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Optimal Partitioners and End-Case Placers for
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Abstract—We study alternatives to classic Fiduccia–Mattheyses
(FM)-based partitioning algorithms in the context of end-case
processing for top-down standard-cell placement. While the divide
step in the top-down divide and conquer is usually performed
heuristically, we observe that optimal solutions can be found for
many sufficiently small partitioning instances. Our main motiva-
tion is that small partitioning instances frequently contain multiple
cells that are larger than the prescribed partitioning tolerance, and
that cannot be moved iteratively while preserving the legality of a
solution. To sample the suboptimality of FM-based partitioning
algorithms, we focus on optimal partitioning and placement
algorithms based on eitherenumerationor branch-and-boundthat
are invoked for instances below prescribed size thresholds, e.g.,
10 cells for placement and 30 cells for partitioning. Such

partitioners transparently handle tight balance constraints and
uneven cell sizes while typically achieving 40% smaller cuts than
best of several FM starts for instances between ten and 50 movable
nodes and average degree 2–3. Our branch-and-bound codes
incorporate various efficiency improvements, using results for
hypergraphs from [14] and a graph-specific algorithm from [22].
We achieve considerable speed-ups over single FM starts on such
instanceson average. Enumeration-based partitioners relying on
Gray codes, while easier to implement and taking less time for
elementary operations, can only compete with branch-and-bound
on very small instances, where optimal placers achieve reasonable
performance as well. In the context of a top-down global placer,
the right combination of optimal partitioners and placers can
achieve up to an average of 10% wirelength reduction and 50%
CPU time savings for a set of industry testcases.

Our results show that run-time versus quality tradeoffs may
be different for small problem instances than for common large
benchmarks, resulting in different comparisons of optimization
algorithms. We therefore suggest that alternative algorithms be
considered and, as an example, present detailed comparisons with
the flow-based balanced partitioner heuristic [19].

Index Terms—Algorithms, design automation, graph theory,
Gray codes, integrated circuit layout, very-large-scale integration.

I. INTRODUCTION

I N THE placement phase of physical design for standard-cell
very large scale integrated (VLSI) circuits, the essential

components of a given placement problem are theplacement
region, possibly with discrete allowed locations, themodules
that are to be placed subject to various constraints, and the
netlist topology that shapes the objective function being
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minimized. Commercial standard-cell placers typically apply
a top-down, divide-and-conquer approach to define an initial
global placement. The top-down approach seeks to decompose
the given placement problem instance into smaller instances by
subdividing the placement region, assigning modules to subre-
gions, reformulating constraints, and cutting the netlist—such
that good solutions to smaller instances (subproblems) combine
into good solutions of the original problem.

In practice, the problem decomposition is accomplished
by hypergraph partitioning. Each hypergraph bipartitioning
instance is induced from a rectangular region, orblock, in the
layout1 : nodes correspond to cells inside the block as well as
propagated external terminals [9], and hyperedges are induced
over the node set from the original netlist. The actual hyper-
graph partitioning is performed using Fiduccia–Mattheyses
(FM)-type iterative partitioning heuristics with minimum net
cut objective [16], [12]; the multilevel paradigm can be applied
for larger instances [3], [15]. After a global placement solution
has been found (a minimum requirement being that all cells be
placed at legal sites in cell rows, with no overlaps), detailed
placement refinement occurs.2 A high-level pseudocode for
top-down bipartitioning-based global placement is shown in
Fig. 1.

Several unique characteristics of the bipartitioning instances
are due to the placement process. In particular, tightbalance
constraintsare imposed, i.e., the sizes of partitions in the solu-
tion are not allowed to deviate from target partition sizes (see
[4] for a review of netlist partitioning formulations and con-
straints). Such constraints arise because the proportion of free
sites (“whitespace”) in n-layer metal deep-submicrometer de-
signs is often small; hence, total module area assigned to a
block must closely match the available layout area in the block.
When blocks are partitioned by horizontal cutlines, the discrete
row structure of the layout also forces tight balance tolerances.
Although the location of vertical cutlines may enjoy slightly
more flexibility, the difficulty of managing terminal propaga-
tion, block definition, region-based wirelength estimation, etc.
again precludes the use of large balance tolerances. Essentially,
relaxed balance tolerances can lead to uneven area utilization
and overlapping placements.

