a mix of formal and simulation-based techniques with
the goal of producing high-coverage verification results on complex designs. These results may
entail generating tests that cover a specific state configuration, proving or disproving a property
(or a checker), etc. Pure formal verification techniques, such as symbolic simulation, Bounded
Model Checking (BMC) or reachability analysis [13, 3], would be ideal to generate compact
high-coverage tests, such as, for instance, a minimum-length counterexample that disproves a
property. Unfortunately, they do not scale well, and can only be applied to very small designs.

In the more general context of semi-formal techniques [1, 12, 10], heuristics and randomized
exploration allow designers to obtain high-coverage results on designs of medium and large
complexity, but they must sacrifice the generation of minimum-length counterexamples. While
these tools are a promising direction in terms of high-quality verification, little concern has been
given to the reduction of the complexity of the bug traces generated. The result is that, once a
bug is found, a copious amount of effort is dedicated to tracking it back to its cause: either an

2

incorrect design implementation or an erroneous property definition.
Current trends attempt to generate high-quality results with less effort on the part of the ver-

ification engineer, such as the previously mentioned random simulation and semi-formal veri-
fication techniques. These two techniques are more attractive when compared to a traditional
direct-test simulation approach, which can be extremely demanding, requiring the manual de-
velopment of entire sets of specific test stimuli. However, these techniques tend to generate
extremely long and complex bug traces, exasperating the debugging phase of verification.

Contributions. We address the problem of debugging complex bug traces by proposing a
technique for trace minimization called Butramin (“BUg TRAce MINimization”). The objec-
tive of Butramin is to consider a bug trace and the checker (or property) that it triggers and
seek a much shorter and simpler trace to falsify the same property. Previous work in this area
has been mostly centered on using formal techniques to simplify a property’s counterexample
[18, 5]. Simulation-based techniques to address this problem have been proposed in [4], a pre-
liminary version of this work. In a separate context, the problem of trace minimization has also
been addressed in software verification [8, 11].

Butramin simplifies a trace by iteratively eliminating redundant portions of the trace. For
instance, it checks if there are redundant sequential steps, or sequential loops that can be re-
moved. It also checks if combinational input events in a bug trace are redundant. For each
candidate, a simplified trace is resimulated to check if it still exposes the original bug. When
this mechanism is exhausted, Butramin further simplifies a trace by using X-value simulation
to evaluate which input signals are essential in exposing a bug. Finally, a SATisfiability (SAT)-
based, fixed-window bounded model checker seeks additional “shortcuts” in the reduced and
simplified trace. Our approach to trace minimization is novel in the following aspects:

• It iteratively simplifies the trace by targeting the length (total number of clock cycles) as
well as the number of input events of the trace.

• It combines simulation and formal techniques, which exploits the performance of logic
simulation as far as possible, and only applies formal techniques to a greatly reduced
trace, requiring a much simpler analysis.

• It is capable of classifying input variable assignments as essential or nonessential, by
marking nonessential assignment with an X value in 3-value simulation.

• Experimental results show that Butramin can greatly simplify counterexamples generated

3

by semi-formal and constrained random verification tools down to a small fraction of
their original sizes, and it produces consistent results across a range of design sizes and
characteristics. The compact traces lead to a much easier interpretation of the activity
causing the bug.

In developing Butramin, we gave top consideration to the quality of the results, since the
engineering time saved by the latter well outweighs the execution time of the software. We
envision a deployment scenario where Butramin is run overnight to prepare simplified traces
to be analyzed, and found that all of our execution times are well within this limit. Within
this context, we additionally evaluated the potential of Butramin in minimizing high coverage
regression traces, that is, traces which visit multiple coverage goals. We found that even in this
scenario, Butramin was capable of exposing a lot of minimization potential.

The remainder of this paper is organized as follows: Section 2 describes relevant previous
work on bug trace minimization for random simulation and bounded model-checking. Section 3
analyzes the source of redundancy in bug traces and possible ways to identify and remove them.
Section 4 presents our new bug trace minimization technique that relies on logic simulation,
and describes the BMC-based search for counterexample shortcuts. Sections 5 and 6 discuss
algorithmic aspects of Butramin and experimental results. Finally, Section 7 summarizes the
contributions and concludes the paper.

2 Background and Previous Work

Research on minimizing property counterexamples or, more generally, bug traces, has been
pursued both in the context of hardware and software verification. In hardware verification,
existing solutions typically minimize traces generated by bounded model-checking. Before
discussing these techniques, we give some preliminary background and provide a brief overview
of the BMC methodology.

2.1 Anatomy of a Bug Trace

A bug state is an undesirable state that exposes a bug in the design. Depending on the nature of
the bug, it can be exposed by a unique state (a specific bug configuration) or any one of several
states (a general bug configuration), as shown in Figure 1. In the figure, suppose that the x-axis

4

represents one state machine called FSM-X and the y-axis represents another machine called
FSM-Y. If a bug occurs only when a specific state in FSM-X and a specific state in FSM-Y
appear simultaneously, then the bug configuration will be a very specific single point. On the
other hand, if the bug is only related to a specific state in FSM-X but it is independent of FSM-
Y, then the bug configuration will be all states on the vertical line intersecting the one state in
FSM-X. In this case, the bug configuration is very broad.

Figure 1: An illustration of two types of bugs, based on whether one or many states expose a given
bug. The x-axis represents FSM-X and the y-axis represents FSM-Y. A specific bug configuration
contains only one state, while a general bug configuration contains many states.

Given a sequential circuit and an initial state, a bug trace is a sequence of test vectors that
exposes a bug, i.e., causes the circuit to assume one of the bug states. The length of the trace is
the number of cycles from the initial state to the bug state, and an input event is a change of an
input signal at a specific clock cycle of the trace. One input event is considered to affect only
a single input bit. An input variable assignment is a value assignment to an input signal at a
specific cycle. The term “input variable assignment” is used in the literature when traces are
modeled as sequences of symbolic variable assignments at the design’s inputs. The number of
input variable assignments in a trace is the product of the number of cycles and the number of
inputs. A checker signal is a signal used to detect a violation of a property, that is, if the signal
changes to a specific value, then the property monitored by the checker is violated, and a bug
is found. The objective of bug trace minimization is to reduce the number of input events and
cycles in a trace, while still detecting the checker violation.

Example 1 Consider a circuit with three inputs a, b and c, initially set to zero. Suppose that
a bug trace is available where a and c are assigned to 1 at cycle 1. At cycle 2, c is changed
to 0 and it is changed back to 1 at cycle 3, after which a checker detects a violation. In this
situation we count four input events, twelve input variable assignments, and three cycles for our

5

Figure 2: A bug trace example. The boxes represent input variable assignments to the circuit at
each cycle, shaded boxes represent input events. This trace has three cycles, four input events and
twelve input variable assignments.

bug trace. The example trace is illustrated in Figure 2.

