
Automating Postsilicon 
Debugging and Repair

D
ue to the high complexity of modern semi-
conductor designs and increasing pressure to 
reduce their time to market, errors are more 
likely to escape verification and are often 
detected only after a chip has been manu-

factured. Postsilicon debugging has therefore become a 
crucial step in the design process, currently taking 35 
percent of the time spent to complete a chip1 and poten-
tially consuming an even greater fraction in the future. 

Given that the market window for many modern prod-
ucts is only a few years, the delay caused by two respins 
can dramatically reduce revenue or even kill the product. 
Carnegie Mellon University’s Rob Rutenbar points out 
that postsilicon debugging can cost $15 million to $20 
million and take six months to complete, yet few elec-
tronic design automation tools and algorithms address 
this problem.2 

Postsilicon debugging is becoming more important 
because actual chips cannot be simulated presilicon with 
sufficient accuracy. Design deficiencies can involve com-
plex thermal and inductive effects, while new semicon-
ductor fabrication technologies can cause manufactur-
ing glitches due to unexpected light-diffraction patterns 
and variability of material properties.

Nondeterministic defects are particularly difficult to 
work around because each affects only a small fraction of 
chips, but together they can significantly decrease yield 
and therefore increase cost. Consequently, a chip must 
be manufactured before developers can comprehensively 
validate it. In addition, silicon dies that undergo testing 

can operate at their intended frequency, which is orders 
of magnitude faster than functional and electrically 
accurate simulation. 

PRESILICON VERSUS POSTSILICON DEBUGGING
Pre- and postsilicon debugging differ in four key ways. 
First, design errors found before manufacturing include 

conceptual deficiencies that might not be fixable by auto-
matic tools. In contrast, postsilicon functional bugs are 
often subtle errors that only affect the output responses of 
a few input vectors, and developers usually can implement 
fixes with very few gates, as the “Analysis of Presilicon 
and Postsilicon Bugs” sidebar explains. However, finding 
such fixes requires analyzing detailed layout information, 
making it a highly tedious and error-prone task. 

Second, errors detected postsilicon typically include 
functional, electrical, manufacturing, and yield prob-
lems. However, issues identified presilicon are mostly 
limited to functional and timing errors. Problems that 
manage to evade presilicon validation are often difficult 
to simulate, analyze, or even duplicate. For example, 
Intel developed an entirely new methodology for post-
diagnosis  of electrical bugs that affect signal delays.3

Third, the observability of a silicon die’s internal sig-
nals is extremely limited because most signals cannot be 
discerned directly. 

Fourth, verifying the correctness of a fix is challeng-
ing because physically implementing a fix in a chip is 
difficult. So-called metal fix techniques, such as that 
described in the “Focused Ion Beam” sidebar, can alter 

Due to increasing semiconductor design complexity, more errors are escaping presilicon 
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the chip’s metal layers, but these processes cannot create 
new transistors. 

AUTOMATING POSTSILICON DEBUGGING
Due to these constraints, developers cannot apply most 

debugging techniques prevalent in early semiconduc-
tor design stages to postsilicon debugging. Consider, for 
example, the buggy layout shown in Figure 1a. A small 
modification in the layout that sizes up the driving gate 
requires changes in all transistor masks and refabrication of 
the chip, as Figure 1b illustrates, making the “simple” mod-
ification extremely expensive in postsilicon debugging.

Existing techniques for postsilicon debugging strive 
to provide more visibility and controllability for the 
silicon die.1 Although such techniques greatly aid engi-
neers, they do not automate the debugging process 
itself.  To address this problem, we have developed a 
methodology that facilitates the automation of post-
silicon debugging. Key innovations in our approach 
include support for postsilicon physical constraints and 
the ability to repair errors by subtle modifications of an 
existing layout. As Figure 1c shows, our techniques are 
aware of the physical constraints and can repair errors 
with minimal physical changes. 

Analysis of Presilicon and Postsilicon Bugs
Semiconductor errors have many origins ranging 

from poor specifications to miscommunication among 
designers to plain designer mistakes. Table A lists the 
15 most common error categories in microprocessor 
designs specified at the register-transfer level, as col-
lected from seven student projects at the University 
of Michigan between 1996 and 1997.1 Most students 
participating in this study are currently integrated cir-
cuit designers, therefore the bugs are representative 
of errors in industry designs.

