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PREFACE

The semiconductor industry has long relied on the steadhdtod transistor scaling,
that is, the shrinking of the dimensions of silicon trarmigtevices, as a way to improve
the cost and performance of electronic devices. Howeveerakdesign challenges have
emerged as transistors have become smaller. For instaites,are not scaling as fast as
transistors, and delay associated with wires is becoming reignificant. Moreover, in
the design flow for integrated circuits, accurate modelingice-related delay is available
only toward the end of the design process, when the physlaaement of logic units
is known. Consequently, one can only know whether timindguerance objectives are
satisfied,i.e., if timing closure is achieved, after several design omations. Unless
timing closure is achieved, time-consuming design-flowatiens are required. Given the
challenges arising from increasingly complex designsinfaito quickly achieve timing
closure threatens the ability of designers to produce pigiiermance chips that can match
continually growing consumer demands.

In this dissertation, we introduce powerful constrainiega synthesis optimizations
that take into account upcoming timing closure challenges eliminate expensive de-
sign iterations.In particular, we use logic simulation to approximate thbawor of in-
creasingly complex designs leveraging a recently proposadept calledbit signatures

which allows us to represent a large fraction of a compleguilis behavior in a com-



pact data structurd8y manipulating these signatures, we can efficiently discavgreater
set of valid logic transformations than was previously jjaesand, as a result, enhance
timing optimization. Based on the abstractions enabled through signatwegropose
a comprehensive suite of novel techniques: (1) a fast coatipatof circuit don’t-cares
that increases restructuring opportunities, (2) a vetiboamethodology to prove the cor-
rectness of speculative optimizations that efficientlyizgs the computational power of
modern multi-core systems, and (3) a physical synthesidegly using signatures that
re-implements sections of a critical path while minimizipgrturbations to the existing
placement. Our results indicate that logic simulation feaive in approximating the be-
havior of complex designs and enables a broader family ahopations than previous

synthesis approaches.

Vi
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Part |

Introduction and Background

CHAPTER|

Introduction: Overcoming Challenges in Nanometer
Design

1.1 Trends in the Electronics and EDA Industries

The performance capabilities of computer chips continuadeease rapidly. This, in
turn, is driving the technology evolution in many differegplication domains, such as
gaming and scientific computing. A major impetus for thisvgilois consumer demand,
which seeks the smallest, fastest, and coolest devicessuGwr demand guides perfor-
mance objectives and pressures computer companies toimedbtmarket expectations.
Failure to meet these expectations can result in the lossrpetitive advantage. For ex-
ample, in 2006 Sony postponed the release date of the PteyS8aconsole by six months
due to technical problems, exposing Sony’s gaming markatesto competing consoles
by Microsoft and Nintendo.

Many applications depend on the predictability of improeens to integrated circuits.



3| 291 million transistors
Core 2 Duo (2006)

42 million transistors
Intel Pentium 4 (2000)

L L

7.5 million transistors

ntel Pentium 2 (1997)

3.2 million transistors
Intel Pentium 1 (1992)

Figure 1.1: Transistors manufactured on a single chip ogeeral generations of Intel
CPUs.

As shown in Figure 1.1, the number of transistors on a chipbleas steadily increasing
during the past 40 years. As a result, the Core 2 Duo CPU hassalone hundred times
more transistors than the Pentium CPU 14 years ago. Thebegstand performance)
trends have been made possible by advances in device manirfgcwhich have resulted
in the fabrication of smaller transistorgransistor sizes are determined by the minimum
size of a geometrical feature (usually a rectangle) thabeamanufactured at a given tech-
nology node. Figure 1.2 illustrates the decreasing tréorsssze, where the physical length
LeaTEe Of the transistor’s gate is currently at 50nm and expectethtimk to 15nm as man-
ufacturing techniques continue to improvehis scaling trend was observed by Gordon
Moore in 1965, when he projected that the number of transigtat fit in an integrated
circuit would double every two years [64], correspondingmoexponential growth. With
more transistors, entire systems that were once implemi@ctess a computer board, now
fit on a single chip. More recently, this trend has made it jpbsgo pack multiple pro-

cessors in the same chip, so-called multi-core procesdtuli-core processors are now



mainstream in the mass-market desktop computing domalacking the performance
wall that single core microprocessors had reached, andiajomultiple applications to

run in parallel on the same desktop system.

