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Abstract

The balanced partitioning problem divides the nodes of a [hyper]graph into groups of
approximately equal weight (i.e., satisfying balance constraints) while minimizing the number
of [hyper]edges that are cut (i.e., adjacent to nodes in di�erent groups). Classic iterative
algorithms use the pass paradigm [24] in performing single-node moves [16, 13] to improve
the initial solution. To satisfy particular balance constraints, it is usual to require that
intermediate solutions satisfy the constraints. Hence, many possible moves are rejected.

Hypergraph partitioning heuristics have been traditionally proposed for and evaluated on
hypergraphs with unit node weights only. Nevertheless, many real-world applications entail
varying node weights, e.g., VLSI circuit partitioning where node weight typically represents
cell area. Even when multilevel partitioning [3] is performed on unit-node-weight hyper-
graphs, intermediate clustered hypergraphs have varying node weights. Nothing prevents
the use of conventional move-based heuristics when node weights vary, but their performance
deteriorates, as shown by our analysis of partitioning results in [1].

We describe two e�ects that cause this deterioration and propose simple modi�cations
of well-known algorithms to address them. Our baseline implementations achieve dramatic
improvements over previously reported results (by factors of up to 25); explicitly addressing
the described harmful e�ects provides further improvement. Overall results are superior to
those of the PROP-REXest algorithm reported in [14], which addresses similar problems.

1 Introduction

Given a hyperedge- and node-weighted hypergraph H = (V;E), a k-way partitioning P k

assigns the nodes in V to k disjoint nonempty partitions. The k-way partitioning problem

seeks to minimize a given objective function c(P k) whose argument is a partitioning. A

standard objective function is net cut, i.e., the number of hyperedges (signal nets) whose

nodes are not all in a single partition. Constraints are typically imposed on the partitioning

solution, and make the problem di�cult. For example, limits on the total node weight in

each partition (balance constraints) result in an NP-hard formulation [17]; certain nodes can

also be �xed in particular partitions (�xed constraints).

�This research was supported by a grant from Cadence Design Systems, Inc.
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A key driver for hypergraph partitioning research in VLSI CAD has been the top-down

global placement of standard-cell designs. Key attributes of real-world instances include:

� size: number of nodes up to one million or more (all instance sizes equally important)

� sparsity: number of hyperedges very close to the number of nodes, and average node

degrees typically between 3 and 5 in gate- and cell-level netlists

� average hyperedge degrees typically between 3 and 5

� small number of extremely large nets (e.g., clock, reset)

� wide variation in node weights (cell areas) due to the drive range of deep-submicron

cell libraries and the presence of complex cells and large macros in the netlist

� tight balance tolerances, i.e., the sum of actual cell areas assigned to each partition

must be very close (e.g., within 2%) to the requested target area.

In this application, scalability, speed and solution quality are all important criteria. To

achieve speed and 
exibility in addressing variant formulations, move-based heuristics are

typically used, notably the Fiduccia-Mattheyses (FM) heuristic [16, 8].1

We note that reporting in the research literature has centered on hypergraphs with unit

node weights, in particular, the original works of Kernighan and Lin [24], Fiduccia and

Mattheyses [16] as well as many others evaluate new partitioning heuristics on such graphs.

Prior works that address variable node weights have typically used ACM/SIGDA benchmarks

[6] where hypergraph node weights vary little compared, e.g., to the size variance in modern

VLSI cell libraries, and the netlist topology has relatively low node degrees (up to 10).

Alpert [2] noted that many of these circuits no longer re
ect the complexity of modern

partitioning instances. Accordingly, the ISPD98 Circuit Benchmark Suite, consisting of 18

larger benchmarks arising in the physical implementation 
ow of internal IBM designs, was

released in early 1998 [2, 1]. Many of the ISPD98 benchmarks have nodes with area bigger

than 10% of the total and node degrees in the several hundreds; however, these instances

have no large nets. By contrast, ACM/SIGDA benchmarks have only low-degree nodes with

nearly uniform areas, but can have nets of degree greater than 1,000.

