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Abstract

Wirelength estimation in VLSI layout is fundamental to any pre-detailed routing estimate of timing or routability.
In this paper, we develop e�cient wirelength estimation techniques appropriate for wirelength estimation during top-
down oorplanning and placement of cell-based designs. Our methods give accurate, linear-time approaches, typically
with sublinear time complexity for dynamic updating of estimates (e.g., for annealing placement). Our techniques
o�er advantages not only for early on-line wirelength estimation during top-down placement, but also for a posteriori
estimation of routed wirelength given a �nal placement. In developing these new estimators, we have made several
contributions, including (i) insight into the contrast between region-based and bounding box-based RStMT estimation
techniques; (ii) empirical assessment of the correlations between pin placements of a multi-pin net that is contained in
a block; and (iii) new wirelength estimates that are functions of a block's complexity (number of cell instances) and
aspect ratio AR.

I. Introduction

Wirelength estimation in VLSI layout is fundamental to any pre-detailed routing estimate of

timing or routability. Accordingly, wirelength estimation has been studied in such contexts as gate-

array routability [7], hierarchical top-down layout [6] [8] [22], oorplanning [11], and growth rates

of rectilinear Steiner minimal trees [20] [21] [3]. Our present work is aimed at wirelength estimation

during the top-down placement of cell-based designs.

We distinguish three basic types of wirelength estimations associated with placement: a priori, a

posteriori and on-line.1

� A priori estimation seeks to estimate the total wirelength of a layout design in advance, be-

fore placement. For example, a oorplanner may use such estimates to obtain rough measures of

routability, RC parasitics and circuit performance; these in turn drive oorplan changes and circuit

optimizations. For such estimates to provide leverage, they must be faster than the actual place-

ment or routing constructions, at the cost of reduced accuracy. Such estimates are typi�ed by the

\wireload models" used in RTL oorplanning and logic optimization.

� A posteriori estimation occurs when we are given a �xed placement and want to estimate the

post-routing wirelength. This is of value whenever routing requires signi�cantly more CPU time

than placement or wiring estimation. Typical applications include predicting the routability of gate

This research was supported by a contract and grant from Cadence Design Systems, Inc.
1We do not discuss the class of constructive wiring estimators, which essentially construct the layout down to global

or detailed routing in order to obtain an \estimate" of the wiring. Constructive estimators can be relevant to certain
design methodologies, but we are more concerned with early and fast predictions that a�ord the leverage essential to
forward synthesis.
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array layouts [7] [8], estimating channel height in standard-cell layouts [17] [18], choosing between

two competing placements, etc. Again, such estimates must be faster than actual construction of the

routing. (Note that accuracy need not be perfect if the estimate has good \�delity", i.e., for any two

solutions the estimator correctly predicts which one is better even if the estimate of relative solution

costs may be inaccurate.)

� On-line estimation occurs when we want to estimate the wirelength during top-down hierarchical

oorplanning or placement. This has many applications. For example, the estimate can be used

to stop the placement process early, as soon as it becomes obvious that the placement process is

leading to a bad solution. Early estimates of wirelength can also be used to shorten the feedback

loops in timing- and wirelength-driven placement: clock tree synthesis, scan ordering, gate sizing,

etc. may all be done earlier in the ow when good wiring estimates are available. Finally, wirelength

estimates can be useful in determining the merit of local perturbations to the current solution. For

example, the inner loop of a simulated annealing placer requires accurate estimation of the quality of

a proposed move. Since this incremental cost estimation is one of the main contributors to annealing

placement runtime, an on-line estimator must be very fast. The accuracy of on-line wirelength

estimation should be between those for a priori and a posteriori regimes, reecting the available

information (more information than a priori, less than a posteriori).

Previous Wirelength Estimation Techniques

A fundamental building block for \wirelength estimation" is estimation of the rectilinear Steiner

minimal tree (RStMT) cost.2 The input to the RStMT problem is a pointset P of size jP j = n.

In one common context, we view P as having been selected from a uniform distribution over a

rectangular region R with width wR and height hR. Alternatively, we may know the minimum

bounding box enclosing all points of P , having width wbb and height hbb. We now review the most

relevant literature for this problem.

Growth rates of subadditive functionals in the Euclidean plane. The work of [21] [19], in a

literature that stems from the seminal work of Beardwood et al. [1], shows that the expected cost

(total tree length) of a Euclidean Steiner minimal tree over n points uniformly distributed within a

bounded plane region R of area wR � hR is proportional to
p
wR � hR � n for su�ciently large n. The

constant of proportionality, denoted by �, is dependent on the functional of the pointset (e.g., the

2We understand that router outputs may not be the same as RStMTs (due to the routing heuristic, congestion,
timing or noise constraints, and obstacles), and we understand that minimum wirelength is not perfectly correlated
with minimum delay or maximum routability. Nevertheless, pure RStMT cost estimation remains a core technology
within today's industry oorplanners, I/O pin optimizers, global and detailed placers, and related tools. Our ongoing
work is developing extensions to model the e�ects of routability and performance optimization.
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Euclidean minimum spanning tree cost and the Euclidean minimum traveling salesperson tour cost

have similar growth rates but di�erent constants of proportionality �EMSpT , �ETSP , etc.).

MSpT-based methods. Hwang [12] shows that the rectilinear Steiner ratio (worst-case ratio of

rectilinear minimum spanning tree (RMSpT) cost to RStMT cost) is 3=2. Hence, 2=3 times the

RMSpT cost is a lower bound on RStMT cost. Since the RMSpT cost is an upper bound on RStMT

cost, one might propose, e.g., 5=6 times the RMSpT cost as an RStMT estimator that guarantees

at most 16% error. Alternatively, empirical studies show that cost(RStMT )
cost(RMSpT ) averages around 0:88;

see [14] for a review. While MSpT-based estimators are excellent, we avoid them because their

implementation requires 
(n logn) runtime with fairly high constant, or else 
(n2) runtime.3

Bounding box based methods. In iterative improvement placers, the objective is typically based

on the half-perimeter of the bounding box of pin locations for each net, i.e., the RStMT estimate

is wbb + hbb. This is computed in linear time; given appropriate data caching, it can be updated

in expected sublinear time when a cell is moved. The bounding box half-perimeter exactly gives

the RStMT cost for 2- and 3-pin nets, and can be fairly accurate for larger nets if the bounding

box aspect ratio becomes large (see below). However, during top-down placement or oorplanning,

the pin locations are typically snapped to the centers of the regions in which they are located, after

which the bounding box computation occurs. This can induce certain errors (see Section 2 below),

and corrections for special cases have been proposed by Donath [6] and subsequent authors.

Chung and Hwang [3] study the worst-case cost of the rectilinear Steiner minimal tree (RStMT)

over n points with bounding box dimensions wbb; hbb. The maximum value of cost(RStMT )
wbb+hbb

tends to
p
n+1
2 as n ! 1. Several authors (e.g., Sechen) have noted that this result implies a correction

factor to the bounding box half-perimeter estimate for nets with jP j > 3.

Hamada et al. [10] propose a purely a priori wirelength estimation based on local neighborhood

analysis. Nets are expanded into cliques, and 2-neighborhoods of each are analyzed to obtain pa-

rameters of branching within the circuit. Multi-pin net wirelength estimates are inferred from these

parameters and a physical model in which neighbors of a given cell compete for locations close to

that cell.

Cheng [2] empirically estimates the probability of having a wire pass through any given point

within a net bounding box when the net is routed. His methodology is equivalent to estimating the

3Our work emphasizes fast (hopefully, linear-time) estimators that �t a dynamic or on-line use model. We recognize
that MSpT-based estimators return an actual topology, as opposed to just a cost estimate. For delay estimation, our
experience with industrial deep-submicron libraries and process technologies is that with well-balanced and well-sized
circuits the resistive interconnect e�ects are not dominant, e.g., lumped-capacitance or simple Ceff estimates as in
[13] are adequate [15] [16]. For noise estimation, whether any routing estimate (as opposed to a detailed Steiner
embedding of all nets) can be useful is yet unclear.



