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Modern high-performance complete SAT solvers such as Chaff [5] and GRASP [6] use the Davis-
Logemann-Loveland (DLL) search procedure [2]. DLL is a backtracking algorithm with several
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Abstract

Many algorithms for Boolean satisfiability (SAT) work within the framework of resolution
as a proof system, and thus on unsatisfiable instances they can be viewed as attempting to find
proofs by resolution. However it has been known since the 1980s that every resolution proof of the
pigeonhole principleRHP"), suitably encoded as a CNF instance, includes exponentially many
steps [1]. Therefore SAT solvers based upon the DLL procedure [2] or the DP procedure [3] must
take exponential time. Polynomial-sized proofs of the pigeonhole principle exist for different
proof systems, but general-purpose SAT solvers often remain confined to resolution. This result
is in correlation with empirical evidence.

Previously, we introduced the Compressed-BFS algorithm to solve the SAT decision problem.
In an earlier work [4], an implementation of a Compressed-BFS algoréghmirically solved
PHPR*! instances ir@(n*) time. Here, we add to this claim, and shawalytically that these
instances are solvable in polynomial time by Compressed-BFS. Thus the class of tautologies effi-
ciently provable by Compressed-BFS is different than that of any resolution-based procedure.

We hope that the details of our complexity analysis shed some light on the proof system im-
plied by Compressed-BFS. Our proof focuses on structural invariants within the compressed data
structure that stores collections of sets of open clauses during the Compressed-BFS algorithm.
We bound the size of this data structure, as well as the overall memory, by a polynomial. We then
use this to show that the overall runtime is bounded by a polynomial.
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extensions, but its runtime on unsatisfiable instances is lower-bounded by the length of resolution
proofs. This fact can be combined with known exponential lower bounds for resolution proofs of
certain families of SAT instances, such as the pigeonhole instances. The result is that any implemen-
tation of the DLL algorithm must require exponential time on pigeonhole instances. A recent paper
[7] examines the practice of augmenting DLL with clause learning. The authors show that clause
learning exponentially improves DLL, but does not overcome the inherent limitations of resolution.
Empirical evidence supports this claim. As shown in Figure 1a, the well-known solver zChaff [5],
which uses clause learning, empirically takes exponential time to solve these instances.

While much recent work was concerned with incremental improvements in implementation details
of the DLL procedure, a different avenue of research is to look for new solver algorithms which lead
to other classes of tractable problems. Put differently, we are looking for proof systems other than
resolution and solvers consistent with them which may also have practical applications. To this end,
we point out that the recently reported Compressed-BFS algorithm [4] empirically solves pigeonhole
instances in polynomial time. A plot of runtime on pigeonhole instances for several SAT solvers is
shown in Figure la. It is evident empirically that the high-performance DLL based solvers cannot
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Figure 1: a) Performance of several SAT solverdiote-n instances. b) Asymptotic performance
of Compressed-BFS dmle-n instances.

solve these instances efficiently while Compressed-BFS is able to quickly show unsatisfiability. In
Figure 1b, the runtime of Compressed-BFS on a number of pigeonhole instances is plotted, along
with the function®(x*). Compressed-BFS can show unsatisfiabilityPéfP3 in under 15 seconds
on a commaodity PC. Since Compressed-BFS is a general-purpose algorithm and competitively solves
a number of standard benchmarks (see Appendix A), two questions arise: (i) whether the empirical
polynomial-time result for pigeonholes can be supported analytically, and (ii) what proof system is
implied by Compressed-BFS.

To this end, our work offers the first analytical proof that the Compressed-BFS search proce-
dure reported in [4] solves SAT instances from the pigeonhole family in polynomial time. This




has immediate implications to the proof system behind the Compressed-BFS procedure. Since no
polynomial-sized resolution proofs exist for the pigeonhole instances, then resolution cannot poly-
nomially simulate the underlying proof system behind Compressed-BFS. While we do not claim
resolution is strictly weaker than Compressed-BFS, there is an infinite family of instances for which
Compressed-BFS exponentially outperforms resolution.

Results such as this were known for other methods of solving SAT, sudiBBD-apply which
recursively constructs an OBDD of the given formula to determine satisfiability. It is known that this
method and resolution cannot polynomially simulate each other [8]. Here we show that resolution
cannot polynomially simulate Compressed-BFS, as it solves in polynomial time a class of formulas
which require exponential length resolution proofs. In addit©@BDD-applycannot solve pigeon-
hole instances in polynomial time under any variable ordering, and therefore also cannot polynomially
simulate Compressed-BFS [8].

In addition to these theoretical implications, a SAT solver that solves pigeonhole instances in
polynomial time can be useful for real-world problems. Within a SAT instance of routing, for ex-
ample, there can be many embeddddP" instances to enforce the capacities of routing channels
[9]. The situation is similar on other structured problems such as planning and scheduling [10]. If a
SAT solver cannot efficiently solve these subproblems, it may unnecessarily perform poorly on the
problem as a whole [10]. The work in [10] shows how pigeonhole instances can be solved efficiently
by using non-clausal learning methods when they are reformulated as instances of 0-1 Integer Linear
Programming (ILP). In contrast, our work shows polynomial-time solutions of pigeonhole instances
in terms of CNF, where exponential lower bounds on resolution proofs hold.

The attractiveness of combining different techniques such as DLL/DP based SAT approaches and
the compression of Binary Decision Diagrams has spawned much research in recent years. Using
BDDs to encode the clause database during DLL has been considered [11] as well as the ZRes algo-
rithm, which combines the DP procedure [3] with ZDDs [12]. The ZRes SAT solver [12] empirically
solves pigeonhole instances much faster than DLL based solvers as shown in Figure 1, however we
are unaware of any published proof of polynomial time complexity on these instances for ZRes. Al-
though ZRes is based on the DP procedure, its state encoding leaves its complexity in this regard an
open question. Many other efforts to combine the strengths of multiple approaches (e.g., [13]) or to
leverage the power of a compressed data structure (e.g., [14]) have been tried. This idea is likely to
be the subject of future research.

Unfortunately, formulating the unknown proof system appears difficult due to the complexity of
ZDD algorithms used within the Compressed-BFS procedure. However, we provide the details of our
polynomiality proof for pigeonholes in the hope that they will shed some light on the unknown proof
system or at least some of its features.

The remaining part of this paper is organized as follows. Section 2 reviews the necessary back-
ground. The Compressed-BFS algorithm is described in Section 3. Section 4 introduces the classic
pigeonhole instances and some of their relevant properties. In Section 5 we show that the size of the
algorithm’s main data structure is polynomially bounded. In Section 6 we show that Compressed-BFS
proves the pigeonhole principle in polynomial time. In Sections 5 and 6, we give both the general
outline of the proof and detailed arguments for each step. Conclusions and our ongoing research are
described in Section 7.




2 Background

LetV = {vi,vo,...,Vn} be a set of Boolean variables.tAith assignmenfor V is a mapping

t:V — {true,false}. A partial truth assignmenfor V is a truth assignment to some subset of
variablesv’ C V. A literal is a variable or it's negation. &lausecan be viewed a set of literals. A
clause issatisfiedoy a truth assignmentf at least one of its literals isue undert. A clause is said

to beviolatedby a truth assignmertif all of its literals arefalse undert. A Boolean formula in
conjunctive normal form can be represented by &seftclauses.

The implicit representation used in the Compressed-BFS algorithm is dependent on the corre-
spondence between valid partial truth assignments and sets of clauses. A partial truth assignment is
said to banvalid if this assignment violates some clause. Given a valid partial truth assignyment
can classify clauses in a CNF with respect &s follows.

¢ If a clause has at least one literal assigned some value, and no literals are assignethis
clause is said to bepen

e If any literals within a clause are assignede |, this clause is said to satisfied
e If no literals within a clause are assigned, the clause is said tmbactivated
e If all but one literal in an open clause are assigned, the clause is saiditotbe

The compression in Compressed-BFS comes by storing the collection of sets of open clauses within
a Zero Suppressed Binary Decision Diagram (ZDD). ZDDs can represent combinatorial objects by a
set of paths in a Directed Acyclic Graph (DAG) [15, 16, 17]. Since the number of paths in a DAG can
be exponentially larger than the number of vertices, ZDDs are able to achieve an exponential level of
compression in certain instances. Specifically, when the collection of sets is sparse or structured then
the ZDD is often able to represent the entire collection compactly, and it is this compact representation

which allows Compressed-BFS to refiel P instances in time polynomial in

A ZDD is defined as a directed acyclic graph (DAG) where each node has a unique label, an integer
index, and two outgoing edges which connect to what we will €&llhild andE-child. Because of
this we can represent each nodas a 3-tuple Xingex X1, Xg) WhereXingexis the index of the node
X, Xt is its T-Child, andXg is its E-Child. Each path in the DAG ends in one of two special nodes,
the 0 node and thd node. These nodes have no successors. In addition, there is a single root node.
When we use a ZDD we will in reality keep a reference to the root node. The semantics of a ZDD
can be defined recursively by defining the semantics of a given node.