1E�ective move-based heuristics for k-way hypergraph partitioning have been pioneered in [24, 16, 7], with
re�nements to FM given by [25, 27, 19, 26, 13, 3, 11, 18, 22, 8] and many others. Comprehensive surveys of VLSI
partitioning formulations and algorithms are given in [4] [20]; a recent update on balanced partitioning in VLSI
physical design is given by [21].
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Akin to [14], this work addresses the di�erences between partitioning with varying node

weights and unit node weights. Section 2 critically reviews iterative partitioning heuristics,

including the popular LIFO and CLIP algorithms, and demonstrates using partitioning re-

sults published in [1] that varying node areas indeed cause performance deterioration of those

heuristics. Section 3 describes a particular e�ect caused by heavy nodes that a�ects iterative

partitioners, especially CLIP. The best of the proposed \�xes" to LIFO and CLIP appear to

be quite e�ective.

In Section 4, we develop a type of temporary tolerance relaxation to counter the immo-

bility of heavy nodes. Our technique is somewhat di�erent than that in [14] and easier to

implement. Calibration of runtimes to results reported in [14] and subsequent \best of n"

tests suggest that our approach is more e�ective. Section 5 concludes with closing remarks.

2 Move-based partitioning

Today, competitive partitioning algorithms (e.g. [22, 3]) are overwhelmingly based on itera-

tive heuristics [24, 16, 13] that perform single-node moves in passes in order to improve the

initial solution. It is typically the case that improvements in these classic heuristics will also

improve leading-edge heuristics. Furthermore, advances in classic heuristics often provide

very immediate returns since there is a large base of users in real-world settings, as well as

a more comprehensive body of results and implementations available for calibration.

2.1 Satisfying balance constraints

The need to satisfy tight balance constraints is motivated by applications in, e.g. top-down

VLSI placement, where hypergraph partitioning is used to reduce large problems to smaller

ones. Physical layout considerations for sub-problems translate into size/area constraints for

partitioning (see [14, 9] for more details).

Turning to [1], we compare results in Table 5 for unit-weight partitioning with 2% tol-

erance to those in Table 6 where nodes are assigned varying (actual) weights. While lowest

solution costs are comparable for both cases (e.g. 274 vs 297 for IBM01), the average per-

formance of FM and CLIP on IBM benchmarks di�ers by factors of least 5-10. Moreover,

comparing average cuts in the FM and CLIP columns of Table 6 against the \#Nets" column

of Table 2, we see that the two iterative heuristics essentially failed on many benchmarks

| more than 50% nets are cut on average in IBM02-IBM04 and IBM06-IBM13 (11 out of
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18) and over 25% in several others, whereas solutions exist with only several percent of nets

cut. This motivates further analysis of how balance constraints are treated in move-based

partitioners.

To satisfy particular balance constraints, it is common to generate an initial solution

that satis�es the constraints2 (is \legal") and require that all intermediate solutions be legal

as well. Thus moves leading to illegal solutions are rejected regardless of the gain they

provide. Nodes that are heavier than the balance tolerance can never move in a typical

implementation, even though such nodes often have very large degrees and the solution

cost strongly depends on their assignment. Given an \unfortunate" initial assignment of

several heavy nodes, a move-based partitioner is never able to recover low-cost solutions.

For many instances, e.g. ISPD-98 benchmarks, heavy nodes are assigned similarly in most

low-cost solutions, which means that a random assignment of heavy nodes is most likely

\unfortunate".

In particular algorithms such as FM and CLIP, immobile nodes may impair the ability of

other nodes to move, trapping FM- and CLIP-based iterative partitioners in high-cost local

minima (this corking e�ect is described and addressed in Section 3). Such phenomena are

magni�ed by tight balance tolerances (e.g., � 2%) and the presence of heavy nodes, e.g., in

the instances of the ISPD-98 benchmark suite (see [1, Table 2, p.81]).

