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Arbitrary two-qubit computation in 23 elementary gates
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We address the problem of constructing quantum circuits to implement an arbitrary two-qubit quantum
computation. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as
possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit
rotations and 2 controlledoT (cNOT) gates. We also constructively prove a worst-case upper bound of 23
elementary gates, of which at most fownoT gate$ entail multiqubit interactions. Our analysis shows that
synthesis algorithms suggested in previous work, although more general, entail larger quantum circuits than
ours in the special case of two qubits. One such algorithm has a worst case of 61 gates, of which 18 may be

CNOT gates.
DOI: 10.1103/PhysRevA.68.012318 PACS nuntber03.67.Lx, 03.65.Ud, 03.65.Fd
[. INTRODUCTION hope that additional optimizations are possible. Importantly,

other works[5] suggest that generic circuit decompositions
Quantum computations can be described by unitary maean be found by means of solving a series of specialized
trices [1]. In order to effect a quantum computation on asynthesis problems, e.g., the synthesis of circuits consisting
guantum computer, one must decompose the correspondim NOT, controlledNOT (CNOT), andTOFFOLI gates as well as
unitary matrix into a quantum circuit which consists of el- phase-shift circuits. Such specialized synthesis problems are
ementary quantum gatg3] connected by Kroneckétensoj ~ addressed by other researchgg$,7].
and matrix products. These connections are often represented A recent work{ 8] on time-optimal control of spin systems
using quantum circuit schematics. In some cases, circuit dgresents a holistic view of circuit-related optimizations, us-
compositions require temporarily increasing the dimensioring Lie groups. However, their approach is not as detailed as
of the underlying Hilbert space, which is represented bypreviously published circuit synthesis algorithms, and com-
“temporary storage lines.” Since there is always a multitudeparisons in terms of gate counts are not straightforward.
of valid circuit decompositions, one typically prefers those Our work pursues generic circuit decompositi¢pagt of
with fewer gates. two-qubit quantum computations up to global phase. While
Algorithms for classical logic circuit synthedi8] read a  some authors consider arbitrary one-qubit gates elementary,
Boolean function and output a circuit that implements thewe recall that they can be decomposed, up to phase, into a
function using gates from a given gate library. By analogy,product of one-parameter rotations according to Eq.
we can talk about quantum circuit synthesis. In this paper w& herefore, we only view the necessary one-parameter rota-
only discuss purely classical algorithms for such synthesisions as elementary. Some of our resuttenstructive upper
problems. Even at this early stage of quantum computing, ibound$ in terms of such elementary gates can be reformu-
seems clear that algorithms for circuit synthesis are going ttated in terms of coarser elementary gates. We also observe
be as important in quantum computing as they are in classihat the standard choice of elementary logic gates in classical
cal Electronic Design Automation, where commercial circuitcomputing(AND-OR-NOT) was suggested in th¥IXth cen-
synthesis tools are necessary for the design of cellulatury by Boole for abstract reasons rather than based on spe-
phones, game consoles, and networking chips. cific technologies. Today, thenD gate is by far not the sim-
Given the truth table of a Boolean function, a two-levelplest to implement in complementary metal-oxide
circuit, linear in the size of the truth table, can be constructedemiconductor-based integrated circuits. This fact is ad-
immediately. Yet, the optimization of the circuit structure is dressed by commercial circuit synthesis tools by decoupling
nontrivial. Given a unitary matrix, it is not nearly as easy tolibraryless logic synthesifom technology mapping3]. The
find a quantum circuit that implements it. Generic algorithmsformer uses an abstract gate library, suchss-OrR-NOT and
for this problem are knowf4,5] but in some cases produce emphasizes the scalability of synthesis algorithms that cap-
very large circuits even when small circuits are possible. Weure the global structure of the given computation. The latter
step maps logic circuits to a technology-specific gate library,
often supplied by a semiconductor manufacturer, and is
*Electronic address: stephen.bullock@nist.gov based on local optimizations. Technology-specific libraries
"Electronic address: imarkov@umich.edu may contain composite multi-input gates with optimized lay-
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outs such as theol gate (AND-OR-INVERTER). In this con-  [8,11,15,16. Appendix B describes a 28-gate decomposition
text, our choice of library makes our algorithms analogous tahat uses the minimum possible number of variable rotation

libraryless logic synthesis. gates.
Gate library. We consider the following library otl-
ementaryone- and two-qubit gates: Il. IMPLEMENTING ONE-QUBIT COMPUTATIONS
, WITH ELEMENTARY GATES
cosf/2  sinb/2 or all
Ry(6)= . orall 0=6<2, i i
y(0) _sing/2  cosel2 ™ Recall the elementary gate library of the Introduction