Another view of a bug trace is a path in the state space from the initial state to the bug
state, as shown in Figure 3. By construction, formal methods can often find the minimal length
bug trace as shown in the dotted line. Therefore we focus our minimization on semi-formal
and constrained random traces only. However, if Butramin is applied to a trace obtained with
a formal technique, it may still be possible to reduce the number of input events and variable
assignments.

Figure 3: Another view of a bug trace. Three bug states are shown. Formal methods often find the
minimal length bug trace, while semi-formal and constrained random techniques often generate
longer traces.

2.2 Bounded Model Checking Overview

Bounded model checking [3] is a formal method which can prove or disprove properties of
bounded length in a design, frequently using SAT solving techniques to achieve this goal. A
high-level flow of the algorithm is given in Figure 4. The central idea of BMC is to “unroll”
a given sequential circuit k times to generate a combinational circuit that has behavior equiva-
lent to k clock cycles of the original circuit. In the process of unrolling, the circuit’s memory

6

elements are eliminated, and the signals that feed them at cycle i are connected directly to the
memory elements’ output signals at cycle i−1. In Conjunctive Normal Form (CNF)-based SAT,
the resulting combinational circuit is converted to a CNF formula C. The property to be proved
is also complemented and converted to CNF form (p). These two formulas are conjoint and the
resulting SAT instance I is fed into a SAT solver. If a satisfiable assignment is found for I, then
the assignment describes a counterexample that falsifies the (bounded) property, otherwise the
property holds true.

1 SAT-BMC(circuit, property, maxK) {
2 p=CNF(not(property));
3 for k=1 to maxK do {
4 C = CNF (unroll(circuit, k));
5 I = C ∧ p; //SAT instance
6 if (I is satisfiable)
7 return (SAT solution);
8 }
9 }

Figure 4: Bounded Model Checking pseudo-code.

2.3 Known Techniques in Hardware Verification

Traditionally, a counterexample generated by BMC reports the input variable assignments for
each clock cycle and for each input line of the design. However, it is possible, and common,
that only a portion of these assignments are required to falsify the property. Several techniques
that attempt to minimize the trace complexity have been recently proposed, for instance, Ravi et
al. [18]. To this end they propose two techniques: brute-force lifting (BFL), which attempts to
eliminate one variable assignment at a time, and an improved variant that eliminates variables
in such a way so as to highlight the primary events that led to the property falsification. The
basic idea of BFL is to consider the “free” variables of the bug trace, that is, all input variable
assignments in every cycle. For each free variable v, BFL constructs a SAT instance SAT(v),
to determine if v can prevent the counterexample. If that is not the case, then v is irrelevant to
the counterexample, and can be eliminated. Because this technique minimizes BMC-derived
traces, its focus is only on reducing the number of assignments to the circuit’s input signals.
Moreover, each single assignment elimination requires solving a distinct SAT problem, which
may be computationally difficult. More recent work in [19] further improves the performance

7

of BFL by attempting the elimination of sets of variables simultaneously. Our technique for
removing individual variable assignments is similar to BFL as it seeks to remove an assignment
by evaluating a trace obtained with the opposite assignment. However, we apply this technique
to longer traces obtained with semi-formal methods and we perform testing via resimulation.

Another technique applied to model checking solutions is by Gastin et al. [8]. Here the
counterexample is converted to a Büchi automaton and a depth-first search algorithm is used to
find a minimal bug trace. Minimization of counterexamples is also addressed in [14], where the
distinction between control and data signals is exploited in attempting to eliminate data signals
first from the counterexample.

All of these techniques focus on reducing the number of input variable assignments to dis-
prove the property. Because the counterexample is obtained through a formal model checker,
the number of cycles in the bug trace is minimal by construction. Butramin’s approach considers
a more general context where bug traces can be generated by simulation or semi-formal verifi-
cation software attacking much more complex designs than BMC-based techniques. Therefore,
(1) traces are in general orders of magnitude longer than the ones generated by BMC, and (2)
there is much potential for reducing the trace in terms of number of clock cycles, as our ex-
perimental results indicate. On the downside, the use of simulation-based techniques does not
guarantee that the results obtained are of minimal length. As the experimental results in Section
6 indicate, our heuristics provide in practice optimal results for most benchmarks.

Aside from minimization of bug traces generated using formal methods, techniques that
generate traces by random simulation have also been explored in the context of hardware veri-
fication. One such technique is by Chen et al. [5] and proceeds in two phases. The first phase
identifies all the distinct states of the counterexample trace. The second phase represents the
trace as a state graph, it applies one step of forward state traversal [6] to each of the individ-
ual states and adds transition edges to the graph based on it. Dijkstra’s shortest path algorithm
is applied to the final graph obtained. This approach, while very effective in minimizing the
trace length (the number of clock cycles in the trace), (1) does not consider elimination of input
variable assignments and (2) makes heavy use of formal state-traversal techniques, which are
notoriously expensive computationally and can usually be applied only to small-size designs,
as indicated also by the experimental results in [5].

8

2.4 Techniques in Software Verification

The problem of trace minimization has been a focus of research also in the software verification
domain. Software bug traces are characterized by involving a very large number of variables
and very long sequences of instructions. The delta debugging algorithm [11] is fairly popular in
the software world. It simplifies a complex software trace by extracting the portion of the trace
that is relevant to exposing the bug. Their approach is based exclusively on resimulation-based
exploration and it attacks the problem by partitioning the trace (which in this case is a sequence
of instructions) and checking if any of the components can still expose the bug. The algorithm
was able to greatly reduce bug traces in Mozilla, a popular web browser. A recent contribution
that draws upon counterexamples found by model checking is by Groce et al. [9]. Their solution
focuses on minimizing a trace with respect to the primitive constructs available in the language
used to describe the hardware or software system and on trying to highlight the causes of the
error in the counterexample, so as to produce a simplified trace that is more understandable by
a software designer.

3 Analysis of Bug Traces

In this section, we analyze the characteristics of bug traces generated using random simulation,
point out the origins of redundancy in these traces and propose how redundancy can be re-
moved. In general, redundancy exists because some portions of the bug trace may be unrelated
to the bug, there may be loops or shortcuts in the bug trace, or there may be an alternative and
shorter path to the bug. Two examples are given below to illustrate the idea, while the following
subsections provide a detailed analysis.

Example 2 In Intel’s first generation Pentium processor, there was a bug in the floating point
unit which affected the fdiv instruction. This bug occurred when fdiv was used with a specific
set of operands. If there had been a checker testing for the correctness of the fdiv operation
during the simulation-based verification of the processor, it is very probable that a bug trace
exposing this problem could have been many cycles long. However, only a small portion of the
random program would have been useful to expose the fdiv bug, while the majority of the other
instructions could have been eliminated. The redundancy of the bug trace comes from the cycles

9

spent testing other portions of the design, which are unrelated to the flawed unit and can thus
be removed.

Example 3 Suppose that the design under test is a FIFO unit, and a bug occurs every time the
FIFO is full. Also assume that there is a pseudo-random bug trace containing both read and
write operations until the trace reaches the “FIFO full” state. Obviously, cycles that read data
from the FIFO can be removed because they create state transitions that brings the trace away
from the bug configuration instead of closer to it.

