
Automating Postsilicon
Debugging and Repair

D
ue to the high complexity of modern semi-
conductor designs and increasing pressure to
reduce their time to market, errors are more
likely to escape verification and are often
detected only after a chip has been manu-

factured. Postsilicon debugging has therefore become a
crucial step in the design process, currently taking 35
percent of the time spent to complete a chip1 and poten-
tially consuming an even greater fraction in the future.

Given that the market window for many modern prod-
ucts is only a few years, the delay caused by two respins
can dramatically reduce revenue or even kill the product.
Carnegie Mellon University’s Rob Rutenbar points out
that postsilicon debugging can cost $15 million to $20
million and take six months to complete, yet few elec-
tronic design automation tools and algorithms address
this problem.2

Postsilicon debugging is becoming more important
because actual chips cannot be simulated presilicon with
sufficient accuracy. Design deficiencies can involve com-
plex thermal and inductive effects, while new semicon-
ductor fabrication technologies can cause manufactur-
ing glitches due to unexpected light-diffraction patterns
and variability of material properties.

Nondeterministic defects are particularly difficult to
work around because each affects only a small fraction of
chips, but together they can significantly decrease yield
and therefore increase cost. Consequently, a chip must
be manufactured before developers can comprehensively
validate it. In addition, silicon dies that undergo testing

can operate at their intended frequency, which is orders
of magnitude faster than functional and electrically
accurate simulation.

PRESILICON VERSUS POSTSILICON DEBUGGING
Pre- and postsilicon debugging differ in four key ways.
First, design errors found before manufacturing include

conceptual deficiencies that might not be fixable by auto-
matic tools. In contrast, postsilicon functional bugs are
often subtle errors that only affect the output responses of
a few input vectors, and developers usually can implement
fixes with very few gates, as the “Analysis of Presilicon
and Postsilicon Bugs” sidebar explains. However, finding
such fixes requires analyzing detailed layout information,
making it a highly tedious and error-prone task.

Second, errors detected postsilicon typically include
functional, electrical, manufacturing, and yield prob-
lems. However, issues identified presilicon are mostly
limited to functional and timing errors. Problems that
manage to evade presilicon validation are often difficult
to simulate, analyze, or even duplicate. For example,
Intel developed an entirely new methodology for post-
diagnosis of electrical bugs that affect signal delays.3

Third, the observability of a silicon die’s internal sig-
nals is extremely limited because most signals cannot be
discerned directly.

Fourth, verifying the correctness of a fix is challeng-
ing because physically implementing a fix in a chip is
difficult. So-called metal fix techniques, such as that
described in the “Focused Ion Beam” sidebar, can alter

Due to increasing semiconductor design complexity, more errors are escaping presilicon

verification and being discovered only after manufacturing. As an alternative to traditional

manual chip repair, the authors propose the FogClear methodology, which automates the

postsilicon debugging process and thereby reduces IC development time and costs.

Kai-hui Chang, Igor L. Markov, and Valeria Bertacco
University of Michigan, Ann Arbor

0018-9162/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society 	 July 2008	 47

R E S E A R C H F E A T U R E

	 48	 Computer

the chip’s metal layers, but these processes cannot create
new transistors.

AUTOMATING POSTSILICON DEBUGGING
Due to these constraints, developers cannot apply most

debugging techniques prevalent in early semiconduc-
tor design stages to postsilicon debugging. Consider, for
example, the buggy layout shown in Figure 1a. A small
modification in the layout that sizes up the driving gate
requires changes in all transistor masks and refabrication of
the chip, as Figure 1b illustrates, making the “simple” mod-
ification extremely expensive in postsilicon debugging.

Existing techniques for postsilicon debugging strive
to provide more visibility and controllability for the
silicon die.1 Although such techniques greatly aid engi-
neers, they do not automate the debugging process
itself. To address this problem, we have developed a
methodology that facilitates the automation of post-
silicon debugging. Key innovations in our approach
include support for postsilicon physical constraints and
the ability to repair errors by subtle modifications of an
existing layout. As Figure 1c shows, our techniques are
aware of the physical constraints and can repair errors
with minimal physical changes.

Analysis of Presilicon and Postsilicon Bugs
Semiconductor errors have many origins ranging

from poor specifications to miscommunication among
designers to plain designer mistakes. Table A lists the
15 most common error categories in microprocessor
designs specified at the register-transfer level, as col-
lected from seven student projects at the University
of Michigan between 1996 and 1997.1 Most students
participating in this study are currently integrated cir-
cuit designers, therefore the bugs are representative
of errors in industry designs.

