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Abstract

Many algorithms for Boolean satisfiability (SAT) work within the framework of resolution
as a proof system, and thus on unsatisfiable instances they can be viewed as attempting to find
proofs by resolution. However it has been known since the 1980s that every resolution proof of the
pigeonhole principle (PHPm

n ), suitably encoded as a CNF instance, includes exponentially many
steps [1]. Therefore SAT solvers based upon the DLL procedure [2] or the DP procedure [3] must
take exponential time. Polynomial-sized proofs of the pigeonhole principle exist for different
proof systems, but general-purpose SAT solvers often remain confined to resolution. This result
is in correlation with empirical evidence.

Previously, we introduced the Compressed-BFS algorithm to solve the SAT decision problem.
In an earlier work [4], an implementation of a Compressed-BFS algorithmempirically solved

PHPn+1
n instances inΘ(n4) time. Here, we add to this claim, and showanalytically that these

instances are solvable in polynomial time by Compressed-BFS. Thus the class of tautologies effi-
ciently provable by Compressed-BFS is different than that of any resolution-based procedure.

We hope that the details of our complexity analysis shed some light on the proof system im-
plied by Compressed-BFS. Our proof focuses on structural invariants within the compressed data
structure that stores collections of sets of open clauses during the Compressed-BFS algorithm.
We bound the size of this data structure, as well as the overall memory, by a polynomial. We then
use this to show that the overall runtime is bounded by a polynomial.

1 Introduction

Modern high-performance complete SAT solvers such as Chaff [5] and GRASP [6] use the Davis-
Logemann-Loveland (DLL) search procedure [2]. DLL is a backtracking algorithm with several
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extensions, but its runtime on unsatisfiable instances is lower-bounded by the length of resolution
proofs. This fact can be combined with known exponential lower bounds for resolution proofs of
certain families of SAT instances, such as the pigeonhole instances. The result is that any implemen-
tation of the DLL algorithm must require exponential time on pigeonhole instances. A recent paper
[7] examines the practice of augmenting DLL with clause learning. The authors show that clause
learning exponentially improves DLL, but does not overcome the inherent limitations of resolution.
Empirical evidence supports this claim. As shown in Figure 1a, the well-known solver zChaff [5],
which uses clause learning, empirically takes exponential time to solve these instances.

While much recent work was concerned with incremental improvements in implementation details
of the DLL procedure, a different avenue of research is to look for new solver algorithms which lead
to other classes of tractable problems. Put differently, we are looking for proof systems other than
resolution and solvers consistent with them which may also have practical applications. To this end,
we point out that the recently reported Compressed-BFS algorithm [4] empirically solves pigeonhole
instances in polynomial time. A plot of runtime on pigeonhole instances for several SAT solvers is
shown in Figure 1a. It is evident empirically that the high-performance DLL based solvers cannot
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Figure 1: a) Performance of several SAT solvers onhole-n instances. b) Asymptotic performance
of Compressed-BFS onhole-n instances.

solve these instances efficiently while Compressed-BFS is able to quickly show unsatisfiability. In
Figure 1b, the runtime of Compressed-BFS on a number of pigeonhole instances is plotted, along
with the functionΘ(x4). Compressed-BFS can show unsatisfiability ofPHP51

50 in under 15 seconds
on a commodity PC. Since Compressed-BFS is a general-purpose algorithm and competitively solves
a number of standard benchmarks (see Appendix A), two questions arise: (i) whether the empirical
polynomial-time result for pigeonholes can be supported analytically, and (ii) what proof system is
implied by Compressed-BFS.

To this end, our work offers the first analytical proof that the Compressed-BFS search proce-
dure reported in [4] solves SAT instances from the pigeonhole family in polynomial time. This

2



has immediate implications to the proof system behind the Compressed-BFS procedure. Since no
polynomial-sized resolution proofs exist for the pigeonhole instances, then resolution cannot poly-
nomially simulate the underlying proof system behind Compressed-BFS. While we do not claim
resolution is strictly weaker than Compressed-BFS, there is an infinite family of instances for which
Compressed-BFS exponentially outperforms resolution.

Results such as this were known for other methods of solving SAT, such asOBDD-apply, which
recursively constructs an OBDD of the given formula to determine satisfiability. It is known that this
method and resolution cannot polynomially simulate each other [8]. Here we show that resolution
cannot polynomially simulate Compressed-BFS, as it solves in polynomial time a class of formulas
which require exponential length resolution proofs. In addition,OBDD-applycannot solve pigeon-
hole instances in polynomial time under any variable ordering, and therefore also cannot polynomially
simulate Compressed-BFS [8].

In addition to these theoretical implications, a SAT solver that solves pigeonhole instances in
polynomial time can be useful for real-world problems. Within a SAT instance of routing, for ex-
ample, there can be many embeddedPHPm

n instances to enforce the capacities of routing channels
[9]. The situation is similar on other structured problems such as planning and scheduling [10]. If a
SAT solver cannot efficiently solve these subproblems, it may unnecessarily perform poorly on the
problem as a whole [10]. The work in [10] shows how pigeonhole instances can be solved efficiently
by using non-clausal learning methods when they are reformulated as instances of 0-1 Integer Linear
Programming (ILP). In contrast, our work shows polynomial-time solutions of pigeonhole instances
in terms of CNF, where exponential lower bounds on resolution proofs hold.

The attractiveness of combining different techniques such as DLL/DP based SAT approaches and
the compression of Binary Decision Diagrams has spawned much research in recent years. Using
BDDs to encode the clause database during DLL has been considered [11] as well as the ZRes algo-
rithm, which combines the DP procedure [3] with ZDDs [12]. The ZRes SAT solver [12] empirically
solves pigeonhole instances much faster than DLL based solvers as shown in Figure 1, however we
are unaware of any published proof of polynomial time complexity on these instances for ZRes. Al-
though ZRes is based on the DP procedure, its state encoding leaves its complexity in this regard an
open question. Many other efforts to combine the strengths of multiple approaches (e.g., [13]) or to
leverage the power of a compressed data structure (e.g., [14]) have been tried. This idea is likely to
be the subject of future research.

Unfortunately, formulating the unknown proof system appears difficult due to the complexity of
ZDD algorithms used within the Compressed-BFS procedure. However, we provide the details of our
polynomiality proof for pigeonholes in the hope that they will shed some light on the unknown proof
system or at least some of its features.

The remaining part of this paper is organized as follows. Section 2 reviews the necessary back-
ground. The Compressed-BFS algorithm is described in Section 3. Section 4 introduces the classic
pigeonhole instances and some of their relevant properties. In Section 5 we show that the size of the
algorithm’s main data structure is polynomially bounded. In Section 6 we show that Compressed-BFS
proves the pigeonhole principle in polynomial time. In Sections 5 and 6, we give both the general
outline of the proof and detailed arguments for each step. Conclusions and our ongoing research are
described in Section 7.
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2 Background

Let V = fv1;v2; : : : ;vng be a set of Boolean variables. Atruth assignmentfor V is a mapping
t : V ! ftrue;falseg. A partial truth assignmentfor V is a truth assignment to some subset of
variablesV 0 �V. A literal is a variable or it’s negation. Aclausecan be viewed a set of literals. A
clause issatisfiedby a truth assignmentt if at least one of its literals istrue undert. A clause is said
to beviolatedby a truth assignmentt if all of its literals arefalse undert. A Boolean formula in
conjunctive normal form can be represented by a setC of clauses.

The implicit representation used in the Compressed-BFS algorithm is dependent on the corre-
spondence between valid partial truth assignments and sets of clauses. A partial truth assignment is
said to beinvalid if this assignment violates some clause. Given a valid partial truth assignmentt, we
can classify clauses in a CNF with respect tot as follows.

� If a clause has at least one literal assigned some value, and no literals are assignedtrue , this
clause is said to beopen.

� If any literals within a clause are assignedtrue , this clause is said to besatisfied.

� If no literals within a clause are assigned, the clause is said to benot activated.

� If all but one literal in an open clause are assigned, the clause is said to beunit.

The compression in Compressed-BFS comes by storing the collection of sets of open clauses within
a Zero Suppressed Binary Decision Diagram (ZDD). ZDDs can represent combinatorial objects by a
set of paths in a Directed Acyclic Graph (DAG) [15, 16, 17]. Since the number of paths in a DAG can
be exponentially larger than the number of vertices, ZDDs are able to achieve an exponential level of
compression in certain instances. Specifically, when the collection of sets is sparse or structured then
the ZDD is often able to represent the entire collection compactly, and it is this compact representation

which allows Compressed-BFS to refutePHPn+1
n instances in time polynomial inn.

A ZDD is defined as a directed acyclic graph (DAG) where each node has a unique label, an integer
index, and two outgoing edges which connect to what we will callT-Child andE-child. Because of
this we can represent each nodeX as a 3-tuplehXindex;XT;XEi whereXindex is the index of the node
X, XT is its T-Child, andXE is its E-Child. Each path in the DAG ends in one of two special nodes,
the0 node and the1 node. These nodes have no successors. In addition, there is a single root node.
When we use a ZDD we will in reality keep a reference to the root node. The semantics of a ZDD
can be defined recursively by defining the semantics of a given node.