3.1 Making Traces Shorter

In general, a trace can be made shorter if any of the following situations arise: (a) it contains
loops, (b) there are alternative paths (shortcuts) between two design states, or (c) there is another
state which exposes the same bug and can be reached earlier.

Figure 5: A bug trace may contain sequential loops, which can be eliminated to obtain an equiva-
lent but more compact trace.

The first situation is depicted schematically in Figure 5. In random simulation, a state may
be visited more than once, and such repetitive states will form loops in the bug trace. Identifying
such loops and removing them can reduce the length of the bug trace.

In the second case, there may be a shortcut between two states as indicated by arrow 1 in
Figure 6, which means an alternative path may exist from a state to another state using a fewer
number of cycles. Such situations may arise in random traces frequently because constrained
random simulation often selects transitions arbitrarily and it is possible that longer paths are
generated in place of shorter ones.

The third condition occurs when multiple design states exist that expose the same bug, and
some of them can be reached in fewer steps compared to the original one, as shown by arrows

10

Figure 6: Arrow 1 shows a shortcut between two states on the bug trace. Arrows marked “2” show
paths to easier-to-reach bug states in the same bug configuration (that violates the same property).

marked “2” in Figure 6. If a path to those states can be found, it is possible to replace the
original one.

A heuristic approach that can be easily devised to search for alternative shorter traces is
based on generating perturbations on a given trace. A bug trace can be perturbed locally or
globally to find shortcuts or a path to an alternative bug state. In a local perturbation, cycles
or input events are added or removed from an original trace. As mentioned previously, random
simulation selects state transitions in a pseudo-random fashion. By local perturbation, alterna-
tive transitions can be explored and shorter paths to a trace state or to another state exposing
the bug may be found. In a global perturbation, a completely new trace is generated, and used
to substitute the original one if it is shorter. One reason why perturbation has the potential
to work effectively on random traces is that a pseudo-random search tends to do a lot of lo-
cal exploration, compared to a formal trace that progresses directly to a bug. Because of this,
opportunities of shortcuts within a trace abound.

3.2 Making Traces Simpler

After all redundant cycles are removed, many input events may still be left. For example, if
a circuit has 100 inputs and a bug trace is 100 cycles long, there are 10,000 input variable
assignments in the trace. However, not all assignments are relevant to expose the bug. More-
over, redundant events increase the complexity of interpreting the trace in the debugging phase.
Therefore it is important to identify and remove such redundancy.

We envision two ways of simplifying the input assignments in a trace: by removing input
events and by eliminating assignments that are not essential to reach our goal. In this latter

11

approach, input assignments can be marked as essential or not, based on their impact in exposing
the bug. By removing nonessential input variable assignments, the analysis of the bug trace
during debugging can be made much simpler. For example, a trace with two input events will
be much easier to analyze than a trace with 10,000 input events.

4 Proposed Techniques

Based on our analysis, we propose several techniques to minimize a bug trace. An overview of
these techniques is given below, they are discussed in detail in the following subsections.

1. Single-cycle elimination shortens a bug trace by resimulating a variant of the trace which
includes less simulation cycles.

2. Alternative path to bug is exploited by detecting when changes made on a trace produce
an alternative, shorter path to the bug.

3. State skip identifies all the unique state configurations in a trace. If the same state occurs
more than once, it indicates the presence of a loop between two states, and the trace can
be reduced.

4. BMC-based refinement attempts to further reduce the trace length by searching locally for
shorter paths between two trace states.

In addition, we propose the following techniques to simplify traces:

1. Input event elimination attempts to eliminate input events, by resimulating trace variants
which involve fewer input events.

2. Essential variable identification uses three-value simulation to distinguish essential input
variable assignments from nonessential ones, and marks the nonessentials with “X”.

3. Indirectly, all cycle removal techniques may also remove redundant input events.

A bug trace can be perturbed by either adding or removing cycles or input events. However,
trying all possibilities is unfeasible. Since the purpose of minimization is to reduce the number
of cycles and input events, we only use removal in the hope to find shorter and simpler traces.
Our techniques are applied in the following order: Butramin first tries to shorten a trace by re-
moving certain clock cycles and simulating such trace variants, after which it tries to reduce the
number of input events. While analyzing each perturbed trace, the two techniques of alternative

12

path to bug and state skip monitor for loops and shorter paths. Once these techniques run out
of steam, Butramin applies a series of BMC refinements. The BMC search is localized so that
we never generate complex SAT instances solving which could become the bottleneck of Bu-
tramin. If our SAT solver times out on some BMC instances, we simply ignore such instances
and potential trace reductions since we do not necessarily aim for shortest traces possible.

4.1 Single-Cycle Elimination

Single-cycle elimination is an aggressive but efficient way to reduce the length and the number
of input events in a bug trace. It tentatively removes a whole cycle from the bug trace and
checks if the bug is still exposed by the new trace through resimulation, in which case the new
shorter trace replaces the old one. This procedure is applied iteratively on each cycle in the
trace, starting from cycle 1 and progressing to the end of the trace. The reason we start from
the first simulation cycle is that this perturbation has the best chance to move far away from the
original trace, because it perturbs the early stages of a trace. The later a removal the less the
opportunity to visit states far away from the original trace.

Example 4 Consider the trace of Example 1. During the first step, single-cycle elimination
attempts to remove cycle 1. If the new trace still exposes the bug, we obtain a shorter bug trace
which is only two cycles long and has two input events, as shown in Figure 7. Note that it is
possible that some input events become redundant because of cycle elimination, as it is the case
in this example for the event on signal c at cycle 2. This is because the previous transition on
c was at cycle 1, which has now been removed. After events which have become redundant are
eliminated, single-cycle elimination can be applied to cycle 2 and 3, iteratively.

Figure 7: Single-cycle elimination attempts to remove individual trace cycles, generating reduced
traces which still expose the bug. This example shows a reduced trace where cycle 1 has been
removed.

To reduce Butramin’s runtime, we extend single-cycle elimination to work with several
cycles at once. When three consecutive cycles are eliminated one by one, Butramin will try to

13

eliminate pairs of consecutive cycles. If that succeeds, the next attempt will consider twice as
many cycles. If it fails, the number of cycles considered at once will be halved. This adaptive
cycle elimination technique can dynamically extend its “window size” to quickly eliminate large
sequences of cycles when this is likely, but will roll back to single-cycle removal otherwise.

Note that, when dependency exists between blocks of cycles, removing a single cycle at a
time may invalidate the bug trace. For example, removing any cycle within a PCI-X transac-
tion will almost always corrupt the transaction, rendering the bug trace useless. This problem
can be addressed by removing whole transactions instead of cycles. With some extra input
from the user to help identify transaction boundaries, Butramin can be easily adapted to handle
transaction-based traces.

