
Design and Implementation of Move-Based Heuristics

for VLSI Hypergraph Partitioning

Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov

fcaldwell,abk,imarkovg@cs.ucla.edu

Supported by a grant from Cadence Design Systems, Inc.

We summarize the techniques of implementing move-based hypergraph partitioning heuristics and evaluating their perfor-
mance in the context of VLSI design applications. Our �rst contribution is a detailed software architecture, consisting
of seven reusable components, that allows exible, e�cient and accurate assessment of the practical implications of new
move-based algorithms and partitioning formulations. Our second contribution is an assessment of the modern context for
hypergraph partitioning research for VLSI design applications. In particular, we discuss the current level of sophistication in
implementation know-how and experimental evaluation, and we note how requirements for real-world partitioners { if used
as motivation for research { should a�ect the evaluation of prospective contributions. Two \implicit decisions" in the im-
plementation of the Fiduccia-Mattheyses heuristic are used to illustrate the di�culty of achieving meaningful experimental
evaluation of new algorithmic ideas.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Engineering|Software architecture; J.6
[Computer Applications]: Computer-Aided Engineering

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: balanced min-cut hypergraph partitioning, VLSI CAD

1. INTRODUCTION: HYPERGRAPH PARTITIONING IN VLSI DESIGN

Given a hyperedge- and vertex-weighted hypergraph H = (V;E), a k-way partitioning of V assigns the
vertices to k disjoint nonempty partitions. The k-way partitioning problem seeks to minimize a given cost
function c(P k) whose arguments are partitionings. A standard cost function is net cut,1 which is the sum
of weights of hyperedges that are cut by the partitioning (a hyperedge is cut exactly when not all of its
vertices are in one partition).
Constraints are typically imposed on the partitioning solution, and make the problem di�cult. For

example, certain vertices can be �xed in particular partitions (�xed constraints). Or, the total vertex
weight in each partition may be limited (balance constraints), which results in an NP-hard formulation
[21]. Thus, the cost function c(P k) is minimized over the set of feasible solutions Sf , which is a subset
of the set of all possible k-way partitionings. E�ective move-based heuristics for k-way hypergraph
partitioning have been pioneered by Kernighan and Lin [37], Fiduccia and Mattheyses [20] and Bui et
al. [9], with re�nements given by Krishnamurthy [39], Sanchis [43], Hagen and Kahng [27], Liu et al.
[41], Dutt and Deng [18], Alpert, Hagen and Kahng [4], Cong et al. [12], Hauck and Borriello [26],
Karypis et al. [35], Dutt and Theny [19] as well as many others. A comprehensive survey of partitioning
formulations and algorithms, centered on VLSI applications and covering move-based, spectral, ow-

1Or simply cut, as inminimum cut partitioning. Note that in the VLSI context, a circuit hypergraph is called a netlist; a hyperedge
corresponds to a signal net, or net; and a vertex corresponds to a module.

A�liation: UCLA Computer Science Dept.
Address: Boelter Hall, Los Angeles, CA 90095-1596

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or direct commercial advantage and that copies show this notice
on the �rst page or initial screen of a display along with the full citation. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, to redistribute to lists, or to use any component of this work in other works, requires prior speci�c permission
and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA,
fax +1 (212) 869-0481, or permissions@acm.org.

2 � A. E. Caldwell, A. B. Kahng and I. L. Markov

based, mathematical programming-based, etc. approaches, is given in a comprehensive survey [5] by
Alpert and Kahng. A recent update on balanced partitioning in VLSI physical design is provided by a
short survey [32] by Kahng.

1.1 The VLSI Design Context

VLSI design has long provided driving applications and ideas for hypergraph partitioning heuristics. For
example, the methods of Kernighan-Lin [37] and Fiduccia-Mattheyses [20] form the basis of today's move-
based approaches. The method of Goldberg-Burstein [25] presaged the multilevel approaches recently
popularized in the parallel simulation [23; 28; 33] and VLSI [3; 35; 4] communities. As Alpert and Kahng
notice in their survey [5], applications in VLSI design include test, simulation and emulation, design of
systems with multiple �eld-programmable devices, technology migration and repackaging, and top-down
oorplanning and placement.
Depending on the speci�c VLSI design application, a partitioning instance may have directed or undi-

rected hyperedges, weighted or unweighted vertices, etc. However, in all contexts the instance represents
{ at the transistor-level, gate-level, cell-level, block-level, chip-level, or behavioral description module
level { a human-designed system. Such instances are highly non-random. Many e�orts (e.g., [31], [14],
[24], [8]) have used statistical attributes of real-world circuit hypergraphs (based on Rent's parameter
[40], shape, depth, fanout distribution, etc.) to generate random hypergraphs believed relevant to evalu-
ation of heuristics. These e�orts have not yet met with wide acceptance in the VLSI community, mostly
because generated instances do not guarantee \realism". Hence, the current practice remains to evaluate
new algorithmic ideas against suites of benchmark instances.
In the VLSI partitioning community, performance of algorithms is typically evaluated on the ACM/SIGDA

benchmarks now maintained by the Collaborative Benchmarking Laboratory at North Carolina State
University http://www.cbl.ncsu.edu/benchmarks.2 Alpert [2] noted that many of these circuits no
longer reect the complexity of modern partitioning instances, particularly in VLSI physical design; this
motivated the release of eighteen larger benchmarks produced from internal designs at IBM [1].3

Salient features of benchmark (real-world) circuit hypergraphs include

|size: number of vertices can be up to one million or more (instances of all sizes are equally important).

|sparsity: average vertex degrees are typically between 3 and 5 for cell-, gate- and device-level instances;
higher average vertex degrees occur in block-level design.

|number of hyperedges (nets) typically between 0.8x and 1.5x of the number of vertices (each module
typically has only one or two outputs, each of which represents the source of a new signal net).

|average net sizes are typically between 3 to 5.

|a small number of very large nets (e.g., clock, reset, test) connect hundreds or thousands of vertices.

Statistics for circuit benchmarks used in our work are given in Tables 4, 5 and 6.
Partitioning heuristics must be highly e�cient in order to be useful in VLSI design.4 As a result

{ and also because of their exibility in addressing variant objective functions { fast and high-quality
iterative move-based partitioners based on the approach of Fiduccia-Mattheyses [20] have dominated
recent practice.

1.2 The Fiduccia-Mattheyses Approach

The Fiduccia-Mattheyses (FM) heuristic for bipartitioning circuit hypergraphs [20] is an iterative improve-
ment algorithm. Its neighborhood structure is induced by single-vertex, partition-to-partition moves.5

2These benchmarks are typically released by industry or academic designers at various workshops and conferences (e.g., Layout-
Synth90, LayoutSynth92, Partitioning93, PDWorkshop93, ...).
3While those benchmarks are now used in most partitioning papers, we would like to stress that they present considerably harder
partitioning problems than earlier available benchmarks available from http://www.cbl.ncsu.edu/benchmarks, primarily due to more
varied distributions of node degrees and weights. See, e.g., Tables 4, 5 and 6.
4For example, a modern top-down standard-cell placement tool might perform timing- and routing congestion-driven recursive min-
cut bisection of a cell-level netlist to obtain a \coarse placement", which is then re�ned into a \detailed placement" by stochastic
hill-climbing search. The entire placement process in currently released tools from companies like Avant!, Cadence, CLK CAD,
Gambit, etc. takes approximately 1 CPU minute per 6000 cells on a 300MHz Sun Ultra-2 uniprocessor workstation with adequate
RAM. The implied partitioning runtimes are on the order of 1 CPU second for netlists of size 25,000 cells, and 30 CPU seconds
for netlists of size 750,000 cells [16]. Of course, we do not advocate performance tuning to match industrial-strength runtimes.
However, absent other justi�cations, \experimental validation" of heuristics in the wrong runtime regimes (say, hundreds of CPU
seconds for a 5000-cell benchmark) has no practical relevance.
5By contrast, the stronger Kernighan-Lin (KL) heuristic [37] uses a pair-swap neighborhood structure.