A ZDD can be used to encode a collection of sets by encoding its characteristic function. We can
evaluate a function represented by a ZDD by traversing the DAG beginning at the root node. At each
nodeX, if the variable corresponding to the indexXfis true, we select thé-Child. Otherwise we
select with theE-Child. Eventually we will reach eithed or 1, indicating the value of the function
on this input. We augment this with tlero-Suppression Ruleve may eliminate nodes who3e
Child is 0. With these standard rule8,represents the empty collection of sets, wHileepresents
the collection consisting of only the empty set. ZDDs interpreted this way have a standard set of




operations based on recursive definitions [15, 16, 17, 18, 19], including the union and intersection of
two collections of sets, for example.

3 The Compressed-BFS Algorithm

The idea behind the Compressed-BFS algori@assatt! [4] corresponds directly to a BFS over the
tree of partial truth assignments (the two children of a partial assignment are its immediate extensions
with 0 and 1). This tree of partial assignments is considered for a given variable ordering. Cassatt
implicitly represents partial assignments by their effects on the satisfiability of clauses, and therefore
naturally handles symmetric or otherwise equivalent partial assignments. Additionally, Cassatt can
identify partial truth assignments that lead to satisfying solutions only if other partial truth assign-
ments to the same set of variables do. This reduces the number of partial truth assignments that must
be explored to ensure completeness of the search procedure. As a special case, this includes handling
of autark assignments [21], which further differentiates Cassatt from DP or DLL based procedures.
Two additional advantages of this algorithm are compressed data representation and the implicit ma-
nipulation of large data sets. These are accomplished through the use of ZDD based data structures
and relevant algorithms. The two most similar pre-existing algorithms are: (i) ZRes [12], an imple-
mentation of the DP procedure using ZDDs, and (ii) an implementation of the DLL procedure with
ZDDs [22].

Compressed-BFS processes variables according to a static order, and implicitly represents all
promising truth assignments of a given degtiThesevalid partial truth assignmen@re assignments
to variablesxs, X2, ...,Xg Which do not cause all literals in some clause to be assigned false. The
collection of these partial truth assignments is calledftbet. To determine the proper state after
processing variablgy. 1, the algorithm ‘copies’ théront, and modifies one copy of each assignment
within this collection to reflect the additional assignmenkgf; = true . It modifies the other copy
of the front to reflect assigningy. 1 = false . Finally, all valid partial truth assignmentarising
from either of these branches might yield satisfiability, so both branches are combined into the single
newfront.

Storing subsets adpenclauses instead of explicit partial truth assignments is enough information
to perform a BFS and determine satisfiability of a formula. In this general framework, any data struc-
ture which can manipulate collections of sets efficiently can be used in this style of BFS. We chose the
ZDD data structure because of its balance between compactness of representation and efficiency of
algorithms. Cassatt uses standard ZDD operations to maintain the collection of sets of open clauses,
called thefront. By combining this collection of sets of open clauses with a new truth assignment to
a single variable, th&ront can be advanced as described above. To updateotigto reflect a truth
assignment to a single variable, the effects of this truth assignment on the status of clauses must be
considered. In general, an assignment to a single vanabtda (wheret € {true,false}) has the
following effects on clauses.

1Born May 22, 1844, Allegheny City, PA, Mary Cassatt was an American painter and printmaker who exhibited with
the Impressionists. [20]



e One or more clauses may bolated LetUy ; be the set ofinit clauses for which this variable
assignment causes a conflict. Then, any subset irirtimé containing somes € Uy, 1 must
be pruned as it cannot yield satisfiability. This can be accomplished with a ZDD intersection
operation [15, 16, 17].

e One or more clauses may batisfied Let S; ¢ be the set of all clauses which contain a literal
in {X;,X} andx; =t makes this literatrue . If these clauses were not yet satisfied, then they
become satisfied by this assignment. These clauses are removed from all subsédtem Ibye
ZDD existential abstraction [17].

e One or more clauses may bpened Let A ; be the set of all clauses which waret activated
contain a literal in{x;,x}, andx =t makes this literafalse . If instead this literal were
assignedrue , the clause would bsatisfiedand notopenand thus not be needed to added to
the front. All such clauses\y ; are added to every subset in thient by the ZDD Cartesian
product operation [17].

Note that determining each of these sets depends only on the particular truth assigngertt to
and not to the internal state of thent. Thus, with each of these sets of clauses, an appropriate action
can be taken on the entif@nt. To prune branches from the search containing violated clauggs
we build the collectior2®'aUse8%t of all sets which do not contain any clausedligy. This structured
collection will have a very small ZDD representation (the number of nodes is bound€timses).

We then intersect this collection with thient. Also, when considering either CNF instances with
empty clauses or clauses with a single variable, this simple taxonomy breaks down. However these
cases can be handled with a simple preprocessing step. Finally, it is not hard to see that throughout
the algorithm we can remove subsets which are subsumed by some other subset as these correspond
to suboptimal partial truth assignments.

Initially, we have noopenclauses, and th&ont is set to be the collection containing only the
empty set,l. For each variable;, we create two copies of theont, and modify one copy of the
front as described above to reflect assigning true . We modify another copy to reflect assigning
x; = false . Finally, the newfront is the union of these two, since we must consider promising
branches in either case. In our implementation, we use the MaxUnion operator, which is built from
two additional operators, Maximal and Subsumed Difference for the maintenance of a subsumption-
free ZDD [12, 17, 18, 19]. After all variables are processed, there are two possible outcomes. If there
are no branches leading to satisfiability, then filoat will be empty (equal td) as it contains sets
of openclauses, each of which corresponds to a promising branch in the search. If any branches lead
to satisfiability, then there will be no open clauses andiiat will contain the empty setl)). For a
completely worked out instance of Cassatt on a pigeonhole instance, see Appendix B.

Pseudocode for the Cassatt algorithm is shown in Figure 2. In general, ZDD algorithms depend
heavily on the ordering of ZDD nodes. Also, like most SAT algorithms, Cassatt’s performance de-
pends on the order in which variables are processed. To simplify certain steps of the proof as much as
possible, it is assumed that indices in the ZDD are ordered according to which clause they represent.
Larger clauses appear with higher index in the ZDD ordering, and among clauses of the same size,
clauses which contain variables processed earlier are given higher index in the ZDD ordering.
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1 Cassat(Vars Clause$

2 front< 1

3 for i =1to|Varg do

4 front < front

5 /IModify front to reflect x= true

6 Form sets Q,trum S(i,true7AXi,true

7 front « front () 2¢12Use8Ux true

8 front < JAbstract(front, S true)

9 front < front®Ay true

10 /IModify front’ to reflect x= false

11 Form sets l)&,falsea S(i,falseaAXi,false
12 front « front’ () 2¢12Use8Uy rarse

13 front «<— JAbstract(front’, S faise)
14 front < front’ ® A fa1se

15 //Combine the two branches via Union with Subsumption
16 front« front Jg front’

17 if front =0 then

18 return Unsatisfiable

19 if front =1 then

20 return Satisfiable

Figure 2: Pseudocode for the Cassatt algorithm.

In general, we may ensure that the Cartesian Product operator executes in linear time (in the
number of added nodes) by choosing an appropriate node ordering for a given variable ordering. To
do this, we would give priority to the criterion that clauses which contain variables processed earlier
are given higher index in the ZDD ordering. Then each activated clause would necessarily have lower
index than any clause yet appearing in ffent. However, when this does not occur, the Cartesian
Product with a single set can still be performed efficiently by a single traversal as shown in Section 6.

4 The CNF InstancesPHPH1

In this work we consider a CNF encoding of the negation of the pigeonhole principle. Such instances
are easy to generate, widely available, and a part of standard SAT benchmark suites, where they are
known as hole-n  instances. The pigeonhole principHPY") states that ifn pigeons n > n)

are placed im holes, then some hole must contain more than one pigeon. BiHEE'! is valid,

we can encode its negati®HRI ! in CNF form to obtain an unsatisfiable SAT instance. One way
to do this is to usen(n+ 1) variables; j, each representing that pigeor<lj < n+1 is in hole
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1 <i<n. We can thus forrm groupsH; of n+ 1 variables each, where each variable witHin
represents that some pigeon is in hol&Ve can number variables in such a way that the firstl
variablesxy 1,X; 2, ..., X1 n+-1 Make up the groupls, and so on. Then, the grot is made up of the
variables
Hi = {X1,%2,.... X n+1}
Encoded this way, the constraints fall into two categories. Within each group of vartbthsre

n+1 : o .
are( > ) clauses which we caplairwise exclusiortlauses of the form

(Xi,a+Xib)

for1<a<b<n+1. These clauses prevent more than one pigeon from being in$iaotge whenever
any one variable 5 € Hj istrue , in order to satisfy alpairwise exclusiorlauses, all other variables
Xi p must befalse

The second category of constraints, which we pajeonclauses, ara+ 1 clauses of the form

(X1,j +X2,j + -+ Xn j)

which select thgth element from each;. These encode that each pigeomust be in at least one
hole: at least one ofy j,...,Xn j must be true for this clause to be satisfied.

