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Abstract

Large macro blocks, pre-designed datapaths, embedded memories and analog blocks are in-

creasingly used in ASIC designs. However, robust algorithms for large-scale placement of such

designs have only recently been considered in the literature. Large macros can be handled by

traditional floorplanning, but are harder to account for in min-cut and analytical placement. On

the other hand, traditional floorplanning techniques do not scale to large numbers of objects, es-

pecially in terms of solution quality.

We propose to integrate min-cut placement with fixed-outline floorplanning to solve the more

general placement problem, which includes cell placement, floorplanning, mixed-size placement

and achieving routability. At every step of min-cut placement, either partitioning or wirelength-

driven, fixed-outline floorplanning is invoked. If the latter fails, we undo an earlier partitioning

decision, merge adjacent placement regions and re-floorplan the larger region to find a legal place-

ment for the macros. Empirically, this framework improves the scalability and quality of results

for traditional wirelength-driven floorplanning. It has been validated on recent designs with em-

bedded memories and accounts for routability. Additionally, we propose that free-shape rectilinear

floorplanning can be used with rough module-area estimates before logic synthesis.
∗A preliminary version of this work [4] was presented at ICCAD 2004.
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1 Introduction

The amount of embedded memory used on a chip is expected to grow dramatically in the next

few years [29], from around 50% of the die area in 2003 to 70% today, and 90% by 2011. This

growth is mostly fueled by integrated circuits for high-bandwidth communication, portable multi-

media, interactive consumer electronics and industrial embedded systems. While memories and

random logic have traditionally been manufactured using different semiconductor processes, to-

day most foundries offer hybrid processes that can produce reasonably dense memories embedded

in random logic with fast gates and sophisticated interconnect [29]. The use of on-chip memories

substantially improves energy-efficiency and response latency, while reducing weight, form factor

and assembly costs.

Physical design with large pre-designed circuit blocks is more difficult than conventional

standard-cell layout. While commercial layout tools have improved considerably in the last two

years, the locations of large blocks are still typically determined manually. Moreover, this step

is generally performed only once and separate from cell placement. This tends to lower utiliza-

tion, increase die size, lower yield and increase cost [32]. Perhaps the most obvious challenge is

the minimization of wirelength, which also affects routability. Optimization of wirelength is the

most prevalent approach to placement and floorplanning, and enables other optimizations through

the use of net weights and bounds [14, 17]. Moreover, wirelength optimization appears neces-

sary — a recent study [26] from Intel shows that 51% of dynamic power in currently-shipped

microprocessors is consumed when driving signals over interconnects, including local and global

wires.

A recent article in EETimes [32] claims that traditional IC designs are moving from a “sea of

cells” to a “sea of hard macros” System on Chip (SoC) paradigm (see Figure 1). They estimate

that the number of hard macros in SoC designs will grow at a tremendous rate while the total area

occupied by macros will grow much more slowly (see Figure 2). With this trend, SoC designs

will be dominated by many small, hard macros which will only exacerbate the current difficulties

in mixed-size design.

Automated placement of embedded memories, IP blocks and datapaths can improve time-

to-market by quickly generating many high-quality layout scenarios, from which experienced
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Figure 1: Traditional “sea of cells” IC vs. “sea of hard macros” SoC. Source: EETimes [32].

designers can select smaller candidate sets, using their domain knowledge. While there can be

hundreds of large placeable circuit blocks, ideal block locations can also be influenced by millions

of small standard cells. Accounting for this effect is often beyond human capabilities and is

difficult in classical methodologies for automatic layout where floorplanning and placement are

performed in separate steps. Traditionally, a circuit is first partitioned, and then floorplanned

with rectangular shapes. The macro locations are fixed, and soft blocks are shaped, followed

by standard-cell placement. In the past partitioning and floorplanning have often been used to

increase the capacity of older placement algorithms which did not scale beyond half a million

movable objects. However, modern placement algorithms, and even some of the academic tools

used in this work, are routinely used on flat netlists with over four million movable objects.

From an optimization point of view, floorplanning and placement are very similar problems

– both seek non-overlapping placements to minimize wirelength. They are mostly distinguished

by scale and the need to account for shapes in floorplanning, which calls for different optimiza-

tion techniques (see Table 1). Notice, however, that netlist partitioning is often used in placement

algorithms, where geometric shapes of partitions can be adjusted. This considerably blurs the

separation between partitioning, placement and floorplanning, raising the possibility that these

three steps can be performed by one CAD tool. In this work, we develop such a tool and term

the unified layout optimization floorplacement following Steve Teig’s keynote speech at ISPD
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Figure 2: (a) Growth in the number of hard macros in SoC designs. (b) Hard macros vs.
standard cell area. Source: EETimes [32].

2002. We concentrate on fundamental algorithm development and present basic empirical valida-

tion. Clearly, industrial use will also require additional support with new methodologies, e.g., to

allocate repeaters and optimize timing.

Our floorplacer Capo 9.2 is derived from an existing standard-cell placer and can also be used

as a multi-way partitioner. Added functionalities include (1) completely integrated mixed-size

placement competitive with best published results, (2) wirelength-driven fixed-outline floorplan-

ning, that outperforms existing floorplanners by far, and (3) free-shape floorplanning that simulta-

neously determines locations and shapes of modules to optimize interconnect. Empirically, most

modules are shaped as rectangles, with a noticeable fraction of L-, T- and U-shapes. However, we

observe significantly smaller wirelengths and runtimes compared to purely rectangular floorplans.

One of the benchmark sets used in our empirical evaluation incorporates embedded memories

with complete routing information. Embedded memories often use only two layers of metal (aside

from power stripes) and do not block routing tracks at other metal layers. Therefore, our bench-

marks mainly emphasize the effect of embedded memories on the placement of standard cells and

can be viewed as a minimal sanity-check for mixed-size placement. In particular, we evaluate

recent work on mixed-size placement [7, 25] which relies on greedy legalization of cell macro lo-

cations through left (or right) packing. Such strategies typically produce unroutable standard-cell

placements [35, 6], and careful re-distribution of whitespace shown in [35] to improve routability

may be less effective with large circuit blocks present, due to the fragmentation of layout. More
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Characteristics Partitioners Floor- Placers Floor-
planners placers

Scalable runtime Yes No Yes Yes
Scalable wirelength N/A No Yes Yes
Explicit non-overlapping No Yes No Yes

constraints
Handling large modules Yes Yes No Yes
Routability optimization No N/A Yes Yes
Can optimize No Yes No Yes

orientation of modules
Support for Yes Limited No Yes

non-rectangular blocks
Support for Yes Yes No Yes

soft rectangular blocks
Handling net weights Yes Yes Yes Yes
Handling length bounds No Yes Yes Yes

Table 1: A comparison of common algorithms for partitioning, floorplanning, and place-
ment, contrasted with what can be achieved by a unified floorplacer. Published floor-
planning algorithms assume a particular shape for each block, e.g., rectangle, L-shape or
T-shape, but floorplacers may be able to automatically choose an acceptable shape.

generally, it seems that reliable incremental modification of mixed-size layouts is more difficult

than that of pure standard-cell layouts. Therefore, in this work we attempt to minimize the need

for such modification.