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 3

Cut = 2

0

-2

1

0

-1

-1

0

-1

Fig. 1. Gains in hyperedge cut associated with each potential vertex move.

FM starts with a possibly random solution and changes the solution by a sequence of moves which are
organized as passes. At the beginning of a pass, all vertices are free to move (unlocked), and each possible
move is labeled with the immediate change in total cost it would cause; this is called the gain of the
move | positive gains reduce solution cost, while negative gains increase it (see example in Figure 1).
Iteratively, a move with highest (but not necessarily positive) gain is selected and executed, which may
result in a lower, higher or unchanged solution cost. The moved vertex is locked, i.e., is not allowed to
move again during that pass. Since moving a vertex can change gains of adjacent vertices, all a�ected
gains are updated. Selection and execution of a best-gain move, followed by gain update, are repeated
until every vertex is locked. After every vertex has moved exactly once, we get a partitioning solution
symmetric to the one at the beginning of the pass, thus having the same cost (see Figure 2). Then, the
best solution seen during the pass is adopted as the starting solution of the next pass. The algorithm
terminates when a pass fails to improve solution quality.

Cut

Moves

Fig. 2. Characteristic pro�le of solution cost change during one FM pass. The lowest-cost solution seen during

the pass (best pre�x of moves) is highlighted; this is adopted as the initial solution for the next pass.

The FM algorithm can be easily seen to have three main operations: (1) the computation of initial
gain values at the beginning of a pass; (2) the retrieval of the best-gain (feasible) move; and (3) the
update of all a�ected gain values after a move is made. The contribution of Fiduccia and Mattheyses
lies in observing that circuit hypergraphs are sparse, so that any move gain is bounded between two and
negative two times the maximal vertex degree in the hypergraph (times the maximal edge weight, if edge
weights are used). This allows hashing of moves by their gains: all a�ected gains can be updated in linear

4 � A. E. Caldwell, A. B. Kahng and I. L. Markov

time, yielding overall linear complexity per pass. In [20], all moves with the same gain are stored in a
linked list representing a \gain bucket".

1.3 Contributions of This Paper

In this paper, we discuss the implementation and evaluation of move-based hypergraph partitioning
heuristics, notably the FM heuristic, in the context of VLSI design applications. Our �rst contribution
is a detailed software architecture, consisting of seven reusable components, that allows exible, e�cient
and accurate assessment of the practical implications of new move-based algorithms and partitioning
formulations. Our second contribution is an assessment of the modern context for hypergraph partitioning
research for VLSI design applications. In particular, we discuss the current level of sophistication in
implementation know-how and experimental evaluation, and we note how requirements for real-world
partitioners { if used as motivation for research { should a�ect the evaluation of prospective contributions.
Two \implicit decisions" in the implementation of the FM heuristic are demonstrated to illustrate the
di�culty of achieving meaningful experimental evaluation of new algorithmic ideas. Since our architecture
allows one to capture and study such previously unexplored degrees of freedom, we believe that it is
conducive to algorithm innovation and leading-edge quality of results.

2. ARCHITECTURE OF A MOVE-BASED PARTITIONING TESTBENCH

In this section, we describe a seven-component software architecture for implementation of move-based
partitioning heuristics, particularly those based on the FM approach. By way of example, we reword
the Fiduccia-Mattheyses algorithm in terms of these seven software components. By carefully dividing
responsibilities among components we attempt to provide the implementation exibility and runtime
e�ciency that is needed to evaluate the practical impact of new algorithmic ideas and partitioning
formulations.

2.1 Main Components

Partitioning Interface. Formally describes the input and output to partitioners without mentioning
internal structure and implementation details. All partitioner implementations then conform to this
input/output speci�cation.

Initial Solution Generator. Generates partitionings that satisfy given constraints, typically using ran-
domization in the construction.

Incremental Cost Evaluator. Evaluates the cost function for a given partitioning and dynamically
maintains cost values when the partitioning is changed by applying moves. Updates typically should
be performed in constant time.

Legality Checker. Veri�es whether a partitioning satis�es a given constraint. The Legality Checker is
used to determine the legality of a move. Multiple constraints may be handled with multiple legality
checkers.

Gain Container. A general container for moves, optimized for e�cient allocation, retrieval and queue-
ing of available moves by their gains. Moves can be retrieved by, e.g., the index of the vertex being
moved, and/or the source or destination partition. A Gain Container supports quick updates of the
gain for a move, and fast retrieval of a move with the highest gain. The Gain Container is also
independent of the incremental cost evaluator and legality checker; it is populated and otherwise
managed by the Move Manager.

Move Manager. Responsible for choosing and applying one move at a time. It may rely on a Gain
Container to choose the best move, or randomly generate moves. It can undo moves on request. If
used in pass-based partitioners, it incrementally computes the change in gains due to a move, and
updates the Gain Container.

The Move Manager maintains \status information", such as the current cost and how each partition
is �lled. It may be controlled by the caller via parameter updates before every move selection (e.g. a
temperature parameter in simulated annealing).

Pass-Based Partitioner (proper). Solves \partitioning problems" by applying incrementally improv-
ing passes to initial solutions. A pass consists of legal moves, chosen and applied by the move
manager. Within a pass, a partitioner can request that the Move Manager undo some of the moves,

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 5

i.e., perform inverse moves. The Pass-Based Partitioner is an implementation of the Partitioning
Interface.

This modularity allows for separate benchmarking and optimization of most components. It also
provides exibility to use multiple alternative implementations relevant to special cases.6 A fundamental
facility enabling such modularity is a common e�cient hypergraph implementation.7

2.2 Component Descriptions

We now give somewhat more detailed component descriptions, omitting three components for which
implementation choices are less critical.

2.2.1 Incremental Cost Evaluator. Initialized with a hypergraph, the Incremental Cost Evaluator is
responsible for evaluating the cost function for a given partitioning, and incrementally maintaining this
value when the partitioning changes (i.e., a vertex is moved). When the cost function is computed as
sum of hyperedge costs, those costs should also be maintained and available.
E�cient implementations typically maintain an internal state, e.g. relevant statistics, for each hyper-

edge. This facilitates e�cient constant-time cost updates when single moves are performed. An Evaluator
whose values are guaranteed to be from a small (esp. �nite) range should be able to exploit this range
to enable faster Gain Container implementations (e.g. using buckets versus priority queues).
Interface:

|Initialize (internal structures) with a hypergraph and a partitioning solution.

|Report current cost (total or of one net) without changing internal state.

|Complete change of internal state (re-initialization) for all vertices and nets.

|Incremental change of internal state (for all nets whose cost is a�ected or for a given net) due to one
elementary move without updating the costs.8

2.2.2 Gain Container. The Gain Container stores all moves currently available to the partitioner (these
may not all be legal at a given time) and prioritizes them by their gains (i.e., the immediate e�ect each
would have on the total cost). A container of move/gain pairs is de�ned by the interface below, which
allows quick updates to each and any move/gain pair after a single move.
A Gain Container should be able to �nd the move with highest gain quickly, possibly subject to

various constraints such as a given source or destination partition, and may provide support for various
tie-breaking schemes in order to choose the best move among the moves with highest gain. A Gain
Container does not initiate gain updates by itself and is not aware of Cost Evaluators, the Move Manager,
or how the gains are interpreted. Gain Containers do not need to determine the legality of moves. This
makes them reusable for a range of constrained partitioning problems. Faster implementations (e.g. with
buckets) may require that the maximal possible gain be known.
Interface:

|Add a move to the Container, given the gain.

|Get the gain for a move.

|Set the gain for a move (e.g. to update).

|Remove a move from the Container.

|Find a move of highest gain.