2.2 The FM algorithm

As is well known, the FM heuristic [16, 8] iteratively improves an initial partitioning solution

by moving nodes one by one between partitions. FM starts with a possibly random solution

and applies a sequence of moves organized as passes. At the beginning of a pass, all nodes

are free to move (unlocked), and each possible move is labeled with the immediate change in

total cost it would cause; this is called the gain of the move (positive gains reduce solution

cost, while negative gains increase it). Iteratively, a move with highest gain is selected and

executed, and the moving node is locked, i.e., is not allowed to move again during that

pass. Since moving a node changes the gains of adjacent nodes, after a move is executed all

a�ected gains are updated. Selection and execution of a best-gain move, followed by gain

2In other words, one �rst solves a respective number partitioning problem. Since iterative partitioners typically
get trapped in a number of relatively high-cost local minima, an important additional requirement is to generate
randomized initial solutions with \su�ciently good" distribution in the hope to non-deterministically avoid high-
cost local minima after several independent starts.
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update, are repeated until every node is locked, or until no legal move is available. Then,

the best solution seen during the pass is adopted as the starting solution of the next pass.

The algorithm terminates when a pass fails to improve solution quality.

The FM algorithm can be easily seen [8] to have three main operations: (1) the com-

putation of initial gain values at the beginning of a pass; (2) the retrieval of the best-gain

(feasible) move; and (3) the update of all a�ected gain values after a move is made. The con-

tribution of Fiduccia and Mattheyses lies in observing that circuit hypergraphs are sparse,

so that the gain of any move is bounded by plus or minus the maximal node degree in the

hypergraph (times the maximal edge weight, if edge weights are used). This allows hashing

of moves by their gains: any update to a gain value requires constant time, yielding overall

linear complexity per pass. In [16], all moves with the same gain are stored in a linked list

representing a \gain bucket".

To guarantee that the output solution is balanced, moves that cause violations of balance

constraints are typically ignored. Furthermore, in a typical implementation if the �rst move

in a bucket is ignored, then, for CPU time considerations, the entire bucket is ignored for

choosing moves (it is extremely time consuming to traverse a bucket's entire list, hoping

that one of the nodes in it can be legally moved. Note that moves are examined in priority

order, so the �rst legal move found is the best. We believe that current practice is not only

motivated by speed, but is also partly a historical legacy from partitioners being tuned for

unit-area, exact-bisection benchmarking. Recent work of Dutt and Theny [14] is notable

for addressing the issue of partitioning with tight balance constraints, and a comparison of

results is given further below. However, our techniques are orthogonal in the sense that [14]

changes the structure of a pass in a sophisticated way, while we simply show how to �x

a classic FM implementation in the context of tight balance constraints and uneven node

weights.

2.3 The CLIP Algorithm

The actual gain of a node in the classic FM algorithm can be viewed as a sum of initial gain

(i.e., the gain at the beginning of the pass) and the updated gain due to nodes moved. The

CLIP algorithm of [13] uses updated gain instead of actual gain to prioritize moves. At the

beginning of the pass, all moves have zero updated gain, and ties are broken by total (initial)

gain. The authors of CLIP report very impressive experimental results [13], and CLIP has
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been cited as enabling within a recent multilevel partitioner implementation [3]. The method

has also been the basis of such extensions as [15].

3 The Corking E�ect

As noted above, CLIP begins any pass by placing all node moves into buckets corresponding

to zero updated gain. The nodes with highest initial gain are placed at the heads of these

zero-gain buckets. Hence, if the move at the head of each bucket at the beginning of a CLIP

pass is not legal, the whole pass terminates without making any moves. Particularly when

starting from a random initial solution, the nodes with highest gain will tend to be the nodes

of highest degree, which correspond to the heaviest nodes. Furthermore, even if the �rst move

is legal, CLIP is still vulnerable to termination soon afterward: without enough time for

the moves to \spread out", nearly all moves will still be in the zero-gain bucket when it is

revisited, and then ignored due to an illegal move (ending the pass). We call this the corking