As the table shows, most errors are simple and only 
require changing a few lines of code in a hardware 
description language, while complex and concep-
tual errors only contribute 7.9 percent of the total 
errors. This is not surprising for competent designers. 
Because even fewer such errors will escape presilicon 
verification, postsilicon functional bugs are often 
subtle and only affect the output responses to a few 
input vectors; their fixes can usually be implemented 
with very few gates. 

Despite their subtlety, these faults occur more fre-
quently with each design generation and can have 
serious consequences. As an example, a 2007 analysis 
of the Intel Core 2 processor by OpenBSD founder 
Theo de Raadt2 identified 20-30 bugs that cannot be 
masked by BIOS or operating system updates. Some 
of these could be exploited by malicious software. 	
De Raadt estimates that it would take Intel a year to 
repair these errors. It is particularly alarming that 
these bugs escaped Intel’s verification and validation 
methodologies that are considered among the most 
advanced in the industry.
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Table A. Common microprocessor design error categories in seven student projects.

	 Microprocessor project

Error category	 LC2	 DLX1	 DLX2	 DLX3	 X86	 FPU	 FXU	 Average

Wrong signal source	 27.3	 31.4	 25.7	 46.2	 32.8	 23.5	 25.7	 30.4

Missing instance	 0.0	 28.6	 20.0	 23.1	 14.8	 5.9	 15.9	 15.5

Missing inversion	 0.0	 8.6	 0.0	 0.0	 0.0	 47.1	 16.8	 10.3

Timing and sophisticated, difficult-to-fix errors	 9.1	 8.6	 0.0	 7.7	 6.6	 11.8	 4.4	 6.9
Unconnected input(s)	 0.0	 8.6	 14.3	 7.7	 8.2	 5.9	 0.9	 6.5
Missing input(s)	 9.1	 8.6	 5.7	 7.7	 11.5	 0.0	 0.0	 6.1
Wrong gate/module type	 13.6	 0.0	 11.4	 0.0	 9.8	 0.0	 0.0	 5.0
Missing item/factor	 9.1	 2.9	 5.7	 0.0	 0.0	 0.0	 4.4	 3.2
Wrong constant	 9.1	 0.0	 2.9	 0.0	 0.0	 0.0	 9.7	 3.1
“Always” statement	 9.1	 0.0	 2.9	 0.0	 0.0	 0.0	 2.7	 2.1
Missing latch/flip-flop	 0.0	 0.0	 0.0	 0.0	 4.9	 5.9	 0.9	 1.7
Wrong bus width	 4.5	 0.0	 0.0	 0.0	 0.0	 0.0	 7.1	 1.7
Missing state	 9.1	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 1.3
Conflicting outputs	 0.0	 0.0	 0.0	 0.0	 7.7	 0.0	 0.0	 1.1
Conceptual	 0.0	 0.0	 2.9	 0.0	 3.3	 0.0	 0.9	 1.0



	 July 2008	 49

To achieve these goals, we have developed algorithms to 
identify as many candidate bug fixes as practical, in terms 
of netlist and layout transformations. This is important 
in postsilicon debugging because often only a few trans-
formations can satisfy all the physical constraints. On 
the other hand, we also exploit these constraints’ highly 
restrictive nature to prune our algorithms’ search space. 

CURRENT POSTSILICON  
DEBUGGING METHODOLOGY

In his analysis of the major silicon failure mechanisms 
in microprocessors, Don Josephson reported that the 

most common failures, besides those due to dynamic 
logic, are drive strength (9 percent), logic errors (9 per-
cent), race conditions (8 percent), unexpected capaci-
tive coupling (7 percent), and drive fights (7 percent).4 
In addition, at the latest technology nodes, the antenna 
effect—electric charge accumulated in partially con-
nected wire segments during the manufacturing pro-
cess—can damage a circuit or reduce its reliability. Most 
of these issues must be addressed and resolved during 
postsilicon debugging. Our own work focuses on func-
tional and electrical errors.

Figure 2 shows the current postsilicon debugging meth-

	

Focused Ion Beam
FIB is a technique that focuses a beam of gallium 

ions.1 In the semiconductor industry, it can be used 
to modify an existing silicon die. For example, FIB can 
cut a wire or deposit conductive material to make a 
connection. However, it cannot create new transistors 
on a silicon die.