As the table shows, most errors are simple and only
require changing a few lines of code in a hardware
description language, while complex and concep-
tual errors only contribute 7.9 percent of the total
errors. This is not surprising for competent designers.
Because even fewer such errors will escape presilicon
verification, postsilicon functional bugs are often
subtle and only affect the output responses to a few
input vectors; their fixes can usually be implemented
with very few gates.

Despite their subtlety, these faults occur more fre-
quently with each design generation and can have
serious consequences. As an example, a 2007 analysis
of the Intel Core 2 processor by OpenBSD founder
Theo de Raadt2 identified 20-30 bugs that cannot be
masked by BIOS or operating system updates. Some
of these could be exploited by malicious software. 	
De Raadt estimates that it would take Intel a year to
repair these errors. It is particularly alarming that
these bugs escaped Intel’s verification and validation
methodologies that are considered among the most
advanced in the industry.

References
	1.	D.V. Campenhout, T. Mudge, and J.P. Hayes, “Collec-

tion and Analysis of Microprocessor Design Errors,” 	
IEEE Design & Test, vol. 17, no. 4, 2000, pp. 51-60.

	2.	T. de Raadt, “Intel Core 2,” openbsd-misc list, Mail-
ing List Archives, 27 June 2007; http://marc.info/
?l=openbsd-misc&m=118296441702631.

Table A. Common microprocessor design error categories in seven student projects.

	 Microprocessor project

Error category	 LC2	 DLX1	 DLX2	 DLX3	 X86	 FPU	 FXU	 Average

Wrong signal source	 27.3	 31.4	 25.7	 46.2	 32.8	 23.5	 25.7	 30.4

Missing instance	 0.0	 28.6	 20.0	 23.1	 14.8	 5.9	 15.9	 15.5

Missing inversion	 0.0	 8.6	 0.0	 0.0	 0.0	 47.1	 16.8	 10.3

Timing and sophisticated, difficult-to-fix errors	 9.1	 8.6	 0.0	 7.7	 6.6	 11.8	 4.4	 6.9
Unconnected input(s)	 0.0	 8.6	 14.3	 7.7	 8.2	 5.9	 0.9	 6.5
Missing input(s)	 9.1	 8.6	 5.7	 7.7	 11.5	 0.0	 0.0	 6.1
Wrong gate/module type	 13.6	 0.0	 11.4	 0.0	 9.8	 0.0	 0.0	 5.0
Missing item/factor	 9.1	 2.9	 5.7	 0.0	 0.0	 0.0	 4.4	 3.2
Wrong constant	 9.1	 0.0	 2.9	 0.0	 0.0	 0.0	 9.7	 3.1
“Always” statement	 9.1	 0.0	 2.9	 0.0	 0.0	 0.0	 2.7	 2.1
Missing latch/flip-flop	 0.0	 0.0	 0.0	 0.0	 4.9	 5.9	 0.9	 1.7
Wrong bus width	 4.5	 0.0	 0.0	 0.0	 0.0	 0.0	 7.1	 1.7
Missing state	 9.1	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 1.3
Conflicting outputs	 0.0	 0.0	 0.0	 0.0	 7.7	 0.0	 0.0	 1.1
Conceptual	 0.0	 0.0	 2.9	 0.0	 3.3	 0.0	 0.9	 1.0

	 July 2008	 49

To achieve these goals, we have developed algorithms to
identify as many candidate bug fixes as practical, in terms
of netlist and layout transformations. This is important
in postsilicon debugging because often only a few trans-
formations can satisfy all the physical constraints. On
the other hand, we also exploit these constraints’ highly
restrictive nature to prune our algorithms’ search space.

CURRENT POSTSILICON
DEBUGGING METHODOLOGY

In his analysis of the major silicon failure mechanisms
in microprocessors, Don Josephson reported that the

most common failures, besides those due to dynamic
logic, are drive strength (9 percent), logic errors (9 per-
cent), race conditions (8 percent), unexpected capaci-
tive coupling (7 percent), and drive fights (7 percent).4
In addition, at the latest technology nodes, the antenna
effect—electric charge accumulated in partially con-
nected wire segments during the manufacturing pro-
cess—can damage a circuit or reduce its reliability. Most
of these issues must be addressed and resolved during
postsilicon debugging. Our own work focuses on func-
tional and electrical errors.