e�ect: the heavy node at the head of the bucket acts as a cork.3

Test Case Generic CLIP L-Uncorked CLIP F-Uncorked CLIP LF-Uncorked CLIP Other CLIP [2]

ibm01 309/559.0(3.7) 279/547.2(3.8) 266/483.7(5.1) 299/496.0(5.4) 471/2456

ibm02 305/591.0(4.0) 266/596.0(4.3) 294/498.1(8.8) 266/486.4(8.3) 1228/12158

ibm03 1288/2683.6(6.8) 1076/2716.7(6.1) 1048/1744.8(21.5) 1019/1835.1(21.2) 2569/16695

ibm04 818/2081.6(7.2) 936/2157.3(8.0) 623/1242.8(30.7) 674/1399.0(30.0) 17782/20178

ibm05 1920/3134.4(23.7) 1814/3045.8(26.4) 1799/2988.1(25.2) 1877/3064.5(27.0) 1990/3156

ibm06 917/1677.1(11.1) 944/1728.3(10.1) 787/1431.3(23.1) 848/1324.8(24.5) 1499/18154

ibm07 1244/2993.8(15.5) 1182/3280.6(16.6) 1008/1835.3(55.6) 1136/2214.6(67.4) 14166/31326

ibm08 1494/3492.0(23.4) 1444/3242.1(28.7) 1544/3385.3(29.5) 1640/2736.4(88.1) 4283/30694

ibm09 1244/3494.3(15.5) 2326/4117.3(16.4) 1105/2087.0(81.4) 1193/2327.1(90.8) 2144/37124

ibm10 1826/3417.0(44.0) 1455/3811.2(55.2) 1594/2720.1(142.0) 1526/3062.0(146.0) 5958/46700

Table 1: Comparison of generic (Corked), L-Uncorked, F-Uncorked, and LF-Uncorked CLIP results
for ISPD98 benchmark test cases. Results shown are minimum/average netcut (average CPU seconds
on Sun Ultra-10) obtained over 100 independent single-start trials, with actual node weights and
a 2% balance constraint. We also show the CLIP FM results reported by Alpert in [2] (\Other
CLIP").

Our traces of CLIP executions show that corking occurs quite often with the more mod-

ern ISPD98 benchmarks. This is because these benchmarks contain very heavy nodes whose

weight approaches or exceeds typical balance tolerances (see Table 2 in [2]). We have devel-

oped three uncorking techniques to counteract the corking e�ect.

3This e�ect is not unique to CLIP; it can apply, albeit less dramatically, to the original FM heuristic and other
variants.

6



Explicit uncorking. Continue to look beyond the �rst move in a bucket, if the �rst move

is illegal.

LIFO pass before starting CLIP. Execute a single LIFO FM pass [19] before starting

CLIP passes. This greatly reduces the likelihood of large-degree nodes having the high-

est total gain, and corking the CLIP gain buckets. This technique should not noticeably

increase CPU time as CLIP typically makes dozens of passes and an additional LIFO

pass will not signi�cantly a�ect runtime.

Fixing heavy nodes. At the beginning of the pass, do not place any node whose weight is

greater than the balance tolerance into the gain structure. This technique has essen-

tially zero overhead.4

Test Case Generic CLIP L-Uncorked CLIP F-Uncorked CLIP LF-Uncorked CLIP Other CLIP [2]

ibm01 220/441.0(4.7) 221/401.1(4.6) 250/437.6(4.9) 223/412.8(4.8) 246/462

ibm02 257/436.0(5.7) 269/407.7(6.3) 275/419.2(7.7) 256/412.0(7.1) 439/4163

ibm03 749/1555.3(11.0) 743/1664.0(10.5) 809/1371.9(19.3) 654/1585.2(19.1) 1915/9720

ibm04 526/920.4(16.6) 510/1024.3(19.9) 479/950.3(16.9) 449/924.2(19.3) 488/1232

ibm05 1786/2849.1(25.9) 1732/2961.6(27.9) 1794/2976.3(25.3) 1774/2918.3(27.1) 2146/3016