4.2 Input Event Elimination

Input event elimination is the basic technique to remove input events from a trace. It tentatively
generates a variant trace where one input event is substituted with the complementary value
assignment. If the variant trace still exposes the bug, the input event can be removed. In
addition, the event immediately following on the same signal becomes redundant and can be
removed as well.

Figure 8: Input event elimination removes pair of events. In the example, the input events on
signal c at cycle 1 and 2 are removed.

Example 5 Consider once again the trace of Example 1. The result after elimination of input
event c at cycle 1 is shown in Figure 8. Note that the input event on signal c at cycle 2 becomes
redundant and it is also eliminated.

4.3 Alternative Path to Bug

An alternative path to bug occurs when a variant trace reaches a state that is different from the
final state of the trace, but it also exposes the same bug. The alternative state must obviously be

14

reached in fewer simulation steps than in the original trace. As shown in Figure 9, if state s j2 ,
reached at time t2 by the variant trace (shown at the bottom) exposes the bug, the new variant
trace replaces the original one.

Figure 9: Alternative path to bug: the variant trace at the bottom hits the bug at step t2. The new
trace replaces the old one, and simulation is stopped.

4.4 State Skip

The state skip rule is useful when two identical states exist in a bug trace. This happens when
there is a sequential loop in the trace or when, during the simulation of a tentative variant
trace, an alternative (and shorter) path to a state in the original trace is found. Consider the
example shown in Figure 10: if states s j2 and si4 are identical, then a new, more compact trace
can be generated by appending the portion from step t5 and on of the original trace, to the
prefix extracted from the variant trace up to and including step t2. This technique identifies all
reoccurring states in a trace and remove cycles between them, guaranteeing that all the states in
the final minimized trace are unique. States are hashed for fast look-up so that state skip does
not become a bottleneck in execution.

Figure 10: State skip: if state s j2 = si4 , cycles t3 and t4 can be removed, obtaining a new trace which
includes the sequence “... s j1 , s j2 , si5 , ...”.

15

4.5 Essential Variable Identification

We found that, after applying our minimization techniques, bug traces are usually much shorter.
However, many input variable assignments may still be part of the trace, and their relevance
in exposing the bug may vary – some may be essential, while others are not. Butramin in-
cludes an “X-mode” feature for filtering out irrelevant input variable assignments, where input
variable assignments are classified as essential or not, based on a 3-value (0/1/X) simulation
analysis. To implement this technique, two bits are used to encode each signal value, and each
input assignment in each cycle is assigned in turn the value X: if the X input propagates to the
checker’s output and an X is sampled on the checker’s output signal, then the input is marked
essential, and the original input assignment is kept. Otherwise, the input assignment is deemed
irrelevant for the purpose of exposing the bug. The set of input assignments that are marked
irrelevant contribute to simplify the debugging activity, since a verification engineer does not
need to take them into consideration when studying the cause of the system’s incorrect behavior.
We present experimental results indicating that this analysis is capable of providing substantial
simplifications to the signals involved in an already reduced bug trace.

Note, finally, that our simplification technique, which relies on 3-value simulation, is over-
conservative, flagging irrelevant input assignments as essential. Consider, for instance, the
simulation of a multiplexer where we propagated an X value to the select input and a 1 value to
both data inputs. A 3-valued logic simulator would generate X at the output of the simulator,
however, for our purposes, the correct value should have been 1, since we consider X to mean
“don’t care”. If more accuracy is desired for this analysis, a hybrid logic/symbolic simulator
can be used instead [15, 20].

Alternatively, essential variable identification could be performed using a BMC-based tech-
nique with a pseudo-Boolean SAT solver, for instance [22, 23]. Such solvers satisfy a given SAT
formula with the smallest possible number of assigned variables (maximal number of don’t-
cares). Aside from these solvers, even mainstream Boolean SAT solvers can be specialized to
do this, as suggested in [18]. Since assignments in the SAT solution correspond to input variable
assignments in the bug trace, those input variable assignments are obviously essential. Essential
variable identification naturally follows by marking all other input variable assignments as ir-
relevant. A similar idea has been deployed also by Lu et al. [16] to find a minimal three-valued
solution which minimizes the number of assignments to state variables.

16

4.6 BMC-based Refinement

This technique can be used after simulation-based minimization to further reduce the length of a
bug trace. Because of state-skip, after applying simulation-based minimization, no two states in
a trace will be the same. However, the distance between any pair of states may not be minimal.
We propose here an approach based on model checking to find the shortest path between two
states. The algorithm, also outlined in Figure 11, considers two states, say si and s j, which are
k cycles apart in the trace and attempts to find the shortest path connecting them. This path can
then be found by unrolling the circuit from 1 to k − 1 times, asserting si and s j as the initial
and final states, and attempting to satisfy the corresponding Boolean formula. If we refer to
the CNF formula of the unrolled circuit as CNFc, then CNFc ∧CNFsi ∧CNFs j is the Boolean
formula to be satisfied. If a SAT solver can find a solution, then we have a shortcut connecting
si to s j. Note that the SAT instances generated by our algorithm are simplified by the fact that
CNFsi and CNFs j are equivalent to a partial satisfying assignment for the instance. An example
is given in Figure 12.

1 Select two states si and s j, k cycles apart
2 for l = 1 to k−1 do {
3 C = circuit unrolled l times;
4 Transform C into a Boolean formula CNFc;
5 I=CNFc ∧ CNFsi ∧ CNFs j

6 if (I is satisfiable)
7 return (shortcut si → s j, l steps);
8 }

Figure 11: BMC-based shortcut detection algorithm.

Figure 12: BMC-based refinement finds a shortcut between states S1 and S4, reducing the overall
trace length by one cycle.

The algorithm described in Figure 11 is applied iteratively on each pair of states that are k
steps apart in the bug trace, and using varying values for k from 2 to m, where m is selected

17

experimentally so that the SAT instance can be solved efficiently. We then build an explicit
directed graph using the shortcuts found by the BMC-based refinement and construct the final
shorter path from the initial state to the bug state. Figure 13 shows an example of such graph.
Each vertex in the graph represents a state in the starting trace, edges between vertices represent
the existence of a path between the corresponding states, and the edge’s weight is the number
of cycles needed to go from the source state to the sink. Initially, there is an edge between each
two consecutive vertices, and the weight labels are 1. Edges are added between vertices when
shortcuts are found between the corresponding states, and they are labeled with the number of
cycles used in the shortcut. A single-source shortest path algorithm for directed acyclic graphs
is then used to find the shortest path from the initial to the bug state. While some of the shortcuts
discovered by BMC may be incompatible because of the partial constraints in CNFsi and CNFs j ,
the shortest-path algorithm we describe selects an optimal set of compatible shortcuts within the
selected window size m.

Although simulation-based techniques are effective, they are heuristic in nature and may
miss local optimization opportunities. BMC-based refinement has the potential to improve on
local optimizations by performing short-range optimal cycle elimination.

Figure 13: A shortest-path algorithm is used to find the shortest sequence from the initial state to
the bug state. The edges are labeled by the number of cycles needed to go from the source vertex
to the sink. The shortest path from state 0 to state 4 in the figure uses 2 cycles.