Figure 2 shows the current postsilicon debugging meth-

	

Focused Ion Beam
FIB is a technique that focuses a beam of gallium

ions.1 In the semiconductor industry, it can be used
to modify an existing silicon die. For example, FIB can
cut a wire or deposit conductive material to make a
connection. However, it cannot create new transistors
on a silicon die.

Ion milling can remove unwanted materials from
a silicon die. When an accelerated ion hits the silicon
die, the ion loses its energy by scattering the electrons
and the lattice atoms. If the energy is higher than the
atoms’ binding energy, the atoms will sputter from
the die’s surface.

To complement material removal, ion-induced
deposition adds new materials to a silicon die. This
process directs a precursor gas, often an organome-
tallic compound, to the surface of the die, which is
then absorbed. When the incident ion beam hits the
gas molecule, the molecule dissociates and leaves
the metal constituent as a deposit. Similarly, FIB can
deposit an insulator on the die. Because deposited
materials can trap impurities such as gallium ions, the
conductivity and resistivity of the deposited metal or

insulator tend to be worse than those of the regular
manufacturing process. However, this phenomenon
does not pose serious challenges in postsilicon debug-
ging because the changes are typically small.

FIB can either cut or reconnect top-level wires,
but changing wires at lower levels is much more
elaborate. Achieving this requires milling a large hole
through the upper-level wires to expose the lower-
level wire, which is then filled with oxide. A new
smaller hole is then milled through the refilled oxide
and metal is deposited down to the lower level. The
affected upper-level wires might need to be recon-
nected in a similar way.

Reference

	1.	J. Melngailis, L.W. Swanson, and W. Thompson,
“Focused Ion Beams in Semiconductor Manufactur-
ing,” Wiley Encyclopedia of Electrical and Electronics
Engineering, John Wiley & Sons, 1999; http://mrw.inter-
science.wiley.com/emrw/9780471346081/eeee/article/
W7020/current/abstract.

Figure 1. Postsilicon error repair example. (a) Original buggy layout with a weak driver (INV). (b) A traditional resynthesis
technique finds a simple fix that sizes up the driving gate, but it requires expensive remanufacturing of the silicon die to change
the transistors. (c) Our physically aware techniques find a more complex solution using symmetry-based rewiring, but it can be
implemented with a metal fix and has a smaller physical impact.

(a) (b) (c)

	 50	 Computer

odology. To validate a silicon die, engineers apply numer-
ous test vectors to the die and then check their output
responses. If the responses are correct for all the applied
test vectors, the die passes validation. If not, the test vec-
tors that expose the design errors become the bug trace,
which engineers use to diagnose and correct the errors.

After diagnosing the errors, engineers modify the layout
to correct the errors and then validate the repaired layout
again, continuing the process until the die passes veri-
fication. In contrast to presilicon verification, however,
fixing all the errors as soon as they are diagnosed is often
unnecessary in postsilicon debugging; in fact, repairing
a fraction of them might be sufficient to enable further
verification.

Functional errors
If engineers diagnose an error to be functional, they

can resort to functional error repair techniques.5 Even
so, implementing fixes in the layout might not always be
viable because these techniques do not take into consid-
eration the physical aspects of the design. To find fixes
compatible with a preexisting layout, engineers often
generate several fixes, all equally valid from a functional
standpoint, and then resort to tedious trial-and-error
methodologies to select one that is compatible with the
design’s layout.

Electrical errors
Debugging electrical errors is often more challenging

than debugging functional ones because engineers can-
not use the available logic debugging tools. Although
techniques to diagnose electrical errors exist (such as
voltage-frequency shmoo plotting6), they are often
heuristic in nature and require extensive expertise.

Even if the errors’ causes can be
identified, finding valid fixes is
still challenging because most
existing resynthesis techniques
require changes in logic cells and
they are not amenable to metal
fix.

To address this problem,
researchers have recently devel-
oped techniques, such as engi-
neering change order routing,
that allow postsilicon metal
fix.7 However, ECO routing can
only repair some of the electri-
cal errors as it cannot reconnect
wires and change the circuit’s
logic. Repairing more difficult
bugs requires transformations
that also utilize logic informa-
tion. For example, one way to
repair a drive-strength error is
to exploit functional symmetries

in the circuit as shown in Figure 1, and this can only be
achieved by considering logic information.