To make this formulation clear, a schematic representation of the insREg is shown in
Figure 3. Here, all variables are represented by dots on a horizontal linepiéenclauses are
shown below this line, while thpairwise exclusiortlauses are shown above this line. In this work,
these variables are processed left-to-right, or equivalently, in increasing lexicographic order. Such a
variable ordering is easy to find practically, as it corresponds to the ordering which minicnizes
width (as defined by the minimum cut linear arrangement problem [23, 24], which has polynomial
time approximations) of the entire instance. A partitioning or placement algorithm can be used to
find such an order, if one was not able to explicitly construct it. It is important to note that there is no
variable ordering for which a resolution proceduredBDD-applyprocedure can refute pigeonhole
instances efficiently.

4.1 Structure of the InstancesPHPM1

Some insight can be gained by a careful examination of the inst@ttB$ 1 which will be useful in
the proof that Compressed-BFS provides a polynomial time refutation of these instances. It will also
clarify the ideas which come into play at later stages of the proof.
We first introduce the notion dhe cut Thecutis well-defined graph-theoretic term which can
be extended to hypergraphs [25]:

If X andY are sets of vertices in a hypergraph the set of edges dfl with contain
vertices from botlX andY is denoted byX,Y]. WhenXUY is a partition oiV (H), the
set[X,Y] is called aredge cubf H.
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Figure 3: The InstancBHPS

Since in Compressed-BFS we process variables according to some fixed order, it will happen that
only certain clauses will be activated. However, if all variables in a clause are assigned, then for
any branch in our search, this clause must be satisfied already. Clauses which have some, but not all
variables assigned have the potential to affect our search, and are referreditalasses. Theut
can be visualized by drawing a vertical line on Figure 3. Then when a partial truth assignment to all
variables to the left of the line is being considered, only clauses this line crasgedauses) will
have the potential to be open clauses.

The first realization which will be useful was mentioned above: ghiewise exclusiorclauses
for a given set of variablell; prevent more than one of the variables frétnfrom being assigned
true . Thus, when performing a search for satisfiability, ideally there will be at mes2 different
“branches” in the searcm+ 1 branches corresponding to setting each ofrthel variables inH;
true , and one final branch corresponding to setting therfatde

The second observation is that there are relatively few clauses containing elementsHndoadh

Hi.1. Figure 4 shows a schematic representation of a larger insF&HE% to highlight the general

form. As seen in Figure 4, only the+ 1 pigeonclauses extend betweéti andH;, 1. Immediately

after variables irH;, we say that only these+ 1 pigeonclauses are in theut Since we will be
considering the effects of Compressed-BFS over these instances, we will consider truth assignments
to variables up to a given depth. If we look at the effects of truth assignments to all variables in
Hi,...,H;i, then whatever effects these assignments have on the formula must be completely captured
in thesen + 1 pigeonclauses. In Compressed-BFS, the number of clauses iguhaffects the
performance of the algorithm [4]. We can consider all possible truth assignments to variables in
H1,...,H; to deduce the following lemma.

Lemma 1.Letke {1,2,...,n—1}. Avalid partial truth assignment to variabbesy, X1 2, . .., X nt1,

i.e. all the variables i1, . .., Hk, may satisfy at most of then+ 1 pigeonclauses.

Proof. First, notice that for K i < k at most one of variables in the détcan be assigneue . If

two or more variables frorkl; weretrue , then at least one of thgairwise exclusiortlauses foH;




Figure 4: A Larger Instancé®HP?

would be violated. As a result, any valid partial truth assignment to thekfinst 1) variables must
set only one variable iki; true , for eachi. By similarly examining clauses, it is evident that any
partial truth assignment setting at most one of variablesue is valid. Setting all such variables
to false does not violate any of thgigeonclauses, since we assurke n. If exactly one of the
variables withinH; is assignedrue , then this simply satisfies one of the- 1 pigeon clausesand
maintains the validity of the partial truth assignment.

Since there ar& sets of the fornH; = {x; 1,X 2,...,Xin+1}, and each can satisfy at most one of
then+ 1 pigeonclauses, it is clear that we may satisfy at mosef these clauses.

5 Size Bounds During Refutation ofPHP+1

Determining the exact number of nodes at a given step is cumbersome, and not necessary for an
upper bound on the size of the ZDD in Compressed-BFS. This is primarily due to the node sharing
which gives some additional savings in space and runtime at the expense of a conceptually simpler
structure. Therefore, in the course of this proof we consideartally reducedZDD which reveals
the underlying structure. Since the ZDD reduction rules cannot add nodes, then the size of this
partially reducedZDD is an upper bound on the size of the actual ZDD.

We show here that the number of nodes within Compressed-BFS’s main data structtrmtthe
is bounded by a polynomial before and after each individual operation shown in the pseudocode
of Figure 2. We will show in the following section that the types of structures we encounter in the
refutation ofPH P} allow Compressed-BFS to execute in polynomial time, assuming any reasonable
hash function.

Our proof will be structured as follows. First, we will show that the ZDD representation imme-
diately after processing all variables in sofgis the set of(n+ 1 — k)-element subsets gfigeon
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clauses, and will havék+ 1) (n+ 1 — k) nodes. This will give a polynomial bound at regular intervals
throughout execution of the algorithm. The remainder of the proof will show that as we consider vari-
ables within somély, the ZDD in Cassatt does not grow too greatly. Although we will have a bound

at regular intervals, we must show a bound between these intervals as well. The techniques used in
the proof are valid for tha![(n+ 1)!|" ‘hole major’ variable orderings, but for simplicity the proof
assumes that variables are processed in the lexicographicemdei o, ..., X1 n11,X2,1,- . -, Xnn+-1.

5.1 Bounds After All Variables in Hy

Here we consider that immediately after completing all variables within degéhere is a simple
polynomial bound on the number of nodes.

Lemma 2. Letk € {1,2,...,n—1}. After completing variable .1, thefront consists of all
(n+1—k)-element subsets of the+ 1 pigeonclauses.

Proof. From the structure of the instancest Pr?“, we know that the only clauses which are in the
cut are then+ 1 pigeonclauses. Thus thigont must be composed of subsets of thesel clauses.
From Lemma 1, we know that after variabdg,, 1 has been assigned at mé&sif the pigeonclauses

may be satsified. Then, at least- 1 — k of them must remain open. Since we must consider all
choices of whiclk or fewerpigeonclauses to satisfy, then all subsets contaimngl — k or more
pigeonclauses will be in théront. Since in Cassatt we eliminate subsumptions, then the smallest
subsets (those subsets containing exactlyl — k elements) subsume all subsets containing more
+1
k

open clauses. As a result, only tﬁen ) possible(n+ 1 — k)-element subsets remain.

Lemma 3. Letk € {1,2,...,n}. The ZDD representing all-element subsets ofelements contains
exactlyk(n+ 1 —K) nodes.
Proof. To show this, we first give the form of all such ZDDs in Figure 5.

Figure 5: ZDD storing alk-element subsets ofelements.
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Within this ZDD, in order for a path to reach the termidatode, it must be true for exactkyof
the variable values. If less th&walues are set to true, the path reachesOthede through one of
the E-Child edges shown on the left of Figure 5. If more tHawmalues are set true, then although it
would appear that we follow a path leading to theode, theZero-Suppression Rulmplies that we
traverse to thé node. As a result only those paths which set exdctigriables true will reach the
node, and this ZDD stores exactly klelement subsets of anelement set. Since there are a total of
n levels, the other ‘dimension’ of this ZDD s+ 1 — k. Since ZDDs are a canonical representation,
whenever it is necessary to stéeelement subsets we will use exadtiyn + 1 — k) nodes.

Thus, in Cassatt, when it is necessary to storéralf 1 — k)-element subsets from gm+ 1)-
element set, we us&+ 1)(n+ 1— k) nodes, and the size of the ZDD is polynomially bounded after
completing each set of variablet.

5.2 Growth Bounds Within Each Hy

Our main goal here is to show that as Cassatt processes variables withieaehdo not introduce
too many additional nodes. This presented in the following claim.

Claim. Fix k€ {1,...,n}. As we process variables withiy = {Xc1,...,%n+1}, the growth of the
ZDD is polynomially bounded.