1.2 Challenges in High-Performance Integrated Circuit Degn

Ensuring continued performance improvements has become challenging as tran-
sistors reach the nanometer scale. First, the complexitytedrated circuits has already
exceeded the capability of designers to optirhiaed verify their functionality. In design
processes, verifying design correctness is a major conmpainat affects time-to-market.
Also, buggy designs released to the consumer market caifisagly impact revenue
as evidenced by Intel’s floating-point division bug [100pHamore recently, by a bug in
AMD’s quad-core Phenom processor [99]. Second, the mingttion of transistors to
the atomic scale poses several challenges in terms of trabildy in the manufacturing
process, which leads to unpredictable performance. Tthedscaling of wire intercon-
nect is not as pronounced as that of transistors. As tramsiget faster and smaller, the
width of wires decreases at a slower rate, and the per-usigtasmce of wires may in-
crease. Therefore, the advantages of having shorter wieaniéigated by the increase in
time that it takes to propagate a signal. Consequently, ereasing percentage of chip
area is necessary for wires, and the maximum clock frequisrymarily determined by
wire lengths, rather than transistor switching tirkeggure 1.3 illustrates the prevalence of
interconnect on multiple metal layers on a chip. In this fegiwo metal layers are shown

with several wires and interlayer connectors calleas This interconnect overshadows

LIn this dissertationpptimizeis often used to mean performing operations that improveesperfor-
mance characteristic.



the polysilicon gates, which are a component of MOSFETsi$isdors).

-,

'

Figure 1.2: Transistor scaling projected at future techgpihodes.

Metal 2
M1/M2
via

Metal 1
Polysilicon
gate

Source: IBM

Mosfet (under polysilicon gate)

Figure 1.3: Major components of multilayer interconneatgte-layer wire segments and
inter-layer connectors (vias).

Traditionally, a computer chip design entails a series @bsfrom high-level concep-
tualization to final chip fabrication. It is this design floahown in Figure 1.4) that must
be able to address technology scalirgarting from the top left of Figure 1.4 design

team specifies the desired functionality of the chip. Thegieteam identifies the chip’s



major components and designs each of them at a high levelfiuthctionality may be ex-
pressed in a hardware description language, suSlysiemCNumerous optimizations are
facilitated by the design team through the use of automatftaare tools. Eventually, the
design description is translated into a register trangfeel|(RTL) descriptior{(top-right
corner of Figure 1.4)which specifies a design in more detail. Through a procegsdca
logic synthesisan RTL description is translated into a gate-level nedsshown at the
bottom right of the figure In order to simplify transistor-level layout, multiple tga are
mapped to pre-designathndard cells This process is calle@chnology mappingAt this
point, an area estimate can be made based on the number sittoas required for the
design. Also, one can estimate the fastest possible cleckiéncy for the chip based on
transistor switching, since the number of cells that oc&iwieen the design’s inputs and
outputs is knownAfter a netlist is mapped to a set of cells, placement is peréal. Dur-
ing placementa physical location is given to each cell such that they dowerlap, and
then wires connecting cells are routed. Finally, both waed transistors are represented
by polygons, and the resulting design description is sarfefaricationto obtain the final
product, shown at the end of the flow in Figure 1.4.

Functional and physical verification are needed througtimitiesign flow. After per-
forming RTL and netlist-level optimization, the designistputs are checked against the
expected behavior of the design. Physical verification mssthatdesign rules(such
as maintaining minimum spacing between wires), as well estetal and thermal con-
straints, are satisfied. Furthermore, at the end of the ddkig before fabrication, the
performance characteristics of the design are checkeastgaesired goals and objec-

tives. This process of meeting performance objectives @vknas achieving design clo-



perform design
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technology mapping
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Figure 1.4: Typical integrated circuit design flowhe design flow starts from an initial
design specification. Several optimization steps are pedd, and then a
final chip is manufactured.

sure. The process of ensuring that the circuit timing (detaynstraints are met is known
as achievindiming closure