[2,6]. This gate library is continuous rather than discrete,
consisting of allcNoTs andy- and z-axis Bloch sphere rota-
tions. The goal of this work is to produce an algorithm which
inputs a two-qubit quantum computatibhe U(22) and out-
puts a quantum circuit diagram containing only these el-
ementary gates, which realizes the associated computation.
In terms of the unitary matrixJ, applying a one-qubit com-
putation A e U(21) on the top line andB e U(2!) on the
topcNOT=(]00)(00| +|01)(01)) + (|10){11] +|11)(10)), bottom line corresponds to computing the teng@oneckej
product matrix A®B e U(22). Applying U,e U(2?) after
U,eU(2%) corresponds to the matrix produtt,U;. We
botcNoT= (|00)(00 +|10)(10]) + (|01)( 11|+ |11)(01]). will sometimes emphasize tensor product with thsign for
clarity. These basic facts may be found in Rdf], and we
The rotation gates above may be applied on either "negene.rally'follpw the conventions of th_at text. This incIudes
Note that the gate library we use generates U(4) up to globdfding circuits diagrams from left to right. As an exception,
phasg2,4]. As no measurement appears in the library abovewe write U* = U" for the transpose of the entrywise complex
we use the standard, if not univer$8l, convention that the ~conjugate of a unitary matrix.
two qubits are measured only after application Of Consider the analogous one-qubit problem. An arbitrary
eU(2?). In order to find gate decompositions, we use theone-qubit quantum computation can be implemented by
canonical decompositiof8,10,11 that may be viewed as an three elementary gatésemma 4.1 of Ref[2]).
example of th&KAK decomposition of Lie theory. The result-
ing procedure is often superior to previously published ge-
neric algorithms[4,5] in terms of the size of synthesized U=

—ial2
e‘“’z) forall O<a<2w.

e
Rz(a):( 0

CNOT gates conditioned on each line:

e'? O)(ei“’2 0)(0056/2 sin6/2)

circuits. 0 €%\ o é&*?/\—sino/2 cosol2
Theorem I.1Any two-qubit computation may be realized e B2

exactly by at most 23 elementary gates, of which at most X iB/2>' (1)

four arecNOT gates. No ancilla qubits are required. 0 €

We prove that at least 17 elementary gates are required.

We also note that the synthesis algorithm above realizes ¢ recover the nos parameters, we dividg by the root of
given computation to infinite precision, as do other algo-i,[S determinant. The resulting matrid has 5=0, while

rithms in the literaturg2,4,5. Another common question BN T
treated in the literature is constructing approximations to Pther parameters are recovered by computihU. Thus,

given quantum computation using a discrete rather than corl OUr library both the Hadamard gatteand the PaulX gate
tinuous gate library. Th&olovay-Kitaevheorem(see Ref. eduiretwo R, R, gates to implement. The above decom-
[12] and Appendix 3 of Ref(1]) and the universality results POSition also appears in our two-qubit decomposition. Inter-
of Nielsen et al. [13] are examples. See also the GQC mediate steps produce generic one—qub|t computgtlons as
“quantum compiler’[14] available onling20]. tensor factors, and these may be implemented utinge

The remaining part of the paper is organized as follows&lémentary gates.
Section Il recalls the synthesis question for one-qubit com-
putations in the elementary gate library. Section Il discusses Ill. CIRCUITS FOR DIAGONAL UNITARIES
circuits for diagonal computations within UfR Section IV
reviews the universality arguments for the library of elemen-
tary gates in order to obtain a specific gate count in the case diag(z1,2,,23,24) with zjz;=1j=1...4. Onenormal-
of two-qubit computations. Section V describes our 23 el-zes the coordinates or their product by choosing the global
ementary gates, fourNOT quantum circuit synthesis algo- phase. In contrast, the quantityz, 'z; 'z, is invariant.