4

horizontal and vertical components of the RStMT cost, as a correction factor to the sum (wbb+hbb).

The correction factor is a function of the net size n; [2] provides a table of such correction factors

obtained by Monte Carlo methods.

Vaishnav and Pedram [23] suggested a priori wirelength estimations based on appropriate scaling

of the net bounding box half-perimeter by the number of pins on the net according to the Chung and

Hwang [3] formula. They then estimate the net bounding box assuming a uniform pin distribution.

Donath's classic wirelength estimation technique, which is based on Rent's rule and which estimates

hierarchical interconnections as opposed to RStMTs, is extended in works by Stroobandt et al. and

other groups. Example works are [22] and [11]. As noted in [5], classical works on wirelength

estimation, e.g., those of Donath ([6]), only deal with 2-pin nets. Even though modern designs

typically contain up to 60% 2-pin nets, this limitation is unacceptable because 2-pin nets rarely

account for more than half of total wirelength. To �ll this gap, [4] and [5] study multi-pin nets and

produce accurate total wirelength estimates by again extending Donath's original technique. The

Rent-based wirelength estimation literature uses di�erent techniques than we do; our e�orts are more

closely related to the RStMT estimation literature.

Contributions of This Paper

Our work makes the following contributions.

� We empirically study the distribution of pin locations in blocks during top-down placement. Based

on these studies, we model the set of all pins belonging to nets wholly contained in a block as being

uniformly distributed within the block. Since the pins of any given net have correlated locations,

we apply \shrinking" corrections to a given block's dimensions during the wirelength estimations for

that block's wholly-contained and partially-contained nets.

� We develop bounding box estimators that form the basis of our new on-line wirelength estimators.

Speci�cally, we give both an exact O(n2) algorithm and two heuristics (O(n) and O(n logn)) for

computing the expected bounding box of n points with known distribution among k regions of a

oorplan or hierarchical placement. These methods apply to arbitrary distributions. Our heuristics

are considerably faster than the exact algorithm even for small values of n, which makes them useful

in the placement context.

� We make new insights into the contrast between asymptotic results of Steele et al. (that expected

RStMT cost is proportional to
p
wR � hR � n) and the accepted practice (that expected RStMT cost

is proportional to
p
n � (wbb+hbb)). Among other implications, we �nd that an estimator of expected
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RStMT cost should not simply be based on a single constant �. Rather, such an estimator must be

based on a set of values �(n;AR) (where AR is the aspect ratio of the region within which n points

are uniformly distributed, or else the aspect ratio of the pointset's bounding box).

� Finally, we develop new wirelength estimators based on the above results.4 Our new estimators

are substantially more accurate than previous methods that are used in industry tools, including

bounding box methods and the method of Cheng [2]. In the on-line regime, we achieve stable and

accurate prediction of �nal total RStMT cost or total bounding box half-perimeter cost very early

in the top-down placement process.

II. Pin Distributions in Good Layouts

Since wirelength is ultimately a function of pin locations, we must �rst examine the issue of creating

a statistical model for pin locations in placements. This is a di�cult issue, since it is dependent not

only on the input netlist topology5 but also on the quality of the placement tool used. Final pin

locations are not known at higher levels of the top-down placement (which is where we require

estimates) and the estimator must account for this uncertainty. In [10] such uncertainty is handled

with the Weibull distribution for wirelength. Stroobandt and Kurdahi [5], [4] use statistical models

of the number of \cut" and \uncut" nets on the levels of top-down placement, other empirical

parameters and a series of statistical assumptions. However, we are not aware of any rigorously

justi�able model of how pin locations are distributed during the placement process.

In our work, we seek to estimate wirelength of individual nets by modeling pin locations within

blocks as random variables having certain statistical properties. Such an approach does not assume

that all possible placements are equally likely as good �nal placements, but rather attempts to

discern statistically signi�cant attributes of good placements. Given any arbitrary model for the

distribution of pin locations, we will embed it within a generic calculation of the expected bounding

box dimensions of the placed pins for given nets. Compared to previous works, this allows our

estimators to use the sizes of hierarchical blocks that contain pins of a net, as well as the number of

pins of a net that each block contains.

The remainder of this section describes our approach to empirically �nding simple, e�ective and

4Because much of our approach is empirical, tuned variants are easy. E..g., a given routing tool's characteristics can
be captured by using the router's results, rather than the output of an RStMT heuristic, to create the lookup tables.
Or, the quality of a given placer can be captured in the coe�cients of our \shrinking" corrections.
5For example, the distribution of �nal locations in good placements for a given cell A's pins will not be uniform over

the entire layout area, if cell A is strongly connected to a �xed pad. Another cell B's pins will also have non-uniform
distributions within good placements, if B is strongly connected to A. While we cannot predict this, the main point
of this section is that we can exploit the fact that the average of all distributions of individual pin locations will be
uniform over the layout region.
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 Uncut nets of all degrees (level 2)

Fig. 1. Typical distribution of pin locations in a low-wirelength �nal solution for all \uncut" nets at the second
level of top-down partitioning-based placement. The uniformity implies that individual pin distributions over any
number of good solutions will average to a uniform distribution.

e�cient models of distributions for locations of pins on the same net. Based on how these models

combine with our other results to yield high-quality wirelength estimators, we are hopeful that our

approach can be extended by better, more formal models { and we leave this as an open research

question.

Models With Uniform Pin Distributions

Standard-cell designs in processes with four or more metal layers have very high area utilization

(e.g., less than 5% whitespace for a typical synthesized block); also, the nature of logic synthesis

tools and static CMOS technology tend to result in low average pin count per cell. It is natural and

practical to assume that legal cell sites in utilized areas of blocks (i.e., not obstacles) of cell-based

designs are uniformly distributed. We have studied pin distributions in placed industry designs with

respect to blocks from various levels of the top-down placement. A typical plots is shown in Figure

1, which plots pin locations in a low-wirelength solution for all \uncut" nets (i.e., having pins in

exactly one block) at the second level of placement. These studies suggest that locations of pins in

nets of any particular degree are also distributed uniformly in good placements. Hence, when a net

has pins (on cells) assigned to a given hierarchical block, we will assume that the pin locations are

uniformly distributed within that block. Such an assumption is reasonable in the sense that whatever

distributions individual pins may have over the space of all good placements, these distributions must

average to a uniform distribution.6

On the other hand, Figure 2 shows that pins of \cut" nets on the third placement level are not

uniformly distributed. The apparent non-uniformity is because wirelength minimization forces pins

of cut nets toward cut lines and toward meeting points of multiple blocks. This is clearly seen

6This is rather a necessary condition | if the averaged distribution is not uniform, many pins will be distributed
nonuniformly.
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Cut nets of all degrees (level 3)

Fig. 2. Typical distribution of pin locations in a low-wirelength �nal placement for all \cut" nets at the third level of
the top-down placement. The apparent non-uniformity is because wirelength minimization forces pins of cut nets
toward cut lines and toward meeting points of multiple blocks.

in Figures 3 and 4, which respectively depict with line segments all 2-pin nets that are \cut" and

\uncut" at the third placement level. The line segments in Figure 4 are substantially shorter on

average than lines between independently distributed pins would be, while the line segments in

Figure 3 are not, implying little correlation between pin locations. This data indicates that while

uniform distribution models are reasonable for the aggregate of all pins of most types of nets, we

must correct for the correlations (i.e., non-independence) of the pin locations of any given net. For

the purposes of wirelength estimation, we will achieve such corrections using uniform distributions

in shrunk and shifted blocks. Furthermore, following methods of [4], we �nd it reasonable to allow

the possibility of di�erent correlations (i) between pin locations of nets that are uncut at both the

ith and (i+1)st levels, and (ii) between pin locations of nets that are uncut at the ith level, but cut

at the (i+ 1)st level.

In summary, our empirical studies have led us to use independent uniform pin distributions {

with separate corrections for observed correlations of cut and uncut nets { as a practical basis for

wirelength estimation. This is borne out by our results in Section 6, below.7 However, formally

quantifying the correlations between locations, and using such results for wirelength estimation,

remains a challenging direction for future work.