The rest of the paper is structured as follows. Section 2 describes relevant previous work.

In Section 3 we integrate floorplanning into partitioning-based placement. Mixed-size placement

benchmarks introduced in [4] are used for empirical validation in Section 4. Section 5 concludes

our paper.

2 Relevant Previous Work

As pointed out in [20, 11, 3], modern hierarchical ASIC design flows are typically based on

fixed-die floorplanning, placement and routing, rather than the older variable-die style. In such a

flow, each top-down step may start with a floorplan of prescribed aspect ratio and with blocks of

bounded, but not always fixed, aspect ratios.
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2.1 Min-Cut Placement

Top-down placement algorithms seek to decompose a given placement instance into smaller in-

stances by sub-dividing the placement region, assigning modules to subregions and cutting the

netlist hypergraph [11]. In this context a placement bin represents (i) a placement region with

allowed module locations (sites), (ii) a collection of circuit modules to be placed in this region,

(iii) all signal nets incident to the modules in the region, and (iv) fixed cells and pins outside the

region that are adjacent to modules in the region (terminals). The top-down placement process

can be viewed as a sequence of passes where each pass examines all bins and divides some of

them into smaller bins. Most commonly the division step is accomplished with balanced min-cut

partitioning that minimizes the number of signal nets connecting modules in multiple regions.

These techniques leverage well-understood and scalable algorithms for hypergraph partitioning

and typically lead to routable placements.

This work uses the top-down placer Capo [11], which implements three min-cut partitioners

— optimal (branch-and-bound), middle-range (Fiduccia-Mattheyses) and large-scale (multi-level

Fiduccia-Mattheyses). Bins with seven cells or less are processed with an optimal end-case placer.

To allow the partitioners to find better cuts, Capo often shifts the cutline to accommodate an excess

of circuit modules in one partition. This also allows Capo to distribute the available whitespace

uniformly [13] so as to facilitate easier routing. Non-uniform distribution can be easily achieved

by pre-processing [1]. Recent enhancements are based on the concept of placement feedback

[22] in which a given collection of bins is partitioned N times, without requiring steady improve-

ment, to achieve more consistent terminal propagation. This change improves both wirelength and

routability. Table 2 compares routability of placements produced by three leading min-cut plac-

ers on the IBM-Dragon (v2) benchmarks. We run Dragon 3.01 [35] in a mode where it spreads

whitespace according to congestion. This significantly increases wirelength, but produces more

routable placements. As of August 2004, FengShui [25] does not have such a mode and shifts all

cells to the left (or right), typically yielding unroutable placements. We attribute Capo’s routability

to the fact that it generally produces placements with little or no overlap and allocates whitespace

carefully and effectively.

6



 0

 100

 200

 300

 400

 500

 600

 0  100  200  300  400  500  600

 n300 HPWL= 660340 

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500

 ibm01 #Cells=12752, #Nets=14111 

(a) Block-based (b) Mixed-size

Figure 3: Layout styles. Standard-cell layout is shown in Figure 9(a).

2.2 Fixed-Outline Floorplanning

A typical floorplanning formulation deals with a set of circuit modules, each characterized by

area and shape type. Rectangular modules (blocks) may have varying aspect ratios (soft blocks).

This is common for IP blocks available in several shapes, and for hierarchical partitions where

area can be estimated before synthesis. A floorplan specifies module locations and shapes such

that modules do not overlap. Classical floorplanning minimizes a linear combination of floorplan

area and total net length. However, in modern design flows the floorplan often has a fixed outline

[20], which accentuates the minimization of wirelength, reminding of placement.

The floorplanner Parquet [3, 12] performs fixed-outline floorplanning with rectangular mod-

ules (supporting soft blocks) by combining Simulated Annealing with a new mechanism for move

selection, based on floorplan slack [3]. Slack represents the amount of horizontal or vertical space

next to each block and can be computed quickly. To improve the width of a floorplan, one must

relocate a block with zero horizontal slack (similarly for height). Such moves are performed at

regular time intervals during Simulated Annealing to bias the aspect ratio of the current floorplan

to that of the desired outline. When the temperature schedule runs out, the final floorplan may still

violate the outline. Parquet empirically achieves high rates of success on fixed-outline instances

with 15% whitespace [3]. While speed is always a concern, in this work we target production-

quality layout as opposed to fast estimation or virtual prototyping [27, 28].
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Circuit Capo 9.2 -feedback Dragon 3.01 -fd FengShui 2.6
Routed WL V Routed WL V Routed WL V

ibm01e 778885 0 843001 0 time-out 932
ibm01h 772578 23 916508 84 time-out 2698
ibm02e 2183484 0 2084652 0 2201037 0
ibm02h 2079678 0 2215514 0 2277078 0
ibm07e 4533963 0 4494732 0 4755975 77
ibm07h 4590724 0 4523371 0 4707403 251
ibm08e 4552921 0 4600996 0 4458175 0
ibm08h 4767853 0 4961449 0 5056263 52
ibm09e 3357281 0 3704774 0 3519513 0
ibm09h 3335810 0 3494239 0 3395169 0
ibm10e 6590734 0 6948407 0 6808528 0
ibm10h 6483647 0 6981768 0 6715945 0
ibm11e 5038608 0 5371049 0 5300752 0
ibm11h 4940703 0 5400287 0 5260182 0
ibm12e 9895311 0 10458805 0 10146630 33
ibm12h 10145044 0 9904268 0 time-out 3418

Table 2: Routing results on IBM-Dragon V2 benchmarks with a 24-hour time-out. V
stands for routing violations. Capo 9.2 was run with the -feedback option and uniform
whitespace allocation, Dragon 3.01 was run in fixed die mode, and FengShui 2.6 was run
with default parameters. Cadence WarpRoute typically routes Dragon’s and Capo’s place-
ments, sometimes with a small number of violations. WarpRoute often fails on FengShui
2.6 placements. FengShui 5.0 produces routable placements on fewer benchmarks than
FengShui 2.6.

2.3 Mixed-Size Placement

For the reasons outlined in the introduction, mixed-size placement is becoming increasingly im-

portant. Much progress has been made recently [1, 2, 16, 25, 34], and we survey relevant algo-

rithms below.