FOGCLEAR METHODOLOGY
We have developed a postsilicon debugging methodol-

ogy, called FogClear, that automates the manual effort
currently required to isolate and fix bugs. Among its key
elements are

physically aware functional error repair (PAFER),
which diagnoses and repairs functional errors with
minimal perturbation to the layout; and
physically aware resynthesis (PARSyn), which
searches for netlist transformations that can be
implemented with limited physical resources.

We also adapted earlier work on symmetry-based rewir-
ing8 and safe resynthesis9 to search for layout transfor-
mations that can repair electrical errors.

In addition to postsilicon debugging, developers can
apply FogClear to reduce the cost of respins. Because
masks responsible for active device layers contribute
most of the total mask cost, being able to reuse transis-
tor masks greatly reduces respin cost, especially when it
approaches $10 million per mask set at the 45-nm node.
FogClear produces layout transformations that only
involve changes in the metal layers and therefore allow
transistor mask reuse. In addition, FogClear can acceler-
ate the postsilicon debugging process and reduce the loss
in revenue caused by delayed market entry.

Figure 3 shows the FogClear methodology. Because
silicon dies offer execution speeds orders of magnitude
faster than those provided by logic simulators, vendors
rely on tests that can take several hours and sometimes

•

•

Layout repair

Logic error diagnosis
and correction

Postsilicon
verification

Electrical error
repair

Bug trace

Testbench Silicon die

Repaired
layout

Repaired
netlist

Done

Error
diagnosis

Logic error
repair

Functional error

Electrical
error

PassFail

Figure 2. Current postsilicon debugging methodology. To validate a silicon die, engineers
apply numerous test vectors to the die and then check their output responses. If the
responses are correct for all the applied test vectors, the die passes validation. If not, the
test vectors that expose the design errors become the bug trace, which engineers use to
diagnose and correct the errors.

	 July 2008	 51

days to execute on the silicon prototype. Consequently,
when failing, these tests produce extremely long bug
traces. To simplify error diagnosis, we introduce a step
called bug trace minimization10 that reduces the trace’s
complexity using several simulation-based methods. This
approach is especially suitable for postsilicon debugging
because simulation can be performed using the silicon
die itself.

After simplifying a bug trace, we simulate the trace
with a logic simulator using the netlist that produces the
layout. If simulation exposes the error, then the error
is functional, and PAFER generates a repaired layout;
otherwise the error is electrical.

Currently, FogClear requires manual error diag-
nosis to determine the root cause of an electrical
error. After identifying an electrical error, we deter-
mine whether ECO routing can repair the error. If
so, we apply existing ECO routing tools;7 otherwise,
we deploy electrical error repair techniques based
on reconnecting wires using functional symmetries
(SymWire) or logic resynthesis (SafeResynth). We
then route the repaired layout via ECO to produce
the final layout, which we use to fix the silicon die
for further verification.

PHYSICALLY AWARE FUNCTIONAL REPAIR
PAFER automatically diagnoses and fixes functional

errors in the layout by modifying the combinational logic
netlist of the design. To support the required change,
it assumes that disconnected logic gates, or spare cells,
are available. Various techniques have been proposed to
insert spare cells in a layout.11

PAFER process
Given certain test vectors and their output responses,

PAFER first uses simulation to generate a signature for
each wire, a collection of the wire’s simulated responses
to the given test vectors.12 Signatures provide an abstrac-
tion of the design because they are partial truth tables of
the wires in the circuit.

Next, PAFER performs error diagnosis on the abstract
model to identify the wires responsible for the errors and
to suggest the correct function at one or more internal
circuit nodes that would rectify the circuit’s erroneous
behavior.

PAFER then carries out error correction by resynthe-
sizing the new logic functions from other signals in the
circuit, after which it verifies that the new netlist is actu-
ally repaired. If this verification fails, PAFER uses the
returned bug traces to extend and enrich the signatures
and refine the abstraction. This process repeats until the
new netlist passes verification.

PARSyn algorithm
To support the layout changes required in functional

error repair, we developed the PARSyn resynthesis
algorithm.

Resynthesis in postsilicon debugging is considerably
different than traditional resynthesis because the num-
ber and type of spare cells available is often limited.
Therefore, PARSyn’s baseline design exhaustively tries
all possible combinations of spare cells and input signals
to find viable resynthesis netlists. Fortunately, the limita-
tion in type of gates available makes it possible to prune
the search space effectively.