6For example, many optimizations for 2-way partitioning from the general k-way case can be encapsulated in the evaluator. On
the other hand, in our experience optimizing a Gain Container for 2-way is barely worth maintaining separate pieces of code.
7A generic hypergraph implementation must support I/O, statistics, various traversals and optimization algorithms. However, no
such implementation will be optimal for all conceivable uses. We decided to implement our own reusable components based on the
Standard Template Library and optimize them for our use models.
Features directly supported by the hypergraph component include memory management options, conversions, I/O, various con-

struction options such as ignoring hyperedges of size less than 2 or bigger than a certain threshold, lazily executed calls for sorting
nodes or edges in various orders etc. Many trade-o� had to be made, e.g. the hypergraph objects used in critical pieces of code
have to be unchangeable after their initial construction so as to allow for very e�cient internal data structures.
None of the many existing generic implementations we reviewed was su�ciently malleable to meet our requirements without

overwhelming their source code by numerous compiler #defines for adapting the code to a given use model. Having complete
control over the source code and internal interfaces also allows for maximal code reuse in implementing related functionalities.
8Changing the state of one net will, in general, make the overall state of the evaluator inconsistent. This can be useful, however,
for \what-if" cost lookups when a chain of incremental changes can return to the original state.

6 � A. E. Caldwell, A. B. Kahng and I. L. Markov

|Invalidate current highest gain move, in order to request the next highest gain move.9 Typically applied
if the current highest gain move appears illegal.

|Invalidate current highest gain bucket to access the next highest gain bucket.

The primary constituents of a Gain Container are a repository and prioritizers.

Repository for gain/move pairs handles allocation and deallocation of move/gain pairs, and sup-
ports fast gain lookups given a move.

Prioritizer �nds a move with highest gain. In addition, may be able to choose best-gain moves among
moves with certain properties, such as a particular destination or source partition. Updates gains
and maintains the queue containing the moves, in particular, is responsible for tie-breaking schemes.

We say that some moves stored in the repository are prioritized when they participate in the prioritizer's
data structures. Not prioritizing the moves a�ecting a given vertex corresponds to \locking" the vertex,
as it will never be chosen as the highest-gain move. The standard FM heuristic locks a given cell as soon
as it is moved in a pass; however, variant approaches to locking have been proposed [15].

2.2.3 Move Manager. AMove Manager handles the problem's move structure by choosing and applying
the best move (typically, the best legal move), and incrementally updates the Gain Container that is used
to choose the best move. The Move Manager reports relevant \status information" after each move, e.g.
current cost and partition balance, which allows the caller to determine the best solution seen during
the pass. In order to return to such best solution, the move manager must perform undo operations on
request.
Interface:

|Choose one move (e.g., the best feasible) and apply it. Ensure all necessary updates (gain container,
incremental evaluator).

|Return new \status info", e.g., total cost, partition balances, etc.

|Undo a given number of moves (each move applied must be logged to support this).

2.2.4 Pass-Based Partitioner (Proper). Recall that a Pass-Based Partitioner applies incrementally im-
proving passes to initial solutions and returns best solutions seen during such passes.10 A pass consists
of moves, chosen and applied by move manager. After a pass, a Partitioner can request that the Move
Manager perform undo operations to return to the best solution seen in that pass. A Partitioner decides
when to stop a pass, and what intermediate solution within the pass to return to, on the basis of its
control parameters and status information returned by the Move Manager after each move. The Par-
titioner can have access to multiple combinations of Incremental Cost Evaluators, Move Managers and
Gain Containers, and can use them exibly at di�erent passes to solve a given partitioning problem. Note
that a Partitioner is not necessarily aware of the move structure used: this is a responsibility of Move
Managers.
Interface:

|Takes a \partitioning problem" and operational parameters on input.

|Returns all solutions produced, with the best solution marked.

2.3 A Generic Component-based FM Algorithm

A \partitioning problem" consists of

|hypergraph

|arrays of solution placeholders (\bu�ers"), possibly populated with initial solutions

|information representing relevant constraints, e.g., �xed assignments of vertices to partitions and max-
imum total vertex area in each partition

|additional information required to evaluate the cost function, e.g., geometry of partitions for wirelength-
driven partitioning in the top-down placement context.

9Note that this does not remove the move from the Gain Container.
10While every pass as a whole must not worsen current solution, individual moves within a pass may do so.

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 7

Initialize
Request a move
 repeat if move found

Partitioner

Initial Soln Generator

While passes improve...

Do one pass

move request

Move manager

Request highest-gain move

"No move found" if failed

Repeat request if move illegal

Update gains

Log move

no move

move found

End of pass:
 restore best seen soln

Apply move and lock vertex

(using Evaluator
and Gain Container)

(using Legality Checker)

(using Gain Container)

Fig. 3. Component-based FM algorithm improves a given solution or a randomly generated one. Improvement

is performed in passes. A pass consists of legal moves with the best possible gain | positive, zero or negative.

Every vertex can be only moved once which is enforced by \locking" every moved vertex, i.e. removing its moves

from the gain container. The choice of the best move is facilitated by updates to the gain container after every

move. At the end of the pass, the best seen solution is restored using a move log (every move is logged).

The Partitioner goes over relevant places in solution bu�ers and eventually writes good partitioning
solutions into them. An existing solution may thus be improved, but if a place is empty, an initial solution
generator will be called. A relevant Move Manager must be instantiated and initialized; this includes
instantiation of the constituent Evaluator and Gain Container. The Partitioner then performs successive
passes as long as the solution can be improved.
Our generic component-based FM algorithm is described in Figure 3. At each pass, the Partitioner

repeatedly requests the Move Manager to pick one [best] move and apply it, and processes information
about the new solutions thus obtained. Since no vertex can be moved twice in a pass, no moves will be
available beyond a certain point (end of a pass). Some best-gain moves may increase the solution cost,
and typically the solution at the end of the pass is not as good as the best solutions seen during the pass.
The Partitioner then requests that the Move Manager undo a given number of moves to yield a solution
with best cost.
While the reinitialization of the Move Manager at the beginning of each pass seems almost straightfor-

ward, picking and applying one move is subtle. For example, note that the Move Manager requests the
best move from the gain container and can keep on requesting more moves until a move passes legality
check(s). As the Move Manager applies the chosen move and locks the vertex, gains of adjacent vertices
may need to be updated.
In performing \generic" gain update, the Move Manager walks all nets incident to the moving vertex

and for each net computes gain updates (delta gains) for each of its vertices due to this net (these are
combinations of the given net's cost under four distinct partition assignments for the moving and a�ected
vertices; see Section 3.4). These partial gain updates are immediately applied through Gain Container
calls, and moves of a�ected vertices may have their priority within the Gain Container changed. Even if
the delta gain for a given move is zero, removing and inserting it into the gain container will typically
change tie-breaking among moves with the same gain.
In most implementations the gain update is the main bottleneck, followed by Gain Container construc-

tion. Numerous optimizations of generic algorithms exist for speci�c cost functions, hyperedge cut being
particularly amenable to such optimizations.