We know that before variablg ; is processed the number of internal ZDD nodes is exactly
k(n+2—k). Similarly, after completingy n; 1, the number of internal ZDD nodes is exactly
(k+1)(n+1—Kk). If we show that during this process the number of nodes is bounded, we will have
a bound throughout the execution of the algorithm.

To show this, it is useful to first consider the case whken {2,...,n—1}. This differs from
the case wherk = 1 since there, thpigeonclauses are first activated. It also differs from the case
k = n, since there theigeonclauses lead to conflicts. We can extend the analysis of the cases
ke {2,...,n—1} to cover these cases without much additional difficulty.

5.2.1 The General Case&k e {2,...,n—1}

When performing Compressed-BFS over variables withinwe would naturally expect the growth

of the ZDD to be limited. This is because we know that as we consider variables within some

Hi = {Xc1...-,Xnt+1} the pairwise exclusion clauses fd force at most one of these to beie .

As a result, after processing variables there are at mes2 possible search “branches”. If the ZDD
reflects this structure, and each of the corresponding ZDD “branches” led to a polynomially bounded
representation, then the entire ZDD would be bounded.

By actually considering how an assignment to sormeHy affects the structure of the ZDD, it is
possible to show that during the traversal the partially reduced ZDD has a certain regular structure.
This structure essentially mimics the heuristic argument given above: there ar@ w®2tbranches
and each branch leads to some bounded size ZDD. We will show by induction that the form of this
ZDD is maintained throughout all variables within eddh
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5.2.2 Structure of thefront During Hg

After variablexyj, we expect our internal representation to contairil ‘branches’, each leading to
some constraint on th@geonclauses. However this structure is obscured by ZDD node elimination
rules. We now consider the case of a partially reduced ZDD to use this structure to bound the number
of nodes in the reduced ZDD. We first present the structure of the ZDD after vaxiabteen show

by induction that this is indeed the structure maintained by the algorithm.

..,/,,x"/d\',@\ml—i E
’/;}\/Q\ml—i 1@

Figure 6: Form of théront afterxy;.

The general structure of the ZDD while processing some variable withis shown in Figure
6. Within this figure, each diamond shaped symbol corresponds to the grid structured ZDD shown
in Figure 5, which represents all subsets of a given size. After van@hlé¢here ara opportunities
to branch off from the main path. Each corresponds to setting one variable &, &f o, . .., Xk
true , and correspondingly satisfying ompégeonclause out of 12,...,i. The constraints each of
these branches leads to on fligeonclauses is that at mokt- 1 of then remainingpigeonclauses
(different for each branch) are satisfied, and we hav@alll — k)-element subsets of timremaining
clauses at the base of each branch. The leftmost branch corresponds to settingon® af. . ., X
true , and satisfying npigeonclauses with such an assignment. Thus along the leftmost branch, we
have all(n+2—Kk)-element subsets just as before. Because gjdirevise exclusiorlauses, no more
than one ofk 1, X 2, ..., X may betrue . Along branch 1< j <1, (corresponding to wherng j is
settrue ), then+ 1 —i pairwise exclusiorclauses which have the fory ; +xcp), i <h<n+1
remain open along each branch.

We now show by induction that this structure is preserved throughout the operation. Initially, by
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Lemma 2, the ZDD consists of dlh+ 2 — k)-element subsets of thet 1 pigeonclauses.

Consider setting variablg; true . Then, Compressed-BFS activateglauses of the form
(X1+Xj),1 < j<n+1, and satisfies the singpggeonclause 1. The first step of the algorithm
is to remove all branches which contain violated clauses. Since varapldoes not appear as the
end literal for any clause, this step is superfluous. Next, Cassatt existentially abstracts the single
satisfiedpigeonclause. In existential abstraction, any occurrence of this clause in any subsets in the
front will be removed. Consequently, the result of this operation will contaifrnaH 2 — k)-element
subsets which do not contgdigeonclause 1 and alln+ 1 —Kk)-element subsets not containipigieon
clause 1. Itis not hard to see this has the form shown in Figure 7, however a simple explanation of
this structure is as follows. Similar to Lemma 3, if more tha# 2 — k inputs are true, the Zero
Suppression rule implies this set is not in the collection. Also, if less thad — k inputs are true
from pigeonclauses 2, ...,n+ 1}, then more thak such inputs aréalse and we traverse t0 via
one of the branches on the left of the graph. Instead, if exacty — k inputs are setrue , we
traverse exactly to thenode. Finally, if exactiyn+ 1 —kinputs ardrue , we must pass through one
of the two bottom-most nodes in Figure 7. If we pass through the left nodenth&mprevious inputs
have beertrue , and since exactly+ 1 —k will be true , we must pass through tAeChild of this
node tol. If we pass through the right node, thes 1 — k previous inputs have beémue . Whether
this input isfalse  ortrue , we will have a set wittn+1 —k or (n+ 2 — k)-elements, respectively.

Finally Cassatt adds thenewly openegairwise exclusiomlauses which are of the form
(X1 +%j),1 < j <n+1, to all sets via Cartesian Product. However, since we ensure that these in-
dices appear above the pigeon clauses in our ZDD ordering, the Cartesian Product operation amounts
to simply adding nodes to the top of the ZDD as shown in Figure 7. The resulting structure forms a
single branch as shown in Figure 7.

g Ri,1 * % n+1)
1 n @k,lJ:Xk,n )
Pigeon Clause n+1 Pigeon Clause n+1 e 172 )

Pigeon Clause n Pigeon Clause n

Pigeon Clause n-1

Pigeon Clause i+2
Pigeon Clause i+1
Pigeon Clause i

Pigeon Clause 1

ExistAbs(Pigeon 1)

Pigeon Clause n-1

Cart Product

Pigeon Clause i+2
Pigeon Clause i+1
Pigeon Clause i

Pigeon Clause 2

Figure 7: Effects of setting, 1 true .

Pigeon Clause n+1
Pigeon Clause n
Pigeon Clause n-1

Pigeon Clause i+2
Pigeon Clause i+1
Pigeon Clause i

Pigeon Clause 2

Next, consider setting variablg 1 false . Here, all clauses which would be activated this step
are immediately satisfied. Also, no additional clauses are satisfied or violated. As a result, the result-
ing ZDD structure is the same as in the previous step: it consists @f-al2 — k)-element subsets of

then+ 1 pigeonclauses.



Finally both branches are combined via the subsumption-removing MaxUnion operation, giving
rise to the structure outlined in the previous section. This is shown in Figure 8, however here we
do not show the merging effects of the ZDD reduction rules, to illustrate the underlying structure
of the ZDD. The subgraph of the ZDD containing al+ 2 — k and (n+ 1 — k)-element subsets not
containing pigeon clause 1 has subsumptions eliminated from it. As a resylt-the— k)-element
subsets subsume those witi+ 2 — k)-elements, and the resulting ZDD has the form of the grid-
structured ZDD of Lemma 3, as shown in 8.

R 1 Hener)

(Xk,lﬂ(k,n)

1% 2)
Pigeon Clause n+1

Pigeon Clause n

Pigeon Clause n-1

Pigeon Clause i+2
Pigeon Clause i+1
Pigeon Clause i

Pigeon Clause 2

Pigeon Clause 1

Figure 8: Resulting ZDD after variabig ;.

Now, assume that after variablg;, i € {1...,n}, we have the precise structure shown in Figure 6
and are processing variablgj 1. If variablexy ., is settrue , we violate the clauses of the form
(X,j +X«ji+1) Where 0< j <i+1. One of thesé clauses appears in each branch of the structure
shown in Figure 6. Thus Cassatt will first pruak branches except the leftmost branch, whose
subsets contains only pigeon clauses.

The key idea in this step is that after eliminating subsets which contain violated clauses, we arrive
at the same grid structured ZDD which appeared after processing vaxiahlg 1. This is true in
this case since pairwise exclusion clauses constrain more than dmg10f..,Xj+1} from being
true . Thus when we consider setting; 1 true , the only valid branches in the ZDD are those
in which all other variable$x 1,...,%;} arefalse , and no additiongbigeonclauses are satisfied.
Since variable ;1 is settrue , it will satisfy the(i + 1)th pigeonclause, and next Cassatt eliminates
this clause by existentially abstracting it from the ZDD. The resulting ZDD contair{s all2 — k)-
element andn+ 1— k)-element subsets which do not contpigeonclause + 1. Finally, it will open
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n—i pairwise exclusiorclauses of the fornfxi 1+ X j), i +1 < j <n+ 1, giving rise to a single
branch structure similar to the base case. This operation is summarized in Figure 9.

Ry i1 P ones)

Cie1 *hn )

Cien * iz )

Pigeon Clause n+1
Pigeon Clause n
Pigeon Clause n—-1

Pigeon Clause i+2
Pigeon Clause i

Pigeon Clause 1

R }Plgeon Clauses

Figure 9: Effects of settingy ;1 true .