1A blockconceptually corresponds to 1) a placement region with allowed lo-
cations, 2) a collection of modules to be placed in this region, 3) all nets incident
to the modules, and 4) locations of all modules beyond the given region that are
adjacent to some modules in the region (consideredterminalswith fixed loca-
tions).

2The authors of [2] note that the “quadratic placement methodology” also
fits this model, in that quadratic placers still employ hypergraph partitioning,
but with initial partitioning solutions obtained from analytic placements (cf.
PROUD [26] or GORDIAN [17]).
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Fig. 1. High-level outline of the top-down partitioning-based placement process.

As shown in Fig. 1, when the partitioning instance is suffi-
ciently small or has sufficiently large block aspect ratio (e.g.,
when the block has only one cell row),end-case processingis
applied in the form of an alternate partitioner or a placer. For
example, an instance of four cells will not be recursively bi-
partitioned. Rather, the four cells will be placed optimally, e.g.,
by exhaustive enumeration of all placements to find
the best one. Of course, due to the combinatorial nature of the
problem, it is not feasible to apply optimal algorithms to even
moderately large partitioning and placement instances. Factors
such as initialization overhead (e.g., building gain bucket struc-
tures in the FM algorithm), solution quality, and runtime to-
gether determine the instance size at which it is best to switch
over from the default (FM-based) hypergraph bipartitioner to a
given end-case algorithm.

A. Motivations for Optimal End-Case Processing

With each new deep-submicrometer process generation, there
is a wider range of cell sizes in cell libraries. For example, an
80 range of inverter strengths is not uncommon today, and the
number of complex gates in the library also increases. Overall,
the wider range of cell sizes is due to the wider range of in-
terconnect layer parameters, and to new methodologies for
achieving performance convergence via sizing-based optimiza-
tions [20], [21]. In the context of tight partitioning area balance
constraints, the increased variation in cell sizes leads to more
difficult instances for FM-based partitioners. Such partitioners
are less likely to give high-quality results because: 1) the FM al-
gorithm may never reach the feasible part of the solution space
(especially if it has trouble finding an initial balance-feasible so-
lution) and 2) even a relative scarcity of feasible moves (from
any given feasible solution) can make the algorithm more sus-
ceptible to being trapped in a bad local minimum3 (cf. the anal-
ysis of Dutt and Theny [11]).

Even if the partitioning instance does not have a “tight”
balance constraint, it is not clear whether traditional FM-based
algorithms will yield good solution quality. As discussed in the
Rent’s rule-based wirelength estimation literature (e.g., [24]

3For a simple-minded example, consider a placement block with 25 nodes that
covers two rows and needs to be bisected parallel to rows. If cells were uniformly
sized, each would take 4% of the total cell area, which is already beyond the
traditional 2% tolerance commonly used to make benchmarks “tight.” Having a
group of, say, 5 cells that are two to three times bigger than the smallest cell, we
arrive at a situation where partition assignments of large cells are determined by
the initial solution generator at every start and never change over the progression
of the move-based partitioner. In this case, at least2 starts may be necessary
to “guess” the optimal assignments of large cells with high probability.

[8]), any suboptimality in cutsize for a given bipartitioning
instance will tend to increase both the number of terminals in
later bipartitioning instances and the total wirelength of the
placement. Pathological examples for the FM algorithm are
easy to construct,4 and the pitfalls of the recursive bisection
approach are well known [23]. Yet, to our knowledge there is
no work in the literature that quantifies the suboptimality of
the FM algorithm in practice, except for large “self-scaled”
instances [13]. At the same time, many small bipartitioning
instances are created during the course of top-down placement,
and their solutions contribute significantly to the overall
wirelength of the global placement solution. Moreover, current
implementations of global placement, to our knowledge, still
employ FM-based heuristics even for relatively small instances.
It is natural to ask whether there can be any benefit from
improved bipartitioning methods, if only for smaller instances.

Given these motivations, our present work studies the
potential benefits of “improved” bipartitioning methods,
specifically focusing onoptimal partitioners that are based
on enumeration or branch-and-bound. We also study linear
placement for end-case processing, again focusing on optimal
methods. The goals of this research are to: 1) to assess the
cutsize suboptimality of traditional FM-based approaches for
small partitioning instances arising in top-down placement,
2) assess the runtime penalty that can also be incurred with
traditional FM-based approaches, and 3) determine the overall
effect of new “end-case placers and partitioners” in a generic
top-down placer implementation.