Physical information about the design, such as cell looatand wire routes, is known
only at the end of the flow. As previously noted, delay assediavith wires is becoming
more prominent, hence accurate timing estimates are knolyrvwhen wire lengths are
determined after the routing phase. However, most funatidesign optimizations are
traditionally performed early at the RTL, as well as duriagit synthesis and technology
mapping. After several of these optimization steps, plaggmnd routing might produce
a modified design that no longer achieves timing closure celgiie inability to gather ac-
curate timing and performance estimations early in thegieffow leads to less flexibility

in performing design optimizations. For instance, optingzfor a specific performance



metric after placement and routing, such as timing, can thedja affect the quality of
other performance metrics. To avoid this tension betweelows design goals, late de-
sign flow optimizations are normally limitetHence more heavyweight optimizations may
necessitate the re-iteration of earlier steps in the ddkign In some cases, the number of
design iterations required to achieve timing closure isiitive. Multiple iterations in-
crease the turn-around-time, development costs, andtbrmearket, while also resulting

in a design that might fail to meet original expectations.

1.3 Bridging the Gap between Logic and Physical Optimizatias

This dissertation develops powerful and efficient logiasfarmations that are applied
late in the design flow to achieve timing closure. The trams&dions overcome the lim-
itations of current methodology by 1) extracting and exjpigi more circuit flexibility to
improve performance late in the design flow and 2) minimizing negative impact to
other performance metrics. The goal is to eliminate costkigh iterations and enable ef-
ficient use of multi-core processors, to overcome incredssayn complexity and scaling
challenges.

To enable these transformations, our work leverages tmeipte of abstractionby
temporarily discarding all aspects of circuit behaviorologerved during a fast bit-parallel
simulation. Under this abstraction, we can handle compksighs, pinpoint potential
logic transformations that may lead to improvements in tbgigh, and assess the quality
of a wide range of transformations. In the following sectia@ discuss our abstraction

technique and its components in more detail.



1.4 Using Simulation-based Abstractions for Circuit Optimzations

Key to our approach is the use of logic simulation to appr@tarhe behavior of each
node in a circuit through information known a®# signature[50]. The functionality of
a node in a circuit is defined by its truth table that specifiesrtode’s output for all input
combinations. A signature is a partial truth table selebted (usually small) subset of the
possible input combinations. Such a partial truth tablelmaniewed as an abstracted rep-
resentation that can be exponentially smaller than a campléh table, yet can accurately
guide optimizations as we show throughout this dissertatBecause of the efficiency of
logic simulation, approximating circuit behavior scaleeérly with the number of nodes
in the circuit, and consequently it can tackle large cisuivhile such signatures have
already been used in the literature, these pre-existiigqtques suffer from a number of
limitations.

Summary of related work. The effectiveness of logic simulation has been demon-
strated in terms of its ability to distinguish different re=din a circuit [50, 59]. Conse-
guently, signatures can be used in both logic optimizatrahwerification. With respect to
verification, the correctness of a design can be ascertapémthe abstraction by compar-
ing its output signature to the corresponding output of ationally correct design, also
known as agolden model Design optimizations are also enabled by signatures lsecau
equivalent nodes in a circuit can be merged to simplify th&gite[59]. Furthermore, the
signature representation is amenable to simple transtansq18], that can generate new
signatures and that, in turn, can be mapped to logic optioizaon the actual design.

Key aspects and limitations of signature-based abstractits. When signatures are

used, optimization and verification are correct only withpect to the abstraction. A for-



mal proof mechanism is often required to verify the correstof the abstraction. Formal
proof engines, such as SAT solvers, invariably have expalevorst-case runtimes. This
lack of scalability is particularly problematic as desigmmplexity grows. Since formal
proof mechanisms are typically based on hard-to-paradedigorithms, it is difficult to
efficiently utilize the resources offered by recent mutire CPUs.

Generating high-quality signatures is paramount so as @@ awcorrect characteri-
zations and to minimize the number of invocations of expenproof mechanismslhe
guality of a signature rests in its ability to capture botpital-case behaviors and im-
portant corner-behaviors, while being occasionally refitteough formal techniques and
additional simulation patterns. In [59], sighatures afaesl to improve their distinguish-
ing capabilities in finding equivalent nodes in a design. giteshe efficiency of generat-
ing signatures, ensuring their higality in very large designs with complex hierarchical
components is a major challenge. In this scenario, if a sigaaabstraction is desired
for a component far from the primary inputs of a design, tha&téd controllability of
this component undermines the quality of the signature igee@ and its ability to expose
interesting behavior in that component. Furthermore, iptessworks do not consider a
node’sdownstreamogic information when characterizing its behavior withignature,
and therefore fail to exploit logic flexibilities presentlarge designs.