5 Implementation Insights

We built a prototype implementation of the techniques described in the previous section to
evaluate Butramin’s performance and trace minimization capability on a range of digital de-
signs. Our implementation strives to simplify a trace as much as possible, while providing good
performance at the same time. This section discusses some of the insights we gained while
constructing a Butramin’s prototype.

18

5.1 System Architecture

The architecture of Butramin consists of three primary components: a driver program, com-
mercial logic simulation software, and a SAT solver. The driver program is responsible for (1)
reading the bug trace, (2) interfacing to the simulation tool and SAT solver for the evaluation
of the compressed variant traces, and (3) finding simplifications introduced in the previous sec-
tions. The logic simulation software is responsible for simulating test vectors from the driver
program, notifying the system if the trace reaches the bug under study, and communicating
back to the driver each visited state during the simulation. BMC-based minimization was im-
plemented using MiniSAT [7] which analyzes the SAT instances generated by converting the
unrolled circuits to CNF form using a CNF generator. The system architecture is shown in
Figure 14.

Figure 14: Butramin system architecture.

5.2 Algorithmic Analysis and Performance Optimizations

In the worst case scenario, the complexity of our simulation-based techniques is quadratic in
the length of the trace under evaluation, and linear in the size of the primary input signals of
the design. In fact, consider an m-cycle long bug trace driving an n-input design. The worst
case complexity for our cycle elimination technique is O(m2), where the one of the input event
elimination technique is O(n×m2). All the other simulation-based techniques have simpler
complexity or are independent from the size of the trace or design. In order to improve on

19

the wall clock profile of Butramin, we developed an extra optimization, as described below.
Experimental results show that the worst case situation did not occur due to our optimization,
adaptive cycle elimination and the nature of practical benchmarks.

The optimization focuses on identifying all multiple occurrences of a state so that we can
identify when the simulation of a variant trace falls into the original trace, and avoid simulating
the last portion of the variant. To achieve this, we hash all states visited by a trace and tag
them with the clock cycle in which they occur. During the simulation of variant traces we noted
that, in some special conditions, we can improve the performance of Butramin by reducing the
simulation required: after the time when the original and the variant traces differ, if a variant
state matches a state in the original trace tagged by the same clock cycle, then we can terminate
the variant simulation and still guarantee that the variant trace will hit the bug. In other words,
simulation can be terminated early because the result of applying the same test vectors after the
matched state will not change. We call this an early exit. As illustrated in Figure 15, early exit
points allow the simulation to terminate immediately. Often simulations can also be terminated
early by state skip optimization because the destination state is already in the trace database.
Experimental results show that this optimization is crucial to the efficiency of simulation-based
minimization techniques.

Figure 15: Early exit. If the current state s j2 matches a state si2 from the original trace, we can
guarantee that the bug will eventually be hit.

5.3 Use Model

To run Butramin, the user must supply four inputs: (1) the design under test, (2) a bug trace, (3)
the property that was falsified by the trace, and (4) an optional set of constraints on the design’s
input signals. Traces are represented as Value Change Dump (VCD) files, a common compact

20

format that includes all top-level input events. Similarly, the minimized bug traces are output as
VCD files.

Removing input events from the bug trace during trace minimization may generate illegal
input sequences, which in turn could erroneously falsify a property or make the trace useless.
For example, removing the reset event from a bug trace may lead the design into an erroneous
state, generating a spurious trace which does not reflect a possible legal activity of the design
under verification, even if the simulation of such trace does expose the original design flaw.
Consequently, when testing sub-components of a design with constrained inputs, it becomes
necessary to validate the input sequences generated during trace minimization. There are sev-
eral ways to achieve this goal. One technique is to mark required inputs so that Butramin does
not attempt to remove the corresponding events from the trace. This approach is a viable so-
lution to handle, for instance, reset and the clock signals. For complex sets of constraints, it is
possible to convert them into an equivalent circuit block connected to the original design, such
as the techniques described in the work by Yuan et al. [21]. This extra circuit block takes ran-
dom input assignments and converts them into a set of legal assignments which satisfy all the
required environment constraints. We deployed the former approach for simple situations, and
we adapted the latter to the context of our solution for benchmarks with more complex envi-
ronments. Specifically, since Butramin starts already with a valid input trace which it attempts
to simplify, we wrote our constraints as a set of monitors which observe each input sequence
to the design. If the monitors flag an illegal transition during simulation, the entire “candidate
trace” is deemed invalid and removed from consideration. For BMC-based refinement, these
environmental constraints are synthesized and included as additional constraints to the problem
instance. Note, however, that this limits BMC-based techniques to be applied to designs whose
environmental constraints are synthesizable. On the other hand, this requirement is lifted for
the simulation-based minimization techniques. From our experimental results, we observe that
most minimization is contributed by simulation-based techniques, which renders this require-
ment optional for most practical benchmarks.

We also developed an alternative use model to apply Butramin to reducing regression run-
time. In this context, the approach is slightly different since the goal now is to obtain shorter
traces that achieve the same functional coverage as their longer counterpart. To support this,
coverage points are encoded by properties: each of them is “violated” only when the corre-

21

sponding point is covered by the trace. Butramin can then be configured to generate traces that
violate all of the properties, instead of just one, so that the same coverage is maintained.

6 Experimental Results

Benchmark Inputs Latches Gates Description
S38584 41 1426 20681 Unknown
S15850 77 534 10306 Unknown
MULT 257 1280 130164 Wallace tree multiplier
DES 97 13248 49183 DES algorithm
B15 38 449 8886 Portion of 80386
FPU 72 761 7247 Floating Point Unit
ICU 30 62 506 PicoJava Instr. cache unit
picoJava 53 14637 24773 PicoJava full design
VGALCD 56 17505 106547 VGA/LCD controller

Table 1: Benchmark characteristics. The benchmark setup for VGALCD involves duplicating this
design and modifying one connection in one of the copies. Butramin then must minimize the trace
exposing the difference. It follows that the size of the benchmark we work with is actually twice as
the one reported for this design.

Circuit Bug injected Assertion used
S38584 None Output signals forced to a specific value
S15850 None Output signals forced to a specific value
MULT AND gate changed with XOR Compute the correct output value
DES Complemented output Timing between receive valid, out-

put ready and transmit valid
B15 None Coverage of a partial design state
FPU divide on zero conditionally

complement
Assert divide on zero when divisor=0

ICU Constraints relaxed Buffer-full condition
picoJava Constraints relaxed Assert SMU’s spill and fill
VGALCD Circuit duplicated with one Outputs mismatch condition

wire changed in one copy
Table 2: Bugs injected and assertions for trace generation. For ICU and picoJava, no bugs were
injected but the constraints for random simulation were relaxed.