A ZDD can be used to encode a collection of sets by encoding its characteristic function. We can
evaluate a function represented by a ZDD by traversing the DAG beginning at the root node. At each
nodeX, if the variable corresponding to the index ofX is true, we select theT-Child. Otherwise we
select with theE-Child. Eventually we will reach either0 or 1, indicating the value of the function
on this input. We augment this with theZero-Suppression Rule: we may eliminate nodes whoseT-
Child is 0. With these standard rules,0 represents the empty collection of sets, while1 represents
the collection consisting of only the empty set. ZDDs interpreted this way have a standard set of
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operations based on recursive definitions [15, 16, 17, 18, 19], including the union and intersection of
two collections of sets, for example.

3 The Compressed-BFS Algorithm

The idea behind the Compressed-BFS algorithmCassatt1 [4] corresponds directly to a BFS over the
tree of partial truth assignments (the two children of a partial assignment are its immediate extensions
with 0 and 1). This tree of partial assignments is considered for a given variable ordering. Cassatt
implicitly represents partial assignments by their effects on the satisfiability of clauses, and therefore
naturally handles symmetric or otherwise equivalent partial assignments. Additionally, Cassatt can
identify partial truth assignments that lead to satisfying solutions only if other partial truth assign-
ments to the same set of variables do. This reduces the number of partial truth assignments that must
be explored to ensure completeness of the search procedure. As a special case, this includes handling
of autark assignments [21], which further differentiates Cassatt from DP or DLL based procedures.
Two additional advantages of this algorithm are compressed data representation and the implicit ma-
nipulation of large data sets. These are accomplished through the use of ZDD based data structures
and relevant algorithms. The two most similar pre-existing algorithms are: (i) ZRes [12], an imple-
mentation of the DP procedure using ZDDs, and (ii) an implementation of the DLL procedure with
ZDDs [22].

Compressed-BFS processes variables according to a static order, and implicitly represents all
promising truth assignments of a given depthd. Thesevalid partial truth assignmentsare assignments
to variablesx1;x2; : : : ;xd which do not cause all literals in some clause to be assigned false. The
collection of these partial truth assignments is called thefront. To determine the proper state after
processing variablexd+1, the algorithm ‘copies’ thefront, and modifies one copy of each assignment
within this collection to reflect the additional assignment ofxd+1 = true . It modifies the other copy
of the front to reflect assigningxd+1 = false . Finally, all valid partial truth assignmentsarising
from either of these branches might yield satisfiability, so both branches are combined into the single
newfront.

Storing subsets ofopenclauses instead of explicit partial truth assignments is enough information
to perform a BFS and determine satisfiability of a formula. In this general framework, any data struc-
ture which can manipulate collections of sets efficiently can be used in this style of BFS. We chose the
ZDD data structure because of its balance between compactness of representation and efficiency of
algorithms. Cassatt uses standard ZDD operations to maintain the collection of sets of open clauses,
called thefront. By combining this collection of sets of open clauses with a new truth assignment to
a single variable, thefront can be advanced as described above. To update thefront to reflect a truth
assignment to a single variable, the effects of this truth assignment on the status of clauses must be
considered. In general, an assignment to a single variablexi = t (wheret 2 ftrue;falseg) has the
following effects on clauses.

1Born May 22, 1844, Allegheny City, PA, Mary Cassatt was an American painter and printmaker who exhibited with
the Impressionists. [20]
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� One or more clauses may beviolated. LetUxi ;t be the set ofunit clauses for which this variable
assignment causes a conflict. Then, any subset in thefront containing someu 2 Uxi ;t must
be pruned as it cannot yield satisfiability. This can be accomplished with a ZDD intersection
operation [15, 16, 17].

� One or more clauses may besatisfied. Let Sxi ;t be the set of all clauses which contain a literal
in fxi ; x̄ig andxi = t makes this literaltrue . If these clauses were not yet satisfied, then they
become satisfied by this assignment. These clauses are removed from all subsets in thefront by
ZDD existential abstraction [17].

� One or more clauses may beopened. LetAxi ;t be the set of all clauses which werenot activated,
contain a literal infxi ; x̄ig, andxi = t makes this literalfalse . If instead this literal were
assignedtrue , the clause would besatisfiedand notopenand thus not be needed to added to
the front. All such clausesAxi ;t are added to every subset in thefront by the ZDD Cartesian
product operation [17].

Note that determining each of these sets depends only on the particular truth assignment toxi = t,
and not to the internal state of thefront. Thus, with each of these sets of clauses, an appropriate action
can be taken on the entirefront. To prune branches from the search containing violated clausesUxi;t ,
we build the collection2ClausesnUxi ;t of all sets which do not contain any clauses inUxi ;t . This structured
collection will have a very small ZDD representation (the number of nodes is bounded byjClausesj).
We then intersect this collection with thefront. Also, when considering either CNF instances with
empty clauses or clauses with a single variable, this simple taxonomy breaks down. However these
cases can be handled with a simple preprocessing step. Finally, it is not hard to see that throughout
the algorithm we can remove subsets which are subsumed by some other subset as these correspond
to suboptimal partial truth assignments.

Initially, we have noopenclauses, and thefront is set to be the collection containing only the
empty set,1. For each variablexi , we create two copies of thefront, and modify one copy of the
front as described above to reflect assigningxi = true . We modify another copy to reflect assigning
xi = false . Finally, the newfront is the union of these two, since we must consider promising
branches in either case. In our implementation, we use the MaxUnion operator, which is built from
two additional operators, Maximal and Subsumed Difference for the maintenance of a subsumption-
free ZDD [12, 17, 18, 19]. After all variables are processed, there are two possible outcomes. If there
are no branches leading to satisfiability, then thefront will be empty (equal to0) as it contains sets
of openclauses, each of which corresponds to a promising branch in the search. If any branches lead
to satisfiability, then there will be no open clauses and thefront will contain the empty set (1). For a
completely worked out instance of Cassatt on a pigeonhole instance, see Appendix B.

Pseudocode for the Cassatt algorithm is shown in Figure 2. In general, ZDD algorithms depend
heavily on the ordering of ZDD nodes. Also, like most SAT algorithms, Cassatt’s performance de-
pends on the order in which variables are processed. To simplify certain steps of the proof as much as
possible, it is assumed that indices in the ZDD are ordered according to which clause they represent.
Larger clauses appear with higher index in the ZDD ordering, and among clauses of the same size,
clauses which contain variables processed earlier are given higher index in the ZDD ordering.
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1 Cassatt(Vars, Clauses)
2 front 1
3 for i = 1 to jVarsj do
4 front0 front
5 //Modify front to reflect xi = true
6 Form sets Uxi;true;Sxi ;true;Axi ;true

7 front front
T

2ClausesnUxi ;true

8 front 9Abstract(front, Sxi ;true)
9 front front
Axi ;true

10 //Modify front’ to reflect xi = false
11 Form sets Uxi;false;Sxi ;false;Axi ;false

12 front0 front0
T

2ClausesnUxi ;false

13 front0 9Abstract(front0, Sxi ;false)
14 front0 front0
Axi ;false

15 //Combine the two branches via Union with Subsumption
16 front front

S
S front0

17 if front = 0 then
18 return Unsatisfiable
19 if front = 1 then
20 return Satisfiable

Figure 2: Pseudocode for the Cassatt algorithm.

In general, we may ensure that the Cartesian Product operator executes in linear time (in the
number of added nodes) by choosing an appropriate node ordering for a given variable ordering. To
do this, we would give priority to the criterion that clauses which contain variables processed earlier
are given higher index in the ZDD ordering. Then each activated clause would necessarily have lower
index than any clause yet appearing in thefront. However, when this does not occur, the Cartesian
Product with a single set can still be performed efficiently by a single traversal as shown in Section 6.

4 The CNF InstancesPHPn+1
n

In this work we consider a CNF encoding of the negation of the pigeonhole principle. Such instances
are easy to generate, widely available, and a part of standard SAT benchmark suites, where they are
known as hole-n instances. The pigeonhole principle (PHPm

n ) states that ifm pigeons (m> n)
are placed inn holes, then some hole must contain more than one pigeon. SincePHPn+1

n is valid,

we can encode its negationPHPn+1
n in CNF form to obtain an unsatisfiable SAT instance. One way

to do this is to usen(n+ 1) variables,xi; j , each representing that pigeon 1� j � n+ 1 is in hole
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1� i � n. We can thus formn groupsHi of n+ 1 variables each, where each variable withinHi

represents that some pigeon is in holei. We can number variables in such a way that the firstn+1
variablesx1;1;x1;2; : : : ;x1;n+1 make up the groupH1, and so on. Then, the groupHi is made up of the
variables

Hi = fxi;1;xi;2; : : : ;xi;n+1g

Encoded this way, the constraints fall into two categories. Within each group of variablesHi, there

are

�
n+1

2

�
clauses which we callpairwise exclusionclauses of the form

(x̄i;a+ x̄i;b)

for 1� a< b� n+1. These clauses prevent more than one pigeon from being in holei since whenever
any one variablexi;a2Hi is true , in order to satisfy allpairwise exclusionclauses, all other variables
xi;b must befalse .