Finally, a general methodolodgyr performing design optimizations with signatures
has not yet been developels we show in this dissertation, signatures simplify thecea
for logic transformations and thus facilitate powerfuleével optimizations that involve
both logic and physical design aspects. Such optimizatom&nown as physical synthe-

sis.However, conventional strategies for synthesis are inaatedn exploiting the runtime



savings and optimization potential of signature-baseth&gis.This dissertation presents

the first generalized solution achieving this goal.

1.5

Components of Our Simulation-based Framework

To enable complex transformations that can be applied tatihe design flow to

achieve timing closure, we introduce a series of improveménm signature-based ab-

stractions that overcome previous limitations. The newnelats of our simulation-based

framework, developed throughout the dissertation, nog ocedult in better optimizations,

but improve the quality of verification efforts. We now oa#liour major contributions:

A high-coverage verification engine for stimulating a comgat deep within a hi-
erarchical design while satisfying constrainfBur strategy relies on a simulation
engine for high performance, while improving the fidelitysiagnatures and verifi-

cation coverage.

An efficient linear-timedon’t-careanalysis to extract potential flexibility in synthe-

sizing each node of a circuit and to enhance the correspgisitimatures.

A technique to improve the efficiency of the formal proof magism in verifying

the equivalence between a design and its abstraction eathéyadon’t-cares.

A strategy to improve the efficiency of verifying abstraasdy exploiting parallel
computing resources such as the increasingly prevalerti-omwk systems.Har-
nessing these parallel resources is one mechanism tollyactanteract the in-
creasing costs of verification and to enable deployment osmnature-based opti-

mizations on more complex designs.
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e A goal-driven synthesis strategy that quickly evaluatéfeint logic implementa-

tions leveraging signatures.

e A constraint-guided synthesis algorithm using signattwesnprove physical per-

formance metrics, such as timing.

1.6 Organization of the Dissertation

In this dissertation, we introduce several algorithmic poments that enhance our
signature-based abstraction. We then leverage these camyzoin logic and physical
synthesis to enable powerful optimizations, where tradél techniques perform poorly.
Throughout the chapters of this dissertation, we gradwadtgnd the scope and power of
signature-based optimizations. In Part Il, we proposertegles that enhance signatures
by generating better simulation vectors that activatespaftthe circuit in a design and
by encoding information on logic flexibility in the signaés. In Part Ill, we develop
verification strategies that mitigate the runtime costs eifying the correctness of the
abstraction. In Part IV, we utilize our enhanced signatares verification strategies to
enable design optimizations by manipulating these sigaatiihe rest of the dissertation

is structured as follows:

e For the remainder of Part I, we provide background mateeakssary to navigate

through this dissertation.

— Chapter Il covers background in logic synthesis, verifaatand logic simula-
tion. We outline recently-discovered synergies betweeadltasks and explain

how this dissertation builds upon these synergies.
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— Chapter Il describes the evolution of the design flow to additiming closure

and to survey previous work in late design flow optimization.

e In Part Il, we introduce strategies to improve the qualitg atrength of signatures.

— Chapter IV introduces the notion of entropy for identifyipgrts of a design
that experience low simulation coverage. We then develdpategy for im-
proving simulation of these regions using a SAT solver. Hpproach is use-
ful for stimulating internal components in complex hietass. In particular,

it helps in exposing bugs in corner-case behaviors.

— Chapter V introduces a technique for the efficient extractibglobal circuit

don’t-cares based on a linear-time analysis and encodesithgignatures.

e Part Il introduces strategies to counteract the compfesdtverifying signature-

based abstractions in increasingly large designs.

— Chapter VI describes an incremental approach to verify argabstraction up

to the derived don’t-cares and to refine it by generatingtautdil signatures.

— Chapter VII introduces techniques to address the growimgpdexity of for-
mal verification by exploiting the increasing availabildafmulti-core systems
which can execute several threads simultaneously. We aj@egbarallel-SAT
solving methodology that consists of a priority-based dadler for handling
multiple problem instances of varying complexity in pagddind a lightweight

strategy for handling single instances of high complexity.

e Part IV introduces techniques for performing logic mangtigins using signatures.