3. EVALUATING PROSPECTIVE ADVANCES IN PARTITIONING

VLSI design presents many di�erent avors of hypergraph partitioning. Objective functions such as
ratio-cut [48], scaled cost [11], absorption cut [47] sum of degrees, number of vertices on the cut line [29],

8 � A. E. Caldwell, A. B. Kahng and I. L. Markov

etc. have been applied for purposes ranging from routability-driven clustering to multilevel annealing
placement. In top-down coarse placement, partitioning involves �xed or \propagated" terminals [17;
46], tight partition balance constraints (and non-uniform vertex weights), and an estimated-wirelength
objective (e.g., sum of half-perimeters of net bounding boxes). By contrast, for logic emulation the
partitioning might have all terminals un�xed, loose balance constraints (with uniform vertex weights),
and a pure min-cut objective. The partitioning can also be multi-way instead of 2-way [46; 43; 30], \multi-
dimensional" (e.g., simultaneous balancing of power dissipation and module area among the partitions),
timing-driven, etc. With this in mind, partitioners are best viewed as \engines" that plug into many
di�erent phases of VLSI design. Any prospective advance in partitioning technology should be evaluated
in a range of contexts.
In recent VLSI CAD partitioning literature, comparisons to previous work are made using as wide a

selection of benchmark instances as practically possible; using uniform vs. non-uniform vertex weights;
and using tight vs. loose partition balance constraints (typically 49-51% and 45-55% constraints for
bipartitioning).11

3.1 Need For \Canonical" Testbench

The components described in Section 2 yield a testbench, or \framework", that can be recombined and
reused in many ways to enable experiments with

|multiple objective functions, e.g., ratio cut [48],
absorption [47], the number of boundary vertices [29],
the \k � 1 objective" [13] etc.

|multiple constraint types ([34])

|variant formulations, e.g., multi-way [43; 33; 15], replication-based [38] etc.

|new partitioning algorithms and variations

The component-based framework allows seamless replacement of old algorithms by improved ones
in containing applications. Even more important, a solid testbench is absolutely essential to identify
algorithmic improvements \at the leading edge" of heuristic technology. I.e., it is critical to evaluate
proposed algorithm improvements not only against the best available implementations, but also using a
competent implementation. This is the main point we wish to make.
In our experience, new \improvements" often look good if applied to weak algorithms, but may actually

worsen strong algorithms. Only after an improvement has been thoroughly analyzed, implemented and
con�rmed empirically, can it be turned on by default and be applied to all evaluations of all subsequent
proposed improvements. On the other hand, one often encounters pairs of conicting improvements of
which one, if applied by itself, dominates the other while the combination of the two is the worst. There-
fore, interacting improvements must be implemented as options, and tested in all possible combinations,
and a exible testbench is necessary to advance the understanding of algorithm performance by conclusive
and revealing experiments.

3.2 Algorithm and Implementation Improvements

In this subsection we note the existence of several types of implementation decisions for optimization
metaheuristics, and illustrate such decisions for the Fiduccia-Mattheyses heuristic [20] and its improve-
ments.
Of particular interest are implicit decisions { underspeci�ed features and ambiguities in the original

algorithm description that need to be resolved in any particular implementation. Examples for the
Fiduccia-Mattheyses heuristic include:

|tie-breaking in choosing highest gain bucket (see Subsection 3.4)

|tie-breaking on where to attach new element in gain bucket, i.e., LIFO versus FIFO versus random
[27]12

11VLSI CAD researchers also routinely document whether large nets were thresholded, the details of hypergraph-to-graph conver-
sions (e.g., when applying spectral methods), and other details necessary for others to reproduce the experiments. The reader is
referred to [5; 2] for discussions of reporting methodology.
12In other words, gain buckets can be implemented as stacks or as queues, or even as random priority queues (where the chances
of all elements to be selected are equal at all times). [27] demonstrated that stack-based gain containers (i.e., LIFO) are superior.

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 9

|whether to update, or skip the updating, when the delta gain of a move is zero (see Subsection 3.4)

|breaking ties when selecting the best solution during the pass | choose the �rst or last one encountered,
or the one that is furthest from violating constraints.

Below, we show that the e�ects of such implicit decisions can far outweigh claimed improvements in
solution quality due to algorithm innovation. Other types of implementation decisions, details of which
are beyond our present scope, include:

|Modi�cations of the algorithm: important changes to steps or the ow of the original algorithm as well
as new steps and features. Among the more prominent examples are \lookahead" tie-breaking [39]
among same-gain moves; the multiple unlocking heuristic of [15] which allows vertices to move more
than once during a pass; and the CLIP heuristic of [18] which chooses moves according to \updated"
gains (i.e., the actual gain minus the gain at the beginning of the pass) instead of actual gains.

|Tuning that can change the result: minor algorithm or implementation changes, typically to avoid
particularly bad special cases or pursue only \promising computations". Examples include thresholding
large nets from the input to reduce run time; \loose net" removal [12] where gain updates are performed
only for [loose] nets that are likely to be uncut; and allowing of illegal solutions during a pass (to improve
hill-climbing ability of the algorithm) [19].

|Tuning that can not change the result: minor algorithm or implementation changes to simplify compu-
tations in critical or statistically signi�cant special cases. Examples include skipping nets which cannot
have non-zero delta gains (updates); code optimizations that are speci�c to the netcut objective; and
code optimizations that are speci�c to 2-way partitioning.

4. EMPIRICAL ILLUSTRATION

We now illustrate how \implicit implementation decisions" can severely distort the experimental assess-
ment of new algorithmic ideas. Uncertainties in the description of the Fiduccia-Mattheyses algorithm
have been previously analyzed, notably in [27], where the authors show that inserting moves into gain
buckets in LIFO order is much preferable to doing so in FIFO order (also a constant-time insertion) or
at random. Since the work of [27], all FM implementations that we are aware of use LIFO insertion.13

In our experiments, we consider the following two implicit implementation decisions:

|Zero delta gain update. Recall that when a vertex x is moved, the gains for all vertices y on
nets incident to x must potentially be updated. In all FM implementations, this is done by going
through the incident nets one at a time, and computing the changes in gain for vertices y on these nets.
A straightforward implementation computes the change in gain (\delta gain") for y by adding and
subtracting four cut values for the net under consideration,14 and immediately updating y's position
in the gain container.
Notice that sometimes the delta gain can be zero. An implicit implementation decision is whether
to reinsert a vertex y when it experiences a zero delta gain move (\All�gain"), or whether to skip
the gain update (\Nonzero"). The former will shift the position of y within the same gain bucket;
the latter will leave y's position unchanged. The e�ect of zero delta gain updating is not immediately
obvious.15

|Tie-breaking between two highest-gain buckets in move selection. When the gain container
is implemented such that available moves are segregated, typically by source or destination partition,
there can be more than one nonempty highest-gain bucket. Notice that when the balance constraint is
anything other than \exact bisection", it is possible for all the moves at the heads of the highest-gain
buckets to be legal. The FM implementer must choose a method for dealing with this situation. In our
experiments, we contrast three approaches:16 (i) choose the move that is not from the same partition

13A series of works in the mid-1990s retrospectively show that the LIFO order allows vertices in \natural clusters" to move together
across the cutline. The CLIP variant of [18] is a more direct way of moving clusters.
14These four cut values correspond to: (a) x, y in their original partitions; (b) x in original partition, y moved; (c) x moved, y in
original partition; and (d) x and y both moved. (a) - (b) is the original gain for y due to the net under consideration; (c) - (d) is
the new gain for y due to the same net. The di�erence ((a)-(b)) - ((c)-(d)) is the delta gain. See [30] for a discussion.
15The gain update method presented in [20] has the side e�ect of skipping all zero delta gain updates. However, this method is
both netcut- and two-way speci�c; it is not certain that a �rst-time experimenter with FM will �nd analogous solutions for k-way
partitioning with a general objective.
16These approaches are described for the case of bipartitioning. Other approaches can be devised for k-way partitioning.