The second category of constraints, which we callpigeonclauses, aren+1 clauses of the form

(x1; j +x2; j + : : :+xn; j)

which select thejth element from eachHi . These encode that each pigeonj must be in at least one
hole: at least one ofx1; j ; : : : ;xn; j must be true for this clause to be satisfied.

To make this formulation clear, a schematic representation of the instancePHP3
2 is shown in

Figure 3. Here, all variables are represented by dots on a horizontal line. Thepigeonclauses are
shown below this line, while thepairwise exclusionclauses are shown above this line. In this work,
these variables are processed left-to-right, or equivalently, in increasing lexicographic order. Such a
variable ordering is easy to find practically, as it corresponds to the ordering which minimizescut-
width (as defined by the minimum cut linear arrangement problem [23, 24], which has polynomial
time approximations) of the entire instance. A partitioning or placement algorithm can be used to
find such an order, if one was not able to explicitly construct it. It is important to note that there is no
variable ordering for which a resolution procedure orOBDD-applyprocedure can refute pigeonhole
instances efficiently.

4.1 Structure of the InstancesPHPn+1
n

Some insight can be gained by a careful examination of the instancesPHPn+1
n which will be useful in

the proof that Compressed-BFS provides a polynomial time refutation of these instances. It will also
clarify the ideas which come into play at later stages of the proof.

We first introduce the notion ofthe cut. Thecut is well-defined graph-theoretic term which can
be extended to hypergraphs [25]:

If X andY are sets of vertices in a hypergraphH, the set of edges ofH with contain
vertices from bothX andY is denoted by[X;Y]. WhenX[Y is a partition ofV(H), the
set[X;Y] is called anedge cutof H.
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Pairwise Exclusion
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1,1
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H
1

H
2

1,3

1,1
(x     +x     )

1,2 1,2 1,3 2,1

Figure 3: The InstancePHP3
2

Since in Compressed-BFS we process variables according to some fixed order, it will happen that
only certain clauses will be activated. However, if all variables in a clause are assigned, then for
any branch in our search, this clause must be satisfied already. Clauses which have some, but not all
variables assigned have the potential to affect our search, and are referred to ascut clauses. Thecut
can be visualized by drawing a vertical line on Figure 3. Then when a partial truth assignment to all
variables to the left of the line is being considered, only clauses this line crosses (cut clauses) will
have the potential to be open clauses.

The first realization which will be useful was mentioned above: thepairwise exclusionclauses
for a given set of variablesHi prevent more than one of the variables fromHi from being assigned
true . Thus, when performing a search for satisfiability, ideally there will be at mostn+2 different
“branches” in the search:n+1 branches corresponding to setting each of then+1 variables inHi

true , and one final branch corresponding to setting them allfalse .
The second observation is that there are relatively few clauses containing elements in bothHi and

Hi+1. Figure 4 shows a schematic representation of a larger instancePHP5
4 to highlight the general

form. As seen in Figure 4, only then+1 pigeonclauses extend betweenHi andHi+1. Immediately
after variables inHi, we say that only thesen+ 1 pigeonclauses are in thecut. Since we will be
considering the effects of Compressed-BFS over these instances, we will consider truth assignments
to variables up to a given depth. If we look at the effects of truth assignments to all variables in
H1; : : : ;Hi, then whatever effects these assignments have on the formula must be completely captured
in thesen+ 1 pigeonclauses. In Compressed-BFS, the number of clauses in thecut affects the
performance of the algorithm [4]. We can consider all possible truth assignments to variables in
H1; : : : ;Hi to deduce the following lemma.
Lemma 1. Let k2 f1;2; : : : ;n�1g. A valid partial truth assignment to variablesx1;1;x1;2; : : : ;xk;n+1,
i.e. all the variables inH1; : : : ;Hk, may satisfy at mostk of then+1 pigeonclauses.
Proof. First, notice that for 1� i � k at most one of variables in the setHi can be assignedtrue . If
two or more variables fromHi weretrue , then at least one of thepairwise exclusionclauses forHi
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Figure 4: A Larger Instance:PHP5
4

would be violated. As a result, any valid partial truth assignment to the firstk(n+1) variables must
set only one variable inHi true , for eachi. By similarly examining clauses, it is evident that any
partial truth assignment setting at most one of variablesHi true is valid. Setting all such variables
to false does not violate any of thepigeonclauses, since we assumek� n. If exactly one of the
variables withinHi is assignedtrue , then this simply satisfies one of then+1 pigeon clauses, and
maintains the validity of the partial truth assignment.

Since there arek sets of the formHi = fxi;1;xi;2; :::;xi;n+1g, and each can satisfy at most one of
then+1 pigeonclauses, it is clear that we may satisfy at mostk of these clauses.

�

5 Size Bounds During Refutation ofPHPn+1
n

Determining the exact number of nodes at a given step is cumbersome, and not necessary for an
upper bound on the size of the ZDD in Compressed-BFS. This is primarily due to the node sharing
which gives some additional savings in space and runtime at the expense of a conceptually simpler
structure. Therefore, in the course of this proof we consider apartially reducedZDD which reveals
the underlying structure. Since the ZDD reduction rules cannot add nodes, then the size of this
partially reducedZDD is an upper bound on the size of the actual ZDD.

We show here that the number of nodes within Compressed-BFS’s main data structure, thefront,
is bounded by a polynomial before and after each individual operation shown in the pseudocode
of Figure 2. We will show in the following section that the types of structures we encounter in the

refutation ofPHPn+1
n allow Compressed-BFS to execute in polynomial time, assuming any reasonable

hash function.
Our proof will be structured as follows. First, we will show that the ZDD representation imme-

diately after processing all variables in someHk is the set of(n+1� k)-element subsets ofpigeon
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clauses, and will have(k+1)(n+1�k) nodes. This will give a polynomial bound at regular intervals
throughout execution of the algorithm. The remainder of the proof will show that as we consider vari-
ables within someHk, the ZDD in Cassatt does not grow too greatly. Although we will have a bound
at regular intervals, we must show a bound between these intervals as well. The techniques used in
the proof are valid for then![(n+1)!]n ‘hole major’ variable orderings, but for simplicity the proof
assumes that variables are processed in the lexicographic orderx1;1;x1;2; : : : ;x1;n+1;x2;1; : : : ;xn;n+1.

5.1 Bounds After All Variables in Hk

Here we consider that immediately after completing all variables within someHk, there is a simple
polynomial bound on the number of nodes.
Lemma 2. Let k2 f1;2; : : :;n�1g. After completing variablexk;n+1, thefront consists of all
(n+1�k)-element subsets of then+1 pigeonclauses.

Proof. From the structure of the instancesPHPn+1
n , we know that the only clauses which are in the

cut are then+1 pigeonclauses. Thus thefront must be composed of subsets of thesen+1 clauses.
From Lemma 1, we know that after variablexk;n+1 has been assigned at mostk of thepigeonclauses
may be satsified. Then, at leastn+ 1� k of them must remain open. Since we must consider all
choices of whichk or fewerpigeonclauses to satisfy, then all subsets containingn+1� k or more
pigeonclauses will be in thefront. Since in Cassatt we eliminate subsumptions, then the smallest
subsets (those subsets containing exactlyn+ 1� k elements) subsume all subsets containing more

open clauses. As a result, only the

�
n+1

k

�
possible(n+1�k)-element subsets remain.

�

Lemma 3. Let k2 f1;2; : : : ;ng. The ZDD representing allk-element subsets ofn elements contains
exactlyk(n+1�k) nodes.
Proof. To show this, we first give the form of all such ZDDs in Figure 5.

0 1

n+1−k k

Figure 5: ZDD storing allk-element subsets ofn elements.
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Within this ZDD, in order for a path to reach the terminal1 node, it must be true for exactlyk of
the variable values. If less thank values are set to true, the path reaches the0 node through one of
theE-Child edges shown on the left of Figure 5. If more thank values are set true, then although it
would appear that we follow a path leading to the1 node, theZero-Suppression Ruleimplies that we
traverse to the0 node. As a result only those paths which set exactlyk variables true will reach the1
node, and this ZDD stores exactly allk-element subsets of ann-element set. Since there are a total of
n levels, the other ‘dimension’ of this ZDD isn+1� k. Since ZDDs are a canonical representation,
whenever it is necessary to storek-element subsets we will use exactlyk(n+1�k) nodes.

�

Thus, in Cassatt, when it is necessary to store all(n+ 1� k)-element subsets from an(n+ 1)-
element set, we use(k+1)(n+1�k) nodes, and the size of the ZDD is polynomially bounded after
completing each set of variablesHk.