12



— Chapter VIII describes how signatures can be exploited ablenpowerful
synthesis transformations. In particular, we show how noeeging up to
don’t-cares can greatly simplify a circuit. Then, we intnoé a new general

approach for performing logic synthesis using signatures.

— Chapter IX proposes a path-based resynthesis algorithifitiois and short-
ens critical paths with wire bypasses. We apply our patledhassynthesis
after placement, when better timing estimates are availalold we report sig-
nificant improvementsindicating that current design flows still leave many

optimization opportunities unexplored.

e The dissertation is concluded in Chapter X with a summaryatributions and an

outline of future research directions.
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CHAPTER I

Synergies between Synthesis, Verification, and Functional
Simulation

In the traditional design flow for integrated circuits, logynthesis and verification
play a critical role in ensuring that integrated circuittsaeleased to the market are func-
tionally correct and achieve the specified performanceabigs. Logic synthesis gener-
ates circuit netlists and transforms them to improve arebdatay characteristics. These
transformations are carried forward by software used byutidesignersTo ensure the
correctness of these transformations, along with cust@denoptimizations, verification
is typically performed over multiple steps in the design flevihere the actual behavior
of the circuit is verified against the desired behavioaditionally, synthesis and verifica-
tion are considered separate and independent tasks; howenent research [59, 63, 95]
has exposed a number of common traits and synergies betyetesis and verification.
Functional verification often involves algorithms whoserstecase runtime complexity
grows exponentially with design size. However, the desiga san be reduced through
synthesis optimizations, typically reducing the verificateffort. Logic simulation has
also been employed to improve verification, and more regetatlenable netlist simplifi-
cations [95].

A major contribution of this dissertation is its in-depthpération of synergies be-
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tween synthesis and verification, as well as the gains thrabeaderived by integrating
the two tasks through simulation techniques. Our goal isrprove the quality of re-
sults and the scalability of both practices, which are cargily challenged by increasing
design complexity. In particular, we introduce specukatikansformations that require
verification, a major departure from traditional corregtdynthesis techniques, typically
employed today. In the remainder of this chapter, we disptessous work in verification,

synthesis and logic simulation, focusing on strategiesiarove their scalability.

2.1 Scalable Verification

Verifying the functional correctness of a design is a caitiaspect of the design flow.
Typically, comprehensive verification methodologies [98] are employed and require a
team of specialized verification engineers to construttieses that exercise the function-
ality of the circuit. The output of this circuit is usually mpared against an idegblden
model To reduce the demands on the verification engineer in exgasieresting design
behavior through test cases, input stimuli can be autoaibtiefined or modified, leading
to improvement in the verification coverage. For exampl&ainstruction level, Markov
models can be used [83] to produce instruction sequencesffeetively stimulate certain
parts of the design. However, explicit monitors are neaggssayuide this refinement, thus
still requiring detailed understanding of the design. Ad ate-level, simulation can also
be refined [59] to help distinguish nodes, but this is pritgarseful for equivalence check-
ing. The goal of all these procedures is to generate tess ¢thaecan expose corner-case
behavior in the circuit. In Chapter IV, we discuss how siniolacoverage is improved
automatically, without requiring any detailed undersiagaf the design.

Because generating exhaustive test cases is infeasiblesbrasing a buggy design
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is undesirable, formal verification techniques can be useathieve higher verification
coverage. However, the limited scalability of formal tecjues is a major bottleneck in
handling increasingly complex designs. Therefore, a coation of intelligently cho-
sen test suites and formal techniques on small componeatteis adopted to maximize
verification coverage.

One prominent formal proof mechanism particularly relévanthis work is equiv-
alence checking. In equivalence checking, the output respof a design is compared
against a golden model for all legal input combinations. hé tesponse is always the
same, the designs are said to be equivalent. Often, binaigide diagrams (BDDs) can
be used to check the equivalence between two combinatiamaits. A BDD [14] is
a data structure that can often efficiently represent a itincua canonical way, so that
checking equivalence means building this canonical formb@iih designs. However, the
number of nodes in a BDD can be exponential with respect tatimeber of inputs, thus
limiting the scalability of the approach. Satisfiabilitgd®ed equivalence checking tech-
niques have been developed [13] as an alternative to BDDspifgehaving exponential
worst-case runtime, SAT-based techniques typically hawet memory requirements and
successfully extend to larger designs. Below we providéotiekground on satisfiability
necessary to navigate this dissertation. Then we examaegus attempts to scale the

performance of SAT solvers by exploiting multiple procegsinits concurrently.