7Our analysis of placements has suggested two other reasons why our simple approach is successful. (1) At lower
levels of the placement the small size of blocks enhances the accuracy of any estimator, and accurately modeling
the location of pins in a block is less signi�cant. At higher placement levels, there are few blocks and most nets
have all their pins in one block (cf. Rent's rule). With these larger populations of nets, wirelength estimation based
on the uniform distribution model appears quite accurate. (2) Exceptionally detailed models may not be necessary
for half-perimeter wirelength or RStMT estimators, due to the many \don't care" regions intrinsic to the objective
function (i.e., relocating cells may not signi�cantly change the total wirelength estimate.) Again, simple models can
be e�ective.
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Cut nets of degree 2 (level 3)

Fig. 3. \Cut" nets of degree two on the third placement level, represented by line segments.

Uncut nets of degree 2 (level 3)

Fig. 4. \Uncut" nets of degree two on the third placement level, represented by line segments. The pin locations for
a given net are strongly correlated: most nets span less than two cell rows.

III. The Bounding Box of n Random Points With Given Distribution Among k

Rectangles

Hierarchical partitioning- and annealing-based placers maintain lists of rectangular regions and

cells assigned to each region. Until the bottom level of the placement, cells may have no particular
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location, yet wirelength cost estimates are needed to drive further partitioning or annealing. Based

on the conclusions of the previous section, for each net we will estimate the expected half-perimeter

of its bounding box, assuming that each pin is uniformly distributed within the rectangular regions to

which it are assigned.8 Formally, we are given N rectangles Ri, i = 1; : : : ; N , in the rectilinear plane,

and we are given that the ith rectangle contains ni uniformly distributed points. We seek estimates

of the expected width and height of the bounding box of all n =
PN

i=1 ni uniformly distributed

points.9

Since the x� and the y�coordinates of each pin are independent variables distributed uniformly

within ranges in segments, we can estimate the two sides of the bounding box separately and add

the results to obtain the expected half-perimeter. Since the expected side of the bounding box is

simply the expected distance between the maximal and the minimal random point, �nding these two

expectations (i.e., of the maximal and minimal coordinates) will solve the problem. Let us specify

a given rectangle Ri by its lower-left and upper-right corners f(axi ; ayi ); (bxi ; byi )g with axi � bxi and

ayi � byi . Then, the computation of the expected bounding box of the n points is given in Figure 5.

Computation of the Expected Bounding Box
Input: Rectangles Ri = f(axi ; ayi ); (bxi ; byi )g; i = 1 : : :N

each with ni random points
Output: The expected width Ewidth and the expected height Eheight

of the bounding box of all points
For horizontal segments [axi ; b

x
i ] with ni random points each:

�nd Eleft, the expected location of the leftmost point
�nd Eright, the expected location of the rightmost point

For vertical segments [ayi ; b
y
i ] with ni random points each:

�nd Etop, the expected location of the topmost point
�nd Ebottom, the expected location of the bottommost point

Output Ewidth = Eright � Eleft and Eheight = Etop � Ebottom
Fig. 5. Computing the expected bounding box for n points distributed overN rectangles.

In the remainder of this section, we will deal with computing the expected location of the leftmost

point, because computing any of Eright, Etop, or Ebottom obviously reduces to computing Eleft:

The Expected Minimum Problem. Given N segments [ai; bi]; i = 1; : : : ; N on the real line

with ni points distributed uniformly in the ith segment, �nd the expected location of the point with

minimum coordinate.

The following subsection gives an exact O(n2) algorithm, and Subsection III-B gives O(n) and

8The techniques that we develop below apply to the case where there is a known non-uniform probability distribution
for pin locations within a given region (e.g., [11]).
9As explained in Subsection III-A, the straightforward and often-used heuristic { assuming that each cell is placed

in the center of its rectangle (i.e., at its expected location assuming uniform distributions) { can have large error.
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O(n log n) heuristics that we use as the basis of new estimators in later sections.

A. Exact Solution of the Expected Minimum Problem

We work with a random point Pi on a segment in terms of its cumulative distribution function

pi(t) : [ai; bi] ! [0; 1], which gives the probability of the point appearing to the left of t. Thus,

1 � pi(t) gives the probability of the point appearing to the right of t. The uniform distribution

corresponds to the cumulative distribution pi(t) =
t�ai
bi�ai .

We can extend cumulative distribution functions by 0 to the left from ai and by 1 to the right

from bi, allowing us to deal with random points supported on di�erent segments (i.e., taking non-zero

and non-one values of the cumulative distribution only on their respective segments).

Fact 1: For n independent random points with cumulative distributions pi(t), the distribution of

the minimum is 1�Qn
i=1(1� pi(t)).

Proof. The probability that none of the n points appears to the left of t is the product of the

probabilities that each of them does not appear to the left of t, i.e.,
Qn�1

i=1 (1 � pi(t)). Thus, the

probability that at least one point is to the left of t is 1�Qn
i=1(1� pi(t)).

Fact 2: The expected location of a random point with distribution p(t) supported within [A;B] is

E = B � R B
A
p(t) dt.

Proof. Let �(t) = p0(t) be the probability density function of the distribution. Then E =R B
A
t�(t)dt =

R B
A
tp0(t)dt = (tp(t))jBA � R B

A
p(t)dt = B � R B

A
p(t)dt as p(A) = 0 and p(B) = 1.

Since a point distributed on [ai; bi] is also distributed on any containing segment (but not vice

versa), one can enlarge [ai; bi] to any [A;B] when considering products in Fact 1 and the theorems

below. Facts 1 and 2 imply

Fact 3: For n independent random points with cumulative distributions pi(t) supported within the

segment [A;B] (i.e. having its non-zero and non-one values within [A;B]), the expected minimum is

Emin = B �
Z B

A

(1�
nY
i=1

(1� pi(t))) dt = A+

Z B

A

(

nY
i=1

(1� pi(t))) dt (1)

Fact 4: The expected minimum for k independent random points uniformly distributed on the

segment [0; 1] is 1
k+1 .

Proof.

Emin =

Z 1

0

(1� t)k dt =
1

k + 1
: (2)
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Symmetrically, the expected maximum of k independent random points uniformly distributed on

the segment [0; 1] is 1� 1
k+1 .

Corollary III.1: The expected di�erence between maximum and minimum for k independent ran-

dom points uniformly distributed on the segment [0; 1] is 1� 2
k+1 .

Example. If two points are uniformly distributed on [0; 1] the leftmost is expected at 1
3 , and the

rightmost is expected at 2
3 . Consequently, the straightforward estimate for the expected distance

between two random points as the distance between their expectations (0 in this case) will be wrong

by 1
3 of the bounding box size for the region over which the points are distributed (or 100% of the

correct result).10

Theorem III.2: Consider n random points, each of which is independently and uniformly dis-

tributed on segment [ai; bi], i = 1; :::; n. Let A = a1 and B = mini bi and assume ai � ai+1 � mini bi.

(Any segment with ak > B can be ignored.) Then the expected minimum Emin is

Emin = A+

Z B

A

�
1� t� a1

b1 � a1

�
dt�

n�1X
i=2

Z B

ai

t� ai
bi � ai

i�1Y
j=1

�
1� t� aj

bj � aj

�
dt (3)

The proof is given in the Appendix.

Splitting the sum in Formula 3 into n�2 terms, we can view Emin as the sum of A and n�1 integrals
of polynomials of degree at most n. To compute the integrand in term i, introduce P1(t) := 1, Pi(t) :=Qi�1

j=1

�
1� t�aj

bj�aj

�
, which can be maintained in O(n) time per component using multiplication by

linear polynomials Pi(t) = Pi�1(t)
bi�1�t

bi�1�ai�1 . Integrations can be performed symbolically in O(n)

time each, giving overall O(n2) complexity.