5.2 Growth Bounds Within Each Hk

Our main goal here is to show that as Cassatt processes variables within eachHk, we do not introduce
too many additional nodes. This presented in the following claim.
Claim. Fix k2 f1; : : : ;ng. As we process variables withinHk = fxk;1; : : : ;xk;n+1g, the growth of the
ZDD is polynomially bounded.

We know that before variablexk;1 is processed the number of internal ZDD nodes is exactly
k(n+2�k). Similarly, after completingxk;n+1, the number of internal ZDD nodes is exactly
(k+1)(n+1�k). If we show that during this process the number of nodes is bounded, we will have
a bound throughout the execution of the algorithm.

To show this, it is useful to first consider the case whenk 2 f2; : : : ;n� 1g. This differs from
the case wherek = 1 since there, thepigeonclauses are first activated. It also differs from the case
k = n, since there thepigeonclauses lead to conflicts. We can extend the analysis of the cases
k2 f2; : : : ;n�1g to cover these cases without much additional difficulty.

5.2.1 The General Case,k2 f2; : : : ;n�1g

When performing Compressed-BFS over variables withinHk, we would naturally expect the growth
of the ZDD to be limited. This is because we know that as we consider variables within some
Hk = fxk;1; : : : ;xk;n+1g the pairwise exclusion clauses forHk force at most one of these to betrue .
As a result, after processing variables there are at mostn+2 possible search “branches”. If the ZDD
reflects this structure, and each of the corresponding ZDD “branches” led to a polynomially bounded
representation, then the entire ZDD would be bounded.

By actually considering how an assignment to somex2 Hk affects the structure of the ZDD, it is
possible to show that during the traversal the partially reduced ZDD has a certain regular structure.
This structure essentially mimics the heuristic argument given above: there are up ton+2 branches
and each branch leads to some bounded size ZDD. We will show by induction that the form of this
ZDD is maintained throughout all variables within eachHk.
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5.2.2 Structure of thefront During Hk

After variablexk;i , we expect our internal representation to containi +1 ‘branches’, each leading to
some constraint on thepigeonclauses. However this structure is obscured by ZDD node elimination
rules. We now consider the case of a partially reduced ZDD to use this structure to bound the number
of nodes in the reduced ZDD. We first present the structure of the ZDD after variablexk;i , then show
by induction that this is indeed the structure maintained by the algorithm.

n+2−k n+1−k n+1−k n+1−k

0

0

0

0 1

i

n+1−i

n+1−i

n+1−i

k k k k

Figure 6: Form of thefront afterxk;i .

The general structure of the ZDD while processing some variable withinHk is shown in Figure
6. Within this figure, each diamond shaped symbol corresponds to the grid structured ZDD shown
in Figure 5, which represents all subsets of a given size. After variablexk;i , there arei opportunities
to branch off from the main path. Each corresponds to setting one variable out ofxk;1;xk;2; : : : ;xk;i

true , and correspondingly satisfying onepigeonclause out of 1;2; :::; i. The constraints each of
these branches leads to on thepigeonclauses is that at mostk�1 of then remainingpigeonclauses
(different for each branch) are satisfied, and we have all(n+1�k)-element subsets of then remaining
clauses at the base of each branch. The leftmost branch corresponds to setting none ofxk;1;xk;2; : : : ;xk;i

true , and satisfying nopigeonclauses with such an assignment. Thus along the leftmost branch, we
have all(n+2�k)-element subsets just as before. Because of thepairwise exclusionclauses, no more
than one ofxk;1;xk;2; : : : ;xk;i may betrue . Along branch 1� j � i, (corresponding to wherexk; j is
settrue ), then+1� i pairwise exclusionclauses which have the form(x̄k; j + x̄k;h), i < h� n+1
remain open along each branch.

We now show by induction that this structure is preserved throughout the operation. Initially, by
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Lemma 2, the ZDD consists of all(n+2�k)-element subsets of then+1 pigeonclauses.
Consider setting variablexk;1 true . Then, Compressed-BFS activatesn clauses of the form

(x̄k;1 + x̄k; j);1< j � n+ 1, and satisfies the singlepigeonclause 1. The first step of the algorithm
is to remove all branches which contain violated clauses. Since variablexk;1 does not appear as the
end literal for any clause, this step is superfluous. Next, Cassatt existentially abstracts the single
satisfiedpigeonclause. In existential abstraction, any occurrence of this clause in any subsets in the
front will be removed. Consequently, the result of this operation will contain all(n+2� k)-element
subsets which do not containpigeonclause 1 and all(n+1�k)-element subsets not containingpigeon
clause 1. It is not hard to see this has the form shown in Figure 7, however a simple explanation of
this structure is as follows. Similar to Lemma 3, if more thann+ 2� k inputs are true, the Zero
Suppression rule implies this set is not in the collection. Also, if less thann+1� k inputs are true
from pigeonclausesf2; : : : ;n+1g, then more thank such inputs arefalse and we traverse to0 via
one of the branches on the left of the graph. Instead, if exactlyn+ 2� k inputs are settrue , we
traverse exactly to the1 node. Finally, if exactlyn+1�k inputs aretrue , we must pass through one
of the two bottom-most nodes in Figure 7. If we pass through the left node, thenn�k previous inputs
have beentrue , and since exactlyn+1�k will be true , we must pass through theT-Child of this
node to1. If we pass through the right node, thenn+1�k previous inputs have beentrue . Whether
this input isfalse or true , we will have a set withn+1�k or (n+2�k)-elements, respectively.

Finally Cassatt adds then newly openedpairwise exclusionclauses which are of the form
(x̄k;1 +x̄k; j);1< j � n+1, to all sets via Cartesian Product. However, since we ensure that these in-
dices appear above the pigeon clauses in our ZDD ordering, the Cartesian Product operation amounts
to simply adding nodes to the top of the ZDD as shown in Figure 7. The resulting structure forms a
single branch as shown in Figure 7.
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k,n
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Figure 7: Effects of settingxk;1 true .

Next, consider setting variablexk;1 false . Here, all clauses which would be activated this step
are immediately satisfied. Also, no additional clauses are satisfied or violated. As a result, the result-
ing ZDD structure is the same as in the previous step: it consists of all(n+2�k)-element subsets of
then+1 pigeonclauses.
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Finally both branches are combined via the subsumption-removing MaxUnion operation, giving
rise to the structure outlined in the previous section. This is shown in Figure 8, however here we
do not show the merging effects of the ZDD reduction rules, to illustrate the underlying structure
of the ZDD. The subgraph of the ZDD containing alln+2� k and(n+1� k)-element subsets not
containing pigeon clause 1 has subsumptions eliminated from it. As a result, the(n+1�k)-element
subsets subsume those with(n+ 2� k)-elements, and the resulting ZDD has the form of the grid-
structured ZDD of Lemma 3, as shown in 8.
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0 1
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k,1 k,n

k,1 k,2

Figure 8: Resulting ZDD after variablexk;1.

Now, assume that after variablexk;i , i 2 f1: : : ;ng, we have the precise structure shown in Figure 6
and are processing variablexk;i+1. If variablexk;i+1 is settrue , we violate thei clauses of the form
(x̄k; j + x̄k;i+1) where 0< j < i + 1. One of thesei clauses appears in each branch of the structure
shown in Figure 6. Thus Cassatt will first pruneall branches except the leftmost branch, whose
subsets contains only pigeon clauses.

The key idea in this step is that after eliminating subsets which contain violated clauses, we arrive
at the same grid structured ZDD which appeared after processing variablexk�1;n+1. This is true in
this case since pairwise exclusion clauses constrain more than one offxk;1; : : : ;xk;i+1g from being
true . Thus when we consider settingxk;i+1 true , the only valid branches in the ZDD are those
in which all other variablesfxk;1; : : : ;xk;ig arefalse , and no additionalpigeonclauses are satisfied.
Since variablexk;i+1 is settrue , it will satisfy the(i+1)th pigeonclause, and next Cassatt eliminates
this clause by existentially abstracting it from the ZDD. The resulting ZDD contains all(n+2� k)-
element and(n+1�k)-element subsets which do not containpigeonclausei+1. Finally, it will open
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n� i pairwise exclusionclauses of the form(x̄k;i+1+ x̄k; j), i +1< j � n+1, giving rise to a single
branch structure similar to the base case. This operation is summarized in Figure 9.
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Figure 9: Effects of settingxk;i+1 true .

A different case occurs when variablexk;i+1 is setfalse . In this case no clauses are violated, or
activated. Instead, allpairwise exclusionclauses of the form(x̄k; j + x̄k;i+1), 1� j < i+1, are satisfied.
Each branch in the structure shown in Figure 10 except for the leftmost branch contains one of these
clauses. Each such clause is removed via Existential Abstraction.
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Figure 10: Effects of settingxk;i+1 false .