Interestingly, branch-and-bound algorithms for balanced
graph partitioningproblems have been well-studied in the late
1980s and early 1990s: fast public domain implementations
[22] and experimental studies [7] are available. However, few
nontrivial approaches carry over to hypergraphs, and instances
arising in top-down placement of VLSI circuits have not been
assessed.

B. Contributions and Organization of Paper

In this paper, we improve the top-down placement heuristics
with optimal partitioners for small instances and optimal

4A 12-node, 14-edge example has nodesA ; B ; C ; D for i = 1; 2; 3,
and edges forming cliques over theAs, theBs, theCs, and theDs, along with an
A –C edge and aB –D edge. The cliques over theBs andDs have weight
2/edge; all other edges have weight 1. All nodes have weight 1, and the balance
constraint is for exact bisection. Suppose the initial solution has allAs andBs
in Partition 0, and allCs andDs in Partition 1 (i.e., cutsize= 2). Then, the first
FM pass will moveA ; C ; A ; C , A ; C ; B ; D , B ; D ; B ; D in
that order, and FM will then terminate. However, the optimal cutsize is zero.
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end-case placers. We explore the tradeoffs between: 1)
exhaustive enumeration approaches based on Gray codes
and 2) branch-and-bound approaches. Section II describes
the implementation of optimal partitioning algorithms. We
compare performance of our implementations against that
of LIFO- and CLIP-FM [10] for suites of small partitioning
instances that arise during the top-down placement of industry
standard-cell designs. The experimental data shows that our
optimal partitioners enjoy runtime advantages over both LIFO-
and CLIP-FM for surprisingly large instance sizes, while also
yielding significantly improved solution qualities. Section III
describes the implementation of optimal linear placement algo-
rithms. Section IV evaluates the impact of optimal partitioning
and placement on a top-down global placer. We provide details
of the top-down placer, followed by experimental data showing
that using the right combination of optimal partitioners and
placers can achieve up to an average of 10% wirelength reduc-
tion while producing up to a 50% CPU time savings for a set
of industry testcases, when compared against using traditional
FM-based partitioners.

In addition to the above, we provide average runtimes in sec-
onds and average cutsizes for our experiments. We also give an
additional comparison to the flow-based balanced (FBB) parti-
tioner [19], which appears competitive to FM and branch-and-
bound in certain size ranges.

II. OPTIMAL PARTITIONING

We have explored two optimal algorithms for small instances
of hypergraph partitioning: Gray code-based enumeration, and
branch-and-bound.

• A Gray code orderingtraverses all partitioning solutions
using single-node partition-to-partition moves; this per-
mits easy maintenance of cutsize during exhaustive enu-
meration by only updating the cut of nets incident to the
moved node.

• Branch-and-bound performs depth-first traversal of a tree
of partial partitioning solutions. A root-leaf path in this
tree assigns one node at a time until a complete solution
is obtained. With each node assignment, a lower bound on
the cutsize can be updated, and will converge to the ac-
tual cutsize of a complete solution when the leaf vertex is
reached. The algorithm will only consider extensions of
a partial solution if the lower bound is smaller than the
cutsize of any complete solution seen. Without bounding,
branch-and-bound would simply perform lexicographic
enumeration of solutions. In the lexicographic ordering of
complete partitioning solutions of nodes, parti-
tion reassignments are required on average between suc-
cessive solutions. Thus, effective bounding is necessary
for branch-and-bound to be faster than Gray code-based
enumeration.

A. Gray Code Based Optimal Partitioners

Gray code enumeration starts with all nodes in partition zero
and reassigns one node at a time always producing solutions
never seen before. A Gray code for-way partitioning of
nodes is a sequence of numbers of length that

can be interpreted as instructions to reassign respective nodes to
the “next” partition modulo .5 The following C code builds
such a code fornumPart -way partitioning of nodes.

byte begin tables[size];
byte ptr begin;
for(unsigned p numPart-1; p! 0; p--)

ptr 0;
for(unsigned i 1; i! size; i )

unsigned bytesToCopy ptr-begin;
for(p numPart-1; p! 0; p--)

ptr i;
memcpy(ptr,begin,bytesToCopy);
ptr bytesToCopy;

Our Gray code-based enumerative partitioner incrementally
maintains partition balances and cuts for each solution it sees.
A solution that satisfies balance constraints and has smallest cut
seen is recorded as best. Having a lower bound for solution cost
can result in a speed-up, e.g., the partitioner will stop once it
finds a solution of cost zero.