ibm06 859/1492.4(11.6) 766/1638.8(11.6) 666/1246.9(21.2) 791/1256.9(23.3) 1303/15658

ibm07 727/1520.9(30.8) 737/1882.7(38.6) 746/1576.6(32.5) 737/1861.6(37.2) 748/1711

ibm08 1306/2283.5(52.6) 1466/2840.6(73.4) 1279/1944.7(63.7) 1492/2538.9(63.3) 2176/15907

ibm09 523/1877.5(38.7) 638/2312.0(46.1) 549/1784.8(37.2) 559/2281.2(45.8) 527/2828

ibm10 804/1907.8( 64.5) 877/2040.4(71.1) 885/1945.1(63.5) 900/2214.4(77.1) 971/2242

Table 2: Comparison of generic (corked), L-Uncorked, F-Uncorked, and LF-Uncorked CLIP results
for ISPD98 benchmark test cases. Results shown are minimum/average cutsize (average CPU sec-
onds on Sun Ultra-10) obtained over 100 independent single-start trials, with actual node weights
and a 10% balance constraint. We also show the CLIP FM results reported by Alpert in [2] (\Other
CLIP").

We �nd the �rst technique to be too time-consuming, and it moreover appears to have a

harmful e�ect on solution quality. Independently applying or not applying the two remaining

techniques { L-Uncorking by adding an initial LIFO pass, and F-Uncorking by �xing heavy

nodes { yields four di�erent CLIP implementations: generic (corked) CLIP, L-Uncorked

CLIP, F-Uncorked CLIP, and LF-Uncorked CLIP. Tables 1 and 2 show the cutsize results

for these variants on ISPD98 benchmarks.5 We report the best and average cutsize obtained

4With respect to the breakdown of CPU resources in Section 2, only initial gain computation may be a�ected
| we are adding one extra if per node. Initial gain computation already has a number of ifs, e.g. in net
traversals and cost computations; it also entails a number of memory accesses which are much more expensive
than branching.

5Only the �rst 10 test cases in the ISPD98 suite are used since runtimes for 
at CLIP FM quickly become too
long to be of interest in the driving context of top-down placement. I.e., faster multilevel engines would likely be
necessary for the larger test cases.
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over 100 independent single-start trials for each benchmark, and we also report the average

CPU time (seconds on a 300MHz Sun Ultra-10 workstation with 128MB RAM) required by

a single-start trial.

The experimental data clearly reveals the correlation between corking e�ect, early CLIP

termination (small runtimes), and inferior solution quality. There are substantial perfor-

mance di�erences between the corked and uncorked CLIP variants, and we believe that the

F-Uncorked CLIP variant is the most useful in practice. We also reproduce the best and

average cutsizes for CLIP, published by Alpert in [2]. Our uncorked CLIP implementa-

tion obtains stunning improvements over Alpert's CLIP implementation (up to factors of 25

reduction in average cutsize).

4 Temporary tolerance relaxation

A brief examination of the recent ISPD98 Circuit Benchmark Suite [1] reveals cells(nodes)

whose area(weight) takes more than 10% of the total area(weight). Such cells are guaranteed

to always be immobile during move-based partitioning with tolerance less than 10% and

likely to be immobile even with larger tolerance. As explained in Section 2, this prevents

move-based algorithms from achieving low-cost solutions from most initial solutions.

Temporarily relaxing partitioning tolerance in order to move otherwise immobile nodes

is a natural idea; it has been explored in [14] where high-gain nodes could be moved in a

pass even when this caused illegal solutions. Such temporary illegalities were resolved in the

same pass upon reaching a certain threshold. The proposed algorithms appear di�cult to

tune, are far from conventional FM or CLIP and can take up to four times longer to run.

A di�erent type of temporary tolerance relaxation appears more successful and easier to

implement.