By combining these two branches via union with subsumption, we effectively increase the number
of branches by 1, while removing one node along each branch to obtain exactly the general structure of
the ZDD which was introduced in Figure 6. By induction, then, this structure is maintained throughout
the progression of the algorithm wheneverk2 f2; : : : ;n�1g. Thus, after variablexk;i , the number of

16



ZDD nodes is bounded byi(k(n�1� k)+ (n+1� i))+ k(n+2� k), simply by counting nodes in
the partially reduced ZDD of Figure 6. Recall that this partially reduced ZDD forms an upper bound
on the number of nodes in thefront since ZDD reduction rules only eliminate nodes from this ZDD.

5.3 Growth Bounds Within H1

In the analysis of the general case,k2 f2; : : : ;n�1g, we made use of the fact that thepigeonclauses
were opened previously. When processing a variablex1;i where 1� i � n+ 1, the structure of the
ZDD is not as complex as in other cases, however, the analysis is similar. It is still useful to consider
the unreduced ZDD to highlight the structure present.

The structure of the ZDD after processing variablex1;i , where 1� i � n+1 mimics the general
structure shown in Figure 6. However, the grid structured ZDD representing all subsets of a given size
is reduced to a degenerate form, representing a single subset of some of thesepigeonclauses. The
number of elements in these subsets is further obscured since at each step, apigeonclause is opened.
However, it is not hard to see that after variablex1;i , in the leftmost branch (corresponding to setting
all x1;1;x1;2; : : : ;x1;i false ), we have the single subset containing exactly alli pigeonclauses opened
thus far. Similarly, at the base of each of thei side branches, we have the single subset containing the
remainingi�1 pigeonclauses, since each such branch corresponds to satisfying one of these clauses.

0

i−1 i−1 i−1i

n+1−i

0 1

0

i

n+1−i
0

n+1−i

Pigeon Clauses

Figure 11: Structure of the ZDD for variables withinH1.

To show that this structure is correct, we proceed by induction again. Consider processing variable
x1;1. When we setx1;1 true , we activaten pairwise exclusionclauses of the form(x̄1;1+ x̄1; j) where
1 < j � n+1. When we setx1;1 false , we activate the singlepigeonclause 1. Combining these
gives the structure outlined previously.

Next, assume that after variablex1;i the partially reduced ZDD has the form shown in Figure 11.
When we setx1;i+1 true , we first must prune all branches containingpairwise exclusionclauses of
the form (x̄1; j + x̄1;i+1) where 1� j < i + 1. By assumption, each branch aside from the leftmost
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branch in the ZDD must contain one such clause, and after this pruning, the ZDD is reduced to the
single set ofi pigeonclauses along the leftmost branch. Instead of satisfying apigeonclause as in the
general case, here we simply do not activate this clause. Finally, we activaten� i pairwise exclusion
clauses of the form(x̄1;i+1+ x̄1; j) wherei +1< j � n+1.

If we setx1;i+1 false , we violate no clauses, and satisfy allpairwise exclusionclauses of the
form (x̄1; j + x̄1;i+1) where 1� j < i+1. Each branch along the ZDD contains one such clause, and it
is removed from the ZDD. Finally, this step opens onepigeonclause. By the Cartesian product and
because thepigeonclauses appear lower in the ZDD, this clause is added to the base of each branch
in this ZDD. After combining these two together, we arrive at the invariant structure from Figure 11.

Thus, this structure is valid for all variables withinH1, and the size of the corresponding ZDD is
bounded byi((n+1� i)+(i�1))+ i = i(n+1).

5.4 Growth Bounds Within Hn

Similar to the analysis ofH1, our task is somewhat simplified in this case as we need not consider the
ZDD structure of Figure 6. Also, in this case we arrive at conflicts after processing each variable due
to the pruning of branches containing violated clauses.

The structure of the ZDD after processing variablexn;i , 1� i � n+1, again mimics the general
structure shown in Figure 6 aside from reuse among different branches. The basic ‘branching’ of the
ZDD is, as mentioned before, a consequence of thepairwise exclusionclauses. Thus, as we process
variables within anyHi it will arise. However, in this case, each branch leads to the same structure
at the base of the ZDD, and there is a total reuse of nodes. The invariant structure (of an unreduced
ZDD) at this stage is shown in Figure 12.

We again proceed by induction to show that this structure is correct. Before the first variable
within Hn, thefront consists of all 2-element subsets of then+1 pigeonclauses. When we consider
assigning variablexn;1 true , we activaten pairwise exclusionclauses, just as in previous steps. Also,
we satisfy a singlepigeonclause. If subsumptions are eliminated, these give rise to a ZDD consisting
of all subsets containing everypairwise exclusionclause, and exactly one of the remainingn pigeon
clauses.

When we consider assigningxn;1 false , we now violatepigeonclause 1, since upon reaching
variables inHn all pigeonclauses becomeunit. Thus, all 2-element subsets containing thispigeon
clause are eliminated; the resulting ZDD consists of all 2-element subsets from the remainingn pigeon
clauses. Assigningxn;1 false has no other effects, since thepairwise exclusionclauses are not
opened in this case. The union of these two branches fits within the framework of Figure 12.

Now assume that after processing variablexn;i , i 2 f1; : : : ;ng, the front is of the form shown in
Figure 12. If variablexn;i+1 is assignedtrue , then as before, we violatepairwise exclusionclauses
appearing in each branch of the ZDD aside from the leftmost branch. Thus after pruning this copy of
thefront, we are left with all 2-element subsets of the remainingn+1� i pigeonclauses. One of these
pigeonclauses is satisfied as a result, and existentially abstracted away, leaving all 1-element subsets
of the remainingn� i pigeon clauses. Finally the Cartesian product addsn� i pairwise exclusion
clauses of the form(x̄n;i+1+ x̄n; j) to each subset, wherei +1< j � n+1. This gives rise to a single
new branch of the structure shown in Figure 12.

18



i

n+1−i

n+1−i

n+1−i
0

n+1−i
0

0

0 1

Pigeon Clauses

Figure 12: Structure of the ZDD for variables withinHn.

If variablexn;i+1 is assignedfalse , then we violate the(i+1)thpigeonclause. Since each branch
aside from the leftmost branch allows exactly one of then+1� i pigeonclauses in the cut, then these
branches are not pruned completely. Instead, they are updated to reflect allowing exactly one of the
remainingn� i pigeonclauses. Along the leftmost branch, which ends in all 2-element subsets of the
n+1� i pigeonclauses, those subsets containing the(i +1)th pigeon clause are similarly pruned.

Since thexn;i+1 = true branch in this case contains all 1-element subsets of the remaining
n+1� i pigeonclauses as a subexpression, then this portion of the ZDD from thexn;i+1 = false
branch can be trivially reused when these are combined. This gives rise to the recombination of all side
branches in Figure 12. To count the size of the ZDD for variables withinHn also notice that the portion
of the ZDD which represents all 1-element subsets ofpigeonclauses can be merged with the portion
of the ZDD which represents all 2-element subsets (except the topmost node), for additional node
savings. Thus, the size of the ZDD for variables withinHn is bounded byi(n+1� i)+2(n� i)+1.

As a result, the number of nodes within the ZDD at any step in the algorithm is bounded poly-
nomially. We include a comparison of our bounds predicted value with the actual number of nodes
needed to solve the instancehole-50 in Figure 13. It is clear that the bound is not tight in most in-
stances as we ignore ZDD reduction rules to simplify the construction. However for variables within
Hn, the bound exactly counts the number of nodes used.
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Figure 13: Bounds on the number of ZDD nodes.

6 Polynomial-time Refutation ofPHPn+1
n

During the refutation ofPHPn+1
n , the number of nodes in thefront is polynomially bounded after

processing each variable. In addition, we noted explicitly in most cases that before and after each
ZDD operation the number of nodes is similarly bounded; this was necessary to construct the explicit
bound after each variable. The remaining cases will be discussed as necessary.

In general, ZDD operations are often performed as traversals over the ZDD or a pair of ZDDs and
for such traversals, one can bound the amount of work done by the number of nodes in the argument
ZDDs with appropriate caching of results [15]. For example, the ZDD intersection operationf \g can
create at mostO(j f j � jgj) additional nodes. In addition, if we perfectly cache the results of function
calls, the ZDD intersectionf

T
g cannot cause more thanO(j f j � jgj) different function calls. Since

the number of nodes is polynomially bounded, we assume any reasonable hash function which does
not cause such traversals to require superpolynomial time.

In Compressed-BFS, however, some ZDD operations are not such traversals. These ZDD oper-
ations use the results of computations recursively, and are nota priori bounded by the size of their
arguments. However, we will show that even these operations perform in polynomial time when
the ZDD assumes any of structures shown in the previous section. To show this, we will first give
pseudocode for the nontraversal operations used in Compressed-BFS.