For a diagonal matrix DeU(4), we have D

rithm in terms of the canonical decomposition. Section VI Lemma 1.1 (i) A diagonal matrix D
proves a lower bound of 17 on the number of gates required-diag(z;,2,,23,z4) in U(4) may be written as a tensor
to implement arbitrary computations in SU)2 Section VIl product of diagonaR, gates inU(2%) iff 2122_123_124= 1.

discusses conclusions and ongoing work. Finally, Appendixii) Any computation which is diagonal when written in the
A reviews the canonical decomposition which is related to a&computational basis may be implemented up to phase in five
more easily computed decomposition via the “magic basis’elementary gates or fewer.
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H—W—-P—& which 6 arecNOT gates,two G, 3 Givens rotations totaling
s 20 elementary gates of which 8 azrOT gates, andne G, ,

Givens rotation which counts for 12 elementary gates includ-
FIG. 1. Any 4x4 diagonal unitaryD =diag(z;,z,,23,2,) may  iNg 2 CNOT gates. Additionally, one must implement diago-
be decomposed into up to five elementary gates. Weesét  nal D. Using our Lemma ll1.1, this requires five elementary
=2,7, *z5 'z, and definev=diag(e' #*,e'#"%). The two one-qubit gates of which two areNOT gates. Thus, 61 gates will be

unitaries on the right are diagonal. required in the generigworsy case, and 18 of those will be
CNOT gates.
Proof. (i) The forward implication follows
from diag(n,,7,) ® diag(ns, 74) =diag(n1 73, 7174, 7273, V. AN ARBITRARY TWO-QUBIT COMPUTATION
1,m4). For the reverse implication, note that the equality IN 23 ELEMENTARY GATES

demand®D =diag(1z3/2;) ® (21,2,).

(ii) In the computation of Fig. 1D =diag(z;,z,23,2Z4)
and W=R,(— ¢/2). The three gates at Our algorithm for producing quantum circuit diagrams for
left enact diag(¥/ e ¢4 g 144 ddidy Labelling ~ two-qubit computations will use only 23 rather than 61 el-
CNOTo(W® 1)ocNOT=diagw; ,W,, W3, W,), Wyw, 'w;lw,  ementary gates, of which at most four will leeioT gates.

e U(1) takes on all possible values gsvaries. Since the Moreover, it will implement tensor products of one-qubit
expression for [cNOTo(W®1)eCcNOT]’D is the product duantum computations as such, modulo cancekmgT
foreach factor, we may force the composite gate to be gates. These performance increases arise due to choosing the

A. Quantum circuit synthesis via the canonical decomposition

tensor ofR,(#) gates by appropriate choice & m canonical decompos[ti_ofB,lO,l]] over QR. Recalling the
canonical decomposition from the literature requires more
IV. GATE COUNTS FOR PRIOR SYNTHESIS notation. Note that Appendix A treats the canonical decom-
ALGORITHMS IN TWO QUBITS position in detail.

First, the magic basig3,11,15,16¢ of two-qubit states is
A proof [2] exists in the literature that the elementary gategiven by |mi)=(]00)+|11))/\2, |m2)=(i|00)
library of the Introduction is universal, and this proof may be —j|11))/\2, |m3)=(i|01)+i]10))/\/2, and |m4)=(|01)
explained[4] in terms of theQR decompositior{17] of lin- _|10))/,/2. The arabic numbers are indices rather than en-
ear algebra. These results covegubit computations, and ergy states.

the ap.propriate gate counts are in _terms of as_ymptoticns of  “We label asE e U(22) that two-qubit computation which
We briefly recall the construction in the particular case Ofmaps the computational basis into the magic basis:
two-qubit computations and count elementary gates expli0{00>,_>|ml>’ |01)—|m2), |10)—|m3), and|11)—>|ma4). In

itly. This serves as a benchmark for our own quantum CircUiteyms of the computational basBhas the following matrix:
synthesis algorithm, which uses the canonical decomposition

rather thamlQR. 1 i 0 O
A Givens rotationis a unitary matrixU e U(22) which JZlo o i 1
acts as a rotation/ e SO(2) on two computational basis E= — _ _ 2
states while fixing the subspace spanned by the other two. 210 0 i -1
Givens rotations are indexed by one plus the integers of the 1 —i 0 O