The force-directed algorithm Kraftwerk [18] models interconnect with attraction forces and

introduces additional repulsion forces between overlapping modules. The new module locations

achieved by applying those forces are estimated by solving the Poisson equation, which is re-

duced to solving large sparse systems of linear equations. Forces are recomputed for each new

placement, and the algorithm is applied until convergence. Kraftwerk is fast and can successfully

handle large mixed-size placement instances with significant amounts of whitespace, but often

fails to resolve overlaps between large modules in realistic circumstances where blocks may be

difficult to pack [2]. In a recent empirical comparison of standard-cell placers [6], Kraftwerk was

8



outperformed by several min-cut placement tools. Another potential shortcoming of this analyt-

ical algorithm is having no provisions for optimizing orientations of large modules — a clearly

discrete optimization problem.

MMP [34] attempts to solve the mixed-size placement problem by a bottom-up clustering

of standard cells and subsequent cluster placement. The placement engine is a combination of

quadratic and min-cut techniques. It balances partition areas by shifting the cut-line after each

min-cut optimization. As described, the algorithm assumes pre-determined orientations for all

circuit modules and does not attempt to optimize them. No empirical comparisons to other tech-

niques or scalability data are available. It is especially unclear if this technique can handle large,

fixed-size, difficult-to-pack blocks.

The work in [2] proposes a methodology for mixed-size placement that combines floorplan-

ning and standard-cell techniques as follows.

Step 1. During pre-processing, each large module is shredded into small fake cells connected

by a grid of fake wires. Pins are propagated to shredded cells to reflect pin offsets. Assigning

sufficiently high weights to fake wires ensures that fake cells belonging to the same large module

are placed next to each other if the placer minimizes linear wirelength. A black-box standard-cell

placer is applied to the shredded netlist.

Step 2. Initial locations of large modules are computed by averaging the locations of respective

fake cells. A module is rotated according to the prevailing orientation in the grid that models it. To

remove overlaps between large modules, small cells are clustered (bottom up, based on locations)

into soft blocks to create a fixed-outline floorplanning instance with 100-200 blocks.

Step 3. Non-overlapping locations of large modules are generated by running a fixed-outline

floorplanner, e.g., Parquet [3]. Initial locations can be discarded, or else can be re-used with

low-temperature annealing during floorplanning.

Step 4. Large modules are fixed, and remaining soft blocks are disintegrated into original standard

cells. The black-box standard-cell placer is called again to re-place small cells.

Observe that the shredding process facilitates physical (location-based) clustering of small

cells and thus improves final locations of large modules, even if their initial locations are dis-

carded. A major advantage of this methodology is its robustness — it often produces legal place-
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ments when other approaches leave large overlaps or place modules out of core. It also optimizes

module orientations. This fully-automated methodology successfully competed with a major com-

mercial tool in 2002 and has been recently improved by more judicious handling of whitespace

[1]. Yet, the main scalability bottleneck remains in the use of Simulated Annealing at the top-level

floorplanning stage. It affects both runtime and the quality of wirelength optimization.

The multi-level placer mPG-MS [16] clusters the netlist bottom-up to build a hierarchy. The

top-level coarse netlist of approximately 500 clusters is placed using Simulated Annealing, after

which the netlist is gradually unclustered so as to improve the placement of smaller clusters by in-

cremental annealing. All intermediate cluster placements in mPG-MS are non-overlapping, which

is enforced with specially-designed data structures and yet takes considerable computational ef-

fort. This and the pervasive use of Simulated Annealing make mPG very slow. While mPG finds

better placements than those reported in [1], even better placements have been produced recently

by the min-cut technique below, which is also much faster.

The work in [25] advocates a two-stage approach to mixed-size placement. First, the min-

cut placer FengShui [7] generates an initial placement for the mixed-size netlist without trying

to prevent all overlaps between modules. The placer only tracks the global distribution of area

during partitioning and uses the fractional cut technique [7], which further relaxes book-keeping

by not requiring placement bins to align to cell rows. While giving min-cut partitioners more

freedom, these relaxations prevent cells from being placed in rows easily and require additional

repair during detail placement. This may particularly complicate the optimization of module

orientations, not considered in [25] (relevant benchmarks use only square blocks with all pins

placed in the centers).

The second stage consists of removing overlaps by a fast legalizer designed to handle large

modules along with standard cells. The legalizer is essentially greedy and attempts to shift all

modules towards the left edge of the chip (or to the right edge, if that produces better results). In

our experience, the implementation reported in [25] leads to horizontal stacking of modules and

sometimes yields out-of-core placements, especially when several very large modules are present

(the benchmarks used in [25] contain numerous modules of medium size). See Figure 10 for

examples of this behavior. Another concern about packed placements is the harmful effect of
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such a strategy on routability, explicitly shown in [35]. Overall, the work in [25] demonstrates

very good legal placements for common benchmarks, but questions remain about the robustness

and generality of the proposed approach to mixed-size placement. We address these questions

with additional benchmarking in our work.

3 Integration of Partitioning, Placement and Floorplanning

In this section we introduce our correct-by-construction approach to floorplacement, which does

not rely on post-placement legalization procedures for large modules. We first discuss the main

algorithm that combines partitioning, placement and floorplanning. Next we describe improved

construction of floorplanning instances to improve the speed of the algorithm. For the rare case

that our technique fails to produce a non-overlapping placement, we next discuss overlap removal.

An alternative technique that can simultaneously place and shape non-rectangular modules is also

presented. Lastly we discuss practical considerations and sketch implementation details.

3.1 Unified Placement and Floorplanning

We first observe that min-cut placers scale well in terms of runtime and wirelength minimization,

but cannot produce non-overlapping placements of modules with a wide variety of sizes. On the

other hand, annealing-based floorplanners can handle vastly different module shapes and sizes,

but only for relatively few (100-200) modules at a time. Otherwise, either solutions will be poor

or optimization will take too long to be practical. As explained in Section 2.3, the loose integration

of fixed-outline floorplanning and standard-cell placement proposed in [2] suffers from a similar

drawback because its single top-level floorplanning step may have to operate on numerous mod-

ules. Bottom-up clustering can improve the scalability of annealing, but not sufficiently to make it

competitive with other approaches. Therefore, in this work we apply min-cut placement as much

as possible and delay explicit floorplanning until it becomes necessary. In particular, since min-

cut placement generates a slicing floorplan, we view it as an implicit floorplanning step, reserving

explicit floorplanning for “local” non-slicing block packing.