The Expected Minimum Algorithm
Input: segments [ai; bi]; i = 1::N each containing ni random points
Output: The expected position Emin of the minimum point
Set B = mini bi, the smallest of the right segment endpoints
Discard all segments with left endpoint greater than B
Sort the segments by left endpoints, such that a1 � : : : � an
Set A = a1
E = A+

R B
A
(1� t�a1

b1�a1 )dt ; P (t) = 1
For each i = 2; : : : ; n� 1

P (t) = P (t) bi�1�t
bi�1�ai�1

E = E � R B
ai

t�ai
bi�aiP (t)dt (via symbolic integration)

Output Emin = E

Fig. 6. An O(n2) exact algorithm for expected minimum.

10We are not the �rst to notice this error, e.g., [11] cite Donath [6] as the source for simple correction factors in
the cases of N = 1 or 2 regions. Of course, correlations of pin locations combined with small region aspect ratios
can make the center-to-center bounding box approximation an overestimate (rather than an underestimate), but 1

3
of

the bounding box size is indeed the correct result when only the uniform distribution (and no speci�c correlation) is
known.
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Theorem III.3: The Expected Minimum Algorithm (Figure 6) �nds the expected minimum of n

points uniformly distributed in segments [ai; bi] in time O(n2).

Theorem III.2 shows that the expectation of the minimum is computed starting from the ex-

pectation of one point, with a series of apparently geometrically decreasing negative corrections.

This motivates the question of designing linear or near-linear time heuristics: if we allow for small

decreasing errors to the above corrections, the cumulative error will be small.

B. Fast Estimation of the Expected Minimum

We now present two heuristics for �nding the expected minimum which are signi�cantly faster

than the exact algorithm, not only asymptotically, but also for small values of n.

The linear-time heuristic starts with the segment for the �rst random point and gradually shifts

both endpoints of this segment to the left as it goes sequentially through the list of all segments.

The midpoint of the resulting segment gives an approximation of the expected minimum (see Figure

7).

The Fast Expected Minimum Heuristic
Input: Segments [ai; bi]; i = 1 : : :N , each with one random point
Output: Approximate expected location of the leftmost point
1. A = a1, B = b1
2. For each of the n� 1 remaining segments [ai; bi] do

if ai < A, then swap the two segments [A;B] and [ai; bi]
if ai < B
then

if bi � B

then B = B � (B�ai)3
3(bi�ai)(B�A)

else B = B � 1
3
(bi�ai)2+(B�ai)(B�bi)

(B�A)
3. Output Emin = A+B

2

Fig. 7. A linear-time heuristic for expected minimum.

The second heuristic is more accurate but slower, with O(n logn) runtime. It sorts all segments

in decreasing order of their left endpoints and �nds the leftmost right endpoint M = mini bi. The

Fast Expected Minimum Heuristic is then applied to segments whose left endpoints are not greater

than M (see Figure 8).

Step 2 of the Fast Expected Minimum Heuristic is based on the following

Proposition III.4: If [a1; b1] and [a2; b2] (a1 � a2) are two segments each containing one random

point, then the expected minimum is equal to

a1 + b1
2

� (b1 � a2)
3

6(b1 � a1)(b2 � a2)
if b1 � b2
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The Expected Minimum Heuristic
Input: Segments [ai; bi]; i = 1 : : :N each with one random point
Output: Approximate expected location of the leftmost point
1. Sort segments by left endpoints, such that a1 � : : : � an
2. Find the leftmost right endpoint M = mini bi
3. Omit all segments with ai > M
4. Apply Fast Expected Minimum Heuristic to remaining segments

Fig. 8. A more accurate, O(n log n) expected minimum heuristic.

and

a1 + b1
2

�
1
3 (b2 � a2)

2 � (b2 � a2)(b1 � a2) + (b1 � a2)
2

2(b1 � a1)
if b1 > b2

Proof. According to Theorem III.2

Emin = a1 +

Z b1

a1

(1� t� a1
b1 � a1

) dt�
Z b1

a2

t� a2
b2 � a2

(1� t� a1
b1 � a1

) dt

= a1 + (b1 � a1 + b1
2

)� (b1 � a2)
3

6(b1 � a1)(b2 � a2)

which completes the case for b1 � b2. The other case is shown using a similar computation.

We replace a pair of segments with a new segment such that its middle approximates the expected

minimum of random points in the two original segments. This can be viewed as approximating

the cumulative distribution of the minimum (over the union of original segments) with a linear

cumulative distribution (over the new segment). The approximation error of one such step is the

di�erence between the original expected minimum and the middle of the new segment (\new expected

minimum"). However, when the step is applied many times, additional error is incurred by our

removing higher moments of the expected minimum.

To show that the sorting step (Step 1) in the Expected Minimum Heuristic improves accuracy,

consider segments [a1; b1] = [0; 1] and [ai; bi] = [ 12 ;
1
2 ], i = 2; : : : ; n. For this input, the Fast Expected

Minimum Heuristic correctly determines the expected minimum for the random points in the �rst

two segments as 3
8 , but the right endpoint of the resulting segment is placed at

3
4 . All other segments

[ai; bi], i = 3; : : : ; n, further shift the right endpoint to the left. For su�ciently large n, the right

endpoint will be at 1
2 and the approximate expected minimum will be at 1

4 . On the other hand, the

exact expected minimum is still 3
8 .

To assess the relative error of the Fast Expected Minimum Heuristic, we compute both the ap-

proximate and the exact expected maximum values as well. Then evaluate the relative error between

the heuristic's approximated expected distance between maximum and minimum values, and the

exact expected distance between maximum and minimum values. In the above example, the relative
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error of the Fast Expected Minimum Heuristic is 100% since the heuristic's approximated expected

distance is 3
4 � 1

4 = 1
2 , while the exact expected distance is 5

8 � 3
8 = 1

4 ); we believe that this is

the worst case. Our Monte-Carlo experiments indicate that the average relative error of the Fast

Expected Minimum Heuristic for random input11 is about 1.1%.

On the other hand, for the input described above, the Expected Minimum Heuristic �nds the

exact expected minimum. Monte-Carlo experiments also con�rm the bene�t of the sorting step: for

10000 random inputs for each value of n = 3; : : : ; 30 the expected relative error of the Expected

Minimum Heuristic was always less than 0.6%, and we never encountered any instance with relative

error greater than 5%. Based on the symmetry of the problem, we also believe that the maximum

relative error of the Expected Minimum Heuristic occurs in the case when all segments are the same.

An error bound for this case is given by the following

Fact 5: If all segments are identical, the maximum possible error of the Expected Minimum Heuris-

tic is � 5:15%.

Proof. Without loss of generality, assume that A = 0 and B = 1. Then by Fact 4 the expected

minimum is equal to 1
n+1 . Each time we process another segment we shift B by B2

6 . Therefore, the

sequence of right endpoints is described by the recurrence

Bi = Bi�1 � (Bi�1)
2

3
:

The left endpoints of segments to the right of the midpoint M , which we use to �nd the expected

maximum, are shifting symmetrically. Thus, the relative error equals

Bn � 2
n+1

1� 2
n+1

A numerical computation shows that B100 � 0:028. Because Bn is decreasing, the relative error

cannot be more than B100=0:98 � 0:029 forN > 100. Numerical evaluation shows that the maximum

relative error over the values n = 1; :::; 100 is� 5:15% and occurs for an instance with n = 7 segments.

This discussion suggests that the Expected Minimum Heuristic has small worst-case error. We

leave determining the exact performance ratio as an open problem.12

11We generated n (n = 3; : : : ; 30) random segments in the (0; 1)-interval and found both the exact and the approxi-
mate expected distance between the maximum and minimum. We ran 10000 experiments for each n and found that
the average relative error was largest (i.e., about 1.2%) for n = 12 while the maximum relative error was always less
than 10%.
12As a side note: we observe that a model with discrete distributions can be applicable, particularly with standard-

cell layouts wherein cells occupy �xed sites in rows. Sites can be distributed unevenly, e.g., due to obstacles or to
rows of varying capacities being located unevenly. If locations have a discrete distribution, Formula 1 applies and
the integral can be directly computed as a sum over allowed sites or row coordinates. The runtime needed to handle
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Fig. 9. A 4-pin net with pins distributed in a region with aspect ratio 4 which is a union of 4 blocks each having
aspect ratio 1.