It is clear that the ZDD intersection performs in polynomial time. As mentioned previously, if a
suitable ordering for the ZDD nodes is chosen, the Cartesian Product operation can also be performed
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1 Product(ZDD f , ZDD-Sets)
2 if ( findex< sindex)
3 return h findex, Product( fT , s), Product( fE, s)i
4 if ( findex> sindex)
5 return hsindex, Product( f , sT), 0i
6 // findex 6= sindex

Figure 14: Pseudocode for Cartesian product with a single set.

quickly (linear in the number of activated clauses). Although this ordering can always be selected,
for the purposes of this proof we instead chose a node ordering which highlighted the significance of
branches within the ZDD. Regardless of node ordering, in Cassatt we need only form the Cartesian
product of a single set to the main ZDD, which can be performed in a single traversal as shown in
Figure 14, and thus this operation will execute in polynomial time. In this pseudocode the ZDDs
must contain a single set of clauses, none of which may be contained in any of the sets inf .

The remaining operations are Existential Abstraction, and MaxUnion [26, 17]. These operators
both use additional routines recursively within their definition, and the runtime is not as simple to
bound. To consider these operations, we will again need to do a case-by-case analysis based on the
ZDD structures introduced in the previous section.

6.1 Time Complexity Bounds Within Hk

Consider the general case of processing a variablexk;i in Hk, wherek 2 f2; : : : ;n� 1g. Then the
ZDD has the form shown in Figure 6. Here we show the runtimes of both the Existential Abstraction
routine and the MaxUnion routine while processing this variable are polynomially bounded. To do
this, a detailed pseudocode for each routine is given and discussed within this general case. The
remaining cases of variables withinH1 andHn follow almost trivially.

6.1.1 Existential Abstraction

The Existential Abstraction operation (Figure 16) can be written recursively by using the standard
ZDD Union operation as a subroutine (Figure 15) [17, 27]. However, since existential abstraction
depends on the result of this union, in general we can not easily bound its complexity in terms of
input size and thus it is not readily apparent that in the general case this operation will take time
polynomial inj f j andjgj.

Claim. When Existential Abstraction is used in the refutation ofPHPn+1
n , the ZDD has a specific

structure for which the operation will execute in polynomial time.
In Compressed-BFS, the Existential Abstraction routine is used in two cases. First, when a vari-

able is settrue , we may need to existentially abstract a singlepigeonclause. However, when only a
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1 Union(ZDD f , ZDD g)
2 if ( f == 0) return g
3 if (g == 0) return f
4 if ( f == g) return f
5 if ( findex< gindex)
6 return h findex; Union( fE;g); fTi
7 if ( findex> gindex)
8 return hgindex; Union(gE; f );gTi
9 if ( findex== gindex)
10 return h findex; Union( fE;gE), Union( fT ;gT)i

Figure 15: Pseudocode for ZDD Union.

1 ExistAbs(ZDD f , ZDD-Sets)
2 if ( findex> sindex)
3 return ExistAbs ( f ;sT)
4 if ( findex< sindex)
5 return h findex; ExistAbs( fT ;s), ExistAbs( fE;s)i
6 if ( findex= sindex)
7 return Union (ExistAbs( fT ;sT), ExistAbs( fE;sT))

Figure 16: Pseudocode for ZDD Existential Abstraction.
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Figure 17: Effects of Existential Abstraction when settingxk;n+1 false .

single clause must be abstracted, the operation is equivalent to finding the union of the two cofactors
of this variable. It is clear that in this case, the complexity is bounded polynomially.

Secondly, when a variable is setfalse , we must abstracti pairwise exclusion clauses. We will
now show this case is also bounded polynomially. When we process all but the last variable inHk,
each branch of the main ZDD will contain one such clause, as described previously. Existential
abstraction of these clauses then recurses along each branch. However, because theE-Child of each
node corresponding to apairwise exclusionclause is0, we effectively attempt to form the union of the
remaining ZDD with0. In these cases, the union step of existential abstraction performs no additional
work, and the operation effectively boils down to a single pass over the ZDD.

Finally, a different case occurs when we process the last variablexk;n+1 in someHk. At this step,
the nodes to be existentially abstracted are the nodes which separate the ZDD into branches, and their
E-Child is not zero. However each node along this main branch will be removed. As a result, the
operation boils down to forming the union of each of then+1 branches as shown in Figure 17. The
main branch holds all(n+2� k)-element subsets of then+1 pigeon clauses, while each remaining
branchbj holds(n+1�k)-element subsets of then pigeon clauses other than pigeon clausej. Instead
of decomposing the operation further, we now focus on the resultri of each union in Figure 17.
Lemma 4. Each result ZDDri containsO(n2) nodes.
Proof. We show this by giving the explicit form of eachri in figure 18. The unionr1 of the main
branch and the first branch,b1, will contain all(n+2�k)-element subsets as well as those(n+1�k)-
element subsets which do not containpigeonclause 1. It is not hard to verify this ZDD has the
form shown in Figure 18: similarly to Lemma 3, if more thann+2� k inputs aretrue , the Zero
Suppression rule implies this set is not in the collection. Also, if less thann+1�k inputs aretrue
from pigeonclausesf1; : : : ;ng, then more thank such inputs arefalse and we traverse to0 via one
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Figure 18: ZDD after Unionri during Existential Abstraction.

of the branches on the left of the graph. Instead, if exactlyn+2�k inputs are settrue , we traverse
exactly to the1 node. Finally, if exactlyn+1� k inputs fromf1;2; : : : ;ng aretrue , we must pass
through the bottom-most node at level 1. If the input 1 istrue , we should traverse to1 as we have
a set with(n+ 2� k) elements. Otherwise, we should also traverse to1 since we have a set with
(n+1� k)-elements, not containingpigeonclause 1. It follows that this ZDD is the resultr1 of the
union between the main branch andb1.

The remaining unions are similarly shown to have the form in Figure 18. Assume that after
branchbi we have the form of Figure 18, and are performing the union with branchbi+1. Then the
only subsets which need to be added are those(n+ 1� k)-element subsets (not containingi + 1)
which contain all elements inf1; : : : ; ig. This is the case because the structure in Figure 18 already
contains all(n+ 1� k)-element subsets which do not contain all elements inf1; : : : ; ig and hence
contains those such subsets not containingi +1. If it is the case that there are no such subsets (i.e. if
i > n+1�k then no(n+1�k)-element subset can contain all requiredi elements) then the structure
is unchanged. However, if there are(n+1� k)-element subsets which do not containi +1, and do
contain all off1; : : : ; ig, then these subsets may be added by creating a single node as indicated in
Figure 18. This is the case since in order for ann+1�k element subset to contain all off1; : : : ; ig it
must traverse theT-Child for each of those nodes. The only portion of the previous ZDD which did
not allow such a traversal to reach1 is augmented with an additional node at leveli.

�

Since each union operation’s runtime is bounded by the product of its inputs’ sizes, the entire
Existential Abstraction routine will execute in polynomial time. It follows that during the execution
of Compressed-BFS during variables within someHk for k 2 f2; : : : ;n�1g that the Existential Ab-
straction procedure takes polynomial time inn, as it performs successive unions on ZDDs of bounded
size.
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1 operatornS (ZDD f , ZDD g)
2 if ( f = 0 jjg = 1jjg= f ) return 0
3 if ( f = 1jjg= 0) return f
4 if ( findex> gindex)
5 return fnSgE

6 if ( findex< gindex)
7 return h findex; fTnSg; fEnSgi
8 if ( findex== gindex)
9 return h findex;( fTnSgT)nSgE; fEnSgEi

Figure 19: Pseudocode for ZDD Subsumed Difference.

1 Maximal (ZDD f )
2 if ( f = 1jj f = 0) return f
3 if ( fT = fE) return fT
4 letA= Maximal ( fE)
5 return h findex; Maximal ( fT)nSA;A)i

Figure 20: Pseudocode for ZDD Subsumption Elimination.

6.1.2 Union with Subsumption Removal

After the front is modified to reflect assigning a given variabletrue , and a copy of the front is
modified to reflect assigning a given variablefalse , these two copies must be combined into a
single data structure. In our implementation, this is accomplished by using a subsumption-removing
union operator, MaxUnion, to facilitate maintaining a subsumption-free database of clauses [26, 17].
In previous steps of the proof, it was noted that it was possible for some sets to subsume others. The
subsumption-removing union operator removes such sets while combining the two branches.

The subsumption-removing union operator MaxUnion is built on two other ZDD procedures. The
first operator is the subsumed-difference operatornS [26, 18, 19]. In Figure 19 we list pseudocode
for this operator, note that there are alternate ways of implementing it [26].AnSB returns a ZDD
containing all of the sets contained inA that are not subsumed by some set contained inB. The
second procedure is Maximal, whose pseudocode is listed in Figure 20, removes all subsumed sets
from the given ZDD.