We start with a single placement bin representing the entire layout region with all the place-

able objects initialized at the center of the placement bin. Using min-cut partitioning, the bin
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Variables: queue of placement bins
Initialize queue with top-level placement bin

1 While (queue not empty)
2 Dequeue a bin
3 If (bin has large/many macros or is marked as merged)
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack

all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision. Merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else if (bin small enough)
12 Process end case
13 Else
14 Bi-partition the bin into smaller bins
15 Enqueue each child bin

Figure 4: Our floorplacement algorithm. Bold-faced lines 3-10 are different from tradi-
tional min-cut placement.

is split into two bins of similar sizes, and during this process the cut-line is adjusted according

to actual partition sizes. Applying this technique recursively to bins (with terminal propagation)

produces a series of gradually refined slicing floorplans of the entire layout region, where each

room corresponds to a bin.1 In very small bins, all cells can be placed by a branch-and-bound

end-case placer [9]. However, this scheme breaks down on modules that are greater than their

bins. When such a module appears in a bin, recursive bisection cannot continue, or else will likely

produce a placement with overlapping modules. Indeed, the work in [25] continues bisection and

resolves resulting overlaps later. However, in this work we switch from recursive bisection to

“local” floorplanning where the fixed outline is determined by the bin. This is done for two main

reasons: (1) to preserve wirelength [10], congestion [8] and delay [21] estimates that may have

been performed early during top-down placement, and (2) avoid the need to legalize a placement

with overlapping macros. In particular, we are not convinced that existing legalization algorithms

are robust enough to handle a wide variety of module shapes and sizes in realistic netlists (see

Figure 10). We also anticipate difficulty ensuring routability while shifting macros and standard

cells at the same time.
1If every cut-line is fixed apriori to the center of its bin, recursive bisection generates a grid-like floorplan.
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Figure 5: These images illustrate the progress of mixed-size placement by Capo 9.2 on
the IBM01 benchmark from IBM-MSwPins. The picture on the left shows how the
cut lines are chosen during the first six layers of min-cut bisection. On the right is the
same placement but with the floorplanning instances highlighted by “rounded” rectangles.
Floorplanning failures can be detected by observing nested rectangles.

While deferring to fixed-outline floorplanning is a natural step, successful fixed-outline floor-

planners have appeared only recently [3]. Additionally, the floorplanner may fail to pack all

modules within the bin without overlaps. As with any constraint-satisfaction problem, this can be

for two reasons: either (i) the instance is unsatisfiable, or (ii) the solver is unable to find any of

existing solutions. In this case, we undo the previous partitioning step and merge the failed bin

with its sibling bin, whether the sibling has been processed or not, then discard the two bins. The

merged bin includes all modules contained in the two smaller bins, and its rectangular outline is

the union of the two rectangular outlines. This bin is floorplanned, and in the case of failure can

be merged with its sibling again. The overall process is summarized in Figure 4 and an example

is depicted in Figure 5.

It is typically easier to satisfy the outline of a merged bin because circuit modules become

relatively smaller. However, Simulated Annealing takes longer on larger bins and is less successful

in minimizing wirelength. Therefore, it is important to floorplan at just the right time, and our

algorithm determines this point by backtracking. Backtracking does incur some overhead in failed

floorplan runs, but this overhead is tolerable because merged bins take considerably longer to

floorplan. Furthermore, this overhead can be moderated somewhat by careful prediction, as will
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be described later.

For a given bin, a floorplanning instance is constructed as follows. All connections between

modules in the bin and other modules are propagated to fixed terminals at the periphery of the bin.

Similar terminal propagation schemes are commonly used in some analytical placers [31]. As the

bin may contain numerous standard cells, we reduce the number of movable objects by conglom-

erating standard cells into soft placeable blocks. This is accomplished by a simple bottom-up

connectivity-based clustering [23]. The existing large modules in the bin are usually kept out of

this clustering. To further simplify floorplanning, we artificially downsize soft blocks consisting

of standard cells, as in [1]. The clustered netlist is then passed to the randomized fixed-outline

floorplanner Parquet, which sizes soft blocks and optimizes block orientations. We allow at most

five attempts to find a non-overlapping placement of modules within the bin. If the floorplan-

ner is successful, we attempt to shift all the floorplanned modules simultaneously within the bin

boundary to further improve wirelength. After suitable locations are found, the locations of all

large modules are returned to the top-down placer and are considered fixed. The rows below those

modules are fractured and their sites are removed, i.e., the modules are treated as fixed obsta-

cles. At this point, min-cut placement resumes with a bin that has no large modules in it, but has

somewhat non-uniform row structure. When min-cut placement is finished, large modules do not

overlap by construction, but small cells sometimes overlap in few places (typically below 0.01%

by area). Those overlaps are quickly detected and removed with local changes. Detailed place-

ment uses branch-and-bound placement in sliding windows [9], but does not move the macros.

Figures 3, 5 and 9 show sample placements produced by our tool.

Since our floorplacer includes a state-of-the-art floorplanner [3], it can natively handle pure

block-based designs. Unlike most algorithms designed for mixed-size placement, it can pack

blocks into a tight outline, optimize block orientations and tune aspect ratios of soft blocks. In-

deed, when the number of blocks is very small, our algorithm applies floorplanning right away.

However, when given a larger design, it may start with partitioning and then call fixed-outline

floorplanning for separate bins. This is demonstrated in Figure 3(a) which shows the block-based

design n300 placed using our floorplacer. The cuts made by the min-cut partitioner are clearly

seen making the resulting floorplan globally slicing, but locally non-slicing. Since recursive bisec-
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Figure 6: Terminal propagation during the floorplanning of a placement bin. The shaded
placement bin is being floorplanned because of large/many macros. Dotted lines depict
the external connections to objects inside the bin, being propagated as terminals to the
placement bin boundaries. An inessential net for floorplanning is also shown. The shown
3-pin inessential net has no consequence on the floorplanning decision for HPWL mini-
mization and is removed when forming the floorplanning problem.

tion scales well and is more successful at minimizing wirelength than annealing-based floorplan-

ning, the proposed approach is scalable and effective at minimizing wirelength. This expectation

is fully confirmed by empirical results in Section 4.

3.2 Improved Construction of Floorplanning Instances

For realistic designs, during floorplanning, the number of wires between modules is generally

very large compared to the number of modules. Packing oriented floorplan representations such

as Sequence Pair and B* trees suffer from the lack of incremental nature of the floorplan eval-

uation algorithm. Thus, wirelength for each prospective move during simulated annealing has

to be calculated from scratch. In such a framework, the runtime is dominated by the evaluation

of wirelength for a move rather than the computation of a new floorplan during each move [15].

Therefore we outline two ways to improve the runtime of the floorplanning stage of our proposed

mixed-size placement flow by reducing the number of wires and pins generated for the floorplan-

ning instance.

Inessential nets. Figure 6 shows the terminal propagation performed before floorplanning a bin
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within the proposed min-cut floorplacement flow. All connections between modules in the bin

and other modules are propagated to fixed terminals at the periphery of the bin. Similar terminal

propagation schemes are commonly used in some analytical placers [31]. If the bounding box of

any multi-pin net covers the bounding box of the entire bin, then this net will have no consequence

on the HPWL minimization during floorplanning. Such a net is treated as inessential and ignored

when forming the floorplanning problem. A sample three-pin inessential net is shown in Figure

6.

Net conglomeration. As the placement bin may contain numerous standard cells, we reduce the

number of movable objects by conglomerating standard cells into soft placeable blocks. This

is accomplished by a simple bottom-up connectivity-based clustering [23]. The existing large

modules (macros) in the bin are usually kept out of this clustering.