IV. Expected RStMT Cost for n Random Points

Distributed in a Plane Region

A literature on growth rates of subadditive functionals of pointsets, originating with Beardwood et

al. [1] and continuing through works of Steele and Snyder [20] [21], establishes bounds on the expected

RStMT cost, E[c(RStMT )], for n points uniformly distributed within a region R. Speci�cally, we

know that E[c(RStMT )] /
p
area(R) � n for n su�ciently large. The constant of proportionality

� does not depend on the shape of the region.13 Empirical evidence suggests that the expected

value of the ratio c(RStMT )p
area(R)�n converges to the constant � � 0:76. If R is a rectangle, which is often

appropriate in layout applications, then area(R) = wR � hR and E[c(RStMT )] / p
wR � hR � n.

Our work in this section is motivated by an apparent contradiction. If the expected RStMT cost is

proportional to the square root of the area wR � hR of a given region, why are all practical estimates

based on the half-perimeter wR + hR of the region? Put another way, if the theory suggests use

of a geometric mean estimate, why have practitioners always used an arithmetic mean estimate?14

In this section, we attempt to resolve this puzzle. We show that there is very substantial deviation

from the
p
wR � hR � n expected RStMT cost when the pointset is small and/or when the region R is

non-square (i.e., has aspect ratio > 1). As it happens, these are precisely the conditions of interest

for VLSI layout applications. (Note that small aspect ratios (close to 1 and almost never bigger than

2) of layout blocks in top-down placement do not contradict the relevance of considering large aspect

ratio regions. This is because a single net can often span multiple blocks during top-down placement

(see Figure 9), yielding an overall region of possibly large aspect ratio.)

The results of this section, together with those of the previous section and the uniform distribution

based methodology outlined in Section 2, allow us to develop new and highly accurate RStMT cost

discrete distributions depends linearly on the number of pins and on the number of sites. When the complexity is
su�ciently small (e.g., if the block has 15 rows) or when the sites are distributed very nonuniformly, such an approach
may give improved wirelength estimates in comparable or shorter time.
13The argument is simple. Tile the region with uniform small squares. Apply the known result for R = the unit

square to each small square, then join the \trees" in each small square together. The cost of joining is asymptotically
negligible.
14The half-perimeter of the region is twice the arithmetic mean wR+hR

2
. We know that many estimates scale as

square-root of the number of pins, whose average is close to 3 for nets in VLSI circuits.
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estimators in Section V. We �rst show that the convergence of the ratio E[c(RStMT )]p
area(R)�n to � strongly

depends on the shape of the region R even though the value of � is asymptotically independent of

the shape. We con�ne our discussion to rectangular regions, which allows the shape of the region

R to be expressed as an aspect ratio AR = w(R)
h(R) , where we assume without loss of generality that

w(R) > h(R).

Theorem IV.1: For any �xed n > 1, let P be an n-pointset in a rectangular region R, and let

mindist(P ) and maxdist(P ) be the the minimum and maximum distance between x-projections of

points from P , respectively. If mindist(P ) 6= 0, then c(RStMT (P )) = �(AR(R) � maxdist(P )
w(R) ), where

AR(R) = w(R)
h(R) is the aspect ratio of R.

Proof. We show that scaling both the width of a rectangular region R = R0 and all x-coordinates

of a given n-pointset P = P0 in R0 by a su�ciently large factor will make the RStMT cost propor-

tional to AR(R) = w(R)
h(R) . Multiply all x-coordinates in R by h(R0)

mindist(P0)
. and denote the resulting

region as R1.

We will show that the RStMT over the scaled n-pointset P1 intersects any vertical line at most

once if the x-coordinate of the line does not coincide with the x-coordinate of any point in P1. Indeed,

suppose some vertical line intersects the RStMT at least twice (see Figure 10). We can then replace

the horizontal edge e, which has length at least h(R0)
mindist(R0)

� mindist(R0) = h(R0), by a shorter

vertical edge (either e1 or e2) which has length at most h(R0) because the height of the region is

h(R1) = h(R0).

Since x-projections of the edges of the RStMT over P1 do not overlap, the total cost of the RStMT

is the sum of vertical edge costs and maxdist(P1). Further stretching of the region R by a factor

t > 1 yields a region Rt and pointset Pt. The total cost of horizontal edges in the RStMT increases

to t �maxdist(P1) while the total cost of vertical edges is the same. Since the length of any vertical

segment is at most h(R0), the total length of vertical segments is at most n �h(R0). Recall that both

n and h(R0) are �xed with respect to AR(R), i.e., n � h(R0) = �(1). Then, the RStMT cost over Pt

is

c(RStMT ) = n � h(R0) + t �maxdist(P1)

= �(1) + t �maxdist(P1)

= �

�
t �maxdist(P0) � h(R0)

mindist(P0)

�

= �

�
t � maxdist(P0)

mindist(P0)

�



17

������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
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p1

p2

p3

p4
e2e1

e

Fig. 10. Switching overlapping horizontal edges. If a vertical cut intersects two horizontal edges (p1; p4) and (p2; p3)
of the RStMT over pointset S0, we can replace the horizontal segment e (shown in dark) with a shorter vertical
segment. In the RStMT, there must be a path connecting the edges (p1; p4) and (p2; p3). (a) If this path connects
to p4, then e can be replaced by e1. (b) Otherwise, this path connects to p1 and e is replaced by e2.

On the other hand, the aspect ratio of Rt is

AR = t � AR(R1)

= t � AR(R0) � h(R0)

mindist(R0)

= �

�
t � w(R0)

mindist(P0)

�

From the previous two equalities,

c(RStMT ) = �

�
AR(R) � maxdist(P0)

w(R0)

�

For any n > 1, the expected minimum distance between the two closest among n points uniformly

distributed within a non-zero segment is nonzero. 15 Also, the expected maximum distance is

proportional to the length of the region R0, by Corollary III.1. Thus,

Observation 1: For any n > 1, E[c(RStMT )] = �
�
w(R)
h(R)

�
for n points uniformly distributed

within a rectangular region R.

15In fact, this expected minimum distance is equal to 1
n2

for n points taken from a uniform distribution in the unit

interval. The proof of this folklore fact (which is an exercise in textbooks) requires about a page of discussion, and is
not important to our development (all we need is that mindist is nonzero). We could certainly add the justi�cation
if required.
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Notice that Observation 1 does not contradict the result from [1]. The result from [1] holds \for n

su�ciently large", and can be formally restated as: For any region R, there exists an N0 such that for

any n > N0 points uniformly distributed within R, E[c(RStMT )] is proportional to
p
area(R) � n.

Observation 1 says that for any �xed n, there is a region with su�ciently large aspect ratio for

which this proportionality (i.e., to
p
area(R)) is invalid. In other words, there is no single N0 such

that for any region R, E[c(RStMT )] /
p
area(R) � n for n > N0. The value of N0 depends on

the shape of the region R, e.g., if R is a rectangle then larger aspect ratio of R requires larger N0.

We experimentally validate the theorem, as well as the original result from the literature, by the

following experiment. We �rst generate N = 10000 random instances of n points, for n = 4; 5; : : : ; 30

(note that n = 2; 3 are not interesting), chosen from a uniform distribution in the rectangular region

[0; 1]� [0; AR], for values of aspect ratio AR = 1; 2; 4; 8; :::; 512. We then �nd the cost of a heuristic

RStMT over the generated n points using the Batched Iterated 1-Steiner implementation of Gri�th

et al. [9], and divide this cost by
p
area � n.16 Table I presents the resulting values �(n;AR), which

we know should converge to � � 0:76 by the theory of Beardwood, Steele et al. The plot of Figure

11 presents a portion of the Table I data in an alternate way; we give individual curves depicting the

convergence of �(n;AR) for di�erent values of the aspect ratio AR. Notice that the convergence is

slower for larger values of AR, and that the deviation of �(n;AR) from � is larger when n is small.