To see that performing the MaxUnion to combine the two possibilities after some variablexk;i in
Hk executes in polynomial time, recall the structure reached after setting such a variablexk;i true in
Figure 9 and the structure reached after setting such a variable false in Figure 10. These two structures
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1 MaxUnion(ZDD f , ZDD g)
2 if ( f = 0) return Maximal(g)
3 if (g = 0) return Maximal(f )
4 if ( f = g) return Maximal(f )
5 if ( f = 1jjg= 1) return 1
6 if ( findex< gindex)
7 return h findex; MaxUnion( fE;g); Maximal(fT)nS MaxUnion( fE;g)i
8 if ( findex> gindex)
9 return hgindex; MaxUnion(gE; f ); Maximal(gTnS MaxUnion(gE; f )i
10 if ( findex= gindex)
11 return h findex; MaxUnion( fT ;gT)nS MaxUnion( fE;gE), MaxUnion( fE;gE)i

Figure 21: Pseudocode for ZDD Subsumption-free Union.

must be combined via MaxUnion. Wheni < n, the newly added pairwise exclusion clauses in Figure
9 have lower index (thus appearing higher in the figure) than any other clauses in these structures,
and this is where the MaxUnion(f ;g) begins. Then the MaxUnion recurses (based on line 7). Since
fE = 0, the recursion branch to find MaxUnion(fE;g) simply returns Maximal(g). Thus, the effect of
MaxUnion is to find the Maximal of both branches as shown in Figure 22. It will then combine these
branches via Subsumed Difference.

Within each branch, some subsumed sets may be present due to the existential abstraction opera-
tion used. Note that the intersection operation can only remove sets, and the Cartesian product adds
elements to every set, so neither of these operations can create subsumed sets.

The xk;i = true branch will then have subsumptions as it contains all(n+1� k)-element sets
not containingpigeonclausei as well as all(n+2�k)-element sets not containing pigeon clausei. It
follows that these(n+1� k)-element sets will subsume the larger sets, leaving only all(n+1� k)-
element sets not containing pigeon clausei, and thus the action of the Maximal operator on the ZDD
is nontrivial.

However, it is possible to trace the execution of this operator over the ZDD due to its regular
structure. The execution in this step is essentially the same regardless of the implementation of
the Subsumed Difference operator since all necessary subsumptions are performed by line 3 of the
Maximal routine (Figure 20).

As the Maximal operator proceeds in a bottom-up fashion, when it views higher nodes in the
ZDD, the subsumptions present in lower portions will already have been eliminated. Then whenever
Maximal returns, the ZDD beneath that point has already taken its final form: all(n+1�k)-element
subsets. However, the Maximal operator will also perform a subsumed difference operation in order
to ensure the completeness of the search. We will now show that this subsumed difference operation
essentially performs no useful task in this case, and runs in time polynomial inn.
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Lemma 5. Consider two nodesA andB on the same level of a ZDD containing allk-element subsets
out of n elements. Suppose thatA appears to the “left” ofB in the sense that to reachA from the
least common ancestor ofA andB we traverse moreT-Childrenthan to reachB, then the Subsumed
DifferenceAnSB returnsA and executes in polynomial time.
Proof. First notice thatA consists of alli-element sets andB consists of allj-element sets, where
i < j � k. This is true since the sub-portion of the ZDD represented by both A and B has the structure
of Lemma 3. Also, sinceA is “left” of B, there are fewer remainingT-Childrento traverse, implying
via Lemma 3 thatA contains subsets of fewer elements thanB. Then the Subsumed Difference will
returnA as no subset ofB can subsume a subset ofA.

To show that the Subsumed DifferenceAnSB does not create additional nodes, we can proceed
by induction. First, since nodesA andB have the same index, we always recurse based on line 9 of
the pseudocode given for Subsumed Difference. For the base case, we haveA andB as the only two
nodes on then�1th level of ann level ZDD of all subsets. ThenAT = 1 soATnSBT = 1 asBT 6= 1.
Similarly, based on the terminal cases given in the pseudocode,(ATnSBT)nSBE = 1 as well. Finally
sinceBE = 0 we haveAEnSBE = AE. It follows from line 9 of the routine that we return the node
hAindex;1;AEi which is preciselyA, and no additional nodes need to be created.

Now assume thatAnSB does not create additional nodes whenA;B have the same index in a ZDD
of all k-element subsets, andA is left of B. Then there are three cases.

� Case 1:AT = 1. In this case,ATnSBT = 1 as it is impossible thatBT = 1. Then
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(ATnSBT)nSBE = 1 as well. FinallyAEnSBE is formed. IfBE = 0, then we will return the node
hAindex;1;AEi which is preciselyA. Otherwise, we will recursively evaluate the subsumed dif-
ferenceAEnSBE. ButAE is “left” of BE, and by assumption this evaluation creates no additional
nodes and returnsAE. Then we still return the nodehAindex;1;AEi= A and thus this step creates
no additional nodes.

� Case 2:BE = 0 andAT 6= 1. In this case, we formATnSBT = AT without creating additional
nodes by assumption. Then,(ATnSBT)nSBE = AT without additional nodes simply since
BE = 0. Finally, we evaluateAEnSBE = AE without creating additional nodes sinceBE = 0.
Then we returnhAindex;AT ;AEi= A and again no additional nodes are necessary.

� Case 3:AT 6= 1 andBE 6= 0. Then the three subsumed difference operationsATnSBT = AT ,
(ATnSBT)nSBE = AT , andAEnSBE = AE can each be performed without creating additional
nodes by assumption. We then return the nodehAindex;AT;AEi = A and create no additional
nodes.

It follows that in all cases, when we evaluateAnSB, we do not create additional nodes. SinceAnSB
does not create additional nodes and only depends recursively on subsumed differences of elements
of the same index, there are a limited number of calls which can be made. Namely, if results of these
calls are hashed, there are a total of at mostO(n) nodes on a given level, and correspondinglyO(n2)
calls can be made per level. Then the evaluation of anyAnSB satisfying the conditions of the Lemma
will execute time polynomial inn. Further the total time complexity of finding all suchAnSB within
a given ZDD storingk-element sets is bounded by a polynomial inn.

�

Since the Subsumed Difference is called after the recursive evaluation of Maximal (Figure 20, line
5), we have exactly the conditions of Lemma 5 for each call to Subsumed Difference. Since the total
time of all such calls is bounded by a polynomial inn, it follows that the time complexity of execution
of Maximal on thexk;i = true branch will take time bounded by a polynomial.

The xk;i = false branch will have no subsumptions unless we are processing the last variable
in Hk, since in these other cases, the only nodes existentially abstracted away are pairwise exclusion
clauses from each branch of the ZDD. When only these clauses are removed, no new subsumed sets
are created, and all previously existing subsumed sets were removed during the last MaxUnion. In
addition, when processing thexk;i = false branch, we recurse to find the Maximal ofi + 1 grid
structured ZDDs forming subgraphs of the main ZDD. Since each of thesei +1 Maximal operations
will take polynomial time, the entire Maximal will execute in polynomial time.

However, when we process the last variablexk;n+1 in someHk then we arrive at a structure similar
to that in thexk;i = true branch. Namely, we have all(n+1�k)-element subsets of then+1 pigeon
clauses, as well as all(n+ 2� k)-element subsets of these clauses. Then all(n+ 1� k)-element
subsets should subsume the larger sets. However there are no activated clauses in thexk;n+1 = true
branch to partition the action of MaxUnion into two Maximal operations as in the previous case.

Recall that thexk;n+1 = true branch contains all(n+ 1� k)-element and(n+ 2� k)-element
subsets which do not containpigeonclausen+1. It follows then, that this ZDD is entirely contained
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within the xk;n+1 = false branch. If at the topmost nodef of the xk;n+1 = false branch, we
traverse along theE-Child, then we restrict to alln+1� k and(n+2� k)-element sets to those not
containingpigeonclausen+1, exactlythe same ZDD as thexk;n+1 = true branch.

The action of MaxUnion on these ZDDs appears somewhat unnecessary as one is entirely con-
tained as a subset of the other. It will now be shown that MaxUnion captures this relationship and
effectively only performs a Maximal operation on the entire ZDD.

When MaxUnion(f , g) is applied to these two branches, since their root nodes are at different
levels, the rule in line 7 is applied. Thus we first attempt to find MaxUnion(fE;g). However, since
fE = g, we attempt to find MaxUnion(g;g) which reduces to Maximal(g). Then as described in the
analysis ofxk;i = true , the action of Maximal on a structure of this form runs in polynomial time.

Next, MaxUnion(f ;g) recursively calls Maximal(fT). However, Maximal can execute on this
structure in polynomial time. Finally, MaxUnion(f, g) performs the subsumed difference
Maximal( fT)nS Maximal(g). However, this exactly satisfies the conditions of Lemma 5, and thus
executes in polynomial time.

It follows that the MaxUnion of the two branches can be performed in polynomial time while
processing any variable withinHk wherek2 f2; : : : ;n�1g.

6.2 Time Complexity Bounds Within H1

The structure assumed when we examine a variable of the formx1;i where 1� i < n+1 is significantly
simpler than that of the general case. It maintains the general “branching” however, and nearly all of
the analysis from the previous section remains valid in this case as well. In particular, the action of
the Existential Abstraction is exactly the same.