We evaluated Butramin by minimizing traces generated by a range of commercial verifi-
cation tools: a constrained random simulator, a semi-formal verification software, and again a
semi-formal tool where we specified to use extra effort in generating compact traces. We con-
sidered nine benchmark designs from OpenCores (FPU), ISCAS89 (S15850, S38584), ITC99

22

(B15), IWLS2005 (VGALCD), picoJava (picoJava, ICU), as well as two internally developed
benchmarks (MULT, DES), whose characteristics are reported in Table 1. We developed as-
sertions to be falsified when not already available with the design, and we inserted bugs in the
design that falsify the assertions. Table 2 describes assertions and bugs inserted. The checker
for VGALCD is a correct duplicate of the original design (which we modified to contain one
design error), hence the circuit size we worked with is twice as the one reported in Table 1. Fi-
nally, experiments were conducted on a Sun Blade 1500 (1 GHz UltraSPARC IIIi) workstation
running Solaris 9.

6.1 Simulation-based Experiments

Our first set of experiments attempts to minimize traces generated by running a semi-formal
commercial verification tool with the checkers specified, and subsequently applying only the
simulation-based minimization techniques of Butramin, described in Sections 4.1 to 4.4. We
were not able to complete the generation of traces with the semi-formal verification tool for
VGALCD, therefore we only report results related to constrained random traces for this bench-
mark. Table 3 shows the absolute values of cycles and input events left in each trace and the
overall runtime of Butramin using only simulation-based techniques. Figures 16 and 17 show
the percentages of cycles and input events removed from the original bug trace using different
techniques. Note that for all benchmarks we are able to remove the majority of cycles and input
events.

Circuit Cycles Input events Runtime
Original Remaining Removed Original Remaining Removed (seconds)

S38584 13 8 38.46% 255 2 99.22% 19
S15850 59 1 98.31% 2300 3 99.87% 5
MULT 345 4 98.84% 43843 2 99.99% 35
DES 198 154 22.22% 3293 3 99.91% 254
B15 25015 11 99.96% 450026 15 99.99% 57
FPU 53711 5 99.99% 1756431 17 99.99% 27
ICU 6994 3 99.96% 62740 3 99.99% 5
picoJava 30016 10 99.97% 675485 11 99.99% 3359

Table 3: Cycles and input events removed by simulation-based techniques of Butramin on traces
generated by semi-formal verification.

With reference to Figure 16 and Figure 17, we observe that the contribution of different
minimization techniques varies among benchmarks. For example, almost all the cycles and

23

Figure 16: Percentage of cycles removed using different simulation-based techniques. For bench-
marks like B15 and ICU, state skip is the most effective technique because they contain small
numbers of state variables and state repetition is more likely to occur. For large benchmarks with
long traces like FPU and picoJava, cycle elimination is the most effective technique.

input events are removed by cycle elimination in FPU and picoJava. On the other hand, state
skip removes more than half of the cycles and input events in B15 and ICU. This difference
can be attributed to the nature of the benchmark: if there are fewer state variables in the design,
state skip is more likely to occur. In general, state skip has more opportunities to provide trace
reductions in designs that are control-heavy, such as ICU, compared to designs that are datapath-
heavy, such as FPU and picoJava. Although input event elimination does not remove cycles, it
has great impact in eliminating input events for some benchmarks, such as S38584. Overall, we
found that all these techniques are important to compact different types of bug traces.

Our second set of experiments applies Butramin to a new set of traces, also generated by a
semi-formal tool, but this time we configured the software to dedicate extra effort in generating
short traces, by allowing more time to be spent on the formal analysis of the checker. Similarly
to Table 3 discussed earlier, Table 4 reports the results obtained by applying the simulation-
based minimization techniques of Butramin to these traces. We still find that Butramin has a
high impact in compacting these traces, even if, generally speaking, they present less redun-
dancy, since they are closer to be minimal. Note in particular, that the longer the traces, the
greater the benefit from the application of Butramin. Even if the overall impact is reduced, we

24

Figure 17: Number of input events eliminated with simulation-based techniques. The distributions
are similar to cycle elimination because removing cycles also removes input events. However, input
event elimination works the most effectively for some benchmarks like S38584 and DES, showing
that some redundant input events can only be removed by this technique.

still observe a 61% reduction in the number of cycles and 91% in input events, on average.

Circuit Cycles Input events Runtime
Original Remaining Removed Original Remaining Removed (seconds)

S38584 13 8 38.46% 255 2 99.22% 21
S15850 17 1 94.12% 559 56 89.98% 4
MULT 6 4 33.33% 660 2 99.70% 34
DES 296 17 94.26% 3425 3 99.91% 17
B15 27 11 59.26% 546 5 99.08% 6
FPU 23 5 78.26% 800 17 97.88% 1
ICU 19 14 26.32% 142 80 43.66% 1
picoJava 26 10 61.54% 681 11 98.38% 39

Table 4: Cycles and input events removed by simulation-based techniques of Butramin on traces
generated by a compact-mode semi-formal verification tool.

The third set of experiments evaluated traces generated by constrained random simulation.
Results are summarized in Table 5. As expected, Butramin produced the most impact on this
set of traces, since they tend to include a lot of redundant behavior. The average reduction is
99% in terms of cycles and input events.

25

Circuit Cycles Input events Runtime
Original Remaining Removed Original Remaining Removed (seconds)

S38584 1003 8 99.20% 19047 2 99.99% 16
S15850 2001 1 99.95% 77344 3 99.99% 2
MULT 1003 4 99.60% 128199 2 99.99% 34
DES 25196 154 99.39% 666098 3 99.99% 255
B15 148510 10 99.99% 2675459 9 99.99% 395
FPU 1046188 5 99.99% 36125365 17 99.99% 723
ICU 31992 3 99.99% 287729 3 99.99% 5
picoJava 99026 10 99.99% 2227599 16 99.99% 5125
VGALCD 36595 4 99.99% 1554616 19 99.99% 28027

Table 5: Cycles and input events removed by simulation-based methods of Butramin on traces
generated by constrained random simulation.

6.2 Performance Analysis

Table 6 compares Butramin’s runtime with and without different optimization techniques. The
traces are generated using semi-formal methods in this comparison. The execution runs that
exceeded 40,000 seconds were timed-out (T/O in the table). The runtime comparison shows
that early exit and state skip have great impacts on the execution time: early exit can stop
resimulation early, and state skip may reduce the length of a trace by many cycles at a time.
Although these two techniques require extra memory, the reduction in runtime shows they are
worthwhile. In ICU, state skip occurred 4 times, removing 6977 cycles, which resulted in a
very short runtime. The comparison also shows that adaptive cycle elimination is capable of
reducing minimization time significantly. This technique is especially beneficial for long bug
traces, such as FPU and picoJava.