computational basis states rotated. TRQ® decomposition
then asserts that anyJ e U(2%2) may be written U
;G3,492|,3Gs,4G1,2G2,3(33,4Dh for DBdiag(le,Zz,Zsyh). a
iagonal unitary matrix. The cost & in elementary gates . e Ao
follows from Lemma IIl.1. The Table below describes ourBe Uwrgtenu aZUUZ_lé (Uy®U2) ﬁ.t(uf’@LtJﬁ) Wheret
implementations and gate counts for the various Givens ro> 1'-2'~5:26€ (Z') are one-qubit quantum computa-

tations. Note here that tapv refers to a top-conditioned ?nonsi atr:d? Istatl qtuantummclor)r(1pnut?rtrl]onnwr::]cf;tit?kesf ﬁacl?
one-qubit computatioV, i.e., V is executed iff the top line agic basis stale 1o a compiex norm one multip’e ot ItSet.

; o The global phase is irrelevant to our application but impor-
carries 1. Such tapV may be split into elementary gates ; ) . o
(2], Fig. 7 of Ref.[4]). tant in computations of this decomposition. Also, note that

A=EDE* for D, some diagonal unitary matrix.
The proposition below uses the canonical decomposition

The canonical decomposition then makes the following state-
ment. Any two-qubit quantum computatidhe U(22) may

Rotation _Implementation Gate countcnor and provides the synthesis algorithm for Theorem I.1.
Gi4 topc-V 8 2 Proposition V.1 Let U be the matrix for any two-qubit
G2'3 botCNOTe computation in the computational basis. LeT in

’ the following equation denote the lantoT gate, i.e.,C
(topc-XV X)e botcNOT 10 4
Gy, (X®1) topc-V (X@1) 12 5 =(]00)(00 +|10)(10]) + (]02)(11 +|11)(01]). ThenU de-

composes as

Thus, in the generic case the universality argument uses
three G; 4 Givens rotations totaling 24 elementary gates of U=(U;®U5)oCo(1ldUjz)o(1®U,)oCo(Us®Ug), (3)
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- - 31} SeanFiy
whereU, ... ,Ug are one-qubit gates on each line and the
algebraic expressiot® U, is topc-U;, a Uz computation LBF—=—"{H-b{2pH{1—13}
controlled by the top line.
Proof. Begin by writing the canonical decomposition for
U as

FIG. 2. The decomposition of a generic two-qubit quantum
computation into up to 23 gates. Four generic one-qubit rotations
are marked with “3” because they require up to three elementary
U=(U,®U,)oAs(Us® Ug). (4) gates. C(_)m_putatlons requiring two or one elementary gates are

marked similarly.

We now describe the implementation Af=EDE* for D

=diag(a,b,c,d) e U(2?). First multiply as follows: Since toje-U; computationl®Us is next to (1o U,) in
Proposition V.1, we can reduceD®A)°(1oU,) to (D
atb O 0 a-b ®U5) whereU,=AU,. By merging computatio/ with the
1/ 0 c+d c=d o0 generic one-qubit computatiod, that may require up to
EDE*== ) (5) three elementary gates, one reduces the overall circuit by two
2l 0 c-d ctd O elementary gates.
a=b 0 0 a+b The overall circuit decomposition can be described alge-

braically as follows:
Multiplying by a botNoT on the left flips rows two and four,
while multiplying on the right flips columns two and four. U=(U;®U;)°[(]00)(00/+[10)(10))+(|01)(11|+[11)

Thus, x(01))]o(D®U-)°[(|00)(00 +|01)(01])
100 0 1000 +(10)(11+[11)(10)) J° (1 B)°[(|00)(00)
. |00 01 <U4 0) 0001 +(02)(01)) +(|10)( 11| +|11)(10)) Jo(1® C)°[ (|00)(00|
EDE"=109 0 1 o/lo B/°lo 0 1 o
0100 610 0 +]10)(10) + (J01)(12f+|11)(01) Jo(Us@Ug). ()

6) This is illustrated in Fig. 2 with gate counts.

for someU,,B e U(2). Choosel; so thatU3=BU;1. Then Our circuit decomposition requires at most fooKoT
the block-diagonal matrixJ,&B may be implemented via gates, while other gates are elementary one-qubit rotations.