The MaxUnion operation again reduces to two Maximal calls when 1� i < n+ 1. However
in these simplified cases there are no subsumptions to eliminate. It is clear that Maximal requires
polynomial time when its argument contains a single set: theE-Child of each node is0. Since as
before, the action of Maximal on the branching structure of the ZDD is time bounded, then the time
complexity of MaxUnion is also bounded.

Finally when processing variablex1;n+1 the resulting ZDD structure is slightly different. Recall
that for variables inHk wherek 2 f2; : : :n� 1g we have that the structure for thexk;n+1 = true
branch was entirely contained within thexk;n+1 = false branch. This is because when performing
Existential Abstraction, we form unionsr1; r2; : : :rn. All Union resultsr j , wheren+2� k� j � n,
are the same, and hold all(n+1� k)-element subsets as well as all(n+2� k)-element subsets of
then+1 pigeon clauses. In this case, there are no such Unionsr j , as the last union formed isrn and
k= 1. Then the structure holds all(n+2�k= n+1)-element subsets, as well as alln-element subsets
which containpigeonclause 1. Thus the MaxUnion is between this collection and the collection for
thexk;n+1 = true branch: the singlen-element set not containing thepigeonclause 1.

Although this case is different, the presence of thepigeonclause 1 in subsets for the
xk;n+1 = false branch causes the MaxUnion operation to again partition into two Maximal oper-
ations followed by a Subsumed Difference. Again due to the structure of the ZDD, these will be
polynomially bounded, by Lemma 5 and that finding Maximal of a ZDD containing a single subset is
efficient.
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It follows that all operations for variables withinH1 execute in polynomial time.

6.3 Time Complexity Bounds Within Hn

In this final case, we consider processing a variablexn;i where the initial structure is of the form
shown in Figure 12. The execution of Existential Abstraction over this structure is bounded by the
same arguments as before. For the case of variablexn;n+1, however, both thexn;n+1 = true and
xn;n+1 = false branches are identically0.

Similarly, the MaxUnion is partitioned when 1� i < n+1 and trivial wheni = n+1. Then all

operations throughout the algorithm execute in polynomial time during the refutation ofPHPn+1
n .

7 Conclusions and Ongoing Work

Our work offers a detailed analysis that shows the Compressed-BFS search procedure reported in [4]
solves SAT instances from the pigeonhole family in polynomial time, confirming earlier empirical
results. This proof was facilitated by recognizing structural invariants on partially reduced ZDDs
within different stages of the algorithm. Once a given structural invariant had been recognized, it was
shown correct by induction. The time bound on ZDD operations was accomplished by noting the
exact effects of each ZDD operation.

While explicitly formulating this unknown proof system appears difficult due to the complexity
of the ZDD algorithms used during the Compressed-BFS procedure, we believe that the details of our
polynomiality proof shed some light on it. Namely, one can distinguish several mechanisms which
must be reflected in that proof system. First, the steps of proofs may be represented by directed
graphs which have exponentially many directed paths (in terms of the number of vertices). Sec-
ond, those graphs encode Boolean formulas in a compact way by representing elements of Boolean
formulas by directed paths. Most importantly, this compact representation facilitates efficient trans-
formations of Boolean formulas. We conjecture that such graphs can be interpreted as instructions to
reuse common Boolean sub-formulas. Therefore, the next step towards formalizing the proof system
behind Compressed-BFS may require a description of Compressed-BFS in terms of term rewriting
and common sub-formulas.

Our ongoing work proceeds in several directions. First, we are studying modifications of well-
known SAT solvers that are required to produce resolution proofs of unsatisfiability rather than just a
negative answer. Second, we are trying to modify traces saved by Compressed-BFS so that they form
the basis of verifiable proofs. Another natural direction of research is to determine whether the ad-
dition of pruning based on Boolean Constraint Propagation will affect the efficiency of Compressed-
BFS. However our preliminary investigations hint that this type of idea will not have as dramatic
effects as in resolution-based procedures. Future directions of research also include explicitly formu-
lating hard examples for Compressed-BFS.
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Appendix A: Cassatt on Other Benchmarks

Table 1 shows how Cassatt and a few well known SAT solvers fare on a subset of benchmarks taken
from the SAT02 competition [28]. The benchmarks were run on machines with 2.0 GHz processors
with 1GB of RAM. “# Solved” is the number of benchmarks which the solver was able to complete
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Bart Series Lisa Series Homer Series
# Solved Time # Solved Time # Solved Time

Cassatt 21 1585.4 0 50400 15 of 15 4.26
BerkMin 21 80.58 11 23334 6 32837
mChaff 2 70375 10 19249 12 14788
zChaff 5 58079 12 of 14 12273 6 35575
GRASP 21 of 21 1.33 0 50400 0 54000
ZRes 0 75600 0 50400 1 53891

Ca Series Dp Series XOR-Chain Series
# Solved Time # Solved Time # Solved Time

Cassatt 3 19935 0 79200 27 of 27 30.4
BerkMin 8 41.78 21 of 22 5829.0 6 75876
mChaff 8 of 8 2.95 18 14826 18 53983
zChaff 8 6.90 18 16482 20 50677
GRASP 7 5843.4 12 36184 0 97200
ZRes 6 7659.2 7 54987 27 104.19

Table 1: A comparison of Cassatt with other SAT solvers on difficult benchmarks from the SAT
2002 competition [28]. Each solver was given 3600 CPU seconds per benchmark. The number of
benchmarks completed within that time as well as the total CPU time for each suite of benchmarks is
shown.
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given a timeout of 3600 seconds per benchmark. “Time” is the total amount of time taken for all of
the benchmarks in a series of benchmarks. Solvers which could not finish a benchmark within the
timeout period of 3600 seconds were charged 3600 seconds for that particular benchmark.

These benchmarks show that Cassatt performs competitively on a collection of difficult bench-
marks. In fact the XOR-Chain series of benchmarks, on which Cassatt peforms quite well, contains
the smallest unsatisfiable benchmark that was unsolved in the SAT02 competition [28]. The two
other series where Cassatt does well, the Bart series and Homer series, represent FPGA switch-box
problems as described in [9].

Appendix B: Cassatt Example – Refutation ofPHP3
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Figure 23: Progression of thefront during refutation ofPHP3
2.

The SAT instance ofPHP3
2 contains 6 variables,fx1;1;x1;2;x1;3;x2;1;x2;2;x2;3g, and 9 clauses

f(x̄1;1+ x̄1;2), (x̄1;1+ x̄1;3), (x̄1;2+ x̄1;3), (x̄2;1+ x̄2;2), (x̄2;1+ x̄2;3), (x̄2;2+ x̄2;3), (x1;1+x2;1),
(x1;2+x2;2),(x1;3+x2;3)g (numbered 1-9 respectively). See Figure 23 for the progression of the ZDD
representation of thefront.

Cassatt begins by setting the front toffgg. Next Cassatt processesx1;1. If x1;1 is settrue , clauses
1 and 2 are opened and clause 7 is satisfied. Ifx1;1 is setfalse , clauses 1 and 2 are satisfied and
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clause 7 is opened. Thus thefront becomesff1;2g;f7gg.
Next x1;2 is processed. Ifx1;2 is settrue , clause 1 is violated, clause 3 is opened, and clause 8

is satisfied. Ifx1;2 is setfalse , clauses 1 and 3 are satisfied and clause 8 is opened. Thus thefront
becomesff3;7g;f2;8g;f7;8gg.

Next x1;3 is processed. Ifx1;3 is settrue , clauses 2 and 3 are violated and clause 9 is satisfied.
If x1;3 is setfalse , clauses 2 and 3 are satisfied and clause 9 is opened. Thus thefront becomes
ff7;8g;f7;9g;f8;9g;f7;8;9gg. f7;8;9g is subsumed by other elements of thefront, so thefront is
reduced toff7;8g;f7;9g;f8;9gg.

Next x2;1 is processed. Ifx2;1 is settrue , clauses 4 and 5 are opened and clause 7 is satisfied.
If x2;1 is setfalse , clauses 4 and 5 are satisfied and clause 7 is violated. Thus thefront becomes
ff4;5;8g;f4;5;9g;f4;5;8;9g;f8;9gg. f4;5;8;9g is subsumed by other elements of thefront, so the
front is reduced toff4;5;8g;f4;5;9g;f8;9gg.

Next x2;2 is processed. Ifx2;2 is settrue , clause 4 is violated, clause 6 is opened, and clause 8
is satisfied. Ifx2;2 is setfalse , clauses 4 and 6 are satisfied and clause 8 is violated. Thus thefront
becomesff5;9g;f6;9gg.

Lastlyx2;3 is processed. Ifx2;3 is settrue , clauses 5 and 6 are violated and clause 9 is satisfied.
If x2;3 is setfalse , clauses 5 and 6 are satisfied and clause 9 is violated. Thus thefront becomesfg,

which means thatPHP3
2 is unsatisfiable.
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