A comparison of Butramin’s impact and runtime on the three sets of traces is summarized
in Figure 18. The result shows that Butramin can effectively reduce all three types of bug
traces in reasonable amount of time. Note, in addition, that in some cases the minimization of
a trace generated by random simulation takes similar or less time than applying Butramin to a
trace generated by a compact-mode semi-formal tool, even if the initial trace is much longer.
That is the case for S38584 or S15850. We explain this effect by the nature of the bug traces:
traces generated by random simulation tend to visit states that are easily reachable, therefore
states are likely to be repetitive, and state-skip occurs more frequently, leading to a shorter
minimization time. On the other hand, states visited in a compact-mode generated trace mode
are more frequently produced by formal engines and can be highly specific, making state-skip

26

Benchmark Runtime(seconds)
[1]: cycle elimination+ [2]: [1]+state skip+ [3]: [2]+adaptive
input event elimination early exit cycle elimination

S38584 21 19 19
S15850 11 5 5
MULT 48 43 35
DES 274 256 254
B15 T/O 58 57
FPU T/O 235 27
ICU 8129 5 5

picoJava T/O T/O 3359
Average 1697 66 64

Table 6: Impact of the various simulation-based techniques on Butramin’s runtime. Benchmarks
that exceeded the time limit (40,000s) are not included in the average. Each of the runtime columns
reports the runtime using only a subset of our techniques: the first cycle elimination and input-
event elimination. The second includes in addition early exit and state skip, and the third adds also
adaptive cycle elimination.

a rare event. The cases of FPU and picoJava are relevant in this context: here state-skips do
not occur, and the minimization time is highly related to the original trace length. They also
demonstrate the benefits of Butramin in verification methodologies.

Figure 18: Comparison of Butramin’s impact when applied to traces generated in three differ-
ent modes. The graph shows the fraction of cycles and input events eliminated and the average
runtime.

6.3 Essential Variable Identification

We also applied the technique from Section 4.5 to identify essential variables from the min-
imized traces we generated. Table 7 shows that after this technique is applied, many input

27

variable assignments are marked nonessential, further simplifying the trace. Note that the com-
parison is now between input variable assignments, not input events. Since all nonessential
input variable assignments are simulated with X, the simulation will propagate X values to
many internal signals as well. As a result, it will be easier to understand the impact of essential
variable assignments on violated properties.

Circuit Input variables Essential variables
S38584 320 2
S15850 76 2
MULT 1024 1019
DES 14748 2
B15 407 45
FPU 355 94
ICU 87 21
picoJava 520 374

Table 7: Essential variable assignments identified in X-mode. The table compares the number
of input variable assignments in the minimized traces with the number of assignments classified
essential. All the remaining assignments are nonessential and can be substituted by X values in
simulation. The initial traces were generated by semi-formal verification software.

6.4 Generation of High Coverage Traces

In order to evaluate the effectiveness of Butramin applied to reducing regression runtime, we
selected three benchmarks, DES, FPU and VGALCD, as our multi-property benchmarks. The
original properties in the previous experiments were preserved, and the same traces generated
by constrained random simulation were used. In addition, we included a few extra properties, so
that our original traces would expose them before reaching their last simulation step, which still
exposes the original property we used, as described in Table 2. Those extra properties specify
a certain partial state to be visited or a certain output signal to be asserted. Butramin is then
configured to produce minimized traces that violate all properties. The results are summarized
in Table 8. Compared with Table 5, it can be observed that in order to cover extra properties,
the length of the minimized traces are now longer. However, Butramin continues to be effective
for these multi-property traces. We also found that the order of property violations is preserved
before and after minimization, suggesting that Butramin minimizes segments of bug traces in-
dividually. From an algorithmic complexity point of view, minimizing a multi-property trace is

28

similar to minimizing many single-property traces with different initial states.
While the original traces of FPU and VGALCD require 20-30 minutes to be simulated, post-

Butramin traces are short enough to be simulated in just a few seconds. The benefits of adding
the minimized trace to a regression suite, instead of the original one, are obvious.

Circuit Number of Cycles Input events Runtime
properties Original Remaining Removed Original Remaining Removed (seconds)

DES 2 25196 184 99.27% 666098 17 99.99% 549
FPU 3 1046188 9 99.99% 36125365 264 99.99% 580
VGALCD 3 36595 5 99.98% 1554616 22 99.99% 25660

Table 8: Cycles and input events removed by simulation-based methods of Butramin on traces
that violate multiple properties.

6.5 BMC-based Experiments

We applied our BMC-based technique to traces already minimized by simulation-based meth-
ods to evaluate the potential for further minimization. For VGALCD, we report only data
related to the minimization of random trace since semi-formal traces are not available. The
results are summarized in Table 9, where Orig is the original number of cycles in the trace,
and Removed is the number of cycles removed by this method. We used a maximum window
of 10 cycles (m = 10). The main observation that can be made is that simulation-based tech-
niques are very effective in minimizing bug traces. In fact, only in two cases, ICU and B15, our
BMC-based technique was able to extract additional minimization opportunities. Potentially,
we could repeat the application of simulation-based techniques and BMC-based methods until
convergence, when no additional minimization can be extracted.

In order to compare the performance of the BMC-based technique with our simulation-based
methods, we applied the former directly, to minimize the original bug traces generated by semi-
formal verification and by constrained random simulation. For this experiment, the time-out
limit was set to 40,000 seconds. Results are summarized in Table 10, where benchmarks that
timed-out are marked by “T/O”. The findings reported in the table confirm that our BMC-based
method should only be applied, if at all, after the simulation-based techniques have already
greatly reduced the trace complexity.

29

Circuit Semi-formal Compact-trace Constrained random
Orig Removed Time Orig Removed Time Orig Removed Time

S38584 8 0 55s 8 0 55s 8 0 55s
S15850 1 0 2s 1 0 2s 1 0 2s
MULT 4 0 20s 4 0 20s 4 0 20s
DES 154 0 23h3m 17 0 357s 154 0 23h3m
B15 11 1 121s 11 1 121s 10 0 97s
FPU 5 0 5s 5 0 5s 5 0 5s
ICU 3 1 1s 14 2 1s 3 1 1s
picoJava 10 0 70s 10 0 70s 10 0 104s
VGALCD N/A N/A N/A N/A N/A N/A 4 0 985s

Table 9: Cycles removed by the BMC-based method: ICU and B15 can be minimized further after
Butramin’s simulation techniques.

6.6 Evaluation of Experimental Results

We attempted to gain more insights into the results obtained, by evaluating two additional as-
pects of the minimized traces. We first checked how close the minimized traces are to optimal-
length traces such as those generated by formal verification. To do so, we run full-fledged
SAT-based BMC on our minimized traces. The results show that our techniques found minimal-
length bug traces for all benchmarks except DES (both traces generated by random simulation
and semi-formal verification). For those two traces, the SAT solver ran out of memory after we
unrolled the design by 118 cycles, and could not finish the experiment, while no shorter traces
were found between 1 and 118 cycles long.

We also tried to evaluate if the potential for simulation-based trace reduction was mostly
due to a large number of bug states, that is, a high number of design configurations that expose
a given bug (an example of this situation is provided in Figure 1). To evaluate this aspect, we
considered the original non-minimized traces in our experimental results, we sampled the final
state of the design after simulating the traces, and we fixed the goal of Butramin to generate a
minimized trace that reaches that exact same final state. The results of this experiment are sum-
marized in Table 11. The table shows that, for most benchmarks, the difference in the number
of input events and cycles removed is small, showing that the size of the bug configuration has
a minimal impact on the ability of Butramin to reduce and simplify a given bug trace, and our
proposed solution remains effective even when the bug configuration is very specific.