U,®B=(1®BU, Y°(1®U,), with the former a top condi- Such at_smlal_l nulmber ;)ft_non-onﬁ-qublt glii_tesb_rpz_iytbe dt_eS|red
tioned U; computation. m N practical implementations where multiqubit interactions

are more difficult to implement.
It is understood that Fig. 2 and our gate counts refer to the
worst case. Specific computations may require only some of
Let 1®U; denote a top conditioned); gate for U;  those gates. In particular, with an appropriate choice of ca-
eU(2Y). Then Proposition V.1 decomposes an arbitrarynonical decomposition our algorithm always implemeats
two-qubit unitary into ®B as such in the six leftmost gates of Fig. 2, modulo four
cancelingCNOT gates.

B. The overall gate decomposition and gate counts

U=(U;1®U,)°[(|00)(00 +|10)(10)) +(|01){11 +|11)

x(01])Jo(18 U 3)°(1& U )°[(|00)(00| +|10)(10)) VI. PROVING A LOWER BOUND ON THE GATE COUNT
+(]oD{(11]+|12)(01]) Jo(Us® Ug), 7) We have constructively shown in the preceding section

that any two-qubit quantum computation can be imple-

whereU,, ... ,Ug are one-qubit gates. The immediate gatemented in 23 elementary gates or fewer, of which at most

count yields three elementary rotations for each of five onefour areCNOT gates and remaining gates are one-qubit rota-
qubit gatedJ;,U,,U3,Us, andUg, two boCNOT gates, and  tions. We now show that at least 17 elementary gates are
eight elementary gates to implement theddp, gate, ac- required.
cording to Fig. 7 of Ref[4]. Theorem VI.1There exists a two-qubit computation such
The gate count of 25 can be further reduced, given théhat any circuit implementing it in terms of elementary gates
structure of the top-v circuit (Fig. 7 of Ref.[4]). Indeed, consists of at least 17 gates. In particular, 15 one-qubit rota-
that circuit can be written symbolically as tions are required and twoNOT gates.
Proof. First, recall that two-qubit quantum computations
1&U3=(1®C)°[(|00)(00 +|01)(01)) + (|10)(11|+|11) can be represented byx#4 unitary matrices, and such ma-
trices can be normalized to have determinant one because
X(10[)]°(1®B)°[(|00)(00 +[01)(01]) quantum measurement is not affected by global phase. Also
+(]20)(11] +|11)(10))]o(D®A). (8) recall that we use two types of elementary gatd$:one-
qubit rotations with one real parameter each §AdcNOT
Here,C andD are elementary gates up to phase,daindB  gates which operate on two qubits and are fully specified
require up to two elementary gatgsl. parameters
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Let us now consider the s€: of quantum computations (f) An upper bound of 15 variablé)-dependent elemen-
that can be performed by some given two-qubit cirdDit tary rotations(via Fig. 4.
with fixed topology, where the parameters of one-qubit rota- (9) A lower bound of 15 variable elementary rotations.
tions are allowed to vary. Fixed circuit topology means that
(the graph of connections between elementary gates cannot
be changed. Since the overall unitary matrix can be ex- It is a well-known result that any one-qubit computation
pressed in terms of products and tensor products of the m@&an be implemented usirthree rotations or fewef2]. Our
trices of elementary gates, each matrix element is an infiwork answers a similar question about arbitrary two-qubit
nitely differentiable function of the parameters of one-qubitcomputations, assuming thahoT gates can be used in ad-
rotations(more precisely, it is an algebraic function of sin dition to single-qubit rotations without ancilla qubits. First,
and cos of those paramet}grm other words, seQ¢ is pa- we show a lower bound that calls for at least 17 elementary
rametrized by one-qubit rotations and has the local structurgates: 15 rotations and@oT gates. We then constructively -
of a differentiable manifold, whose topological dimension in Prove that 23 elementary gates suffice to implement an arbi-
GL(4) is the number of one-qubit rotations @with vari- trary two-qubit computation. At most four of these aneoT

able parameters. The topological dimension is, roughiydaies and the rest are single-qubit gates. In comparison, a
speaking, the number of degrees of freedom. previously known constructiofi2,4] implies 61 gates, of

Since every computation can be implemented byalimiteth'Ch 18 arecNOT gates. While this construction is more

number of elementary gates, the set of possible circuit togeneral than ours, for two-qubit computations, our algorithm