10 � A. E. Caldwell, A. B. Kahng and I. L. Markov

as the last vertex moved (\away"); (ii) choose the move in partition 0 (\part0"); and (iii) choose the
move from the same partition as the last vertex moved (\toward").

Our experimental testbench allows us to test an FM variant in the context of at LIFO (as described
in [27]), at CLIP (as described in [18]), and multilevel LIFO and multilevel CLIP (as described in
[4]). Our implementations are in C++ with heavy use of STL3.0; we currently run in the Sun Solaris
2.6 and 2.7 and Sun CC4.2 environment (as well as g++ 2.95.2 on RedHat Linux 6.0 and 6.1). We
use standard VLSI benchmark instances available on the Web at [1] and several older benchmarks from
http://www.cbl.ncsu.edu/benchmarks. Node and hyperedge statistics for the benchmarks are pre-
sented in Tables 4, 5 and 6. Our tests are for bipartitioning only. We evaluate all partitioning variants
using actual vertex areas and unit vertex areas, incorporating the standard protocols for treating pad
areas described in [2]. We also evaluate all partitioning variants using both a 10% balance constraint
(i.e., each partition must have between 45% and 55% of the total vertex area) as well as a 2% balance
constraint (results are qualitatively similar; we therefore report only results for 2% balance constraints).
All experiments were run on Sun Ultra workstations, with runtimes normalized to Sun Ultra-1 (140MHz)
CPU seconds. Each result represents a set of 100 independent runs with random initial starting solutions;
Tables 1 and 2 report triples of form \average cut (average CPU sec)" (see also Figures 4 and 5). From
the data, we make the following observations.

1

1.5

2

2.5

3

3.5

4

 primary1 primary2 biomed ibm01 ibm02 ibm03

re
la

tiv
e

so
lu

tio
n

co
st

 (
av

er
ag

e
of

 1
00

)

benchmark names

LIFO FM, unit areas, 2%

Update All/Bias Away
Update All/Bias Toward

Nonzeros Only/Bias to Part0

0.9

1

1.1

1.2

1.3

1.4

1.5

 primary1 primary2 biomed ibm01 ibm02 ibm03

re
la

tiv
e

so
lu

tio
n

co
st

 (
av

er
ag

e
of

 1
00

)

benchmark names

CLIP FM, unit areas, 2%

Update All / Bias Away
Update All / Bias Toward

Nonzeros Only / Bias to Part0

Fig. 4. Performance of three implementation variants of LIFO FM and CLIP FM on six benchmarks, with unit

areas and partitioning tolerance 2%. We plot performance relative to the best solution cost seen over all runs

of all variants. The worst results seen are up to 3:5 times worse than the best seen. Additional implementation

options are analyzed in Table 1, which gives more detailed information about the same experiment. The plots

clearly show that a poor implementation choice (Updat[ing] All gains) is masked by an overall stronger heuristic

(CLIP FM).

|The average cutsize for a at partitioner can increase by rather stunning percentages if the worst
combination of choices is used instead of the best combination. Such e�ects stronger for actual areas
and weaker for unit areas, but in all cases far outweigh the typical solution quality improvements
reported for new algorithm ideas in the partitioning literature.

|Moreover, we see that one wrong implementation decision can lead to misleading conclusions with
respect to other implementation decisions. For example, when zero delta gain updates are made
(a wrong decision), the \part0" biasing choice appears signi�cantly worse than the \toward" choice.
However, when zero delta gain updates are skipped, \part0" is as good as or even slightly better than
\toward".17

|Stronger optimization engines (order of strength: ML CLIP > ML LIFO > at CLIP > at LIFO)
can tend to decrease the \dynamic range" for the e�ects of implementation choices. This is actually

17We have observed other similar reversals, e.g., in our experience multiple unlocking is less valuable than reported in [15].

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 11

ALGORITHM TESTCASES with unit areas and 2% balance

Updates Bias primary1 primary2 biomed ibm01 ibm02 ibm03

Flat LIFO FM

All �gain Away 102(0.247) 486(1.6) 459(29.3) 1778(16.4) 1810(36.5) 4175(34.1)

All �gain Part0 102(0.27) 465(2.06) 422(37.8) 1673(19.8) 1570(43.3) 4064(35)

All �gain Toward 102(0.264) 374(1.94) 316(36.5) 1030(15.4) 931(30) 3323(39.6)

Nonzero Away 80.5(0.222) 285(1.31) 166(22.8) 543(10.2) 549(18) 2304(29.2)

Nonzero Part0 80(0.236) 289(1.47) 150(26.3) 551(11.8) 549(18.6) 2383(31.1)

Nonzero Toward 78.8(0.219) 291(1.41) 143(24.8) 508(10.9) 551(19.3) 2285(33.1)

Flat CLIP FM

All �gain Away 69.8(0.351) 246(2.22) 149(53.9) 555(21.1) 707(46.2) 1747(45.5)

All �gain Part0 68(0.319) 242(2.3) 138(52) 562(21.3) 636(45.5) 1686(51.7)

All �gain Toward 68.4(0.35) 236(2.14) 121(44) 561(19.3) 619(44) 1664(43.2)

Nonzero Away 66.3(0.284) 231(2.02) 130(29.1) 488(17.5) 534(46.8) 1650(41.9)

Nonzero Part0 66.4(0.305) 226(2.2) 124(33.7) 467(17.1) 507(37.4) 1618(41.2)

Nonzero Toward 64.6(0.304) 223(2.13) 125(31.4) 474(15.8) 559(36.9) 1551(41.9)

ML LIFO FM

All �gain Away 64.2(0.818) 183(4.95) 147(36.8) 280(29.7) 399(70.6) 1043(138)

All �gain Part0 63.8(0.871) 182(5.21) 145(33.5) 282(31.6) 406(66.8) 999(113)

All �gain Toward 63.2(0.836) 180(4.74) 145(33.6) 272(30.8) 421(66.1) 1035(118)

Nonzero Away 62.9(0.807) 182(4.69) 142(28.1) 274(29.7) 396(60.4) 1037(123)

Nonzero Part0 61.8(0.849) 176(5.15) 144(26.8) 270(28.8) 403(60.2) 1048(121)

Nonzero Toward 61.4(0.879) 181(4.91) 143(24.8) 271(29.1) 415(56) 1015(119)

ML CLIP FM

All �gain Away 63.4(0.912) 180(5.27) 146(32.6) 276(30.2) 400(68.7) 1042(138)

All �gain Part0 62.8(0.849) 180(5.18) 145(39.1) 278(29.1) 408(67.8) 1022(129)

All �gain Toward 63.3(0.871) 178(5.36) 141(36.7) 270(29.4) 425(64.4) 1032(101)

Nonzero Away 61.2(0.887) 178(5.12) 142(26.8) 268(28.4) 392(57) 1037(116)

Nonzero Part0 62.8(0.878) 176(5.14) 142(29.3) 275(28.6) 409(55.6) 1026(111)

Nonzero Toward 63(0.924) 179(4.86) 142(28.5) 271(28.2) 409(52.9) 1034(115)

Table 1. Average cuts in partitioning with unit areas and 2% balance tolerance,

over 100 independent runs. Average CPU time per run in Sun Ultra-1 (140MHz)

seconds is given in parentheses.

a danger: e.g., developing a multilevel FM package may hide the fact that the underlying at engines
are badly implemented. At the same time, the e�ects of a bad implementation choice are still apparent
even when that choice is wrapped within a strong optimization technique (e.g., ML CLIP).