Automatic layout repair

Postsilicon
verification

Bug trace

Testbench Silicon die

Repaired
layout

Done

ECO
routing

Bug trace

Final repaired
layout

Pass

Fail

Bug trace
minimization

Repairable
by ECO
routing

Logic
simulation

Error exposed:
functional error

Error
diagnosis

Error not
exposed:

electrical error

Electrical error repair
(SymWire,

SafeResynth)

Physically aware
logic error diagnosis

and correction
(PAFER, PARSyn)

Figure 3. FogClear postsilicon debugging methodology. We first use bug trace minimization to reduce a trace’s complexity. We then
simulate the trace with a logic simulator to identify the error as functional or electrical. Next, we determine whether the error can
be repaired by ECO routing tools or electrical error repair techniques. Finally, we route the repaired layout via ECO to produce the
final layout, which we use to fix the silicon die for further verification.

	 52	 Computer

To further bound the search, PARSyn implements
numerous logic search-pruning techniques,5 including
netlist connectivity analysis, to remove unpromising
cells—for example, cells too far away from the errone-
ous wire—from the candidate pool. It also excludes cells
in the erroneous wire’s fanout cone to avoid generating
combinational loops. Finally, PARSyn considers only
spare cells within an engineer-selected distance of the
erroneous wire’s driver. One possible distance limit could
be the maximum wirelength generated by a focused ion
beam (FIB).

Functional error repair example
Figure 4 shows an execution example of functional

error repair in an integrated circuit.
Figure 4a illustrates how PAFER diagnoses that the

wire driven by g1 is erroneous and provides a corrected
partial truth table (signature). PARSyn’s goal is to find a
resynthesis netlist using other cells as inputs to generate
the required truth table (partial truth tables for three
cells are highlighted). PARSyn can then use spare cells,
shown in yellow, to perform Boolean manipulation of
the signals. As Figure 4b shows, PARSyn restricts the
search to cells within the preselected range. It gener-
ates a number of resynthesis netlists with different com-
binations of inputs and spare cells, including the two
options shown in Figure 4c. PARSyn will return only
the resynthesis netlists that can be physically imple-
mented and are functionally correct.12

AUTOMATING ELECTRICAL ERROR REPAIR
We have developed two techniques to alter erroneous

wires and change their electrical characteristics with-
out affecting the circuit’s functional correctness.

SymWire rewiring technique
Symmetry-based rewiring uses symmetries to

change the connections between gates. Figure 1c illus-
trates an example, where the inputs to the subcircuit
composed of two AND and one OR gates are sym-

metric and therefore can be reconnected. The change
in connections modifies the electrical characteristics
of the affected wires and can be used to fix electrical
errors. Because this rewiring technique does not per-
turb any cells, it is especially suitable for postsilicon
debugging.

The SymWire rewiring algorithm first extracts various
subcircuits from the original circuit, where the wire with
the electrical error is one of the subcircuits’ inputs. Each
extracted subcircuit can contain one or more gates. The
algorithm then detects symmetries in the inputs to the
extracted subcircuits. If any of the symmetries involve
the erroneous wire, SymWire can swap the input wires
to repair the error.

Adapting SafeResynth to perform metal fix
Some electrical errors cannot be fixed simply by

modifying a small number of wires, and a more aggres-
sive technique is required. Because SafeResynth9 can
find alternative sources to generate the same signal
using additional cells but without perturbing existing
cells, we have adapted it to repair electrical errors as
follows.

Assume that the error is caused by wire w, or by cell g
driving w. We first use SafeResynth to find an alternative
way to generate the same function at wire w. However,
we only rely on the spare cells and need not insert new
cells. Next, we disconnect w from g and use the new
cells to drive w. Since w is now driven by other logic,
we can change the electrical characteristics of both g
and w. Note that SafeResynth subsumes cell relocation;
therefore, it can also find layout transformations involv-
ing cell replacements.

CASE STUDIES
Our proposed techniques can repair drive-strength

and coupling problems, as well as avoid the harm caused
by the antenna effect. The following case studies serve
as examples only; the same techniques can also be used
to repair many other errors.

(a) (b) (c)

Range Option 1

Option 2

Figure 4. Functional error repair in an integrated circuit. (a) PAFER diagnoses that the wire driven by g
1
 is erroneous and provides

a corrected partial truth table using other cells as inputs. (b) PARSyn uses spare cells to perform Boolean manipulation of the
signals, restricting its search to cells within a predicted range. (c) The algorithm generates various resynthesis netlists with different
combinations of inputs and spare cells.