2.1.1 Satisfiability

The SAT problem entails choosing an assignmérior a set of variables that satis-
fies a Boolean equation or discovering that no such assignexests [76]. The Boolean

equation is expressed in conjunctive normal form (CNF} (a+b' +c)(d' +e).... —a
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conjunction ofclauses where a clause is a disjunction of literals. A literal is aoB@n
variable or its complement. For instan¢e;+ b’ +c) and(d’ +e) are clauses, argl b/, c,

d’, eare literals.

A Framework for Solving SAT

A common approach to solving SAT is based on the branch-ac#tiack DPLL algo-
rithm [24]. Several innovations, such as non-chronolddiegzktracking, conflict-driven
learning, and decision heuristics greatly improve upos dpiproach [65, 80, 88]. The es-
sential procedural components of a SAT solver are outlingtie pseudo-code of Figure

2.1.

search{
while(true) {
propagate();
if (conflict) {
analyzeconflict();
if (top_levelLconflict) returnUNSAT,
backtrack();
}
else isatisfied) returrsAT;
elsedecide();
}
}

Figure 2.1:Pseudo-code of the search procedure used in DPLL-SAT. Tdee@ure termi-
nates when it either finds a satisfying assignment or prdwagsio such solution
exists.

The sear ch() function explores the decision tree until a satisfying gssient is
found or the entire solution space is traversed without figdiny such assignment. The
deci de() function selects the next variable for which a value is chos#éany methods
exist for selecting this “decision” variable, such as the S (Variable State Indepen-

dent Decaying Sum) algorithm developed in Chaff [65]. VSIlib®lves associating an
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activity counter with each literal. Whenever a new learnt clausenegged (see below)
from conflict analysis, the counter of each literal in thaude is incremented while all
other variables undergo a small decrease. gi@pagat e() function performs Boolean
Constant Propagation (BCR)e,, it identifies the clauses that are still unsatisfied and for
which only one literal is still unassigned, and then assitpesliteral to the only value
that can satisfy the clause. If the decision assignmenti@mjal contradiction or conflict,
theanal yze conf |l i ct () function produces &arntclause, which records the cause
of the conflict to prevent the same conflicting sets of assgmsr Thebackt r ack()
function undoes the earlier assignments that contributedd conflict. Periodically, the
sear ch() function is restarted: all current assignments are undame the search pro-
cess starts anew using a random factor in restarting theidegirocess so that different
parts of the search space are explored. Extensive empiiatalshows the effectiveness
of restarts in boosting the performance of SAT solvers byimizing the exploration in

computation-intensive search paths [9, 65].

Learning

In this part, we consider two types of learning performedettuce SAT search space:
preprocessing and conflict-driven learning.

Preprocessing.The goal of preprocessing a SAT instance is to simplify tleance
by adding implied constraints that reduce propagationscdst eliminating variables, by
adding symmetry breaking clauses, or by removing clausasate subsumed by oth-
ers. Preprocessing has led to improved runtime in solvimgraginstances, although the
computational effort sometimes outweighs the benefit. A&mépreprocessor, SatELite

[28], achieves significant simplifications through the édfit implementations of variable
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elimination and subsumption.

Conflict-driven learning. Dynamic learning is important to prevent repeated explo-
ration in similar parts of the search space. When a set ajassnts results in a conflict,
the conflict analysis procedure in SAT determines the caysmdalyzing aconflict graph
In Figure 2.2, we show an example of a SAT instance and a ses@framents that result in
a conflicting assignment for variable Each decisionf{{=1,g=1, anda= 1) is depicted
by a different leaf node, anidhplicationsof these decisions, are shown as internal nodes
in the graph. An implication occurs when a set of variablegiens forces an unassigned
variable to be assigned 0 or 1. decision leveis associated with each node (nodes at
the same level are denoted by the same color in Figure 2.28hvidthe set of variable
assignments implied by a decision. For instance, the sedecidion level consists of the
second decisiorg(= 1), and the implicationk = 0 andm= 0.