The wide separation of curves for small n and the slow convergence for large AR empirically con�rm

that the proportionality E[c(RStMT )] /parea(R) � n holds only for n > N0, where N0 grows with

the aspect ratio of region R. Therefore, for su�ciently large aspect ratio of region R and su�ciently

small n, E[c(RStMT )] is not proportional to
p
area(R) � n, i.e., there will be signi�cant deviation of

E[c(RStMT )] from the expected � 0:758
p
area(R) � n. The use in practice of half-perimeter based

RStMT estimators is empirically justi�ed in discussing Tables I and III in the following section.

V. Expected RStMT Cost of n Random Points

Distributed in a Specified Bounding Box

The results of the previous section a�ord region-based estimates of c(RStMT ) for pointsets drawn

from a given (rectangular) region. Such estimates can be very rough. In practice, e.g., for a posteriori

estimation after placement, we have much more information than just a region from which points are

drawn: we have the actual bounding box of the RStMT instance. Intuitively, we should be able to

16In what follows, we will always use this Batched Iterated 1-Steiner implementation to approximate the (NP-hard)
RStMT solution. Results in [9] indicate that this will overestimate the true RStMT cost by an average of less than a
quarter percent for the instance sizes that we discuss.
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c(RStMT )=
p
n � area

Aspect Ratio (AR)
n 1 2 4 8 16 32 64 128 256
4 0.64 0.67 0.78 0.98 1.29 1.76 2.44 3.44 4.82
5 0.67 0.70 0.80 0.99 1.30 1.76 2.43 3.39 4.76
6 0.69 0.72 0.81 0.99 1.27 1.73 2.41 3.36 4.68
7 0.71 0.73 0.81 0.98 1.26 1.69 2.33 3.25 4.56
8 0.72 0.74 0.82 0.97 1.24 1.66 2.28 3.16 4.44
9 0.73 0.75 0.81 0.96 1.21 1.62 2.21 3.07 4.33
10 0.74 0.75 0.81 0.95 1.19 1.57 2.15 2.99 4.18
15 0.75 0.76 0.80 0.90 1.10 1.42 1.91 2.62 3.67
20 0.76 0.77 0.80 0.87 1.03 1.30 1.73 2.37 3.29
30 0.76 0.76 0.79 0.84 0.95 1.16 1.51 2.03 2.81

TABLE I

Average values of
cost(RStMT )p

n�area over 10000 random n-point samples in a rectangular region with aspect

ratio AR.

sqrt(n*area)
RSMT

AR = 4

AR = 1

AR = 8

0.5

0.758

AR =16

1.00

5 204 15 3010 n = # points

Fig. 11. Plots of �(n) = E[c(RStMT )]=
p

area(R) � n for di�erent aspect ratios AR of the rectangular region.

exploit this extra information to achieve more accurate bounding box-based estimates of c(RStMT ).

The �rst subsection shows that using the bounding box information allows more accurate estimates.

In the second subsection, we demonstrate that for any n > 1, the RStMT cost is proportional to the
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Deviations from Average of RStMT Cost for
n Points Uniformly Distributed in Unit Square

#points (n)
4 5 6 8 10 15 20 30

RStMT 1.28 1.50 1.69 2.04 2.33 2.91 3.38 4.15
90% 40.6 34.8 31.0 25.1 20.6 16.1 13.0 10.0
95% 48.1 40.8 36.8 29.7 24.3 18.9 15.4 12.0
98% 57.2 48.0 43.2 34.8 29.3 22.6 18.4 14.5

TABLE II

Average, and deviation from average, of RStMT costs over 10000 random n-point samples in a unit

square. Maximum relative deviation from average (expressed as a percentage) is computed for \best"

90%, 95% and 98% of samples.

Deviations from Average of (RStMT Cost / BBox HP)
for n Points Uniformly Distributed in Unit Square

#points (n)
4 5 6 8 10 15 20 30

NRStMT 1.06 1.13 1.19 1.31 1.42 1.66 1.87 2.22
90% 10.5 11.8 14.2 14.4 13.4 11.6 10.2 8.5
95% 14.5 15.2 15.8 16.7 15.6 13.8 12.1 10.1
98% 20.0 18.3 18.7 18.9 18.6 16.4 14.4 12.2

TABLE III

Average, and deviation from average, of the quantity (RStMT cost divided by half-perimeter of the

pointset bounding box). The 10000 n-point samples are taken from a uniform distribution in the unit

square. Maximum relative deviation (expressed as a percentage) is computed for \best" 90%, 95% and

98% of the samples, respectively.

aspect ratio of the bounding box (this is not surprising given Theorem IV.1). The result is a new

table for RStMT cost lookup based on bounding box aspect ratio and number of points n.

A. Bounding Box Information Helps

We begin with an empirical demonstration of the gain from knowing the bounding box. We

generate N = 10000 random instances of n points (n = 4; 5; : : : ; 30) uniformly distributed in the

unit (1 � 1) square. The �rst row of Table II shows average RStMT costs over the N samples for

each value of n. (These correspond the �rst column of Table I, scaled by factors of
p
n.) The Table

also shows the maximum relative deviation from this average (expressed as a percentage) among the

90%, 95% and 98% of the instances.17

17The exact calculation is as follows. For each of 10000 samples we �nd the relative deviation of c(RStMT ) from
the average cost of RStMT for a given n. Then, we rank all relative deviations for each given value of n. To �nd,
say, the maximum relative deviation over the 90% of samples, we determine the 90th percentile in the rank order. For
example, we see from the table that the middle 90% of all 10000 7-point instances have c(RStMT ) within 27.003% of
the average value of c(RStMT ), which is 1.8748.
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Deviations from Average of (RMSpT Cost / RStMT Cost)
for n Points Uniformly Distributed in Unit Square

#points (n)
4 5 6 8 10 15 20 30

MSpT 1.10 1.11 1.11 1.11 1.12 1.12 1.12 1.12
90% 9.4 9.3 8.2 6.7 6.2 4.8 4.2 3.3
95% 12.5 10.5 9.6 7.9 7.3 5.8 5.0 3.9
98% 16.5 13.2 11.8 9.3 8.7 7.0 5.8 4.7

TABLE IV

Average, and deviation from average, of the quantity (RMSpT cost divided by RStMT cost). The 10000

n-point samples are taken from a uniform distribution in the unit square. Maximum relative deviation

(expressed as a percentage) is computed for \best" 90%, 95% and 98% of the samples.

Similarly, in Table III, the �rst row gives averages over N = 10000 samples of the ratio of the

RStMT cost divided by the half-perimeter of the pointset's bounding box. The �rst row of Table

III shows that when the number of points is 4 or 5, the error of the half-perimeter bounding box

estimator is 6% or 13%, respectively. This is much smaller than the error of the area-based estimator

(see Table I). Of course, when the number of points is 2 or 3, then the bounding box half-perimeter

exactly gives the RStMT cost. Each column again gives maximum relative deviations in the middle

90%, 95% and 98% of the data, expressed as percentages. We see that normalizing to the bounding

box half-perimeter yields a greatly improved estimate (between two and three times more accurate

for n = 4; 5; 6).

We make a small digression to indicate how far o� these estimates are from \best possible" non-

constructive estimates, namely, those based on the rectilinear MSpT construction. Recall that RM-

SpT cost is known to average around 12% greater than RStMT cost (cf. analyses of Bern and de

Carvalho, as reviewed in [14]). Table IV gives the average ratio of RMSpT cost over RStMT cost, for

the same 10000 random instances for each value of n. This allows us to compare the bounding box

estimator with the minimum spanning tree estimator. We conclude that the bounding box-based

estimator is much better than the region-based estimator, and that the MSpT-based estimator is

somewhat better still. However, as we noted earlier, the MSpT is too expensive to be used in prac-

tice { we require linear-time on-line wirelength estimators with sublinear update costs (based on

reasonable storage) in the iterative placement context.