Ion milling can remove unwanted materials from 
a silicon die. When an accelerated ion hits the silicon 
die, the ion loses its energy by scattering the electrons 
and the lattice atoms. If the energy is higher than the 
atoms’ binding energy, the atoms will sputter from 
the die’s surface. 

To complement material removal, ion-induced 
deposition adds new materials to a silicon die. This 
process directs a precursor gas, often an organome-
tallic compound, to the surface of the die, which is 
then absorbed. When the incident ion beam hits the 
gas molecule, the molecule dissociates and leaves 
the metal constituent as a deposit. Similarly, FIB can 
deposit an insulator on the die. Because deposited 
materials can trap impurities such as gallium ions, the 
conductivity and resistivity of the deposited metal or 

insulator tend to be worse than those of the regular 
manufacturing process. However, this phenomenon 
does not pose serious challenges in postsilicon debug-
ging because the changes are typically small. 

FIB can either cut or reconnect top-level wires, 
but changing wires at lower levels is much more 
elaborate. Achieving this requires milling a large hole 
through the upper-level wires to expose the lower-
level wire, which is then filled with oxide. A new 
smaller hole is then milled through the refilled oxide 
and metal is deposited down to the lower level. The 
affected upper-level wires might need to be recon-
nected in a similar way.
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Figure 1. Postsilicon error repair example. (a) Original buggy layout with a weak driver (INV). (b) A traditional resynthesis 
technique finds a simple fix that sizes up the driving gate, but it requires expensive remanufacturing of the silicon die to change 
the transistors. (c) Our physically aware techniques find a more complex solution using symmetry-based rewiring, but it can be 
implemented with a metal fix and has a smaller physical impact.

(a) (b) (c)
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odology. To validate a silicon die, engineers apply numer-
ous test vectors to the die and then check their output 
responses. If the responses are correct for all the applied 
test vectors, the die passes validation. If not, the test vec-
tors that expose the design errors become the bug trace, 
which engineers use to diagnose and correct the errors.

After diagnosing the errors, engineers modify the layout 
to correct the errors and then validate the repaired layout 
again, continuing the process until the die passes veri-
fication. In contrast to presilicon verification, however, 
fixing all the errors as soon as they are diagnosed is often 
unnecessary in postsilicon debugging; in fact, repairing 
a fraction of them might be sufficient to enable further 
verification. 

Functional errors
If engineers diagnose an error to be functional, they 

can resort to functional error repair techniques.5 Even 
so, implementing fixes in the layout might not always be 
viable because these techniques do not take into consid-
eration the physical aspects of the design. To find fixes 
compatible with a preexisting layout, engineers often 
generate several fixes, all equally valid from a functional 
standpoint, and then resort to tedious trial-and-error 
methodologies to select one that is compatible with the 
design’s layout.

Electrical errors 
Debugging electrical errors is often more challenging 

than debugging functional ones because engineers can-
not use the available logic debugging tools. Although 
techniques to diagnose electrical errors exist (such as 
voltage-frequency shmoo plotting6), they are often 
heuristic in nature and require extensive expertise. 

Even if the errors’ causes can be 
identified, finding valid fixes is 
still challenging because most 
existing resynthesis techniques 
require changes in logic cells and 
they are not amenable to metal 
fix. 

To address this problem, 
researchers have recently devel-
oped techniques, such as engi-
neering change order routing, 
that allow postsilicon metal 
fix.7 However, ECO routing can 
only repair some of the electri-
cal errors as it cannot reconnect 
wires and change the circuit’s 
logic. Repairing more difficult 
bugs requires transformations 
that also utilize logic informa-
tion. For example, one way to 
repair a drive-strength error is 
to exploit functional symmetries 

in the circuit as shown in Figure 1, and this can only be 
achieved by considering logic information.

FOGCLEAR METHODOLOGY
We have developed a postsilicon debugging methodol-

ogy, called FogClear, that automates the manual effort 
currently required to isolate and fix bugs. Among its key 
elements are 

physically aware functional error repair (PAFER), 
which diagnoses and repairs functional errors with 
minimal perturbation to the layout; and 
physically aware resynthesis (PARSyn), which 
searches for netlist transformations that can be 
implemented with limited physical resources. 