5. CONCLUSIONS

The results reported in the previous section are for a \detuned" or \generalized" version of our testbench,
where we deliberately re-enabled the zero delta gain update and gain bucket choice as options. In our
current testbench, these are not options, i.e., our FM-based engines always skip zero delta gain updates
and always choose the \toward" gain bucket in case of ties. Our current testbench is also able to invoke
several speedups that exploit the nature of the netcut objective and the two-way partitioning context.
Its performance is summarized in Table 3 and can be used for benchmarking other implementations. The
exibility of our testbench is particularly valuable; it allows to address new objectives, neighborhood
structures, constraint types and certainly justi�es the small (10� 15%) runtime overhead due to object-
oriented structure, conditional tests and the like.
The replicability of reported results is a well-known problem in the VLSI hypergraph partitioning

community [5], as well as in experimental algorithms research as a whole. Certainly, such issues as
experimental protocols, statistical signi�cance tests, data reporting methodology and comparison with

12 � A. E. Caldwell, A. B. Kahng and I. L. Markov

1

2

3

4

5

6

 primary1 primary2 biomed ibm01 ibm02 ibm03

re
la

tiv
e

so
lu

tio
n

co
st

 (
av

er
ag

e
of

 1
00

)

benchmark names

LIFO FM, actual areas, 2%

Update All/Bias Away
Update All/Bias Toward

Nonzeros Only/Bias to Part0

1

1.5

2

2.5

3

3.5

 primary1 primary2 biomed ibm01 ibm02 ibm03

re
la

tiv
e

so
lu

tio
n

co
st

 (
av

er
ag

e
of

 1
00

)

benchmark names

CLIP FM, actual areas, 2%

Update All / Bias Away
Update All / Bias Toward

Nonzeros Only / Bias to Part0

Fig. 5. Performance of three implementation variants of LIFO FM and CLIP FM on six benchmarks, with actual

areas and partitioning tolerance 2%. We plot performance relative to the best solution cost seen over all runs

of all variants. The worst results seen are up to six times worse than the best seen. Additional implementation

options are analyzed in Table 2, which gives more detailed information about the same experiment. The plots

clearly show that a poor implementation choices (Updat[ing] All gains) is masked by an overall stronger heuristic

(CLIP FM).

previous results are all critical aspects of scienti�c communication that have been addressed by previous
literature [6; 8; 22]. In this work, we have focused on the need to describe proposed algorithms and
algorithm improvements in su�cient detail, notably with respect to the documentation of all signi�cant
implementation decisions. We have presented evidence suggesting the appropriate level of detail for
reporting algorithm improvements; we suggest that even an expert programmer and algorithm researcher
may not otherwise recover a leading edge implementation (i.e., from a poor description). Our main
contributions have been the description of a software architecture for partitioning research, a review of
the modern context for such research in the VLSI CAD domain, and a sampling of hidden implementation
decisions that are crucial to obtaining a useful testbench.

Acknowledgments

We thank Max Moroz for design, implementation and support of an e�cient STL-based hypergraph
package used in the paper.

REFERENCES

[1] C. J. Alpert, \Partitioning Benchmarks for VLSI CAD Community", Web page,
http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html

[2] C. J. Alpert, \The ISPD-98 Circuit Benchmark Suite", Proc. ACM/IEEE International Symposium on Physical
Design, April 98, pp. 80-85. See errata at http://vlsicad.cs.ucla.edu/~cheese/errata.html

[3] C. J. Alpert and L. W. Hagen and A. B. Kahng, \A Hybrid Multilevel/Genetic Approach for Circuit Partitioning",
Proc. IEEE Asia Paci�c Conference on Circuits and Systems, 1996, pp. 298-301.

[4] C. J. Alpert, J.-H. Huang and A. B. Kahng,\Multilevel Circuit Partitioning", ACM/IEEE Design Automation Con-
ference, pp. 530-533. http://vlsicad.cs.ucla.edu/papers/conference/c68.ps

[5] C. J. Alpert and A. B. Kahng, \Recent Directions in Netlist Partitioning: A Survey", Integration, 19(1995) 1-81.

[6] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende and W. R. Stewart, \Designing and Reporting on Computational
Experiments with Heuristic Methods", technical report (extended version of J. Heuristics paper), June 27, 1995.

[7] F. Brglez, \ACM/SIGDA Design Automation Benchmarks: Catalyst or Anathema?", IEEE Design and Test, 10(3)
(1993), pp. 87-91.

[8] F. Brglez, \Design of Experiments to Evaluate CAD Algorithms: Which Improvements Are Due to Improved Heuristic
and Which are Merely Due to Chance?", technical report CBL-04-Brglez, NCSU Collaborative Benchmarking
Laboratory, April 1998.

[9] T. Bui, S. Chaudhuri, T. Leighton and M. Sipser, \Graph Bisection Algorithms with Good Average Behavior", Com-
binatorica 7(2), 1987, pp. 171-191.

[10] A. E. Caldwell, A. B. Kahng and I. L. Markov, manuscript, 1998.

[11] P. K. Chan and M. D. F. Schlag and J. Y. Zien, \Spectral K-Way Ratio-Cut Partitioning and Clustering", IEEE
Transactions on Computer-Aided Design, vol. 13 (8), pp. 1088-1096.

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 13

ALGORITHM TESTCASES with actual areas and 2% balance

Updates Bias primary1 primary2 biomed ibm01 ibm02 ibm03

Flat LIFO FM

All �gain Away 105(0.283) 481(2.05) 446(27.8) 1885(11.1) 3256(34.8) 4389(25.4)

All �gain Part0 103(0.311) 467(2.4) 428(34.9) 1909(12.3) 2440(33.5) 4166(27.1)

All �gain Toward 96.8(0.285) 380(2.15) 408(30.7) 1023(11.6) 1274(22.7) 3939(22.3)

Nonzero Away 80.5(0.258) 291(1.78) 164(27.3) 639(8.86) 551(14.9) 2838(25.2)

Nonzero Part0 79(0.271) 294(1.74) 157(29.2) 660(7.87) 573(17) 2938(24)

Nonzero Toward 79.7(0.25) 280(1.79) 153(24.7) 607(7.62) 543(15.8) 2843(25.4)

Flat CLIP FM

All �gain Away 66.2(0.361) 244(2.71) 148(57) 842(15.3) 1841(27.5) 3623(23.4)

All �gain Part0 66.3(0.395) 242(2.81) 141(54.6) 772(14.9) 1499(32.4) 3543(29.3)

All �gain Toward 65.9(0.393) 237(2.7) 138(58) 615(13) 945(21.5) 3066(25.6)

Nonzero Away 64.5(0.351) 231(2.66) 130(33.3) 542(12.1) 574(18.5) 2689(22.8)