Figure 7 shows an efficient algorithm for removing duplicate two-pin nets when forming the

floorplanning problem. For each node, a list of adjacent nodes is built for all of its two-pin con-

nections. Care is taken to only traverse each net once. Thus if two nodes a and b are connected by

several two-pin nets and a is processed before b, a will have multiple entries of b in its adjacency

list and b will have 0 entries of a in its adjacency list. After building the two-pin adjacency lists,

the lists are sorted to quickly locate duplicate connections. One new weighted two-pin connection

is created for each pair of nodes on a two-pin connection with the weight determined by the total

weight of the of two-pin nets that connected them in the original netlist.

3.3 Legalization of Macro Overlap

Although our floorplanning conditions have been designed and refined so as to prevent floorplan-

ning failure and backtracking, in rare cases overlaps exist after placement when whitespace is low

or in the presence of fixed obstacles. In these cases we must remove the overlaps and produce a

legal placement.

Given the techniques we use to fracture rows beneath macros so that macros and standard

cells will not overlap by construction, we first remove overlap between macros, rebuild the sub-

row structures, move any standard cells that were displaced due to the movement of macros to the

nearest subrow, and remove any remaining standard cell overlap as normal.
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Input: nodes: list of nodes
Input: origNets: list of original nets
Output: newNets: list of conglomerated nets
Variables: seenNets: list of seen nets
Variables: list node.nodeConn for each node in nodes
Initialize seenNets with false for each net
Initialize node.nodeConn for each node in nodes with NULL

1 foreach (node in nodes)
2 foreach (net in node.nets)
3 if(!seenNets[net])
4 if(net.degree > 2)
5 add net to newNets
6 else
7 foreach (nextNode in net.nodes)
8 if(nextNode.idx != node.idx)
9 add nextNode to node.nodeConn
10 end
11 seenNets[net] = true
12 end
13 end
14 foreach (node in nodes)
15 sort node.nodeConn
16 gather multiple two-pin connections between the same

nodes by a linear traversal of node.nodeConn
17 make a new single weighted connection ‘‘net’’

for each set of multiple two-pin connections
18 add net to newNets
19 end

Figure 7: Net conglomeration pseudocode. In this code, we remove redundant two-pin
nets between the blocks in a clustered floorplanning instance and replace them with a
single weighted net to increase speed. We do not consider nets that have more than two
pins because redundant two pin nets are by far the most plentiful.

Standard cells and macros may be packed tightly to each other, so moving macros around

without care can cause the displacement of many standard cells, eventually increasing HPWL. To

try and prevent this, the first stage of our overlap remover tries to move macros around as little as

possible. First, one identifies all movable macros that overlap with either other macros or fixed

objects. For each macro, we examine eight possible moves for alleviating each of its overlap

conditions (up, down, left, right and the four diagonal directions). Each move is constructed to

be just enough to remove the overlap in question. We proceed in a greedy fashion by making the

move that clears as much overlap as possible while considering move distance as the secondary
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tie breaker. Moves are performed in this manner until all overlap is removed or there are no moves

available that reduce overlap.

To allow hill-climbing, each block can increase overlap at most once. Such a move produces

an obvious move the next time around that will just move the macro back to its original position,

so we disallow these moves for one turn so that actual progress can be made if possible. Note

that we should never have more overlap than what we started with at the termination of this phase

because any moves that increased overlap will be greedily undone if they do not help leave a local

minimum.

In the majority of cases, this first phase is able to remove all overlaps between macros and

displace very few standard cells. Since it is a fairly simple, greedy method, there are situations

where it does fail. One such situation is in the presence of many fixed objects. If a macro were to

become placed in the middle of an area with many fixed objects such that it could not find a close

legal location, the first phase will usually not be able to remove the overlaps. For these cases, a

greedy technique is employed. For each macro that overlaps with other macros or fixed objects,

the macro is moved to the rectilinearly closest location free fom overlaps (without regard to any

standard cells that may already be there). Larger macros are processed before smaller macros.

3.4 Free-Shape Rectilinear Floorplanning

During mixed-size placement, soft blocks arise by clustering standard cells. Some circuit mod-

ules, however, such as embedded memories and pre-designed datapaths, have fixed rectangular

shapes. A third category of shape constraints occurs when only the area of a module is estimated,

but its shape is unknown and is free to change – there is often no a priori reason to limit its shape

to a rectangle. Non-rectangular floorplanning has been popular in several design contexts, and

existing work can be classified by whether the floorplanner is allowed to change the shape type

of modules. To this end, the work in [24] and [33] represents simple non-rectangular shapes with

Sequence Pairs (SP) and Bounded Slicing Grids (BSG) to pack such modules using the popular

annealing-based framework. In contrast, the work in [19] solves a specific floorplanning formula-

tion proposed in [20], which assumes desired locations of given rectangular modules and seeks to

re-shape the modules so as to avoid overlaps. The proposed algorithm is an incremental detailed
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ami33 shredded HPWL=46071.9, #Cells=12116

Type→ Rectangular Free-shape
Circuit Parquet 2.0 Capo 9.2 Avg%

↓ HPWL HPWL Impr
ami33 76987 46072 40.1
ami49 895560 469476 47.5
n50 202240 87957 56.5

n100 350593 157548 55.0

Figure 8: The image on the left depicts a free-shape floorplan of the ami33 benchmark.
Our floorplacer determines both locations and shapes of individual modules to minimize
wirelength. Traditional rectangular floorplanning with Parquet is compared to our free-
shape non-rectangular floorplacement on the right.

floorplanner that tends to generate fairly complicated shapes, but does not account for intercon-

nect. Below we extend our global free-shape floorplanner to generate both locations and shapes

of soft modules so as to minimize interconnect. Empirically, most of the modules are shaped as

rectangles, but L-,T- and U-shapes are sometimes created when this helps reducing interconnect.

Our algorithm is also capable of pin placement.

We rely on techniques proposed in [2], where each large module is pre-processed into a grid

of fake cells and heavy fake nets. Signal pins of a module are propagated to respective fake cells.