We also adapted earlier work on symmetry-based rewir-
ing8 and safe resynthesis9 to search for layout transfor-
mations that can repair electrical errors.

In addition to postsilicon debugging, developers can 
apply FogClear to reduce the cost of respins. Because 
masks responsible for active device layers contribute 
most of the total mask cost, being able to reuse transis-
tor masks greatly reduces respin cost, especially when it 
approaches $10 million per mask set at the 45-nm node. 
FogClear produces layout transformations that only 
involve changes in the metal layers and therefore allow 
transistor mask reuse. In addition, FogClear can acceler-
ate the postsilicon debugging process and reduce the loss 
in revenue caused by delayed market entry.

Figure 3 shows the FogClear methodology. Because 
silicon dies offer execution speeds orders of magnitude 
faster than those provided by logic simulators, vendors 
rely on tests that can take several hours and sometimes 

•
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Figure 2. Current postsilicon debugging methodology. To validate a silicon die, engineers 
apply numerous test vectors to the die and then check their output responses. If the 
responses are correct for all the applied test vectors, the die passes validation. If not, the 
test vectors that expose the design errors become the bug trace, which engineers use to 
diagnose and correct the errors.
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days to execute on the silicon prototype. Consequently, 
when failing, these tests produce extremely long bug 
traces. To simplify error diagnosis, we introduce a step 
called bug trace minimization10 that reduces the trace’s 
complexity using several simulation-based methods. This 
approach is especially suitable for postsilicon debugging 
because simulation can be performed using the silicon 
die itself.  

After simplifying a bug trace, we simulate the trace 
with a logic simulator using the netlist that produces the 
layout. If simulation exposes the error, then the error 
is functional, and PAFER generates a repaired layout; 
otherwise the error is electrical. 

Currently, FogClear requires manual error diag-
nosis to determine the root cause of an electrical 
error.  After identifying an electrical error, we deter-
mine whether ECO routing can repair the error. If 
so, we apply existing ECO routing tools;7 otherwise, 
we deploy electrical error repair techniques based 
on reconnecting wires using functional symmetries 
(SymWire) or logic resynthesis (SafeResynth). We 
then route the repaired layout via ECO to produce 
the final layout, which we use to fix the silicon die 
for further verification. 

PHYSICALLY AWARE FUNCTIONAL REPAIR
PAFER automatically diagnoses and fixes functional 

errors in the layout by modifying the combinational logic 
netlist of the design. To support the required change, 
it assumes that disconnected logic gates, or spare cells, 
are available. Various techniques have been proposed to 
insert spare cells in a layout.11 

PAFER process
Given certain test vectors and their output responses, 

PAFER first uses simulation to generate a signature for 
each wire, a collection of the wire’s simulated responses 
to the given test vectors.12 Signatures provide an abstrac-
tion of the design because they are partial truth tables of 
the wires in the circuit. 

Next, PAFER performs error diagnosis on the abstract 
model to identify the wires responsible for the errors and 
to suggest the correct function at one or more internal 
circuit nodes that would rectify the circuit’s erroneous 
behavior. 

PAFER then carries out error correction by resynthe-
sizing the new logic functions from other signals in the 
circuit, after which it verifies that the new netlist is actu-
ally repaired. If this verification fails, PAFER uses the 
returned bug traces to extend and enrich the signatures 
and refine the abstraction. This process repeats until the 
new netlist passes verification.

PARSyn algorithm
To support the layout changes required in functional 

error repair, we developed the PARSyn resynthesis 
algorithm. 

Resynthesis in postsilicon debugging is considerably 
different than traditional resynthesis because the num-
ber and type of spare cells available is often limited. 
Therefore, PARSyn’s baseline design exhaustively tries 
all possible combinations of spare cells and input signals 
to find viable resynthesis netlists. Fortunately, the limita-
tion in type of gates available makes it possible to prune 
the search space effectively. 