A different case occurs when variabdg .1 is setfalse . In this case no clauses are violated, or
activated. Instead, gllairwise exclusiorlauses of the fornix ; +Xc 1), 1< j <i+1, are satisfied.
Each branch in the structure shown in Figure 10 except for the leftmost branch contains one of these
clauses. Each such clause is removed via Existential Abstraction.

Existentially Abstract
All Clauses of the Form

Pigeon Clauses

Figure 10: Effects of setting, 1 false

By combining these two branches via union with subsumption, we effectively increase the number
of branches by 1, while removing one node along each branch to obtain exactly the general structure of
the ZDD which was introduced in Figure 6. By induction, then, this structure is maintained throughout
the progression of the algorithm whenewet {2,...,n—1}. Thus, after variable;, the number of
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ZDD nodes is bounded hiyk(n—1—k) + (n+1—1i)) +k(n+2—K), simply by counting nodes in
the partially reduced ZDD of Figure 6. Recall that this partially reduced ZDD forms an upper bound
on the number of nodes in tli®nt since ZDD reduction rules only eliminate nodes from this ZDD.

5.3 Growth Bounds Within Hq

In the analysis of the general cages {2,...,n— 1}, we made use of the fact that thgeonclauses

were opened previously. When processing a variablevhere 1<i < n+ 1, the structure of the

ZDD is not as complex as in other cases, however, the analysis is similar. It is still useful to consider
the unreduced ZDD to highlight the structure present.

The structure of the ZDD after processing variaklg, where 1<i < n+ 1 mimics the general
structure shown in Figure 6. However, the grid structured ZDD representing all subsets of a given size
is reduced to a degenerate form, representing a single subset of some gfifeeseclauses. The
number of elements in these subsets is further obscured since at eachpsgepnalause is opened.
However, it is not hard to see that after variakig, in the leftmost branch (corresponding to setting
all x;.1,X12,...,X%j false ), we have the single subset containing exactly pijeonclauses opened
thus far. Similarly, at the base of each of ttede branches, we have the single subset containing the
remainingi — 1 pigeonclauses, since each such branch corresponds to satisfying one of these clauses.

[ L} Pigeon Clauses

Figure 11: Structure of the ZDD for variables withi;.

To show that this structure is correct, we proceed by induction again. Consider processing variable
x11. When we sekq 1 true , we activaten pairwise exclusioglauses of the fornixy 1 + Xy j) where
1< j<n+1. When we sex;; false , we activate the singlpigeonclause 1. Combining these
gives the structure outlined previously.

Next, assume that after variablg; the partially reduced ZDD has the form shown in Figure 11.
When we sek; j1 true , we first must prune all branches containpajrwise exclusiorclauses of
the form (xg j + x1,j+1) where 1< j < i+ 1. By assumption, each branch aside from the leftmost
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branch in the ZDD must contain one such clause, and after this pruning, the ZDD is reduced to the
single set of pigeonclauses along the leftmost branch. Instead of satisfyipig@onclause as in the
general case, here we simply do not activate this clause. Finally, we activatgairwise exclusion
clauses of the fornixy i1+ Xy,j) wherei+1 < j <n+1.
If we setxy ;1 false , we violate no clauses, and satisfy piirwise exclusiortlauses of the
form (x1,j +X1,+1) Where 1< j < i+ 1. Each branch along the ZDD contains one such clause, and it
is removed from the ZDD. Finally, this step opens @igeonclause. By the Cartesian product and
because thpigeonclauses appear lower in the ZDD, this clause is added to the base of each branch
in this ZDD. After combining these two together, we arrive at the invariant structure from Figure 11.
Thus, this structure is valid for all variables withify, and the size of the corresponding ZDD is
bounded by ((n+1—i)+(i—1))+i=i(n+1).

5.4 Growth Bounds Within Hy

Similar to the analysis dfl1, our task is somewhat simplified in this case as we need not consider the
ZDD structure of Figure 6. Also, in this case we arrive at conflicts after processing each variable due
to the pruning of branches containing violated clauses.

The structure of the ZDD after processing variakig, 1 <i < n+ 1, again mimics the general
structure shown in Figure 6 aside from reuse among different branches. The basic ‘branching’ of the
ZDD is, as mentioned before, a consequence optiavise exclusiortlauses. Thus, as we process
variables within anyH; it will arise. However, in this case, each branch leads to the same structure
at the base of the ZDD, and there is a total reuse of nodes. The invariant structure (of an unreduced
ZDD) at this stage is shown in Figure 12.

We again proceed by induction to show that this structure is correct. Before the first variable
within Hp, thefront consists of all 2-element subsets of the 1 pigeonclauses. When we consider
assigning variabl®, 1 true , we activaten pairwise exclusioslauses, just as in previous steps. Also,
we satisfy a singl@igeonclause. If subsumptions are eliminated, these give rise to a ZDD consisting
of all subsets containing evepairwise exclusiortlause, and exactly one of the remainimgigeon
clauses.

When we consider assigning 1 false , we now violatepigeonclause 1, since upon reaching
variables inH, all pigeonclauses becomenit. Thus, all 2-element subsets containing ghigeon
clause are eliminated; the resulting ZDD consists of all 2-element subsets from the remaiigagn
clauses. Assigningn1 false has no other effects, since tpairwise exclusiorclauses are not
opened in this case. The union of these two branches fits within the framework of Figure 12.

Now assume that after processing variaklg i € {1,...,n}, thefront is of the form shown in
Figure 12. If variable, 1 is assignedrue , then as before, we violagirwise exclusiomtlauses
appearing in each branch of the ZDD aside from the leftmost branch. Thus after pruning this copy of
thefront, we are left with all 2-element subsets of the remaimnrgl — i pigeonclauses. One of these
pigeonclauses is satisfied as a result, and existentially abstracted away, leaving all 1-element subsets
of the remainingh — i pigeon clauses Finally the Cartesian product adds- i pairwise exclusion
clauses of the fornixn i1+ Xn j) to each subset, where-1 < j <n+ 1. This gives rise to a single
new branch of the structure shown in Figure 12.
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Pigeon Clauses

Figure 12: Structure of the ZDD for variables withif.

If variablex, 1 is assignedalse ,thenwe violate thé + 1)th pigeonclause. Since each branch
aside from the leftmost branch allows exactly one ofrth€l —i pigeonclauses in the cut, then these
branches are not pruned completely. Instead, they are updated to reflect allowing exactly one of the
remainingn — i pigeonclauses. Along the leftmost branch, which ends in all 2-element subsets of the
n+ 1—i pigeonclauses, those subsets containing(ihel)th pigeon clause are similarly pruned.

Since thex,j+1 = true branch in this case contains all 1-element subsets of the remaining
n+ 1—i pigeonclauses as a subexpression, then this portion of the ZDD fromthe = false
branch can be trivially reused when these are combined. This gives rise to the recombination of all side
branches in Figure 12. To count the size of the ZDD for variables wiihialso notice that the portion
of the ZDD which represents all 1-element subsetgigéonclauses can be merged with the portion
of the ZDD which represents all 2-element subsets (except the topmost node), for additional node
savings. Thus, the size of the ZDD for variables withigis bounded by(n+1—i) +2(n—i) + 1.

As a result, the number of nodes within the ZDD at any step in the algorithm is bounded poly-
nomially. We include a comparison of our bounds predicted value with the actual number of nodes
needed to solve the instanieele-50 in Figure 13. It is clear that the bound is not tight in most in-
stances as we ignore ZDD reduction rules to simplify the construction. However for variables within
Hp, the bound exactly counts the number of nodes used.
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Figure 13: Bounds on the number of ZDD nodes.

6 Polynomial-time Refutation of PHP+1

During the refutation oPHP}*!, the number of nodes in theont is polynomially bounded after
processing each variable. In addition, we noted explicitly in most cases that before and after each
ZDD operation the number of nodes is similarly bounded; this was necessary to construct the explicit
bound after each variable. The remaining cases will be discussed as necessary.

In general, ZDD operations are often performed as traversals over the ZDD or a pair of ZDDs and
for such traversals, one can bound the amount of work done by the number of nodes in the argument
ZDDs with appropriate caching of results [15]. For example, the ZDD intersection opefatignan
create at modD(|f|- |g|) additional nodes. In addition, if we perfectly cache the results of function
calls, the ZDD intersectiori (g cannot cause more th&(|f|- |g|) different function calls. Since
the number of nodes is polynomially bounded, we assume any reasonable hash function which does
not cause such traversals to require superpolynomial time.

In Compressed-BFS, however, some ZDD operations are not such traversals. These ZDD oper-
ations use the results of computations recursively, and ara pabri bounded by the size of their
arguments. However, we will show that even these operations perform in polynomial time when
the ZDD assumes any of structures shown in the previous section. To show this, we will first give
pseudocode for the nontraversal operations used in Compressed-BFS.