However, in our context there is no need to shred fixed-shape blocks because they are already

handled by our floorplacer. Thus, we only shred soft blocks. As in [2], heavy weights on fake nets

ensure that shreds of the same module stay together during min-wirelength placement. However,

since we now allow non-rectangular shapes, there is no need to average locations of fake cells

and determine the prevailing orientation as in [2]. We simply accept module shapes assumed

by fake grids during placement. Because of the relative rigidity of fake grids and because we

rely on min-cut placement, most modules assume rectangular shapes, which is convenient from

many perspectives. Other shapes are generated only when this reduces interconnect, and they

remain relatively simple. This is demonstrated in Figure 8 where modules are color-coded. The

plot is produced by our floorplacer using fake-net weights of 500. An additional benefit of our

approach is its scalability, e.g., if no hard blocks are present, the entire layout is completed without

Simulated Annealing. Figure 8 reports the improvement in runtime and wirelength over traditional
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Floorplanning conditions used in Capo 9.2
N,n: The numbers of large modules and movable objects in a given bin.
A(m): The area of the m largest modules in a given bin, m ≤ n.
C: The capacity of a given bin.
Test 1. At least one large module does not fit into a potential child bin.
Test 2. N ≤ 30 and A(N) < 0.80∗A(n) and A(n) > 0.6∗C.
Test 3. N ≤ 15 and A(N) < 0.95∗A(n) and A(n) > 0.6∗C.
Test 4. A(50) < 0.85∗C.
Test 5. A(10) < 0.60∗C.
Test 6. A(1) < 0.30∗C and N = 1.
Test 7. N = n = 1.

Table 3: Floorplanning conditions used in Capo 9.2. Test 1 is the most fundamental, for
if a bin meeting test 1 were not floorplanned, a failure would be guaranteed at the next
level. Tests 2-6 detect bins dominated by large macros. Test 7 is a base case where only
one module exists, but it is large.

rectangular floorplanning with Parquet on a mix of MCNC and GSRC floorplanning benchmarks.

For larger designs, wirelength is reduced by more than 50%. We expect that this new type of

free-shape floorplanning can be useful before logic synthesis to determine relative locations of

large modules and enable early estimates of signal delays in global interconnect.

3.5 Practical Issues and Implementation Details

Empirical boundary between placement and floorplanning. By identifying the characteristics

of placement bins for which our algorithm calls floorplanning, one can tabulate the empirical

boundary between placement and floorplanning. Formulating such ad hoc thresholds in terms of

dimensions of the largest module in the bin, etc allows one to avoid unnecessary backtracking and

decrease the overhead of floorplanning calls that fail to satisfy the fixed outline constraint because

they are issued too late. In practice, issuing floorplanning calls too early (i.e., on larger bins)

increases final wirelength and sometimes runtime. To improve wirelength, our ad hoc tests for

large modules in bins (that trigger floorplanning) are deliberately conservative. For the purpose

of this discussion a large module is defined as one with height larger than the height of one row.

Tests currently used in Capo 9.2 are listed in Table 3.

These conditions were derived by closely monitoring the legality of floorplanning and min-cut

placement solutions. When a partitioned bin yields an illegal placement solution it is clear that the
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%Capo time Max blocks Max blocks
Benchmark #Macros Time (s) in floorplaning #FP runs #Failed in FP in failed FP

instance instance
ibm01 246 66.38 25 67 4 22 9
ibm02 271 95.23 16 42 2 53 6
ibm03 290 109.23 13 48 5 108 24
ibm04 295 179.40 19 62 3 47 7
ibm05 0 0.00 0 0 0 0 0
ibm06 178 58.09 6 56 0 48 0
ibm07 291 183.65 12 84 4 111 3
ibm08 301 271.15 16 62 2 91 2
ibm09 253 245.03 13 65 2 64 4
ibm10 786 805.53 23 90 5 166 6
ibm11 373 250.72 10 59 2 139 1
ibm12 651 413.40 12 125 3 51 11
ibm13 424 321.03 10 84 5 55 4
ibm14 614 576.15 10 199 12 57 14
ibm15 393 1495.33 18 24 3 163 32
ibm16 458 398.65 5 145 7 47 3
ibm17 760 304.63 3 150 8 57 13
ibm18 285 171.09 3 127 4 24 10

Table 4: Floorplanning statistics for the IBM-MSwPins mixed-size benchmarks.

bin should have been floorplanned and a condition should be derived. When a call to floorplanning

fails to satisfy the fixed outline constraint the placer has to backtrack by merging two child bins

and floorplanning the parent. To avoid paying this penalty, a condition should be derived to allow

for floorplanning the parent bin and prevent the failure all together.

We refine these conditions to prevent floorplanning failure by visual inspection of a plot of

the resulting parent bin and formulating a condition describing its composition. An example of

such a plot is shown in Figure 5. Floorplanned bins are outlined with rounded rectangles. Nested

rectangles indicate a failed floorplan run, followed by backtracking and floorplanning of the larger

parent bin.

In our experience, these tests are strong enough to ensure that at most one level of backtracking

is required to prevent overlaps between large modules. The effectiveness of these conditions is

demonstrated in Table 4. On average, there are fewer than ten failures per run, and the number of

failures does not grow with benchmark size.

Side-effect: Narrow vertical slivers between large modules. Adjacent large modules placed
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Parquet 4.0 Capo 9.2
Circuit #Blocks HPWL Time HPWL Time # Min-cut

sec sec Levels
n10 10 5.75 0.13 5.78 0.49 0
n30 30 16.88 1.21 16.75 1.35 1
n50 50 20.97 3.40 20.02 3.09 1

n100 100 33.74 13.29 31.23 5.27 2
n200 200 63.77 60.45 55.52 23.93 3
n300 300 75.63 127.68 63.94 32.32 3

Table 5: Floorplanning versus floorplacement. The last column “Levels” lists the number
of min-cut levels executed before the first floorplanning step. All data are averaged over
10 independent runs.

by the fixed-outline floorplanner may have tall, narrow columns of empty sites between them.

Fitting small cells in such slivers may be non-trivial, e.g., consider a column with four sites and

a collection of cells that take two or three sites each. In this case, every three-site cell implies

the loss of one site, but this loss is difficult to estimate during balanced min-cut partitioning.

Therefore, a traditional min-cut placer that assigns cells to bins based only on site area, may

create cell overlaps in such cases. When wide cells get assigned to narrow columns, they may

end up overlapping with macros. Since such overlaps are relatively rare, they can be resolved by

simple legalization with minimal movement, e.g., Cadence Qplace in the ECO mode. One can

also identify contiguous site sequences (sub-rows) that are shorter than existing wide cells and

mark them as used when creating a new placement bin.

4 Empirical Validation

In earlier sections we demonstrate the effectiveness of our proposed floorplacer in large-scale

congestion-driven standard cell placement and free-shape floorplacement. Below we validate our

tool on designs with hard blocks and on mixed-size placement instances.

4.1 Results on Floorplanning Instances

Table 5 compares our proposed floorplacer with the annealing-based tool Parquet using GSRC

floorplanning benchmarks [12]. Comparisons of other floorplanners to Parquet can be found
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Circuit # Nodes # Nets # IOs Row-Util % # Macros % M Area
DMA 11734 13256 948 95.43 0 0
DSP1 26299 28447 844 90.66 2 21.98
RISC1 32615 34034 627 93.94 7 41.99
DSP2 26279 28431 844 90.05 2 6.96
RISC2 32615 34034 627 94.09 7 37.31

Table 6: Faraday benchmarks [4] synthesized and laid out with a standard ASIC flow
using IBM Artisan 0.13µm libraries. %M Area represents the area of embedded memories
in percent of the total cell area. Sample placements of these benchmarks by Capo 9.2 can
be found in Figure 9.