Automatic layout repair

Postsilicon
verification

Bug trace

Testbench Silicon die

Repaired
layout

Done

ECO
routing

Bug trace

Final repaired
layout

Pass

Fail

Bug trace
minimization

Repairable
by ECO
routing

Logic
simulation

Error exposed:
functional error

Error
diagnosis

Error not
exposed:

electrical error

Electrical error repair
(SymWire,

SafeResynth)

Physically aware
logic error diagnosis

and correction
(PAFER, PARSyn)

Figure 3. FogClear postsilicon debugging methodology. We first use bug trace minimization to reduce a trace’s complexity. We then 
simulate the trace with a logic simulator to identify the error as functional or electrical. Next, we determine whether the error can 
be repaired by ECO routing tools or electrical error repair techniques. Finally, we route the repaired layout via ECO to produce the 
final layout, which we use to fix the silicon die for further verification.
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To further bound the search, PARSyn implements 
numerous logic search-pruning techniques,5 including 
netlist connectivity analysis, to remove unpromising 
cells—for example, cells too far away from the errone-
ous wire—from the candidate pool. It also excludes cells 
in the erroneous wire’s fanout cone to avoid generating 
combinational loops. Finally, PARSyn considers only 
spare cells within an engineer-selected distance of the 
erroneous wire’s driver. One possible distance limit could 
be the maximum wirelength generated by a focused ion 
beam (FIB). 

Functional error repair example
Figure 4 shows an execution example of functional 

error repair in an integrated circuit. 
Figure 4a illustrates how PAFER diagnoses that the 

wire driven by g1 is erroneous and provides a corrected 
partial truth table (signature). PARSyn’s goal is to find a 
resynthesis netlist using other cells as inputs to generate 
the required truth table (partial truth tables for three 
cells are highlighted). PARSyn can then use spare cells, 
shown in yellow, to perform Boolean manipulation of 
the signals. As Figure 4b shows, PARSyn restricts the 
search to cells within the preselected range. It gener-
ates a number of resynthesis netlists with different com-
binations of inputs and spare cells, including the two 
options shown in Figure 4c. PARSyn will return only 
the resynthesis netlists that can be physically imple-
mented and are functionally correct.12 

AUTOMATING ELECTRICAL ERROR REPAIR
We have developed two techniques to alter erroneous 

wires and change their electrical characteristics with-
out affecting the circuit’s functional correctness.

SymWire rewiring technique 
Symmetry-based rewiring uses symmetries to 

change the connections between gates. Figure 1c illus-
trates an example, where the inputs to the subcircuit 
composed of two AND and one OR gates are sym-

metric and therefore can be reconnected. The change 
in connections modifies the electrical characteristics 
of the affected wires and can be used to fix electrical 
errors. Because this rewiring technique does not per-
turb any cells, it is especially suitable for postsilicon 
debugging. 

The SymWire rewiring algorithm first extracts various 
subcircuits from the original circuit, where the wire with 
the electrical error is one of the subcircuits’ inputs. Each 
extracted subcircuit can contain one or more gates. The 
algorithm then detects symmetries in the inputs to the 
extracted subcircuits. If any of the symmetries involve 
the erroneous wire, SymWire can swap the input wires 
to repair the error.

Adapting SafeResynth to perform metal fix
Some electrical errors cannot be fixed simply by 

modifying a small number of wires, and a more aggres-
sive technique is required. Because SafeResynth9 can 
find alternative sources to generate the same signal 
using additional cells but without perturbing existing 
cells, we have adapted it to repair electrical errors as 
follows. 

Assume that the error is caused by wire w, or by cell g 
driving w. We first use SafeResynth to find an alternative 
way to generate the same function at wire w. However, 
we only rely on the spare cells and need not insert new 
cells. Next, we disconnect w from g and use the new 
cells to drive w. Since w is now driven by other logic, 
we can change the electrical characteristics of both g 
and w. Note that SafeResynth subsumes cell relocation; 
therefore, it can also find layout transformations involv-
ing cell replacements.

CASE STUDIES
Our proposed techniques can repair drive-strength 

and coupling problems, as well as avoid the harm caused 
by the antenna effect. The following case studies serve 
as examples only; the same techniques can also be used 
to repair many other errors. 

(a) (b) (c)

Range Option 1

Option 2

Figure 4. Functional error repair in an integrated circuit. (a) PAFER diagnoses that the wire driven by g
1
 is erroneous and provides 

a corrected partial truth table using other cells as inputs. (b) PARSyn uses spare cells to perform Boolean manipulation of the 
signals, restricting its search to cells within a predicted range. (c) The algorithm generates various resynthesis netlists with different 
combinations of inputs and spare cells. 
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Insufficient driving strength
Drive-strength problems occur when a cell is too 

small to propagate its signal to all its fanouts within 
the designed timing budget. SafeResynth solves this 
problem by finding an alternative source to generate 
the same signal. As Figure 5a shows, the solution uses a 
new source to drive a fraction of the problematic cell’s 
fanouts, reducing its required driving capability.