4.1 Proposed metaheuristic

We perform two or more \chained" calls to a black-box iterative partitioner; every next

call uses a smaller partitioning tolerance; the tolerance for the �rst call is large enough

for every node to be movable, while the last call uses the originally requested tolerance.

Solutions produced by a proceeding partitioner call are used by the next call. A solution

that is illegal with respect to the smaller tolerance is \greedily legalized" before the next

partitioner call. To do this, nodes are moved from over�lled and to under�lled partitions,
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always choosing a highest-gain move �rst. In practice, a separate \greedy legalization"

step is unnecessary because reasonable FM and CLIP implementations, if given an illegal

initial solution, automatically perform \greedy legalization" whenever necessary. A similar

technique is used in the Metis package of Karypis et al. (and, likely, in hMetis [22, 23] as

well), which implements multi-level partitioning heuristics. However, we are not aware of

any works exploring it for 
at partitioning.

Two implementation details are useful (but, strictly speaking, unnecessary): (a) tie-

breaking on balances, and (b) the ability to limit the number of passes. If during a pass, the

current solution has the best-seen cost, it will be preferred over the previous best solution if

and only if it is closer to begin exactly balanced. Secondly, the last several passes in a given

partitioning call often produce very little improvement. Given that the resulting solution will

be processed by another partitioner call with a di�erent tolerance, it may not be useful to

wait for a non-improving pass. Therefore the number of passes may be limited; alternatively,

one can require minimal improvement in a pass.

4.2 Empirical evaluation

To juxtapose the performance of the two proposed approaches to partitioning with varying

node weights, we compare the best uncorking variants of LIFO and CLIP (LIFOU and

CLIPU ) described in Section 3 to their further improvements LIFO2 and CLIP2 with a

simple-minded two-stage temporary tolerance relaxation. For the �rst pass, the tolerance is

set to the larger of (a) three times the maximal node weight [5], and (b) 20% of the total.

We also limited the number of passes in the �rst stage to 10 and, in CLIP2, used CLIP

only at the �rst partitioning stage. Appropriate experiments have suggested this particular

combination from among a number of similar settings.

We analyze algorithm performance in the context of \average best of n" for n = 1; 2; 4; 8.

This technique, advocated in [10], allows detailed analyses of run-time-versus-quality trade-

o�s and is also representative of important application contexts, e.g., VLSI placement. The

results are presented in Table 3 and suggest that two-stage tolerance relaxation indeed im-

proves solution costs without considerably increasing runtime.

As can be seen in 3, the LIFO2 and CLIP2 algorithms provide substantial improvements

over even the \uncorked" LIFO and CLIP partitioners. The two-stage algorithms actually

improve per-start runtime for some examples, and improve results given equal runtimes for
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nearly all the testcases. It is unclear whether LIFO2 or CLIP2 is the superior algorithm.

This is surprising, given the clear dominance of CLIP over LIFO. The IBM04 testcase is

a particularly striking example, as it shows an improvement of 25% from CLIPU (the best

uncorked result) to CLIP2 (the best 2-stage result) and a reduction in single-start runtime

of 65%! Of the eight examples presented, IBM04 contains the largest number of nodes

larger than the tolerance of 2%. Thus, it is encouraging to see that the two-stage approach

addresses this di�cult problem so well.

Next, we compare our two-stage temporary tolerance relaxation to PROP-REXest, a

leading algorithm from [14] which employs temporary illegalities within passes to address

similar issues. PROP-REXest is the best of the several algorithms reported in [14].6 These

experiments were performed on a 140MHz Sun Ultra-1 workstation. To calibrate our run-

times to those reported in [14], we ran our plain FM implementation on the ACM/SIGDA

benchmarks [6] used in that work. The overall performance ratio of approximately 1.7 was

fairly consistent, and our FM implementation produced very similar average solution costs.

The results of our comparisons to PROP-REX are given in Table 4. They suggest that

four starts of our two-stage CLIP variant CLIP2 achieves superior solution costs in compa-

rable amounts of time, improving upon the performance of PROP-REX by up to 31%. A

single start of CLIP2 produces results similar to that of PROP-REX, while requiring much

less runtime (up to 86% less for the avq small testcase). At the same time, CLIP2 is only a

\�x" to CLIP and is rather simple to implement.