It is clear that the ZDD intersection performs in polynomial time. As mentioned previously, if a
suitable ordering for the ZDD nodes is chosen, the Cartesian Product operation can also be performed
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1 Product(zZDD f, ZDD-Sets)

2 if (findex < Sindex)

3 return (fingex, Product(fy, s), Product(fg, s))
4 if (findex> Sindex)

5 return (Singex Product(f, sr), 0)

6 findex7 Sindex

Figure 14: Pseudocode for Cartesian product with a single set.

quickly (linear in the number of activated clauses). Although this ordering can always be selected,
for the purposes of this proof we instead chose a node ordering which highlighted the significance of
branches within the ZDD. Regardless of node ordering, in Cassatt we need only form the Cartesian
product of a single set to the main ZDD, which can be performed in a single traversal as shown in
Figure 14, and thus this operation will execute in polynomial time. In this pseudocode thesZDD
must contain a single set of clauses, none of which may be contained in any of thefsets in

The remaining operations are Existential Abstraction, and MaxUnion [26, 17]. These operators
both use additional routines recursively within their definition, and the runtime is not as simple to
bound. To consider these operations, we will again need to do a case-by-case analysis based on the
ZDD structures introduced in the previous section.

6.1 Time Complexity Bounds Within Hy

Consider the general case of processing a varigglen Hy, wherek € {2,...,n—1}. Then the

ZDD has the form shown in Figure 6. Here we show the runtimes of both the Existential Abstraction
routine and the MaxUnion routine while processing this variable are polynomially bounded. To do
this, a detailed pseudocode for each routine is given and discussed within this general case. The
remaining cases of variables withth andH, follow almost trivially.

6.1.1 Existential Abstraction

The Existential Abstraction operation (Figure 16) can be written recursively by using the standard
ZDD Union operation as a subroutine (Figure 15) [17, 27]. However, since existential abstraction
depends on the result of this union, in general we can not easily bound its complexity in terms of
input size and thus it is not readily apparent that in the general case this operation will take time
polynomial in| f| and|g.
Claim. When Existential Abstraction is used in the refutatiorPcHR?”, the ZDD has a specific
structure for which the operation will execute in polynomial time.

In Compressed-BFS, the Existential Abstraction routine is used in two cases. First, when a vari-
able is setrue , we may need to existentially abstract a singgeonclause. However, when only a
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Union(zZDD f, ZDD g)

if(f ==0) return g

if(g==0) return f

if(f ==g) return f

if (findex < Qindex)
return (findex, Union(fg,q), f1)

if(findex> gindex)
return (Gindex, Union(ge, ),gr)

if (findex== Oindex)

0 return (fingex, Union(fg,ge), Union(fr,gr))

P O0O~NO O~ WNPE

Figure 15: Pseudocode for ZDD Union.

~No oo b~owbNPE

ExistAbs(zZDD f, ZDD-Sets)
if (findex™> Sindex)
return ExistAbs (f,sr)
if (findex < Sindex)
return (findex, EXistAbs(fr,s), ExistAbs(fg,s))
if (findex= Sindex)
return Union (ExistAbs(fr,sr), ExistAbs(fg, st))

Figure 16: Pseudocode for ZDD Existential Abstraction.
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Figure 17: Effects of Existential Abstraction when settig, 1 false

single clause must be abstracted, the operation is equivalent to finding the union of the two cofactors
of this variable. It is clear that in this case, the complexity is bounded polynomially.

Secondly, when a variable is datse , we must abstradgtpairwise exclusion clauses. We will
now show this case is also bounded polynomially. When we process all but the last varidlR)e in
each branch of the main ZDD will contain one such clause, as described previously. Existential
abstraction of these clauses then recurses along each branch. However, becauShittief each
node corresponding topairwise exclusiorlause i), we effectively attempt to form the union of the
remaining ZDD withQ. In these cases, the union step of existential abstraction performs no additional
work, and the operation effectively boils down to a single pass over the ZDD.

Finally, a different case occurs when we process the last varghla in someHy. At this step,
the nodes to be existentially abstracted are the nodes which separate the ZDD into branches, and their
E-Child is not zero. However each node along this main branch will be removed. As a result, the
operation boils down to forming the union of each of the 1 branches as shown in Figure 17. The
main branch holds alln+ 2 — k)-element subsets of thet 1 pigeon clauses, while each remaining
branchb; holds(n+1—k)-element subsets of tmpigeon clauses other than pigeon clajskstead
of decomposing the operation further, we now focus on the rgsofiteach union in Figure 17.
Lemma 4. Each result ZDDr; containsO(n?) nodes.
Proof. We show this by giving the explicit form of eachin figure 18. The uniom4 of the main
branch and the first brandby, will contain all(n+ 2—k)-element subsets as well as those- 1 — k)-
element subsets which do not contgigeonclause 1. It is not hard to verify this ZDD has the
form shown in Figure 18: similarly to Lemma 3, if more thar- 2 — k inputs aretrue , the Zero
Suppression rule implies this set is not in the collection. Also, if lesshath — k inputs aretrue
from pigeonclaused 1,...,n}, then more thak such inputs aréalse and we traverse t0 via one
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Figure 18: ZDD after Uniom; during Existential Abstraction.

of the branches on the left of the graph. Instead, if exacth? — k inputs are setrue , we traverse
exactly to thel node. Finally, if exactlyn+ 1 — k inputs from{1,2,...,n} aretrue , we must pass
through the bottom-most node at level 1. If the input friee , we should traverse tb as we have
a set with(n+ 2 —Kk) elements. Otherwise, we should also traversg fince we have a set with
(n+1—k)-elements, not containingigeonclause 1. It follows that this ZDD is the result of the
union between the main branch and

The remaining unions are similarly shown to have the form in Figure 18. Assume that after
branchb; we have the form of Figure 18, and are performing the union with brangh Then the
only subsets which need to be added are those 1 — k)-element subsets (not containing 1)
which contain all elements ifil,...,i}. This is the case because the structure in Figure 18 already
contains all(n+ 1 — k)-element subsets which do not contain all element§lin..,i} and hence
contains those such subsets not containing. If it is the case that there are no such subsets (i.e. if
i > n+1—kthen no(n+1—Kk)-element subset can contain all requireements) then the structure
is unchanged. However, if there aie+ 1 — k)-element subsets which do not contain 1, and do
contain all of{1,...,i}, then these subsets may be added by creating a single node as indicated in
Figure 18. This is the case since in order foman1 — k element subset to contain all ff,...,i} it
must traverse th&-Child for each of those nodes. The only portion of the previous ZDD which did
not allow such a traversal to reatls augmented with an additional node at level

Since each union operation’s runtime is bounded by the product of its inputs’ sizes, the entire
Existential Abstraction routine will execute in polynomial time. It follows that during the execution
of Compressed-BFS during variables within sorefor k € {2,...,n— 1} that the Existential Ab-
straction procedure takes polynomial timenjras it performs successive unions on ZDDs of bounded
size.
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1 operator\s (ZDD f, ZDD g)

2 if(f =0||g=1||g= f) return O

3 if(f =1/|g=0) return f

4 if (findex > Gindex)

5 return f\sge

6 if (findex < index)

7 return (findex f1\s0, fe\s0)

8 if(findex:: gindex)

9 return (findex (fr\sgr)\sge, fe\sge)

Figure 19: Pseudocode for ZDD Subsumed Difference.

Maximal (ZDD f)
if(f =1||f =0) return f
if(fr = fg) return fr
letA = Maximal(fg)
return (fingex, Maximal (f1)\sA,A))

ga b~ wWNBE

Figure 20: Pseudocode for ZDD Subsumption Elimination.

6.1.2 Union with Subsumption Removal

After the front is modified to reflect assigning a given variaolee , and a copy of the front is
modified to reflect assigning a given varialidse , these two copies must be combined into a
single data structure. In our implementation, this is accomplished by using a subsumption-removing
union operator, MaxUnion, to facilitate maintaining a subsumption-free database of clauses [26, 17].
In previous steps of the proof, it was noted that it was possible for some sets to subsume others. The
subsumption-removing union operator removes such sets while combining the two branches.

The subsumption-removing union operator MaxUnion is built on two other ZDD procedures. The
first operator is the subsumed-difference operati26, 18, 19]. In Figure 19 we list pseudocode
for this operator, note that there are alternate ways of implementing it R&IB returns a ZDD
containing all of the sets contained Mthat are not subsumed by some set containe.inrhe
second procedure is Maximal, whose pseudocode is listed in Figure 20, removes all subsumed sets
from the given ZDD.