30

Circuit Original Remained Runtime(s)
S38584 13 9 403
S15850 59 59 338
MULT 345 T/O T/O
DES 198 T/O T/O
B15 25015 T/O T/O
FPU 53711 T/O T/O
ICU 6994 700 856
picoJava 30016 T/O T/O
FPU 1046188 T/O T/O
picoJava 99026 T/O T/O
VGALCD 36595 T/O T/O

Table 10: Analysis of a pure BMC-based minimization technique. This table shows the potential
for minimizing traces using our BMC-based technique alone. Column “Original” shows the length,
in cycles of the original trace, and column “Remained” shows the length of the minimized trace
obtained after applying the BMC-based method. Traces in the top-half were generated by semi-
formal verification, the ones in the bottom-half were generated by constrained random simulation.
Experiments are timed-out at 40,000 seconds. The results of this table should be compared with
Table 3 and 5.

7 Conclusions

This work presented Butramin, a bug trace minimizer that combines simulation-based tech-
niques with formal methods. Butramin applies simple but powerful simulation-based bug trace
reductions, such as cycle elimination, input event elimination, alternative path to bug, state
skip and essential variable identification. An additional BMC-based refinement method is used
after these techniques, to exploit the potential for further minimizations. Compared to purely
formal methods, Butramin has the following advantages: (1) it can reduce both the length of a
bug trace and the number of its input events, (2) it leverages fast logic-simulation engines for
bug trace minimization and it can scale to industrial size designs, (3) it leverages the existing
simulation-based infrastructure, which is currently prevalent in the industry. This significantly
lowers the barriers for industrial adoption of automatic design verification techniques.

Our experimental results show that Butramin can reduce a bug trace to just a small fraction
of its original length and complexity (estimated as number of input events in the trace) by
using only simulation-based techniques. In fact, for most of the benchmarks considered, we
found that Butramin found an alternative trace of minimum length. In addition we showed that
these results are largely independent of the verification methodology used to generate the trace,
whether based on simulation or semi-formal verification techniques. The impact of Butramin

31

Circuit Cycles Input events
Original Same Same Original Same Same

trace bug state trace bug state
S38584 13 8 9 255 2 41
S15850 59 1 1 2300 3 3
MULT 345 4 4 43843 2 380
DES 198 154 193 3293 3 1022
B15 25015 11 11 450026 15 40
FPU 53711 5 5 1756431 17 112
ICU 6994 3 5 62740 3 6
picoJava 30016 10 75 675485 11 1575
FPU 1046188 5 6 36125365 17 120
picoJava 99026 10 22 2227599 16 42
VGALCD 36595 4 199 1554616 19 2068

Table 11: Analysis of the impact of a bug radius on Butramin effectiveness. The table compares
number of cycles and input events in the original traces to the same values from minimized traces
that hit the same bug, and to minimized traces that reach the exact same bug configuration. Traces
in the top-half were generated by semi-formal software and traces in the bottom-half were gener-
ated by constrained random simulation.

appears to be uncorrelated with the size of the bug configuration targeted by the trace, that is,
the number of distinct design states that expose the bug.

References
[1] M. Aagaard, R. Jones, and C.-J. Seger, “Combining theorem proving and trajectory evaluation in

an industrial environment,” in Proc. DAC, 1998, pp. 538–541.

[2] Janick Bergeron, Writing Testbenches: Functional Verification of HDL Models, Kluwer Academic
Publishers, 2nd edition, 2003.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking without BDDs,” in
TACAS - LNCS1579, 1999, pp. 193–207.

[4] K.-H. Chang, V. Bertacco and I. L. Markov, “Simulation-based bug trace minimization with BMC-
based refinement,” Proc. ICCAD, 2005, pp. 1045–1051.

[5] Y. A. Chen and F. S. Chen, “Algorithms for compacting error traces,” in Proc. ASPDAC, 2003, pp.
99-103.

[6] O. Coudert, C. Berthet and J. C. Madre, “Verification of synchronous sequential machines based
on symbolic execution,” in Proc. Automatic Verification Methods for Finite State Systems - LNCS
407, 1990, pp. 365–373.

[7] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. Theory and Applications of Satisfi-
ability Testing, 2003, pp. 502–518.

32

[8] P. Gastin, P. Moro, and M. Zeitoun, “Minimization of counterexamples in SPIN,” in Proc. SPIN -
LNCS2989, 2004, pp. 92–108.

[9] A. Groce and D. Kroening, “Making the most of BMC counterexamples,” in Proc. Workshop on
BMC, 2004, pp. 71–84.

[10] S. Hazelhurst, O. Weissberg, G. Kamhi, and L. Fix, “A hybrid verification approach: Getting deep
into the design,” in Proc. DAC, 2002, pp. 111–116.

[11] R. Hildebrandt and A. Zeller, “Simplifying failure-inducing input,” in Proc. Int. Symposium on
Software Testing and Analysis, 2000, pp. 134–145.

[12] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, and J. Long, “Smart
simulation using collaborative formal and simulation engines,” in Proc. ICCAD, 2000, pp. 120–
126.

[13] A. Hu, “Formal hardware verification with BDDs: An introduction,” in Proc. PACRIM, 1997, pp.
677-682.

[14] H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in error traces,” in TACAS’02 - LNCS 2280,
2002, pp. 445-459.

[15] A. Kolbl, J. Kukula and R. Damiano, “Symbolic RTL simulation,” in Proc. DAC, 2001, pp. 47–52.

[16] F. Lu, M. K. Iyer, G. Parthasarathy, L.-C. Wang, and K.-T. Cheng and K.C. Chen, “An efficient
sequential SAT solver with improved search strategies,” in Proc. DATE, 2005, pp. 1102–1107.

[17] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip Verification: Methodology and Tech-
niques, Kluwer Academic Publishers, 2002.

[18] K. Ravi and F. Somenzi, “Minimal satisfying assignments for bounded model checking,”
TACAS’04 - LNCS 2988, 2004, pp. 31–45.

[19] S. Shen, Y. Qin, and S. Li, “A fast counterexample minimization approach with refutation analysis
and incremental SAT,” in Proc. ASP-DAC, 2005, pp. 451–454.

[20] C. Wilson and D. L. Dill, “Reliable verification using symbolic simulation with scalar values,” in
Proc. DAC, 2000, pp. 124–129.

[21] J. Yuan, K. Albin, A. Aziz and C. Pixley, “Constraint synthesis for environment modeling in func-
tional verification,” in Proc. DAC, 2003, pp. 296–299.

[22] MiniSat Page, http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

[23] Pueblo SAT Solver, http://www.eecs.umich.edu/ hsheini/pueblo/

33