Coupling problems
Coupling between long parallel wires can delay signal 

transitions under some conditions as well as introduce 
unexpected signal noise. SafeResynth can prevent these 
undesirable phenomena by replacing the driver for one 
of the wires with an alternative signal source. Because 
the cell that generates the new signal will be at a different 
location, the wire topology can be changed. Alterna-
tively, SymWire can also address the coupling problem: 
As Figure 5b shows, the affected wires no longer travel in 
parallel for long distances after rewiring, greatly reduc-
ing their coupling effects.

Antenna effect
Charge accumulated during semiconductor manufac-

turing in partially connected wire segments can damage 
and permanently disable transistors connected to such 
segments. Because the charge accumulated in a metal 
layer will be eliminated when the next layer is processed, 
it is possible to split the total charge with another layer 
by breaking a long wire and going up or down one layer 
through vias. 

Manufacturers can alleviate occurrences of the 
antenna effect by intentionally inserting vias to route 
long wires on multiple layers. However, additional vias 
will increase the nets’ resistance and slow down the sig-
nals. SymWire can find transformations that alter the 
metal layers assigned to several wires and reduce their 
antenna effects. 

EMPIRICAL VALIDATION
To measure FogClear’s effectiveness, we conducted 

two experiments. The first applied PAFER to repair 
functional errors in a layout, while the second used 
SymWire and SafeResynth to find potential electrical 
fixes. To facilitate metal fix, we preplaced spare cells 
uniformly in unused locations of the layouts, taking over 
about 70 percent of each layout’s unused regions. These 
spare cells included INVERTERs, as well as two-input 
AND, OR, XOR, NAND, and NOR gates. 

In applying PAFER, we set the search diameter 
parameter to 50 µm and limited resynthesis to gener-
ating netlists with at most two levels of logic per invo-
cation. Under these conditions, only 45 spare cells are 
available for consideration, on average, when resyn-
thesizing each signal. In our experimental findings, 
PAFER repaired more than 70 percent of the injected 

functional errors.12 Repair failed when cells required 
to generate the target signals were too far away from 
the repair site to be considered. In such cases, metal 
fix is not a viable solution for bug fixing. 

With respect to electrical errors, both SymWire and 
SafeResynth altered more than half of the wires for 
most benchmarks, suggesting that they can effectively 
find layout transformations that change the errone-
ous wires’ electrical characteristics. In addition, the 
number of affected metal segments was often small, 
indicating that both techniques have little physical 
impact on the chip; FIB can easily implement the lay-
out modifications.

D ue to increasing semiconductor design complexity, 
more errors are escaping presilicon verification and 
are discovered only later in prototype chips. While 

most steps in the integrated circuit design flow are highly 
automated, researchers have devoted little effort to the 
postsilicon debugging process, making it difficult and 
ad hoc. 

Our proposed FogClear methodology, powered by 
novel techniques that enhance key steps in postsilicon 
debugging, systematically automates this process. The 
integration of logical, spatial, and electrical consider-
ations in these techniques facilitates the generation of 
netlist and layout transformations to fix bugs, and it 
is complemented by sophisticated pruning techniques 
for more scalable processing. 

Empirical results indicate that FogClear’s key compo-
nents—PAFER, PARSyn, SymWire, and SafeResynth—
repair numerous functional and electrical errors in most 
benchmarks, demonstrating their effectiveness in post-
silicon debugging. In addition, FogClear can reduce  

g1 g2

g3

g1

gnew
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g3

(a)

g3
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Figure 5. Case studies. (a) Cell g
1
 has insufficient driving 

strength; SafeResynth uses a new cell, g
new

, to drive a fraction 
of g

1
’s fanouts. (b) SymWire reduces coupling between parallel 

long wires by using symmetries to change their connections. 
This also changes metal layers and can alleviate the antenna 
effect.
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respin costs because the fixes it generates only affect metal 
layers. This accelerated postsilicon debugging process 
also enables a shorter respin cycle for the next prototype, 
thereby limiting revenue loss due to late-market entry. ■
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