Circuit SEUltra - Qplace(v5.4.126) Capo 9.2 -feedback FengShui 2.6 06/17/04
Place Route Place Route Place Route

HPWL Time WL Time V HPWL Time WL Time V HPWL Time WL Time V
(e8) (min) (e8) (min) (e8) (min) (e8) (min) (e8) (min) (e8) (min)

DMA 4.79 1 6.37 3 0 4.41 2 5.74 3 0 4.60 6 6.33 3 0
DSP1 10.54 5 12.77 5 0 9.82 24 11.76 5 1 10.75 14 14.17 8 0

RISC1 16.72 7 21.69 11 3 15.75 21 21.50 16 0 19.98 30 OC OC OC
DSP2 9.98 4 12.09 6 0 9.23 9 11.12 5 0 9.28 10 11.66 6 0

RISC2 15.63 8 20.74 30 333 16.30 19 21.38 11 5 209.8 25 OC OC OC

Table 7: Routing results on the Faraday benchmarks [4]. Routed WL is in database units.
V stands for routing violations. OC indicates that many cells and macros were placed
outside the core area. Routing was performed by Cadence WarpRoute in all cases. All
routing as well as Qplace runs are performed on a 750MHz Sun Blade workstation with
2GB RAM running Solaris. Capo and FengShui runs are on a somewhat faster 2.4GHz
Linux workstation with 1GB RAM.

in recent literature on floorplanning. We first convert the benchmarks to the GSRC bookshelf

format for placement using an internal converter and generate square fixed-die layouts with 20%

whitespace. Since area minimization is not an objective as long as we fit within the fixed-outline

constraints, we only report half-perimeter wirelength (HPWL) and runtimes. For the smallest

three benchmarks n10, n30 and n50 the two approaches perform similarly, as the floorplacer

relies on floorplanning. However, the larger the designs, the more partitioning calls are made by

the floorplacer. This results in faster and more powerful interconnect optimization compared to

the annealing-based Parquet tool. The improvements should be even more pronounced for larger

block-based designs.
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4.2 Validation in Mixed-Size Placement

Faraday Benchmarks. To validate the routability of placements produced by Capo 9.2, we use

the new Faraday mixed-size benchmarks introduced in [4]. Characteristics of these benchmarks

are listed in Table 6. We compare our approach with Cadence Qplace (part of SEUltra) and Feng-

Shui 2.6, using Cadence WarpRoute for routing in all cases. The results are presented in Table 7.

FengShui 2.6 was used rather than 5.0 because of observed crashes on Faraday benchmarks. For

SEUltra, we use the Cadence-recommended flow for placing mixed-size designs. The placements

produced by Capo are generally routable on all benchmarks, sometimes with a small number of

violations. For the Capo results in Table 7 legalization by Qplace ECO was not needed, but may

be necessary rarely. Sample Capo placements are depicted in Figure 9. FengShui 2.6 produces

legal placements of benchmarks DMA, DSP1 and DSP2, but places many cells in RISC1 and

RISC2 outside the core area as shown in Figure 10. Only with considerable effort did Qplace

ECO legalize these placements, but WarpRoute was unable to complete.

IBM Netlists. The IBM Mixed-Size (IBM-MS) placement benchmarks released at ISPD 2002

[2] are derived from the well-known netlists made public by IBM in 1998. These benchmarks

have been consistently used in the recent literature on mixed-size placement, but have two impor-

tant drawbacks: (i) all large modules are square, (ii) all pins in such modules are in the center.

Therefore these benchmarks give no incentive to optimize block orientations and cannot be ex-

tended with routing information. To this end, the majority of published mixed-size placers do not

attempt to optimize module orientations. While the IBM-MS benchmarks served well to compare

entry-level mixed-size placers, we seek more realistic evaluation.

In [4], a new set of benchmarks derived from the IBM-MS placement benchmarks called

IBM-MSwPins were introduced and are available in the public domain [5]. Aspect ratios of

large modules were chosen randomly between 0.5 and 2.0 and pins of all cells and large modules

were distributed evenly through the periphery [4]. To determine pin locations for individual cells

and large modules, placement was performed with all pins centered. For every net, the center of

the net was determined by averaging the locations of incident cells. Lastly, for each cell and large

module, pins were ordered on the periphery by the centers of their incident nets[4]. 2

2Although benchmark construction is not within the scope of this paper, it has been verified that these benchmarks do
not heavily favor one placement algorithm over another. The benchmarks have been randomized and the same trends as
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(a) DMA (b) DSP1 (c) DSP2 (d) RISC1 (e) RISC2

Figure 9: The Faraday benchmarks placed by the Capo 9.2 floorplacer. Note that Capo
tends to align large blocks, which may simplify the routing in their vicinity, as well as
the routing of busses connecting those blocks. To show block orientations, north-west
corners of memories are removed.

We compare our proposed floorplacement approach to Cadence Qplace (part of SEUltra),

a Capo-Parquet-Capo methodology [1], Capo followed by an incremental run of Kraftwerk (data

from [2]), mPG-MS [16] and FengShui 2.6 [25] using the two sets of IBM mixed-size benchmarks.

Relative performance is reported in Table 8. Detailed results for the newer IBM-MSwPinsbench-

marks are presented in Table 9. Given that some tools are only available on the Sun Solaris

platform and others only on Intel-compatible Linux workstations, runtimes are not directly com-

parable. However, we list the hardware platform for each tool. For SEUltra, we use the Cadence-

recommended flow for mixed-size designs, which produces completely legal placements, unlike

those reported in [2] for the 2002 version of the same tool. Also note that the wirelengths achieved

by the latest version of SEUltra are much better than those reported in [2]. Clearly, Cadence tools

have greatly improved since 2002.

SEUltra SEUltra Capo+ Capo+ mPG FengShui[25] Capo v9.2 Capo v9.2
Benchmark Suite v5.1.67 v5.4.126 Parquet+ Kraftwerk [16] v2.6 06/17/04 -feedback -feedback

(2002) (2004) Capo[2] ECO[2] best-of-2
IBM-MS (ISPD02) 100.02% 16.52% 24.37% 19.08% 18.47% -4.47% 0% -1.03%

IBM-MSwPins (ICCAD04) - 20.66% 26.80% 24.97% - 0.56% 0% -1.23%

Table 8: Averaged placement results on common mixed-size benchmarks. The
IBM-MSwPins benchmarks have non-trivial macro aspect ratios and pins spread around
the periphery of cells and macros [4]. A positive percentage indicates a loss relative to
Capo 9.2.