	 July 2008	 53

Insufficient driving strength
Drive-strength problems occur when a cell is too

small to propagate its signal to all its fanouts within
the designed timing budget. SafeResynth solves this
problem by finding an alternative source to generate
the same signal. As Figure 5a shows, the solution uses a
new source to drive a fraction of the problematic cell’s
fanouts, reducing its required driving capability.

Coupling problems
Coupling between long parallel wires can delay signal

transitions under some conditions as well as introduce
unexpected signal noise. SafeResynth can prevent these
undesirable phenomena by replacing the driver for one
of the wires with an alternative signal source. Because
the cell that generates the new signal will be at a different
location, the wire topology can be changed. Alterna-
tively, SymWire can also address the coupling problem:
As Figure 5b shows, the affected wires no longer travel in
parallel for long distances after rewiring, greatly reduc-
ing their coupling effects.

Antenna effect
Charge accumulated during semiconductor manufac-

turing in partially connected wire segments can damage
and permanently disable transistors connected to such
segments. Because the charge accumulated in a metal
layer will be eliminated when the next layer is processed,
it is possible to split the total charge with another layer
by breaking a long wire and going up or down one layer
through vias.

Manufacturers can alleviate occurrences of the
antenna effect by intentionally inserting vias to route
long wires on multiple layers. However, additional vias
will increase the nets’ resistance and slow down the sig-
nals. SymWire can find transformations that alter the
metal layers assigned to several wires and reduce their
antenna effects.

EMPIRICAL VALIDATION
To measure FogClear’s effectiveness, we conducted

two experiments. The first applied PAFER to repair
functional errors in a layout, while the second used
SymWire and SafeResynth to find potential electrical
fixes. To facilitate metal fix, we preplaced spare cells
uniformly in unused locations of the layouts, taking over
about 70 percent of each layout’s unused regions. These
spare cells included INVERTERs, as well as two-input
AND, OR, XOR, NAND, and NOR gates.

In applying PAFER, we set the search diameter
parameter to 50 µm and limited resynthesis to gener-
ating netlists with at most two levels of logic per invo-
cation. Under these conditions, only 45 spare cells are
available for consideration, on average, when resyn-
thesizing each signal. In our experimental findings,
PAFER repaired more than 70 percent of the injected

functional errors.12 Repair failed when cells required
to generate the target signals were too far away from
the repair site to be considered. In such cases, metal
fix is not a viable solution for bug fixing.

With respect to electrical errors, both SymWire and
SafeResynth altered more than half of the wires for
most benchmarks, suggesting that they can effectively
find layout transformations that change the errone-
ous wires’ electrical characteristics. In addition, the
number of affected metal segments was often small,
indicating that both techniques have little physical
impact on the chip; FIB can easily implement the lay-
out modifications.

D ue to increasing semiconductor design complexity,
more errors are escaping presilicon verification and
are discovered only later in prototype chips. While

most steps in the integrated circuit design flow are highly
automated, researchers have devoted little effort to the
postsilicon debugging process, making it difficult and
ad hoc.

Our proposed FogClear methodology, powered by
novel techniques that enhance key steps in postsilicon
debugging, systematically automates this process. The
integration of logical, spatial, and electrical consider-
ations in these techniques facilitates the generation of
netlist and layout transformations to fix bugs, and it
is complemented by sophisticated pruning techniques
for more scalable processing.

Empirical results indicate that FogClear’s key compo-
nents—PAFER, PARSyn, SymWire, and SafeResynth—
repair numerous functional and electrical errors in most
benchmarks, demonstrating their effectiveness in post-
silicon debugging. In addition, FogClear can reduce

g1 g2

g3

g1

gnew

g2

g3

(a)

g3

g1

g2

g3

g1

g2

(b)

Figure 5. Case studies. (a) Cell g
1
 has insufficient driving

strength; SafeResynth uses a new cell, g
new

, to drive a fraction
of g

1
’s fanouts. (b) SymWire reduces coupling between parallel

long wires by using symmetries to change their connections.
This also changes metal layers and can alleviate the antenna
effect.