Nonzero Part0 62(0.371) 242(2.49) 123(35) 556(12.4) 582(17.8) 2732(23.1)

Nonzero Toward 63.9(0.377) 233(2.31) 124(34.9) 528(11.8) 562(15.3) 2504(23.2)

ML LIFO FM

All �gain Away 62.8(0.905) 163(5.27) 145(34.9) 289(27.9) 433(42.9) 958(59.4)

All �gain Part0 62.5(0.954) 166(5.03) 144(38.7) 289(27.2) 429(44.6) 957(56.3)

All �gain Toward 61.1(0.974) 161(5.28) 143(36.3) 289(27.7) 423(47) 971(58.7)

Nonzero Away 60.4(0.914) 158(4.52) 142(29.9) 287(22.7) 432(39.6) 969(52.2)

Nonzero Part0 59.9(0.882) 158(4.36) 142(29.3) 282(25.3) 421(44) 952(50.6)

Nonzero Toward 60.5(0.9) 159(4.5) 142(27.5) 276(25.4) 419(43.2) 959(52.5)

ML CLIP FM

All �gain Away 63.5(0.88) 163(5) 144(35.9) 283(24.5) 428(41.5) 960(59.3)

All �gain Part0 62.5(0.891) 161(4.24) 143(37.1) 289(25.3) 441(46.5) 969(63.6)

All �gain Toward 61.9(0.927) 162(4.83) 141(37.8) 284(24.9) 425(44.2) 953(62.1)

Nonzero Away 60.2(0.939) 160(4.66) 144(31.8) 283(23) 414(48.7) 957(50.4)

Nonzero Part0 61(0.895) 161(4.89) 144(28.1) 285(24.7) 447(41.8) 934(53)

Nonzero Toward 60.9(0.864) 155(4.7) 144(29.6) 282(22.4) 433(42.6) 959(50.6)

Table 2. Average cuts in partitioning with actual areas and 2% balance tol-

erance, over 100 independent runs. Average CPU time per run in Sun Ultra-1

(140MHz) seconds is given in parentheses.

Con�guration primary1 primary2 biomed ibm01 ibm02 ibm03

2% unit area 57.1(0.418) 164.7(1.3) 132.8(2.24) 275.0(5.7) 372.1(10.6) 1031.4(11.6)

10% unit area 52.1(0.412) 143.6(1.3) 117.0(2.16) 247.9(5.82) 268.8(10.3) 820.9(11.8)

2% actual area 61.3(0.389) 193.1(1.41) 137.2(2.07) 284.5(6.63) 421.3(14.6) 1079.8(15.8)

10% actual area 54.1(0.421) 177.8(1.07) 125.0(2.23) 244.4(5.36) 275.7(14.7) 1062.1(16.4)

Table 3. Results of applying our optimized multilevel partitioner on 6 test-cases. Solutions are con-
strained to be within 2% or 10% of bisection. Data expressed as (average cut / average CPU time) over
100 runs, with the latter normalized to CPU seconds on a 140MHz Sun Ultra-1.

[12] J. Cong, H. P. Li, S. K. Lim, T. Shibuya and D. Xu, \Large Scale Circuit Partitioning with Loose/Stable Net Removal
and Signal Flow Based Clustering", Proc. IEEE International Conference on Computer-Aided Design, 1997, pp.
441-446.

[13] J. Cong and S. K. Lim, \Multiway Partitioning with Pairwise Movement", Proc. IEEE/ACM International Conference
on Computer-Aided Design, 1998, to appear.

[14] J. Darnauer and W. Dai, \A Method for Generating Random Circuits and Its Applications to Routability Measure-
ment", Proc. ACM/SIGDA International Symposium on FPGAs, 1996, pp. 66-72.

[15] A. Dasdan and C. Aykanat, \Two Novel Multiway Circuit Partitioning Algorithms Using Relaxed Locking", IEEE
Transactions on Computer-Aided Design 16(2) (1997), pp. 169-178.

[16] W. Deng, personal communication, July 1998.

14 � A. E. Caldwell, A. B. Kahng and I. L. Markov

Node degree statistics for testcases

primary1(833) primary2(3014) biomed(6514) ibm01(12752) ibm02(19601) ibm03(23136)

deg: # deg: # deg: # deg: # deg: # deg: #

Avg: 3.49 Avg: 3.72 Avg: 3.230 Avg: 3.965 Avg: 4.143 Avg: 4.044
1: 48 1: 43 1: 97 1: 781 1: 1591 1: 363
2: 145 2: 453 2: 792 2: 3722 2: 4448 2: 7093
3: 205 3: 1266 3: 4492 3: 2016 3: 2318 3: 4984
4: 273 4: 519 4: 440 4: 1430 4: 1714 4: 4357
5: 234 5: 402 5: 35 5: 1664 5: 3406 5: 2778
6: 5 6: 23 6: 658 6: 1761 6: 4435 6: 1252

7: 22 7: 260 7: 542 7: 1055 7: 300
9: 1 8: 4 8: 194 8: 303 8: 689

9: 44 9: 368 9: 319 9: 708
10: 3 29: 2 10: 50
13: 220 32: 1 11: 25
39: 1 51: 4 12: 192

53: 3 13: 47
60: 1 14: 7
69: 1 16: 10

17: 7
18-19: 4

20: 16
21-23: 8

24: 136
25: 101

84-100: 9

Table 4. Hypergraph node degree statistics. The numbers of nodes in

degree ranges are given for each testcase together with the total nodes

and average node degree.

[17] A. E. Dunlop and B. W. Kernighan, \A Procedure for Placement of Standard Cell VLSI Circuits", IEEE Transactions
on Computer-Aided Design 4(1) (1985), pp. 92-98

[18] S. Dutt and W. Deng, \VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques", Proc.
IEEE International Conference on Computer-Aided Design, 1996, pp. 194-200

[19] S. Dutt and H. Theny, \Partitioning Using Second-Order Information and Stochastic Gain Function", Proc.
IEEE/ACM International Symposium on Physical Design, 1998, pp. 112-117

[20] C. M. Fiduccia and R. M. Mattheyses, \A Linear Time Heuristic for Improving Network Partitions", Proc. ACM/IEEE
Design Automation Conference, 1982, pp. 175-181.

[21] M. R. Garey and D. S. Johnson, \Computers and Intractability, a Guide to the Theory of NP-completeness", W. H.
Freeman and Company: New York, 1979, pp. 223

[22] I. P. Gent, S. A. Grant, E. McIntyre, P. Prosser, P. Shaw, B. M. Smith and T. Walsh, \How Not To Do It", research
report 97-27, Univ. of Leeds School of Computer Studies, May 1997.

[23] M. Ghose, M. Zubair and C. E. Grosch, \Parallel Partitioning of Sparse Matrices", Computer Systems Science &
Engineering (1995) 1, pp. 33-40.

[24] D. Ghosh, \Synthesis of Equivalence Class Circuit Mutants and Applications to Benchmarking", summary of presen-
tation at DAC-98 Ph.D. Forum, June 1998.

[25] M. K. Goldberg and M. Burstein, \Heuristic Improvement Technique for Bisection of VLSI Networks", IEEE Trans-
actions on Computer-Aided Design, 1983, pp. 122-125.

[26] S. Hauck and G. Borriello, \An Evaluation of Bipartitioning Techniques", IEEE Transactions on Computer-Aided
Design 16(8) (1997), pp. 849-866.

[27] L. W. Hagen, D. J. Huang and A. B. Kahng, \On Implementation Choices for Iterative Improvement Partitioning
Methods", Proc. European Design Automation Conference, 1995, pp. 144-149.