For placements produced by our floorplacer Capo 9.2, Capo was run with the -feedback option

(which is several times slower than default) and used the HMetis partitioner [23] in place of Capo’s

noted here in experimental results have been observed.
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Cadence SEUltra Capo+Parquet+Capo [2] Capo+Kraftwerk ECO [2] FengShui v2.6 Capo v9.2
Block-Place+QPlace (low-temp. annealing) 06/17/04 -feedback

Sun-Blade1000 Linux/Pentium Linux/Pentium Linux/Pentium Linux/Pentium
750MHz 2GHz 2GHz 2.4GHz 2.4GHz

Circuit I II III IV V
HPWL Time HPWL Time HPWL Time % HPWL Time HPWL Time

(e6) (min) (e6) (min) (e6) (min) Overlap (e6) (min) (e6) (min)
ibm01 3.25 12 3.23 18 2.96 5 1.22 2.56 3 2.56 6
ibm02 7.17 31 7.91 12 6.84 13 0.25 6.05 5 5.20 10
ibm03 9.06 28 10.08 57 9.45 13 0.18 8.77 6 8.47 15
ibm04 10.28 31 11.01 12 10.09 15 0.74 8.38 7 8.56 15
ibm05 11.55 24 11.03 5 11.46 5 0 9.94 8 10.27 13
ibm06 8.33 32 8.70 19 9.22 19 0.25 6.99 9 6.93 19
ibm07 13.79 41 14.34 22 14.34 57 0.24 11.37 12 11.98 26
ibm08 17.36 50 17.01 26 17.63 22 1.80 13.51 15 13.81 32
ibm09 [16.91] 56 19.53 29 21.04 32 0.35 14.12 14 14.61 31
ibm10 43.71 86 53.34 119 49.52 72 4.34 41.96 22 33.13 52
ibm11 24.98 71 25.51 43 25.48 42 0.76 21.19 21 21.65 45
ibm12 46.38 87 54.82 97 61.48 53 0.63 40.84 22 38.81 58
ibm13 33.06 91 34.30 54 32.37 73 0.12 25.45 25 27.33 59
ibm14 [45.74] 148 48.66 145 47.63 117 0.07 39.93 52 39.86 110
ibm15 68.63 206 70.68 208 62.63 124 0.09 51.96 67 57.96 135
ibm16 75.94 248 75.27 154 78.47 166 2.03 62.77 70 62.65 152
ibm17 92.41 288 87.81 204 85.40 132 0.13 69.38 79 73.43 173
ibm18 57.04 190 54.66 115 57.47 162 0.02 45.59 87 46.55 154
Avg 20.66% 26.80% 24.97% 0.56% 0%

Table 9: Mixed-size placement results on the IBM-MSwPinsmixed-size benchmarks. A
positive percentage in the last row indicates a loss to Capo 9.2. Cadence SEUltra places
designs ibm09 and ibm14 illegally with overlaps between macros or macros outside the
core area.

MLPart partitioner. Currently, using HMetis instead of MLPart improves Capo’s results by 2%

on average. On the older IBM-MS benchmarks, Capo 9.2 placements, in terms of HPWL, are on

average 16.52% better than Cadence SEUltra, 24.37% better than the Capo-Parquet-Capo flow,

19.08% better than Capo-Kraftwerk ECO flow, 18.47% better than mPG-MS and 4.47% worse

than FengShui 2.6. FengShui 2.6 was used rather than 5.0 because of observed crashes on Faraday

benchmarks. Using the best of two runs of Capo 9.2 improves solution quality by 1.03%. On the

newer IBM-MSwPins benchmarks, on average, the placements produced by our floorplacer are

20.66% better than Cadence SEUltra, 26.80% better than the Capo-Parquet-Capo flow, 24.97%

better than Capo-Kraftwerk ECO flow and 0.56% better than FengShui 2.6. Choosing the best of

two Capo 9.2 runs results in a 1.23% improvement. Note that FengShui shifts all cells to the left

(or right) edge of the chip, thus lowering wirelength compared to a placement spread around the

core area. However, according to Table 7, this strategy is not always successful in the presence

of large modules. Comparing results of FengShui 2.6 on two sets of benchmarks in Table 8,

we conclude that the relative advantage of FengShui 2.6 decreases in the presence of rectangular
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blocks with non-trivial pin offsets, as it does not optimize module orientations.

5 Conclusions

Our work originates from the realization that min-cut placers implicitly perform floorplanning,

in addition to partitioning. Therefore, separate partitioning and floorplanning steps traditionally

used in VLSI design can be subsumed by a min-cut placer. Such a unification can lead to simpler,

more consistent, more controllable and more successful EDA tools and tool chains. For example,

while the field of floorplanning has been very active in academia for twenty years, there are rela-

tively few successful commercial floorplanners. While this is partly due to integration difficulties

and to the fact that experienced designers perform floorplanning by hand, our results suggest that

common floorplanners based purely on Simulated Annealing tend to produce very sub-optimal so-

lutions. To a large extent this is not a matter of EDA tools’ lacking intangible designer intuition,

but rather the poor quality of existing algorithms with respect to closed-form optimization objec-

tives. Interconnect optimization is also handicapped by the popular limitation that all modules be

laid out as rectangles. To this end, our work shows that unifying partitioning, floorplanning and

placement in a single algorithm leads to better layouts and facilitates new layout optimizations,

such as free-shape floorplanning that simultaneously determines the locations and shapes of mod-

ules so as to optimize interconnect. Empirical validation uses a unified floorplacer tool, that can

be used as a partitioner, a large-scale cell placer, a floorplanner and a mixed-size placer. Our im-

plementation scales well, is competitive with the state of the art in all of its areas of applicability,

and in some cases produces better wirelengths than any previously reported methods.

We show that for sufficiently large floorplanning and mixed-size placement instances, min-cut

techniques are more successful in minimizing wirelength than simulated annealing. However, for

small layout instances with modules of different sizes, the use of annealing seems required to pack

modules well. In the process of tuning the performance of our implementation, we empirically

tabulate the boundary between placement and floorplanning by identifying more successful opti-

mizations in various cases. A representative threshold for floorplanning is currently at 30 blocks,

which means that the use of flat annealing on larger instances is not justified. In the future, as

floorplanners improve at satisfying fixed-outline constraints while minimizing wirelength, this
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Figure 10: The Faraday benchmarks RISC1 and RISC2 placed by FengShui 2.6. All
large modules have default orientations. FengShui places many standard cells beyond the
left boundary of core region (outlined in red). FengShui 2.5 exhibits similar behavior on
DSP1 and DSP2 benchmarks, which the authors attribute to bugs fixed in FengShui 2.6.

boundary can be lowered even further.

A floorplacer of the type described in our work can place objects with very different semantics

— standard cells, macros, datapaths, memories, etc. Extensions to free-shape floorplanning can be

used with unsynthesized modules to better estimate global interconnect delays before synthesis.

However, to fully exploit these novel capabilities, new VLSI methodologies are required. Our

hope is that such future methodologies and methodology studies will confirm the potential of

floorplacement.
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