B. Branch-and-Bound Based Optimal Partitioners

We first describe a fairly straightforward branch-and-bound
algorithm for general hypergraphs and then discuss speed-ups
for cases when all hyperedges have degree two. We are able
to combine the two in our implementation by decomposing the
hypergraph into “proper hyperedges” and “the graph part” to
maintain cuts separately.

1) Algorithm for General Hypergraphs:The key observa-
tion underlying branch-and-bound is that a lower bound for net
cut, “cut so far,” is available given assignments of only some
nodes. A hyperedge is considered “already cut” if it has two
nodes assigned to different partitions, and “uncut so far” oth-
erwise. A similar observation applies to partition balances. All
nodes are ordered from the start, with fixed nodes (i.e., termi-
nals) followed by movable (i.e., assignable) nodes. A given node

can be assigned to a partition only after node
has been assigned. Our implementation sorts the movable nodes
in ascending order of degree, in order to promote more effi-
cient bounding. Fig. 2 describes input and variables used in
branch-and-bound partitioning and their initialization.

The algorithm operates on a “main stack” that: 1) stores par-
tition assignments for all nodes assigned so far and 2) allows
nodes to be “unassigned” in the reverse order of how they were
assigned. Because of this structure, no hyperedges have to be
traversed: rather, when a node is assigned to a partition without
violating balance constraints, all incident “uncut so far” hyper-
edges are updated. If for a given hyperedge this node is the
first assigned node, the hyperedge is marked with the index of
the partition to which the node is assigned. Otherwise, the new

5For example, the Gray code for bipartitionings of one item isf0g; f0 1 0g
for two items andf0 1 0 2 0 1 0g for three.
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Fig. 2. Input and global variables for branch-and-bound bipartitioning. A
nontrivial upperBound implied a known legal solution of given cost. Each
netStack contains net states, which can represent a net with no nodes
assigned to partitions, a net with nodes assigned to one partition, or a cut net.

assignment is compared to previous assignments of nodes on
the hyperedge, to check if the net becomes cut (if the net be-
comes newly cut, the total cut so far is incremented). Branching
is done by pushing a new partition assignment onto the main
stack. Bounding is done by popping partition assignments from
main stack and is triggered by either partition balances violating
prescribed limits or by “cut so far” reaching the cutsize of a pre-
viously seen solution. Straightforward extensions are available
if the existence of legal balanced solutions is not guaranteed;
these are similar to those given for Gray code-based enumera-
tive partitioners.

2) Speed-Ups for Hyperedges of Degree Two:An improved
cost computation is possible for graphs [22]. This leads to a spe-
cialized branch-and-bound that proceeds in the same way as for
general hypergraphs, but can “see” higher costs given the same
nodes assigned to the same partitions. The result is a more ef-
ficient bounding capability and a sizable speed-up. Motivating
examples of improved cost computation are given in Fig. 3(a)
and (b) where dark nodes are assigned to the left and right pari-
tions, while the light node is not yet assigned. Note that no edges
incident to the light node are cut. However, either assignment of
the light node will result in the additional cut of one in (a), and
at least two in (b). Therefore we say that there is aninevitable
cut associated with the unassigned node.

To computeinevitable cutfor a given unassigned node, we
maintain counts of adjacent nodes assigned to each partition.
The inevitable cut is the smaller of the two numbers.6 The main-
tenance is performed when a node is assigned or unassigned,
whence all adjacent unassigned nodes are traversed and their
counts updated. At the same time, we can also update the overall
cut estimate.

The only aspect of incidence information that we need here is,
for every node, the list of nodes adjacent to it that arefurther in
the node order used in branch-and-bound. In other words, there
is no need to test whether a node is assigned or not.

3) Hybrid Cost Maintenance:Before running the main
branch-and-bound loop that has been described earlier, we can
represent the two-pin edges (“the graph part”) of the original
hypergraph separately from the “proper hyperedges.” When-
ever a node is assigned or unassigned, we perform relevant

6In the multiway case, the inevitable cut is computed by subtracting the largest
of the adjacent node counts from the degree.

(a)

(b)

Fig. 3. Computation ofinevitable cuts. In each figure, the dark nodes are
assigned to the left and right partitions; the light node is not yet assigned.
Inevitable cuts are (a) one and (b) two.