	 54	 Computer

respin costs because the fixes it generates only affect metal
layers. This accelerated postsilicon debugging process
also enables a shorter respin cycle for the next prototype,
thereby limiting revenue loss due to late-market entry. ■

References
	 1.	M. Abramovici et al., “A Reconfigurable Design-for-Debug

Infrastructure for SoCs,” Proc. 43rd Ann. Conf. Design
Automation, ACM Press, 2006, pp. 7-12.

	 2.	R. Goering, “Post-Silicon Debugging Worth a Second Look,”
EE Times, 5 Feb. 2007; www.eetimes.com/showArticle.jhtml
?articleID=197002823.

	 3.	K. Killpack, C.V. Kashyap, and E. Chiprout, “Silicon Speed-
path Measurement and Feedback into EDA Flows,” Proc.
44th Ann. Design Automation Conf., ACM Press, 2007, pp.
390-395.

	 4.	D.D. Josephson, “The Manic Depression of Microprocessor
Debug,” Proc. 2002 IEEE Int’l Test Conf., IEEE CS Press,
2002, pp. 657-663.

	 5.	K-H. Chang, I.L. Markov, and V. Bertacco, “Fixing Design
Errors with Counterexamples and Resynthesis,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
vol. 27, no. 1, 2008, pp. 184-188.

	 6.	K. Baker and J.V. Beers, “Shmoo Plotting: The Black Art of
IC Testing,” IEEE Design & Test of Computers, vol. 14, no.
3, 1997, pp. 90-97.

	 7.	H. Xiang et al., “An ECO Algorithm for Resolving OPC
and Coupling Capacitance Violations,” Proc. 6th Int’l Conf.
ASIC, vol. 2, IEEE Press, 2005, pp. 873-876.

	 8.	K-H. Chang, I.L. Markov, and V. Bertacco, “Post-Placement
Rewiring and Rebuffering by Exhaustive Search for Func-
tional Symmetries,” Proc. 2005 IEEE/ACM Int’l Conf. Com-
puter-Aided Design, IEEE CS Press, 2005, pp. 56-63.

	 9.	K-H. Chang, I.L. Markov, and V. Bertacco, “Safe Delay Opti-
mization for Physical Synthesis,” Proc. 2007 Asia and South
Pacific Design Automation Conf., IEEE CS Press, 2007, pp.
628-633.

	10.	K-H. Chang, V. Bertacco, and I.L. Markov, “Simulation-
Based Bug Trace Minimization with BMC-Based Refine-

ment,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 1, 2007, pp. 152-165.

	11.	K-H. Chang, I.L. Markov, and V. Bertacco, “Reap What You
Sow: Spare Cells for Postsilicon Metal Fix,” to appear in Proc.
2008 Int’l Symp. Physical Design, ACM Press, 2008.

	12.	K-H. Chang, I.L. Markov, and V. Bertacco, “Automating
Post-Silicon Debugging and Repair,” Proc. 2007 IEEE/ACM
Int’l Conf. Computer-Aided Design, IEEE Press, 2007, pp.
91-98.

Kai-hui Chang is a senior member of the technical staff
at Avery Design Systems, a supplier of functional veri-
fication products based in Andover, Massachusetts. His
research interests include verification, debugging, and
logic synthesis. Chang received a PhD in computer sci-
ence and engineering from the University of Michigan,
Ann Arbor. He is a member of the IEEE and the ACM.
Contact him at changkh@umich.edu.

Igor L. Markov is an associate professor of electrical engi-
neering and computer science at the University of Michi-
gan, Ann Arbor. His research interests include physical
design and physical synthesis for VLSI, quantum infor-
mation and computation, formal and semiformal veri-
fication of digital circuits and systems, combinatorial
optimization, and search in artificial intelligence. Markov
received a PhD in computer science from the University
of California, Los Angeles. He is a member of the IEEE
Computer Society and the American Mathematical Soci-
ety, as well as a senior member of the IEEE and the ACM.
Contact him at imarkov@umich.edu.

Valeria Bertacco is an assistant professor of electrical
engineering and computer science at the University of
Michigan, Ann Arbor. Her research interests are in the
areas of formal and semiformal design verification, with
emphasis on full design validation and digital system reli-
ability. Bertacco received a PhD in electrical engineering
from Stanford University. She is a member of the IEEE
and the ACM. Contact her at valeria@umich.edu.

www.computer.org/publications/

The IEEE Computer Society publishes
over 250 conference publications a year.
Visit us online for a preview of the latest

papers in your field.250