5 Conclusions

From analysis of partitioning results from [1], we notice that the performance of FM and

CLIP partitioners deteriorates when node areas are allowed to vary. We describe two gen-

eral e�ects that cause such performance deterioration, and that are likely to a�ect a wide

variety of iterative partitioners. In addition, we describe the previously unknown corking

e�ect, which is particularly harmful to the popular CLIP algorithm [13], notably within

CLIP's motivating context of top-down standard-cell VLSI placement. We propose easy-

to-implement, low-overhead techniques to counteract the latter problem, and demonstrate

notable improvements in solution quality. We speculate that the CLIP corking e�ect was

not diagnosed earlier because of the tendency to compare partitioners according to unit-area

6The results of PROP-REXest may be found in Table 3 of [14].
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Test Case Algo 1 start 2 starts 4 starts 8 starts

LIFO 569(4.5) 494(9.0) 451(18.0) 418(36.1)
CLIP 505(6.4) 435(12.7) 388(25.5) 350(51.0)

IBM01 LIFOU 569(4.2) 498(8.3) 455(16.6) 415(33.2)
CLIPU 440(10.1) 385(20.3) 336(40.5) 324(81.1)
LIFO2 399(4.8) 331(9.6) 266(19.3) 251(38.5)
CLIP2 401(4.9) 336(9.8) 301(19.5) 274(39.1)

LIFO 498(6.8) 425(13.6) 386(27.1) 357(54.2)
CLIP 600(6.6) 518(13.2) 458(26.4) 418(52.8)

IBM02 LIFOU 498(5.2) 435(10.3) 388(20.6) 341(41.3)
CLIPU 480(16.3) 419(32.5) 368(65.1) 327(130.2)
LIFO2 391(10.3) 351(20.6) 321(41.1) 299(82.2)
CLIP2 426(12.5) 376(24.9) 335(49.9) 313(99.8)

LIFO 2137(10.6) 1663(21.2) 1334(42.5) 1152(85.0)
CLIP 2200(8.9) 1709(17.8) 1398(35.5) 1155(71.1)

IBM03 LIFOU 1905(9.4) 1540(18.8) 1241(37.7) 1048(75.4)
CLIPU 1430(32.6) 1175(65.3) 1015(130.6) 933(261.1)
LIFO2 1914(14.7) 1698(29.4) 1571(58.8) 1474(117.5)
CLIP2 1646(16.3) 1452(32.6) 1330(65.3) 1257(130.5)

LIFO 1989(11.0) 1745(22.1) 1534(44.2) 1348(88.4)
CLIP 2241(8.8) 1920(17.6) 1685(35.2) 1510(70.4)

IBM04 LIFOU 2061(9.4) 1799(18.8) 1507(37.6) 1367(75.3)
CLIPU 1432(52.1) 1227(104.3) 1048(208.6) 975(417.2)
LIFO2 1659(19.8) 1413(39.6) 1229(79.2) 1062(158.4)
CLIP2 1080(18.3) 856(36.5) 736(73.0) 651(146.0)

LIFO 3379(33.4) 3160(66.8) 2924(133.6) 2727(267.3)
CLIP 2953(49.2) 2746(98.4) 2568(196.9) 2355(393.7)

IBM05 LIFOU 3525(32.3) 3302(64.6) 3153(129.1) 3033(258.3)
CLIPU 3085(51.3) 2819(102.6) 2615(205.2) 2358(410.3)
LIFO2 2893(39.7) 2567(79.3) 2371(158.6) 2226(317.2)
CLIP2 2635(26.1) 2387(52.3) 2212(104.6) 2045(209.2)

LIFO 1453(16.9) 1135(33.9) 976(67.7) 891(135.4)
CLIP 1459(16.8) 1211(33.7) 1077(67.4) 965(134.7)