Fig. 4. Conversion of hyperedges of degree three into triangles preserves cuts.

operations withboth representations and add the resulting
lower bounds for cut. Since the two representations are disjoint
and their union contains all original hyperedges, the sum is a
lower bound for the cut of the original hypergraph.

In our computation, only edges of degree two can cause in-
evitable cuts. At the same time, it is surprisingly difficult to ex-
tend inevitable cuts to hyperedges while still achieving a lower
bound for cut; cf. the review of hyperedge models given by
Lengauer [18]. We apply a technique of converting all degree-3
hyperedges into triangles of three degree-2 graph edges [14],
each with weight 0.5 (see Fig. 4). To see that for all assignments
of the three nodes this produces the correct cut compared to the
original hyperedge, we observe that there are only two different
configurations. If all nodes are not in one partition (in which
case the cut is 0), then exactly two edges of the triangle must be
cut, which results in cut .

If the original degree-3 hyperedge has nontrivial weight, then
the weights of the newly created degree-2 edges are simply half
the weight of the hyperedge. If all original weights are inte-
gral, one can avoid floating-point arithmetic by multiplying all
weights by two, as this cannot influence the optimality of par-
ticular partitioning solutions.

C. Comparison of Partitioning Algorithms

We now assess the speed and solution quality improve-
ments that can be obtained using Gray code enumeration or
branch-and-bound partitioners.

1) Provenance of Small Instances:Our testbed consists
of small hypergraph bipartitioning instances saved from our
top-down standard-cell placer, which is described in Section IV
below. We have saved all instances with 10–99 (movable)
nonterminalnodes that arise during the top-down placement
of testcase 1 and testcase 3, out of the five industrial test cases
described in Table I below. These small instances have fairly
uniform statistical properties across designs that we have seen.
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Fig. 5. Comparison of our Branch and Bound methods with one or ten starts of FBB and one or five starts of FM on problems saved from our placement tool.
Data expressed as (average cut/average CPU time); time is expressed in CPU seconds on a 300-MHz Sun Ultra-10.

Typical statistics given in [6] include average hyperedge degree
2.2–2.3 and average node degree 3.2–3.6.

2) Runtime Comparisons Versus FM and CLIP:It turns out
that Gray code enumeration is competitive with branch-and-
bound only for very small instances. We may compare the two
optimal approaches usingruntime ratio, i.e., the ratio of CPU
seconds spent on the same problem instances.7 Our two imple-
mentations perform comparably on instances with nine mod-
ules, with Gray code enumeration being 1.9 times slower on in-
stances with ten modules. The runtime ratio (Gray code runtime
divided by branch-and-bound runtime) increases by a factor of
between 1.5 and 1.9 for each additional module. Thus, we have
compared only our branch-and-bound code against the LIFO
FM and CLIP [10] algorithms. (While the Gray code enumer-
ation is faster for instances of eight modules or less, such in-
stances are better handled by the end-case placers described in
Section III.)

To compare the FM heuristic to branch-and-bound, we must
account for randomization and the fact that FM does not al-
ways achieve optimal solutions. For each instance in our test
suite, our experiments record the average cutsize achieved by
one start of FM, as well as the average best cutsize achieved
over two, three and one hundred starts. Then, after running
branch-and-bound on the same instance, we can calculate two
figures of merit: theruntime ratio (FM runtime divided by
branch-and-bound runtime), and thequality ratio (average FM
cutsize divided by branch-and-bound (i.e., optimal) cutsize).
We also compute the analogous figures of merit when two,
three or one hundred starts of FM are used. All ratios are av-
eraged geometrically. Finally, we repeat the entire experiment
using the CLIP algorithm of Dutt and Deng [10], which is in
general a stronger flat partitioner. We note that our FM imple-
mentation is at least as fast and obtains at least as good solution
quality on average compared to the public-domain implemen-
tation of W. Deng that is available from C. J. Alpert’s web page
[1]. Our CLIP implementation compares similarly to other re-
ported implementations.

7All of our CPU times are reported for a 300-MHz Sun Ultra-10 with 128-MB
RAM.

Experimental results are shown in Fig. 5.8 We see that FM is
clearly slower than branch-and-bound on instances of 27 mod-
ules or less. This is explained by the relatively high overhead
(notably the complicated gain update mechanism) of any FM
implementation: during each FM pass a hyperedge of degree
can be traversed times, while branch-and-bound never tra-
verses hyperedges.