To see that performing the MaxUnion to combine the two possibilities after some vaxialte
Hy executes in polynomial time, recall the structure reached after setting such a vagiainles in
Figure 9 and the structure reached after setting such a variable false in Figure 10. These two structures
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MaxUnion(zZDD f, ZDD g)
if (f = 0) return Maximal(Q)
if (g = 0) return Maximal(f)
if (f = g) return Maximal(f)
if(f=1/|]g=1) return 1
if (findex < Qindex)
return (fingexz MaxUnion(fg,g), Maximal(fr)\s MaxUnion(fg,g))
if(findex> gindex)
return (Gindex, MaxUnion(gg, f), Maximal(gr\s MaxUnion(gg, f))
0 if (findex= Qindex)
1 return (findex, MaxUnion(fr,gr)\s MaxUnion(fg, ge), MaxUnion(fg,ge))

PP O0O~NOUITEWNPE

Figure 21: Pseudocode for ZDD Subsumption-free Union.

must be combined via MaxUnion. Wher: n, the newly added pairwise exclusion clauses in Figure

9 have lower index (thus appearing higher in the figure) than any other clauses in these structures,
and this is where the MaxUnioh(g) begins. Then the MaxUnion recurses (based on line 7). Since

fe = 0, the recursion branch to find MaxUnidig( g) simply returns Maximal(g). Thus, the effect of
MaxUnion is to find the Maximal of both branches as shown in Figure 22. It will then combine these
branches via Subsumed Difference.

Within each branch, some subsumed sets may be present due to the existential abstraction opera-
tion used. Note that the intersection operation can only remove sets, and the Cartesian product adds
elements to every set, so neither of these operations can create subsumed sets.

Thexc; = true branch will then have subsumptions as it containgral- 1 — k)-element sets
not containingoigeonclause as well as alln+ 2 — k)-element sets not containing pigeon claude
follows that thesén+ 1 — k)-element sets will subsume the larger sets, leaving onlgnal 1 — k)-
element sets not containing pigeon clausend thus the action of the Maximal operator on the ZDD
is nontrivial.

However, it is possible to trace the execution of this operator over the ZDD due to its regular
structure. The execution in this step is essentially the same regardless of the implementation of
the Subsumed Difference operator since all necessary subsumptions are performed by line 3 of the
Maximal routine (Figure 20).

As the Maximal operator proceeds in a bottom-up fashion, when it views higher nodes in the
ZDD, the subsumptions present in lower portions will already have been eliminated. Then whenever
Maximal returns, the ZDD beneath that point has already taken its final forifn-all — k)-element
subsets. However, the Maximal operator will also perform a subsumed difference operation in order
to ensure the completeness of the search. We will now show that this subsumed difference operation
essentially performs no useful task in this case, and runs in time polynonmmal in
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Figure 22: ZDDsf, g to be combined via MaxUnion.

Lemma 5. Consider two node& andB on the same level of a ZDD containing kielement subsets
out of n elements. Suppose thatappears to the “left” oB in the sense that to rea¢hfrom the
least common ancestor 8fandB we traverse mor@-Childrenthan to reactB, then the Subsumed
DifferenceA\sB returnsA and executes in polynomial time.
Proof. First notice thatA consists of alii-element sets anB consists of allj-element sets, where
i < J <k. This s true since the sub-portion of the ZDD represented by both A and B has the structure
of Lemma 3. Also, sincd is “left” of B, there are fewer remainingChildrento traverse, implying
via Lemma 3 tha# contains subsets of fewer elements tiBariThen the Subsumed Difference will
returnA as no subset d@ can subsume a subsetAf

To show that the Subsumed DifferenagsB does not create additional nodes, we can proceed
by induction. First, since nodésandB have the same index, we always recurse based on line 9 of
the pseudocode given for Subsumed Difference. For the base case, wediadB as the only two
nodes on the — 1th level of ann level ZDD of all subsets. TheAr = 1 soAr\sBr = 1 asBt # 1.
Similarly, based on the terminal cases given in the pseudo¢8gesBr)\sBe = 1 as well. Finally
sinceBg = 0 we haveAg\sBe = Ag. It follows from line 9 of the routine that we return the node
(Aindex 1, Ae) which is preciselyA, and no additional nodes need to be created.

Now assume thak\sB does not create additional nodes wifeB have the same index in a ZDD
of all k-element subsets, ardis left of B. Then there are three cases.

e Case 1At = 1. In this caseAt\sBr = 1 as it is impossible that = 1. Then
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(Ar\sBT)\sBe = 1 as well. FinallyAg\sBg is formed. IfBg = 0, then we will return the node
(Aindex 1,Ae) which is preciselyA. Otherwise, we will recursively evaluate the subsumed dif-
ferenceAg\sBe. ButAg is “left” of Bg, and by assumption this evaluation creates no additional
nodes and returmde. Then we still return the nod@\ngex 1, Ae) = A and thus this step creates
no additional nodes.

e Case 2:.Bg = 0 andAt # 1. In this case, we formr\sBt = At without creating additional
nodes by assumption. Thei#\r\sBt)\sBe = At without additional nodes simply since
Be = 0. Finally, we evaluaté\g\sBe = Ag without creating additional nodes sinBg = 0.
Then we returnAindex AT, Ae) = A and again no additional nodes are necessary.

e Case 3:Ar # 1 andBg # 0. Then the three subsumed difference operatidfissBr = Ar,
(Ar\sBT)\sBe = Ar, andAg\sBe = Ac can each be performed without creating additional
nodes by assumption. We then return the nQ8gyex AT,Ae) = A and create no additional
nodes.

It follows that in all cases, when we evalu#tesB, we do not create additional nodes. SidcgB
does not create additional nodes and only depends recursively on subsumed differences of elements
of the same index, there are a limited number of calls which can be made. Namely, if results of these
calls are hashed, there are a total of at n@@t) nodes on a given level, and corresponding(y?)
calls can be made per level. Then the evaluation ofA satisfying the conditions of the Lemma
will execute time polynomial im. Further the total time complexity of finding all suéfsB within
a given ZDD storingk-element sets is bounded by a polynomiahin

Since the Subsumed Difference is called after the recursive evaluation of Maximal (Figure 20, line
5), we have exactly the conditions of Lemma 5 for each call to Subsumed Difference. Since the total
time of all such calls is bounded by a polynomiahint follows that the time complexity of execution
of Maximal on thexcj = true branch will take time bounded by a polynomial.

Thexcj = false  branch will have no subsumptions unless we are processing the last variable
in Hy, since in these other cases, the only nodes existentially abstracted away are pairwise exclusion
clauses from each branch of the ZDD. When only these clauses are removed, no new subsumed sets
are created, and all previously existing subsumed sets were removed during the last MaxUnion. In
addition, when processing thg; = false  branch, we recurse to find the Maximal iof 1 grid
structured ZDDs forming subgraphs of the main ZDD. Since each of theéeMaximal operations
will take polynomial time, the entire Maximal will execute in polynomial time.

However, when we process the last variatplg, 1 in someHy then we arrive at a structure similar
to that in thex; = true branch. Namely, we have dih+ 1 —k)-element subsets of tet- 1 pigeon
clauses, as well as alh+ 2 — k)-element subsets of these clauses. Theriralt 1 — k)-element
subsets should subsume the larger sets. However there are no activated clauses,in therue
branch to partition the action of MaxUnion into two Maximal operations as in the previous case.

Recall that thex 1 = true  branch contains alin+ 1 — k)-element andn + 2 — k)-element
subsets which do not contaageonclausen+ 1. It follows then, that this ZDD is entirely contained
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within the xcny1 = false  branch. If at the topmost nodk of the x .1 = false  branch, we
traverse along th&-Child, then we restrict to alh+ 1 — k and(n+ 2 — k)-element sets to those not
containingpigeonclausen+ 1, exactlythe same ZDD as the .1 = true branch.

The action of MaxUnion on these ZDDs appears somewhat unnecessary as one is entirely con-
tained as a subset of the other. It will now be shown that MaxUnion captures this relationship and
effectively only performs a Maximal operation on the entire ZDD.

When MaxUnion§, g) is applied to these two branches, since their root nodes are at different
levels, the rule in line 7 is applied. Thus we first attempt to find MaxUrigyg). However, since
fe = g, we attempt to find MaxUnioy g) which reduces to Maximaij. Then as described in the
analysis ofx; = true , the action of Maximal on a structure of this form runs in polynomial time.

Next, MaxUnion(,g) recursively calls Maximalff). However, Maximal can execute on this
structure in polynomial time. Finally, MaxUnion(f, g) performs the subsumed difference
Maximal( fr)\s Maximal(g). However, this exactly satisfies the conditions of Lemma 5, and thus
executes in polynomial time.

It follows that the MaxUnion of the two branches can be performed in polynomial time while
processing any variable withid, wherek € {2,...,n—1}.