N : generates far fewer gates in the wofgenerig case. The
polog|es IS f|n|te..The setof all |mpIeme'nFabIe quantum. Com'savings; in the number of multiqubit gatésNOT gate$ are
putations is a union of set3. over the finite set of possible

S ) , . L : particularly dramatic.
circuit topglog@s. Its 'Fopolog|ca! dimension is the maximum™ \ve are also attempting to extend these ideas to three qu-
of topological dimensions d®c, i.e., the maximum number pts or more. Yet, a problem arises. The canonical decompo-
of one-qubit rotations with varying parameters, allowed insition is an example of thiAK decomposition of Lie theory.
one circutt. The KAK decomposition of SU(9, n=3, requires

On the other hand,) Qc=SU(4). Wecompute its topo- K c SU(2") be a sufficiently large subgroup, in the sense that
logical dimension as follows. First, we point out that the SU(2")/K must be a Riemannian symmetric spd&el8].
matrix logarithm (which is infinitely differentiable maps Although both SO(4) and SU(2SU(2) are large sub-
U(4) one-to-one onto the set of skew-symmetric Hermitiangroups of SW4), the set oflocal unitary gatess?_,SU(2)
matrices:  UU* =1=log(U)+log(U*)=log(U)+[log(U)]* s not large enough in SUY for n=3. In partilcular, one

=0. Furthermore, 44 skew-Hermitian matrices have four 4oag not expect a decomposition of the type= U,D U for
independent real degrees of freedom on the diagonal and af e SU(8), D conjugate diagonal, antl,, Use SU(2)
otherwise completely determined by their six complexg'gy(o)s S’U(Z). ’ '

upper-diagonal elements. Thus, the set of skew-Hermitian e a1s0 continue to work on the two-qubit synthesis prob-

matrices has topological dimension 16, and the same is trug,, Remaining problems includé) sharpening the lower
about U4). Subtracting 1 for global phase, we see that 15,,nq on elementary gates for synthesis of generic two-qubit
one-qubit rotations are needed to implement some two-qubitompytations, (i) constructing a generically optimal two-
computations. A randomly chosen computation is such withy it synthesis algorithm which agrees with the theoretical
probability 1, i.e.almost alwaysather thamalways —  jower bound, (iii) building more efficient synthesis algo-

If no CNOT gates are used in a given two-qubit circuit, the ijtnms which recognize computations with especially small
two lines never interact, and the two independent one-qubigjrcyits such as tensors and conditioned one-qubit computa-
computations can be implemented in three elementary rotgons, and(iv) building more efficient algorithms which use
tions each. Therefore, two-qubit computations implementyhe |east possible number of input-dependent rotations. Fur-
able withoutcNOT gates have only six degrees of freedom. iher optimizations of the present method are intricate.
Similarly, if only onecNOT gate is allowed, then only 43
=12 rotations can be placed on two lines to the left and to ACKNOWLEDGMENTS
the right of thecNnoOT gate to avoid gate reductions. This ) ) ] ]
proves that at least twoNOT gates are necessary to imple- Qu\(/avsntsr:::)lj( aF;lrc(i)fier?(;s'\élghiildrNelglsSélzﬁlggpLéggs‘gg;sf
me::)sgr)]/dti\;vqu:Jet;:izcgsrn E:gart;?:ir;iﬁ‘%ﬂ?néirrzﬁcatllgnzput_ A&M Univers_ity) for_ thei_r feedback on earlier versions o_f
dependent rotation gates. Hence, following is a summary ofhis manuscript. While this researqh was cond_uct_ed, the first
this paper’s upper and lower bounds for worst-case Optimagrona;ttizgrl:\;v:psa?turﬁgr?trteNdSIb:y\t/Téggl\ggsr:iy '?’L'(\am(s:zlg:r?ndle;
two-qubit circuits: ) y B

(a()q An upper bound of 23 elementary gates. thor was supported by the DARPA QuIST program.

(b) A lower bound of 17 elementary gates.

(c) An upper bound of 4NOT gates.