We also see that the solution quality achieved by several starts
of FM is considerably worse than the optimal cost. In fact, for
many instances FM did not find the optimal cost in 100 starts.
The CLIP algorithm in general fared no better. As noted in Sec-
tion I, small balanced hypergraph partitioning instances are in-
herently difficult for FM, CLIP and any move-based partitioners
because of poor reachability in the solution space caused by the
balance constraint. This means that not all feasible solutions can
be reached from a given solution by legal single-module parti-
tion-to-partition moves. Even if, in the strict sense, all solutions
can be reached from a given solution, it may be difficult for FM
to find good solutions due to “bottlenecks” in the solution space.

To discourage overconstrained instances and thus improve the
reachability in the solution space, all partitioning instances pro-
duced by our placer have at least 10% tolerance.9 Early results of
our research reported at ISPD-99 [6] used partitioning instances
with much tighter tolerances, whence FM performed consider-
ably worse than on our current partitioning instances. However,
even with 10% tolerance, branch-and-bound is preferable to
FM for sufficiently small instances.

3) Pathological Cases:During our experiments we ob-
served two types of pathologies in partitioning instances.
In such instances, the failure to bound away large parts of
solution space leads to enormous increase in required CPU
time. Bounding can be easily defeated when the instance has a
large number of optimal solutions and most vertex assignments
do not change the cost of partial solution.10 In Fig. 6(a), a mul-

8The ruggedness of the curves is due to the pool of partitioning instances
saved. In particular, top-down placement generates fewer instances of larger
size; the right side of plots is more rugged as averaging becomes less effective.

9Possible overlaps in placement are removed by a post-processing step after
each level of top-down placement.

10This is especially apparent wheninevitable cutsare used and allow com-
puting correct cost very early. We note, however, that inevitable cuts can never
slow down branch-and-bound.
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(a)

(b)

Fig. 6. Pathological cases for branch-and-bound partitioning, having large
numbers of optimal solutions. Larger balls represent fixed vertices; smaller
balls represent movable vertices.

titude of optimal solutions arises due to disconnected “threads”
each of which has several assignments compatible with optimal
solutions. High-degree hyperedges in Fig. 6(b) affect the cost
function very little, and the instance is effectively very sparse.
In general, any instance with numerous symmetries can be
expected to cause trouble for branch-and-bound; this includes
extremely sparse and extremely dense instances because they
are very close to highly symmetric instances. In this context, we
note that we observed more pathological dense instances [some
similar to Fig. 6(a)] when higher-level heuristic partitioners
were detuned to perform poorly. Another observation is that FM
typically performs well on instances that have many optimal
solutions and is not affected by symmetriesper se. Therefore, it
is reasonable to limit the CPU time given to branch-and-bound,
and call FM if branch-and-bound times out.

III. OPTIMAL PLACEMENT

In the top-down partitioning-based placement approach, the
original placement problem (considered as a “block”) is parti-
tioned into two subproblems (subblocks) and then recursively
into smaller and smaller subproblems (recall Fig. 1). Eventu-
ally, wirelength can be directly optimized for blocks with few
nodes. We now describeoptimal placersthat operate on arbi-
trary single-row end-case instances given by:11

• A hypergraph with nodes (cells) having -dimen-
sions. All cell heights are assumed equal to the row
height.

• Every hyperedge has a bounding box of fixed pin locations
corresponding to the external terminals incident to that
net.

11End-cases have only one row because our top-down placer described in
Section IV preferentially splits small multirow blocks between rows.

• Each hyperedge-to-node connection has apin offsetrela-
tive to the cell origin.

• A placement region, i.e., a subrow of a certain length.12

Additionally assuming the uniform distribution of whitespace,
we can consider placement solutions as permutations of hyper-
graph nodes. The end-case placement problem thus naturally
lends itself to enumeration and branch-and-bound. Implemen-
tations based on enumeration do not appear competitive in this
context and will not be covered further.

In our branch-and-bound placer, nodes are added to the place-
ment one at a time, and the bounding boxes of incident edges
are extended to include the new pin locations. The branch-and-
bound approach relies on computing, from a given partial place-
ment, a lower bound on the wirelength of any completion of the
placement. Extensions of the current partial solution are consid-
ered only as long as this lower bound is smaller than the cost of
the best seen complete solution.