IBM06 LIFOU 1199(14.1) 969(28.1) 849(56.3) 784(112.6)
CLIPU 1383(45.2) 1215(90.3) 1075(180.7) 959(361.4)
LIFO2 1605(23.3) 1393(46.5) 1247(93.1) 1088(186.1)
CLIP2 1508(24.5) 1272(49.1) 1141(98.2) 1080(196.4)

LIFO 2455(36.5) 1994(72.9) 1732(145.8) 1541(291.7)
CLIP 2786(27.4) 2305(54.9) 1902(109.8) 1693(219.5)

IBM07 LIFOU 2253(26.7) 1884(53.4) 1672(106.7) 1570(213.5)
CLIPU 1779(97.6) 1528(195.3) 1326(390.5) 1211(781.0)
LIFO2 2181(32.7) 1893(65.3) 1576(130.6) 1475(261.3)
CLIP2 1865(36.0) 1459(71.9) 1300(143.8) 1147(287.7)

LIFO 2450(42.9) 2134(85.8) 1949(171.6) 1816(343.3)
CLIP 3014(35.5) 2433(71.0) 2111(142.0) 1922(284.0)

IBM08 LIFOU 2760(32.7) 2321(65.5) 1968(131.0) 1780(261.9)
CLIPU 2362(124.2) 2012(248.4) 1767(496.8) 1652(993.6)
LIFO2 2335(44.6) 2105(89.3) 1918(178.6) 1777(357.2)
CLIP2 2160(48.9) 1918(97.7) 1671(195.4) 1562(390.9)

Table 3: Comparison of LIFO, CLIP, uncorked LIFO (LIFOU ), uncorked CLIP (CLIPU ), two-
stage LIFO (LIFO2) and two-stage CLIP (CLIP2) partitioning algorithms on IBM test cases.
Nodes were assigned varying (actual) weights. Solutions are constrained to be within 2% of
bisection (partitions must contain between 49% and 51% of total). Data expressed as (average
cut / average CPU time), with CPU seconds on measured on a 140MHz Sun Ultra-1.
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Test Case PROP-REXext LIFO2 CLIP2

1 Start 2 Starts 4 Starts 1 Start 2 Starts 4 Starts

avq large 494.8(58.44) 725(10.1) 639(20.2) 570(40.4) 511(7.9) 452(15.9) 393(31.8)

avq small 452.0(50.49) 599(17.8) 533(35.6) 488(71.3) 386(16.2) 341(32.5) 308(64.9)

biomed 134.4(13.48) 123(2.7) 111(5.5) 103(11.0) 120(2.6) 104(5.3) 95(10.4)

industry2 351.9(45.67) 504(8.5) 462(17.0) 427(34.2) 392(9.0) 339(17.9) 294(35.9)

primary1 58.5(0.89) 64(0.3) 58(0.7) 53(1.4) 63(0.3) 58(0.7) 55(1.4)

primary2 194.8(5.80) 256(1.7) 238(3.5) 221(7.1) 224(1.9) 206(3.7) 190(7.5)

Table 4: Comparison of reported CLIP-REX results with those produced by 2-stage LIFO and
CLIP methods. Nodes were assigned actual cell areas. Solutions are constrained to be within
0.5% of bisection (partitions must contain between 49.75% and 50.25% of total cell area). Data
expressed as average cut(average CPU time). CPU times were normalized to those reported in
[14].

bisection results, and because of a reliance on older benchmarks that have only uniformly-

sized cells. We also propose a simple technique of temporary tolerance relaxation, di�erent

and more successful than the best of all techniques presented in [14].

Our results suggest that prospective advances in algorithm technology should be evalu-

ated with respect to a full range of applicable instances and contexts (i.e., use models). Fur-

thermore, the substantial performance di�erences between our CLIP implementation and,

e.g., that reported by Alpert [2] suggest that the partitioning research community can still

bene�t from improved understanding of the iterative heuristics upon which new methods are

based.
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