VII. CONCLUSIONS AND ON-GOING WORK

APPENDIX A: COMPUTING THE CANONICAL

DECOMPOSITION
(d) A lower bound of 2cNOT gates.
(e) An upper bound of 19 one-qubit rotatiofsa Fig. 2 This appendix rederives the canonical decomposition. The
all U-dependent. canonical decomposition has already appeared in the litera-
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ture. There exist nonconstructive argumd®4.0] which al-

low for a broader perspective on the result in terms of Lie
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theory. Another treatment in the bra notation is constructive

(Appendix of Ref.[11]) but offers little perspective. The

FIG. 3. Implementing E by elementary gates. Heré&

present treatment provides a Lie theoretic perspective while-diag(1j) counts as one elementary gate and the Hadamardgate

pointing out common pitfalls in the explicit computation
given below.

counts as two.

The first step is to describe the term “magic basis” This is an instance of the Lie theorek®AK decomposition

[8,11,15,16. Via a startling and omitted direct computation,

the matrix coefficients oA® B, with respect to the magic
basis, will all be real. HencE* (A® B)E is orthogonal. For
example, sayAeSU(2}) is given by A=aE;;—BE;,
+ BE, 1+ aEyy. Then A®1)|m1)=2"YZ«|00)
+ B]10) — B|01) + a|11)) = 2" Y(Rea|m1) + Im a|m2)
—Im B|m3)—ReB|m4)).

Theorem A.1 (from Ref. [11]Let V e U(2?), normalized
so that det¢)=1. Then (mj|Vimk)eR for all j,k
=1,...,4 if andonly if V=A®B for A,BeSU(2Y). In
particular, SU(2R SU(2)=S0O(4).

Corollary A.2 Suppose/ e SO(4), i.e., V is a two-qubit
guantum computation, détj =1, and the computational ba-
sis matrix coefficients o¥ are real. TherEVE* is a tensor
product of one-qubit computations in §2).

Warning.If Ve O(4)—S0O(4),i.e.,V is orthogonal of de-
terminant other than one, then oft&VE* is not a tensor.
One must be sure not to confuég| and €%(y| when com-

puting the canonical decomposition. This creates some added (7)

complications below.
Let N=2". It is well known[17] that anyN X N matrix G
with complex entries has polar decomposition G PZ for

([19] p. 580 of Ref[18]) for SU(2%). Note that, equivalently,
SU(2%) = ESU(4)E* = [ESO(4)E* |(EAE*)[ESO(4)E*]
=[SU(2)® SU(2)](EAE*)[SU(2)® SU(2)], which is the
canonical decomposition. Given an explitlt its canonical
decomposition is computed by the following procedure.

(1) Normalize the phase so thite SU(2?).

(2) ComputeP? for E*UE=PK; the unitary polar de-
compositon P=P!, K,;eSO(4), using P?=PP
=PK,K|P'=E*UEE'U'E.

(3) Apply Lemma A.3 to P2 This produces P?
=K,D?K, ! for K,e O(4), D? diagonal.

“Warning?” ChooseK, e SO(4), sathatEK,E* is a ten-
sor product via Corollary A.2.

(4) Choose square roots entrywise B? to form D.
“Warning” Choose square roots so that def(=1.

(5) ComputeP=K,DK, %,

(6) ComputeK;=P E*UE=PE*UE. Since detP)
=det(D)=1 and dety)=1, K; e SO(4).

Thus E*UE=PK;=K,D(K,'K;), when U
= (EK,E*)(EDE*)(EK, *K,E*) upon conversion back to
the computational basis.

(8) Using Corollary A.2, computdJ,,U,,Us, and Ug

P Hermitian andZ unitary. This generalizes to any Lie group ith

acted on by any Cartan involutio8]. Let SO(N) denote

orthogonalN XN (real) matrices of determinant one. Then

there existgp. 305 of Ref.[18]) a decomposition, sayni-
tary polar, statingM € SU(N) decomposes asl=PZ for
ZeSO(N) andP=P'. SinceZ andM are unitary, so i,

i.e.,P~1=P. In addition to this decomposition, we need the

following mild, well-known generalization of the spectral
theorem.

Lemma A.3For anyP e U(n) with P=P*!, 30 e SO(n)
such thatP=0AOQ!, where A is diagonal with norm-one
entries.

Proof. We first show the following:

VA,B symmetric reah X n matrices withAB=BA, 30
€SO(n) such that OAO' and OBO' are diagonal.