One difficulty in applying branch-and-bound to end-case
placement is varying cell widths. We restrict cells in the
small instance to be packed with a fixed-size space between
neighbors, i.e., whitespace is distributed equally between them.
Replacing a cell with a cell of different width will change
the location of at least one neighbor, triggering bounding box
recomputations for incident nets. To simplify maintenance,
the nodes are packed from left to right and always added
to or removed from the right end of the partially-specified
permutation. Such a lexicographic ordering naturally leads to a
stack-driven implementation, where the states of incident nets
are “pushed” onto stacks when a node is appended on the right
side of the ordering, and “popped” when the node is removed.
Bounding entails “popping” nodes at the end of a partial
solution before all lexicographically greater partial solutions
have been visited. Pseudocode is provided in Fig. 7. Typical
runtimes of our resulting end-case placer implementation,
within the experimental context described in Section IV, are
0.042 s for eight-cell instances, 0.011 s for 7-cell instances, and
0.002 s for six-cell instances on a 300-MHz Sun Ultra-10.

IV. END-CASE PROCESSING INGLOBAL PLACEMENT

Recall from Fig. 1 that top-down placement reduces to 1) split-
ting blocks, and 2) solving endcases. We first describe our split-
ting algorithm because it significantly affects end-case instances.
While blocks are responsible for the nets incident to their mod-
ules, our implementation does not explicitly transcribe nets from
a block to its subblocks. Incident nets are deduced from the orig-
inal netlist. Each external module adjacent to a module in the
block is fixed at the center of its block. Thus, splitting a block
reduces to balanced hypergraph partitioning with fixed terminals
as detailed in Fig. 8. In particular, the possibly numerous termi-
nals of a block are collapsed into at most two terminals in the re-
sulting hypergraph. Nets incident to fixed terminals in both par-
titions (inessential nets) will necessarily be cut and are therefore
removed from consideration. Our implementation chooses a hor-
izontal cutline to split a block with modules if the block con-

12For unfortunately short subrows that cannot accommodate all cells without
overlaps, our end-case placer first minimizes overlap, then wirelength.
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Fig. 7. Branch-and-Bound algorithm for single-row placement is produced
from a lexicographic enumeration of placement orderings by adding code for
boundingin lines 8 and 9 (in bold).

tains or more rows, otherwise the choice of cut is due to
the aspect ratio of the block. The blocks are split into subblocks
as evenly as possible, therefore blocks with less than 15 cells will
have one row, simplifying endcase analysis.

To assess the impact of optimal partitioners and placers on
top-down global placement, we have run our implementation on
five test cases (see Table I) supplied from the industry in the Ca-
dence Design Systems LEF/DEF format. In these experiments,
we varied instance size thresholds: 1) below which branch-and-
bound partitioning is invoked—from 0 to 40, and 2) below which
the end-case placer is called—from 3 to 8. All applications of FM
consist of five independent starts; our experience indicates that
any smaller number of starts will result in substantial degradation
of solution quality, making comparisons uninteresting.

The best choice of thresholds13 in Table II yields total wire-
length reductionsof10%while simultaneously reducing runtime

13In our experience, this choice depends on several features of the top-down
placer, e.g., the optimal thresholds were higher after improvements in the
heuristic partitioners applied at several previous levels. Therefore, fine-tuning is
recommended in practice. We also note a less pronouncedinstance-dependency.

Fig. 8. Splitting a block in top-down placement.

TABLE I
CORE CELL, PAD AND NET COUNTS FORTEST CASESUSED

by as much as 50%. Overall, invoking end-case optimal biparti-
tioners for instance sizes of 30–35 or less and end-case optimal
placers for instance sizes of seven or less leads to good results.