B. RStMT Cost Dependence on Bounding Box Aspect Ratio

From the results of Section IV we know there is a dependence of RStMT cost on the aspect ratio of

the region from which points are chosen. When we also consider the previous results of this section,
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we are motivated to seek a dependency of RStMT cost on the aspect ratio of the pointset bounding

box as well. Intuitively, if we can estimate this dependency, we will be able to more accurately predict

the RStMT cost for uniformly distributed points with a known bounding box. The di�culty is that

the �(n;AR) values from Section IV cannot be directly applied when we have a speci�c pointset

with a speci�c bounding box. We resolve this di�culty as follows.

From Fact 4, we know that if we choose n points uniformly distributed within a rectangular region

with sides w and h, the expected sides of the bounding box of these points are w0 = w(1� 2
n+1 ) and

h0 = h(1� 2
n+1 ). In other words, the expected aspect ratio of the bounding box is the same as the

aspect ratio of the region in which the points were uniformly distributed.

Therefore, if we are given n uniformly distributed points having a known bounding box with sides

wbb and hbb, we may predict that the expected RStMT cost is the same as the expected RStMT cost

of n points uniformly distributed within the region having sides wR = n+1
n�1 �wbb and hR = n+1

n�1 � hbb.
We have con�rmed that wirelength predictors based on the approach of computing wR = n+1

n�1 �wbb,
hR = n+1

n�1 � hbb di�er from empirically constructed (i.e., via Monte Carlo experiments) predictors by

less than 1%. In the empirical approach (which is analogous to the construction of Table I, we

generate a set of n points uniformly distributed within a bounding box of prescribed width w and

height h in the following way:

1. generate a set of n points uniformly distributed within the 1� 1 square;

2. �nd the bounding box of this set of points, with dimensions w0 and h0; and

3. multiply all x- and y-coordinates of the points by w=w0 and h=h0, respectively.

We use this construction in �nding RStMT costs over N = 10000 samples of n random points with

bounding box aspect ratio AR = 1; 2; :::; 32, and dividing by the half-perimeter of the bounding

box. Table V shows the average values for this ratio of RStMT cost to bounding box half-perimeter,

as a function of n and AR. A similar empirical analysis was performed by Cheng [2], but the

corresponding coe�cients did not depend on aspect ratio. Additionally, the author of [2] used a

worse code for �nding heuristic RStMTs. As a result, the entries of the �rst row of Table V, which

we reproduce from [2], are larger than our entries by approximately 2% even in the case of AR = 1.

In practice, Cheng's method will produce even worse overestimates of RStMT cost because it ignores

the e�ect of bounding box aspect ratio.18

18Readers may notice that the entries for AR = 1 in Table V are slightly di�erent from the entries in the �rst row
of Table III. This is because the Table III entries are averaging over all bounding box aspect ratios, not just AR = 1.
The expected bounding box aspect ratio for uniformly distributed points is somewhere between 1 and 2, and this is
consistent with the data in the two tables.
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Average RStMT Cost for Pointsets With BBox Half-Perimeter = 1
#points (n)

AR 4 5 6 8 10 15 20 30
1� 1.08 1.15 1.22 1.34 1.45 1.69 1.89 2.23
D 12.2 13.4 15.5 15.2 14.4 12.7 11.4 9.52
1 1.06 1.13 1.19 1.32 1.42 1.66 1.87 2.22
D 11.2 12.5 14.5 14.1 13.5 11.6 10.3 8.64
2 1.05 1.11 1.16 1.27 1.36 1.59 1.78 2.10
D 9.83 10.3 12.3 12.6 12.6 11.2 10.1 8.64
4 1.03 1.07 1.11 1.18 1.25 1.41 1.57 1.84
D 6.87 6.93 8.50 9.54 9.98 9.87 9.35 8.13
10 1.01 1.03 1.05 1.08 1.12 1.21 1.29 1.45
D 3.37 3.44 4.39 5.05 5.53 6.18 6.51 6.53

TABLE V

Each entry represents an average, over 10000 samples of n random points having prescribed bounding

box aspect ratio, of RStMT cost divided by bounding box half-perimeter. The first row reproduces

coefficients from the paper by Cheng. Each row marked with D gives the maximum relative deviation

from the average in 90% of the samples, expressed as a percentage.

VI. Practical On-Line Wirelength Estimation

To see the practical value of our new estimators, we �rst observe that they are extremely e�cient.

� In the on-line (top-down placement) context, we have n pins distributed among various regions.

Instead of returning the bounding box of the region centers, we apply the linear-time heuristic of

Figure 7 in Section III to obtain the expected bounding box of the pins, then perform lookup (with

linear interpolation as appropriate) in Table V of Section V.

� In the a posteriori context, we have n pins in exact locations. Instead of returning any of the

previous bounding box based estimates, we perform lookup (again with linear interpolation as ap-

propriate) in Table V.

The time complexity of our estimates in each context is O(n). Updating the estimate when a pin

is moved, as long as we have exact locations and do not need to execute the heuristic of Figure 7,

requires only a constant number of operations after the net bounding box has been updated. Thus,

speedups of bounding box updates that are used in practice (see, e.g., TimberWolf-related papers of

Sechen et al) hence transfer directly into our methods. Having established e�ciency, we next show

that our methods lead to improved estimation accuracy in the on-line context.

We have incorporated our new estimates, along with the previous center-based, bounding box-

based, and Cheng [2] estimates, into an internal placement testbed that includes both top-down

partitioning and annealing engines.19 Speci�cally, we compare the following seven wirelength esti-

19Placements that we obtain from our internal testbed are competitive { in terms of runtime, various solution
metrics, and routability by industrial routers { with placements from industry placers that we are aware of.
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Scaled Block

Center of Mass Original Block

Fig. 12. Scaling of regions for a net prior to calculating expected bounding box for HBBN heuristic.

mates (the �rst three algorithms estimate half-perimeters of net bounding boxes and the remaining

four algorithms estimate Steiner tree lengths taking in account the net sizes and the aspect ratios of

bounding boxes):

� CBB : Standard bounding box estimate using the center coordinates of the region in which the

given pin is located

� HBB : Heuristic bounding box estimate using the linear-time heuristic of Figure 7

� HBBN : Heuristic HBB

{ When estimating the wirelength for a given net, each region the net intersects is scaled towards

the net's center of mass (see Figure 12). The HBB heuristic is then applied to these scaled regions

(see also the discussion below).

{ For nets with all pins in the same partitioning region R, the region R is scaled by ratio 2:4
jRj0:38 ,

where jRj is the number of cells in R.

{ For nets with pins in di�erent partitioning regions R1; : : : ; Rp, the regions jRij are scaled towards
the center of the net's bounding-box by ratio 1

jRij0:1 , where jRij is the number of cells in Ri.

� Cheng : CBB estimate, scaled by the coe�cients of Cheng [2] (reproduced in the �rst line of Table

V)

� CBBtab : CBB estimate, followed by lookup in Table V

� HBBtab : HBB estimate, followed by lookup in Table V

� HBBNtab : HBBN estimate, followed by lookup in Table V
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Test Case Number of Cells Number of Nets Placement Runtime
Test1 1756 1492 47.50
Test2 3286 2902 74.42
Test3 6692 6527 1274.03
Test4 12133 11828 526.20
Test5 12857 10880 446.74

TABLE VI

Parameters of five standard-cell test cases from industry, along with total runtime of the top-down

partitioning based placement process for each test case (reported in CPU seconds for a 300MHz Sun

Ultra-10 workstation with 128MB RAM).

As discussed in Section 2, the uniform distribution assumption tends to overestimate wirelengths

during the early stages of the top-down placement process. This is because cells that are connected

by a net will have correlated locations. We propose to correct for the correlation of pin locations from

the same net, by shrinking partitioning regions when we estimate the net's wirelength. The scaling

should be according to the size of the partitioning regions, which can be measured by the number of

cells inside (there is more room for cells to \oat" when the regions are large, and less room when the

regions are small). Following our empirical studies (and as in [4]), our heuristic HBBN distinguishes

nets which are distributed among several regions and nets which are completely contained in a

single region. We empirically studied the top-down placements of a number of designs, recording

wirelengths of placed nets and the nets' cut or uncut status at various levels of the placement. We

then �tted, for both cut and uncut nets, the coe�cients � and � for scaling of type � � jRj� . It turns
out, as expected, that the shrinking correction is larger for nets that are completely contained in a

single region.