6.2 Time Complexity Bounds Within Hy

The structure assumed when we examine a variable of theXprmhere 1<i < n4-1 is significantly
simpler than that of the general case. It maintains the general “branching” however, and nearly all of
the analysis from the previous section remains valid in this case as well. In particular, the action of
the Existential Abstraction is exactly the same.

The MaxUnion operation again reduces to two Maximal calls whehil< n+ 1. However
in these simplified cases there are no subsumptions to eliminate. It is clear that Maximal requires
polynomial time when its argument contains a single set:Bf@hild of each node i9. Since as
before, the action of Maximal on the branching structure of the ZDD is time bounded, then the time
complexity of MaxUnion is also bounded.

Finally when processing variable .1 the resulting ZDD structure is slightly different. Recall
that for variables irHy wherek € {2,...n— 1} we have that the structure for then,1 = true
branch was entirely contained within tRg, 1 = false  branch. This is because when performing
Existential Abstraction, we form unions,r,...r,. All Union resultsrj, wheren+2 -k < j <n,
are the same, and hold & + 1 — k)-element subsets as well as @il+ 2 — k)-element subsets of
then+ 1 pigeon clauses. In this case, there are no such Unjoas the last union formed i and
k= 1. Then the structure holds @ii+2— k= n+1)-element subsets, as well asraktlement subsets
which containpigeonclause 1. Thus the MaxUnion is between this collection and the collection for
thexn+1 = true branch: the single-element set not containing tipggeonclause 1.

Although this case is different, the presence ofgilgonclause 1 in subsets for the
X¢n+1 = false branch causes the MaxUnion operation to again partition into two Maximal oper-
ations followed by a Subsumed Difference. Again due to the structure of the ZDD, these will be
polynomially bounded, by Lemma 5 and that finding Maximal of a ZDD containing a single subset is
efficient.
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It follows that all operations for variables withkt, execute in polynomial time.

6.3 Time Complexity Bounds Within H,

In this final case, we consider processing a variaflewhere the initial structure is of the form
shown in Figure 12. The execution of Existential Abstraction over this structure is bounded by the
same arguments as before. For the case of variable;, however, both then 1 = true and
Xnnt+1 = false  branches are identically.

Similarly, the MaxUnion is partitioned when< i < n+ 1 and trivial when = n+ 1. Then all

operations throughout the algorithm execute in polynomial time during the refutatiid B+,

7 Conclusions and Ongoing Work

Our work offers a detailed analysis that shows the Compressed-BFS search procedure reported in [4]
solves SAT instances from the pigeonhole family in polynomial time, confirming earlier empirical
results. This proof was facilitated by recognizing structural invariants on partially reduced ZDDs
within different stages of the algorithm. Once a given structural invariant had been recognized, it was
shown correct by induction. The time bound on ZDD operations was accomplished by noting the
exact effects of each ZDD operation.

While explicitly formulating this unknown proof system appears difficult due to the complexity
of the ZDD algorithms used during the Compressed-BFS procedure, we believe that the details of our
polynomiality proof shed some light on it. Namely, one can distinguish several mechanisms which
must be reflected in that proof system. First, the steps of proofs may be represented by directed
graphs which have exponentially many directed paths (in terms of the number of vertices). Sec-
ond, those graphs encode Boolean formulas in a compact way by representing elements of Boolean
formulas by directed paths. Most importantly, this compact representation facilitates efficient trans-
formations of Boolean formulas. We conjecture that such graphs can be interpreted as instructions to
reuse common Boolean sub-formulas. Therefore, the next step towards formalizing the proof system
behind Compressed-BFS may require a description of Compressed-BFS in terms of term rewriting
and common sub-formulas.

Our ongoing work proceeds in several directions. First, we are studying modifications of well-
known SAT solvers that are required to produce resolution proofs of unsatisfiability rather than just a
negative answer. Second, we are trying to modify traces saved by Compressed-BFS so that they form
the basis of verifiable proofs. Another natural direction of research is to determine whether the ad-
dition of pruning based on Boolean Constraint Propagation will affect the efficiency of Compressed-
BFS. However our preliminary investigations hint that this type of idea will not have as dramatic
effects as in resolution-based procedures. Future directions of research also include explicitly formu-
lating hard examples for Compressed-BFS.
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Appendix A: Cassatt on Other Benchmarks

Table 1 shows how Cassatt and a few well known SAT solvers fare on a subset of benchmarks taken
from the SAT02 competition [28]. The benchmarks were run on machines with 2.0 GHz processors
with 1GB of RAM. “# Solved” is the number of benchmarks which the solver was able to complete
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Bart Series Lisa Series Homer Series
#Solved Time | #Solved Time | # Solved Time
Cassatt 21 1585.4 0 50400| 15 of 15 4.26
BerkMin 21 80.58 11 23334 6 32837
mChaff 2 70375 10 19249 12 14788
zChaff 5 58079 | 12 0f14 12273 6 35575

GRASP | 210f21 1.33 0 50400 0 54000
ZRes 0 75600 0 50400 1 53891
Ca Series Dp Series XOR-Chain Series

# Solved Time | # Solved Time | # Solved Time
Cassatt 3 19935 0 79200| 27 of 27 30.4

BerkMin 8 41.78 | 21 0of22 5829.0 6 75876
mChaff | 8of8 2.95 18 14826 18 53983
zChaff 8 6.90 18 16482 20 50677
GRASP 7 5843.4 12 36184 0 97200

ZRes 6 7659.2 7 54987 27 104.19

Table 1: A comparison of Cassatt with other SAT solvers on difficult benchmarks from the SAT
2002 competition [28]. Each solver was given 3600 CPU seconds per benchmark. The number of

benchmarks completed within that time as well as the total CPU time for each suite of benchmarks is
shown.
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given a timeout of 3600 seconds per benchmark. “Time” is the total amount of time taken for all of
the benchmarks in a series of benchmarks. Solvers which could not finish a benchmark within the
timeout period of 3600 seconds were charged 3600 seconds for that particular benchmark.

These benchmarks show that Cassatt performs competitively on a collection of difficult bench-
marks. In fact the XOR-Chain series of benchmarks, on which Cassatt peforms quite well, contains
the smallest unsatisfiable benchmark that was unsolved in the SAT02 competition [28]. The two
other series where Cassatt does well, the Bart series and Homer series, represent FPGA switch-box
problems as described in [9].

Appendix B: Cassatt Example — Refutation ofPHPS

o]

Figure 23: Progression of thent during refutation oPH Pg

The SAT instance oPHPS contains 6 variables{xy 1,X1,2,X1,3,%X2,1,X22,X2 3}, and 9 clauses
{(X,1+X12), (X1, 4+X1,3), (X1,2+X1,3), (X2,1 +X2,2), (X2, +X2,3), (X2,2+%2,3), (X1,1+X2,1),
(X124 X2,2),(X1,3+%2,3) } (numbered 1-9 respectively). See Figure 23 for the progression of the ZDD
representation of thieont.

Cassatt begins by setting the fron{tg} }. Next Cassatt processes;. If x; 1 is settrue , clauses
1 and 2 are opened and clause 7 is satisfied {fis setfalse , clauses 1 and 2 are satisfied and
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clause 7 is opened. Thus tfrent becomeq{1,2},{7}}.

Nextx; » is processed. Iy is settrue , clause 1 is violated, clause 3 is opened, and clause 8
is satisfied. Ifx; > is setfalse , clauses 1 and 3 are satisfied and clause 8 is opened. Thiusrthe
becomeq{3,7},{2,8},{7,8}}.

Nextx; 3 is processed. IX; 3 is settrue , clauses 2 and 3 are violated and clause 9 is satisfied.
If 13 is setfalse , clauses 2 and 3 are satisfied and clause 9 is opened. Thirsthbecomes
{{7,8},{7,9},{8,9},{7,8,9}}. {7,8,9} is subsumed by other elements of frent, so thefront is
reduced to{{7,8},{7,9},{8,9}}.

Nextxp 1 is processed. Iky; is settrue , clauses 4 and 5 are opened and clause 7 is satisfied.
If Xo1 is setfalse , clauses 4 and 5 are satisfied and clause 7 is violated. Thdmthdégecomes
{{4,5,8},{4,5,9},{4,5,8,9},{8,9}}. {4,5,8,9} is subsumed by other elements of fremt, so the
frontis reduced td {4,5,8},{4,5,9},{8,9} }.

Nextxp » is processed. Iy is settrue , clause 4 is violated, clause 6 is opened, and clause 8
is satisfied. Ifx; > is setfalse , clauses 4 and 6 are satisfied and clause 8 is violated. Thi®tite
becomeqd {5,9},{6,9}}.

Lastly xo 3 is processed. Iy 3 is settrue , clauses 5 and 6 are violated and clause 9 is satisfied.
If xo.3is setfalse , clauses 5 and 6 are satisfied and clause 9 is violated. Thérsthéecomesq },

which means tha®HP3 is unsatisfiable.
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