V. CONCLUSION

Our experiments show that optimal partitioners based on
branch-and-bound are easy to implement and outperform
FM-based heuristics by 20%–70% on problem instances of
up to 40 nodes; they are also faster than a single start of
FM when there are fewer than 27 nodes. However, solutions
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TABLE II
AVERAGE WIRELENGTH (WL) AND TIME (t) FOR PLACEMENTS GENERATED WITH VARIOUS SMALL PARTITIONER AND PLACER SIZE

THRESHOLDS. CPU TIME WAS MEASURED ONA 140-MHz SUN SPARC ULTRA1

produced by FM for instances of 60 and more nodes are most
often within 10% of optimal and this gap decreases further as
instances grow. The fact that the CPU time taken by FM on
those instances is orders of magnitude smaller than that taken
by branch-and-bound, reconfirms FM as a leading heuristic
for mediumandlarge-scalehypergraph partitioning. However,
even with algorithm modifications to find better solutions
(e.g., [11]), FM-based algorithms are not likely to compete
with branch-and-bound on small instances. The considerable
suboptimality of FM solutions suggests that other move-based
partitioning algorithms, e.g., Simulated Annealing, for which
maintaining legality of the current solution is important,
may perform poorly on small instances with nonuniform
cell sizes.14 Alternate algorithmic approaches may be better
suited to the nature of end-case instances. Toward this end we
compare FM and branch-and-bound to the flow-based FBB

14Many popular move-based partitioning algorithms were originally pro-
posed foruniform cell sizes and have not been extensively studied otherwise.
While they trivially apply to nonuniformly sized cells as well, their performance
may deteriorate for reasons not previously considered.

heuristic [19] by H. Liu and M. Wong from the University of
Texas at Austin, who graciously offered their implementations
to us.15

The detailed results of those experiments are available in
Fig. 9, where average cuts and run times are given that parti-
tioners achieve on instances of sizes 10–100. One start of FBB
is always faster than branch-and-bound, and is also faster than
one start of FM for instances with up to 90 nodes. However,
the solution quality of the ten-start FBB is suboptimal by more

15At the time when this paper goes to print, an improved version of ten-start
FBB is available that performs much better on larger circuits. In the simpler im-
plementation ten source/sink pairs are randomly generated and FBB is called
ten times. For each source/sink pair(s ; t ) if the partitioning result (which
separatess andt ) does not separate the given pair of fixed vertices(s; t), the
result is illegal and cannot be used. The best result among the legal solutions
is returned. The better implementation mergess with s andt with t before
calling FBB. In this way, all ten trials produce legal solutions and the observed
performance is considerably improved. Our correspondence with the authors of
[19] indicates that the better FBB implementation may have a window of appli-
cability, intermediate between end-case optimal partitioners and FM. However,
we have been unable to confirm this due to platform incompatibilities as this
paper goes to print.
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Fig. 9. Comparison of our Branch and Bound methods with one or ten starts of FBB and one or five starts of FM on problems saved from our placement tool.
Data expressed as (average cut/average CPU time); time is expressed in CPU seconds on a 300-MHz Sund Ultra-10.

than 10%, while the run time of branch-and-bound is clearly
acceptable for up to 30 nodes ( s). For instances with 30
nodes or more, FM provides better solution quality than FBB
(as measured in one start) and needs fewer starts to achieve
comparable quality. In fact, five starts of FM dominate ten
starts of FBB for instances of 50 or more nodes. While FM
and branch-and-bound do well in our comparison, they clearly
have competition on small problem instances.16 The run time
plot in Fig. 9 also shows that FM scales very well (almost
horizontal run time curves), FBB also scales well, but worse
than FM. The branch-and-bound run time, as expected, scales
exponentially (note the logarithmic scale of run time on the
plot). The curves become more rugged for larger instance size
because our pool of instances, generated from top-down place-
ment, has fewer instances of large size making averaging less
effective.

While our experiments were limited to available benchmark
circuits, the overall superiority of optimal end-case processors
should carry over to larger circuits, where the number of small
partitioning instances will increase with netlist size while the
same relative improvement in quality applies. Our top-down
placer compares favorably to a recent release of a commer-
cial (fixed-die, standard-cell) placer, and we believe that our re-
ported improvements can carry over to other modern implemen-
tations.

More efficient branch-and-bound codes are undoubtedly pos-
sible and their study is the subject of ongoing research. To fa-
cilitate further collaboration in this direction, we have made the
end-case partitioning and placement problem instances avail-
able through the Placement slot in the MARCO/GSRC Book-
shelf for VLSI CAD algorithms [5]. Other important research
questions include the use of multiway partitioners as well as al-
ternative partitioning and placement objectives.

16All partitioning instances have a tolerance of at least 10%. If the
tolerance is decreased, branch-and-bound has additional advantage, while
FM performs much poorer (see our earlier results reported in [6]). FBB
appears to perform only marginally worse.
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