Our experiments thus far have evaluated the accuracy of on-line wirelength estimation in a top-

down partitioning-based placer. We have used �ve standard-cell test cases Test1,. . . ,Test5, obtained

from industry; their parameters are given in Table VI.

Our results are given in Table VII. For each test case, we run the top-down partitioning based

placer to completion, then measure both total net bounding box half-perimeter and total Iterated

1-Steiner heuristic RStMT cost of the result. For the bounding box estimators (the �rst four rows

of each table), each table entry gives the relative error of the estimated sum of bounding box half-

perimeters after the �rst i � 10% (i = 1; : : : ; 10) levels of the top-down partitioning based placement,

versus the �nal sum of bounding boxes. (We report data for every 10% of the levels because the

number of placement levels varies according to instance size.) For the wirelength estimators (the last

�ve lines of each table), each table entry gives the relative error of the estimated sum of Steiner tree
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Average Relative Error of Wire Length Estimates
% of levels completed

Estimator 10 20 30 40 50 60 70 80 90 100
CBB .243 .185 .138 .110 .086 .059 .031 .011 .001 .000
HBB 2.36 1.59 .911 .511 .298 .169 .071 .029 .002 .000
HBBN .112 .067 .034 .028 .015 .011 .025 .034 .026 .000
Cheng .208 .139 .085 .051 .038 .027 .039 .057 .065 .065
CBBtab .259 .188 .132 .104 .080 .057 .032 .016 .010 .010
HBBtab 2.37 1.61 .920 .509 .293 .164 .066 .025 .010 .010
HBBNtab .098 .052 .032 .018 .011 .017 .021 .024 .010 .010

TABLE VII

Relative errors of estimated sums of bounding box half-perimeters and RStMT costs during the

top-down placement. Data for 5 testcases are normalized and averaged.

Average CPU Time (seconds) of Wire Length Estimates
Estimator

test case CBB HBB HBBN Cheng CBBtab HBBtab HBBNtab
test1 .010 .010 .019 .010 .010 .010 .019
test2 .010 .019 .030 .010 .010 .020 .030
test3 .010 .050 .089 .010 .010 .050 .100
test4 .020 .060 .120 .020 .020 .060 .129
test5 .019 .050 .109 .019 .019 .059 .120

TABLE VIII

Average runtime required for total wirelength estimation at a each level of top-down placement,

reported in CPU seconds for a 300MHz Sun Ultra-10 workstation with 128MB RAM. Runtimes are

averaged over all placement levels for each instance.

costs, versus the �nal sum of I1S heuristic RStMT costs. Table VII gives the average of all the values.

We see that our new estimator HBBN is substantially better in the on-line context than previous

methods of estimating either sum of bounding box half-perimeters or sum of RStMT costs. In other

words, we can obtain accurate estimates of the �nal values of these objectives, relatively early in the

top-down placement process. This allows pruning of bad solution paths, and large potential runtime

savings. At the same time, even for a posteriori estimation our new methods are superior to previous

approaches. All our heuristics are very fast (see Table VIII), and represent a negligible amount of

time relative to the total top-down placement e�ort (see Table VI).

VII. Conclusions and Future Work

We have developed new wirelength estimation techniques appropriate for top-down oorplan-

ning and placement synthesis of row-based VLSI layouts. Our methods give accurate, linear-time

approaches, typically with sublinear time complexity for dynamic updating of estimates (e.g., for
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annealing placement). The new techniques o�er advantages not only for early on-line wirelength es-

timation during top-down placement, but also for a posteriori estimation of routed wirelength given

a �nal placement. In developing these new estimators, we have made several contributions, including

(i) insight into the contrast between region-based and bounding box-based RStMT estimation tech-

niques; (ii) empirical assessment of the correlations between pin placements of a multi-pin net that

is contained in a block; and (iii) new wirelength estimates that are functions of a block's complexity

(number of cell instances) and aspect ratio AR.

We have validated our new techniques experimentally using test cases from industry; the HBBN

and HBBNtab estimators are substantially superior to previous methods (Cheng). Our ongoing

research addresses such issues as (1) con�rming that our new cost estimates can successfully drive

partitioning- and annealing-based placers to improved solutions, and (2) better understanding of the

dependence of pin distributions on netlist topology.
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Appendix

Theorem 3.1Consider n random points, each of which is independently and uniformly distributed

on segment [ai; bi], i = 1; :::; n. Let A = a1 and B = mini bi and assume ai � ai+1 � mini bi. (Any

segment with ak > B can be ignored.) Then the expected minimum Emin is

Emin = A+

Z B

A

�
1� t� a1

b1 � a1

�
dt�

n�1X
i=2

Z B

ai

t� ai
bi � ai

i�1Y
j=1

�
1� t� aj

bj � aj

�
dt (4)

Proof. First note that in the context of Formula (1)

� pi(t) =
t�ai
bi�ai for t 2 [ai; B]

� pi(t) = 0 for t � ai, p1(t) = 1 for t � B

� For given t and i, if pi(t) = 0, pi(t) can be safely omitted from
Qn

i=1(1 � pi(t)) in Formula

(1), while p1(t) = 1 zeros this product regardless of all other functions. Therefore, for t < ai,Qn
j=1(1� pj(t)) =

Qi�1
j=1(1� pj(t)). Also,

Qn
i=1(1� pi(t)) in Formula (1) is supported on [A;B], and

the conditions of the Theorem apply.

Now rewrite Formula (1) as

A+

n�1X
i=1

Z ai+1

ai

2
4 nY
j=1

(1� pj(t))

3
5 dt+

Z B

an

2
4 nY
j=1

(1� pj(t))

3
5 dt
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and transform into

A+

n�1X
i=1

Z ai+1

ai

2
4 iY
j=1

(1� pj(t))

3
5 dt+

Z B

an

2
4 nY
j=1

(1� pj(t))

3
5 dt

by dropping insigni�cant pi(t) as explained above. In order to reduce the computational complexity

of this expression, we are going to merge groups of integrals over [ai; ai+1]; [ai+1; ai+2]:::[an; B] into

integrals over [ai; B] which requires equalizing the integrands. Rewrite the expression above as

A+

n�1X
i=1

Z ai+1

ai

2
4(1� pi(t))

i�1Y
j=1

(1� pj(t))

3
5 dt+

Z B

an

2
4(1� pn(t))

n�1Y
j=1

1� pj(t)

3
5 dt

and, using the distributive law, transform every occurrence of (1 � p�(t))
Q

into
Q�p�(t)

Q
until

all such occurrences have empty
Q

(i.e., apply the distributive law recursively). This yields

A+
n�1X
i=1

Z ai+1

ai

2
4(1� p1(t))�

iX
k=2

pk(t)
k�1Y
j=1

1� pj(t)

3
5 dt+

Z B

an

2
4(1� p1(t))�

n�1X
k=2

pk(t)
k�1Y
j=1

1� pj(t)

3
5 dt

Collect the terms with (1� p1(t)) and apply
R a2
a1

+
R a3
a2

+ : : :+
R an
an�1

+
R B
an

=
R B
a1

to simplify:

A+

Z B

a1

(1� p1(t))dt �
n�1X
k=2

n�1X
i=k

Z ai+1

ai

pk(t)

k�1Y
j=1

(1� pj(t))dt �
n�1X
k=2

Z B

an

pk(t)

k�1Y
j=1

(1� pj(t))dt

Similar treatment of terms with pk(t)
Qk�1

j=1 (1� pj(t)) yields

A+

Z B

a1

(1� p1(t))dt �
n�1X
k=2

Z B

a1

pk(t)

k�1Y
j=1

(1� pj(t)dt

which gives Formula 4.
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