It suffices to construct a basis which is simultaneously
basis of eigenvectors for bothandB. Thus, say, is theA
eigenspace oB. ForveV,, B(Av)=A(Bv)=\Av, ie.,

v—Av preserves the eigenspace. Now find eigenvectors f

A restricted toV, , which remains symmetric.

Given the above, writtP=A+iB. Now 1=PP*=PP
=(A+iB)(A—iB)=(A?+B?) +i(BA—AB). Since the
imaginary part ofl is 0, we conclude thaAB=BA. |

Thus, anyU e SU(2?) may be written asO,DO, for
0,,0,eS0(4). Stated in terms of groups, SWR
=S0O(4)ASO(4) for A the diagonal subgroup of SU{R

and Us®Ug=EK,'K,E*.
(A1)

Ul® UZZEKzE*

Steps 3 and 4 can always be performed in more than one
way. Namely, the order of eigenvectors in Step 3 and the
choice of branches of the complex square root of the eigen-
values in Step 4 does not affect correctngEssuming that
det(K,)=1 and detD)=det(U)]. However, it may affect
gate counts, and poor choices at these steps may cause an
input tensorU =€ ?A®B, A,Be SU(2'), to not be decom-
posed into A®B)(1)(1). To prevent this, note that for such
an input tensoE* (A®B)E e SO(4) in Step 2, so thae?
=1 for any tensor. One may test for this condition explicitly
and use a straightforwardocal unitary decomposition in-
stead.

a Additionally, we observe that enumerating all possible
discrete degrees of freedom in Steps 3 and 4 does not affect
computational complexity of the algorithm. Therefore, a
0[i)ractical implementation might exhaustively evaluate im-
plied decompositions in order to achieve the smallest gate
count.

APPENDIX B: MINIMIZING THE NUMBER
OF INPUT-DEPENDENT ROTATIONS

Theorem VI.1 shows that realizing generic two-qubit
computations requires the use of 15 computation-dependent

012318-6



ARBITRARY TWO-QUBIT COMPUTATION IN 23. .. PHYSICAL REVIEW A 68, 012318 (2003

B4 RH-P-{1-E-{1-p-1-B{2] D3 via Fig. 3, which includes no input-dependent rotation gates.
A = A E* is implemented by reversing the figure, whideis imple-
E d L ~ Ely mented using Lemma IIl.1.

FIG. 4. The overall structure of the decomposition, minimizing AS D depends on the input, so do the three rotations in the
input-dependentR,, R,. Four generic one-qubit rotations are implementation oD per Fig. 1. EntangleE and disentangler
marked with “3” because they are worth up to three elementaryE™ are fixed matrices and require no parameters. Finally,
gates. Two Hadamard gates are marked with “2” because they ar8ach of the one-qubit computatiobs, U,, U, U, generi-
worth two elementary gates. Constant gates are in bold. cally require three rotations per El). Hence we have re-

alized the least possible number of variable rotations, 15.

i i ) Adding up gate counts, we see that, ... ,U, may re-

Ry(6), R(6) gates. This appendix describes a 28-gate synyuire up to 12 elementary gates. The diagdbatounts for
thesis al_gorlthm which rez_ihzes this minimum of 15 5 while E andE* count for 7 each, for a total of 31. How-
computation-dependent rotations. ever, upon inspection of Figgl) and (3), one notes that

We first produce a circuit diagram for computati@h circuit EDE* has two cancelling baNoT gates. Moreover,
which translates SU(Z)SU(2)—SO(4). Thediagram is  since the inverse oD is also a diagonal unitary matrix, we
shown in Fig. 3 and may be verified by multiplying the ap- can “flip” the asymmetric circuit forD in Fig. 1. This allows
propriate 4<x4 matrices. us to merge a constant rotations frdgnwith a variable ro-

The synthesis algorithm which is sharp in computation-tation from D. The resulting circuit decomposition is illus-
dependent rotations continues as follows. Use the canonicélated in Fig. 4 and requires up to 28 elementary gates, of
decomposition to write the input computatiod=(U;  which 15 are variable one-qubit rotations, 5 are constant ro-
®U,)o(EDE*)°(Us®U,), where U, ... U, are one- tations and 8 areNOT gates. The slight asymmetry in Fig. 4
qubit gates an@ is a diagonal unitary. We now implemeat  is explained by the asymmetric circuit fér in Fig. 1.

D
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