[28] B. Hendrickson and R. Leland, \A Multilevel Algorithm for Partitioning Graphs", draft, 1995.

[29] B. Hendrickson and T. G. Kolda, \Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for
Parallel Processing", manuscript, 1998 (extended version of PARA98 workshop proceedings paper).

[30] D. J. Huang and A. B. Kahng, \Partitioning-Based Standard Cell Global Placement with an Exact Objective", Proc.
ACM/IEEE International Symposium on Physical Design, 1997, pp. 18-25.
http://vlsicad.cs.ucla.edu/papers/conference/c66.ps

[31] M. Hutton, J. P. Grossman, J. Rose and D. Corneil, \Characterization and Parameterized Random Generation of
Digital Circuits", In Proc. IEEE/ACM Design Automation Conference, 1996, pp. 94-99.

[32] A. B. Kahng, \Futures for Partitioning in Physical design", Proc. IEEE/ACM International Symposium on Physical

Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning � 15

Node weight statistics for testcases

weight range # nodes
primary1 primary2 biomed ibm01 ibm02 ibm03

1 81 107 97 12749 19589 23126
2 2 3
3 3
4 89 367
5 723 7
6 142 715 1
7 151 494 2818 1
8 73 398
9 1323 1
10
11 27 278 11
12 35
13
14 3
15 7 550
16
17 1 52
18 860
19
20 262 53 655 1 1 2

Table 5. Hypergraph node weight statistics. The interval between the

smallest and largest node weight has been divided into 20 equal ranges

for each testcase. For each such range we report the number of nodes

with weight in this range.

Design, April 1998, pp. 190-193.
http://vlsicad.cs.ucla.edu/papers/conference/c77.ps

[33] G. Karypis and V. Kumar, \Multilevel k-way Partitioning Scheme For Irregular Graphs", Technical Report 95-064,
University of Minnesota, Computer Science Department.

[34] G. Karypis and V. Kumar, \Multilevel Algorithms for Multi-Constraint Graph Partitioning", Technical Report 98-019,
University of Minnesota, Department of Computer Science.

[35] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, \Multilevel Hypergraph Partitioning: Applications in VLSI
Design", Proc. ACM/IEEE Design Automation Conference, 1997, pp. 526-529.
Additional publications and benchmark results for hMetis-1.5 are available at http://www-users.cs.umn.edu/
~karypis/metis/hmetis/main.html

[36] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, \Multilevel Hypergraph Partitioning: Applications in VLSI
Domain", technical report, University of Minnesota Computer Science Department, March 27, 1998.

[37] B. W. Kernighan and S. Lin, \An E�cient Heuristic Procedure for Partitioning Graphs", Bell System Tech. Journal
49 (1970), pp. 291-307.

[38] C. Kring and A. R. Newton, \A Cell-Replicating Approach to Mincut-Based Circuit Partitioning", Proc. IEEE/ACM
International Conference on Computer-Aided Design, 1991, pp. 2-5.

[39] B. Krishnamurthy, \An Improved Min-cut Algorithm for Partitioning VLSI Networks", IEEE Transactions on Com-
puters, vol. C-33, May 1984, pp. 438-446.

[40] B. Landman and R. Russo, \On a Pin Versus Block Relationship for Partitioning of Logic Graphs", IEEE Transactions
on Computers C-20(12) (1971), pp. 1469-1479.

[41] L. T. Liu, M. T. Kuo, S. C. Huang and C. K. Cheng, \A Gradient Method on the Initial Partition of Fiduccia-
Mattheyses Algorithm", Proc. IEEE International Conference on Computer-Aided Design, 1995, pp. 229-234.

[42] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley-Teubner, 1990.

[43] L. Sanchis, \Multiple-way network partitioning with di�erent cost functions", IEEE Transactions on Computers, Dec.
1993, vol.42, (no.12):1500-4.

[44] G. R. Schreiber and O. C. Martin, \Procedure for Ranking Heuristics Applied to Graph Partitioning", Proc. 2nd
International Conference on Metaheuristics, July 1997, pp. 1-19.

[45] G. R. Schreiber and O. C. Martin, \Cut Size Statistics of Graph Bisection Heuristics", manuscript in submission to
SIAM J. Optimization, 1997.

[46] P. R. Suaris and G. Kedem, \Quadrisection: A New Approach to Standard Cell Layout", Proc. IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 1987, pp. 474-477.

[47] W. Sun and C. Sechen, \E�cient and E�ective Placements for Very Large Circuits", Proc. IEEE/ACM International
Conference on Computer-Aided Design, 1993, pp. 170-177.

16 � A. E. Caldwell, A. B. Kahng and I. L. Markov

Hyperedge statistics for testcases

primary1(902) primary2(3029) biomed(5742) ibm01(14111) ibm02(19568) ibm03(27401)

deg: # deg: # deg: # deg: # deg: # deg: #

Avg: 3.22 Avg: 3.70 Avg: 3.664 Avg: 3.583 Avg: 4.146 Avg: 3.415
2: 494 2: 1835 2: 3998 2: 8341 2: 10692 2: 17619
3: 236 3: 365 3: 870 3: 2082 3: 1934 3: 3084
4: 62 4: 203 4: 427 4: 1044 4: 1951 4: 2155
5: 26 5: 192 5: 184 5: 737 5: 1946 5: 1050
6: 25 6: 120 6: 13 6: 407 6: 376 6: 790
7: 13 7: 52 7: 11 7: 235 7: 332 7: 436

8: 2 8: 14 8: 28 8: 188 8: 256 8: 342
9: 9 9: 83 9: 7 9: 192 9: 424 9: 501
10: 1 10: 14 10: 4 10: 194 10: 431 10: 235
11: 6 11: 35 11: 5 11: 147 11: 498 11: 198
12: 9 12: 5 12: 5 12: 91 12: 46 12: 162
13: 1 13: 3 13: 1 13: 133 13: 52 13: 195
14: 3 14: 10 14: 2 14: 54 14: 52 14: 112
16: 1 15: 3 15: 41 15: 34 15: 85 15: 79
17: 11 16: 1 17: 21 16: 54 16: 94 16: 100
18: 3 17: 72 18: 1 17: 31 17: 143 17: 119

18: 1 20: 2 18: 17 18: 100 18: 81
23: 1 21: 65 19: 12 19: 44 19: 41
26: 1 22: 34 20: 21 20: 15 20: 24
29: 1 23: 6 21: 18 21: 11 21: 12
30: 1 24: 6 22: 31 22: 5 22: 16
31: 1 43: 6 23: 18 24-29: 10 23: 9
33: 14 656: 4 25: 2 30: 4 24: 3
34: 1 861: 1 28: 1 31: 11 25: 6
37: 1 30: 2 32: 4 26: 3

31: 2 33: 2 27: 2
32: 5 34: 1 28: 2
33: 6 35: 5 29: 6
34: 1 36: 3 30: 1
35: 7 37: 2 31: 2
38: 1 38: 2 31: 3
39: 2 39: 1 32: 3
42: 1 40-97: 51 33: 5

107: 1 34: 3
134: 1 37-55: 5

Table 6. Hyperedge statistics. The numbers of hyperedges in ranges

are given for each testcase together with total hyperedges and average

hyperedge degree.

[48] Y. C.Wei and C. K. Cheng, \Towards E�cient Design by Ratio-cut Partitioning", Proc. IEEE International Conference
on Computer-Aided Design, 1989, pp. 298-301.