A learnt clause can be derived in a conflict graph from a cuttteesses every path from
the leaf decision values to the conflict exactly once. Theesdd the left of the cut are on
thereason sideand those on the right are on tbenflict side Cut 1 in the figure shows
the 1-UIP (first unique implication point) cut,e., the cut closest to the conflict side. In
this cut, the reason side contains one node of the last dadesiel (node) that dominates
all other nodes at the same decision level and on the sanso(reside. The assignment
e=1f=1k=0,m=1is determined to be in conflict and hen@+ f’ + k+ m) can
be added to the original CNF to prevent this assignment irffuhee. Cut 2 indicates
the 2-UIP cut where the reason side contains one node in¢veopss decision level (level
2) that dominates every other node in that decision levekeHte 2-UIP learnt clause

(¢4 f'+d') can be added.
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Assignments:
1. f=1
2:g=1
3:a=1

Conflict:
v=1 and v=0
are both
implied

Clauses:
(@ +b)
(@ +c)
(b+c+e)
(e’ +h)

(" +))

(9" +K)
(g +m)
(fF+h +v)
(+k+m+vV)

Figure 2.2: An example conflict graph that is the result ofl#st two clauses in the list
conflicting with the current assignment. We show two potdiéarnt clauses
that can be derived from the illustrated cuts. The dotted &losest to the
conflict represents the 1-UIP cut, and the other is the 2-WtP ¢

A learning strategy commonly employed adds only the 1-U#Prieclause for every
conflict. Despite the possibility of using smaller learratudes that technically prune larger
parts of the search space, it has been empirically show®irthat 1-UIP learning is most
effective. In [27], 1-UIP was shown to be more effective airpng the search space
because the corresponding backtracking more often sdtisfnt clauses generated by

other UIP cuts.

2.1.2 Previous Parallel SAT Approaches

To boost the performance of SAT solvers on increasingly gdest parallel architec-
tures, parallel SAT solving strategies have explored egrain and fine-grain paralleliza-
tion. Fine-grain parallelization strategies target Baal€onstraint Propagation (BCP) —

the runtime bottleneck for most SAT solvers. In BCP, eachalde assignment is checked
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against all relevant clauses, and any implications aregyajed. BCP can be parallelized
by dividing the clause database amandifferent solvers so that BCP computation time
of each solver is approximate{l,ythe original. Coarse-grain parallelization strategigs ty
ically involve assigning a SAT solver to different parts bétsearch space.

Fine-grain parallelization. The performance of fine-grain parallelization depends on
the partitioning of clauses among the solvers, where an @dgttion ensures an even dis-
tribution of BCP costs while minimizing the implicationsatineed to be communicated
between each solver. This strategy also requires low4dgtarer-solver communication
to minimize contention for system locks on general micrepssors, which can exacerbate
runtime performance. Therefore, fine-grain parallel@atias been examined on special-
ized architectures [91] that can minimize communicatiottlboecks. In [2, 92], signif-
icant parallelization was achieved by mapping a SAT ingaoncan FPGA and allowing
BCP to evaluate several clauses simultaneously. Howdweeflexibility and scalability of
this approach is limited, since each instance needs to beitdrto the specific FPGA
architecture (a non-trivial task), and conflict-drivenrl@ag is difficult to implement ef-
fectively in hardware because it requires dynamic datatiras.

Coarse-grain parallelization. The runtime of an individual problem can also be im-
proved with parallel computation by using a solver portd88], where multiple SAT
heuristics are executed in parallel and the fastest heudstermines the runtime for the
problem. A solver portfolio also offers a way of counterihg wariability that backtrack-
style SAT solvers experience on many practical SAT instafi2@]. Because one heuristic
may perform better than another on certain types of prohlems can reduce the risk of

choosing the wrong heuristic by running both. Although paliaation here consists of
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running multiple versions of the same problem simultanipifsthe runtime difference
between these heuristics is significant, a solver portfmdio yield runtime improvements.

However, using a portfolio solver does not guarantee highuece utilization as each
heuristic may perform similarly on any given instance or bearistic may dominate the
others. The primary limitation of solver portfolios is ththere is no good mechanism to
coordinate the efforts of these heuristics and the randemimbierent to them. Other ap-
proaches consider analyzing different parts of the seqrabesin parallel [22, 55, 66, 89].
If the parts of the search space are disjoint, the solutidheégroblem can be determined
through the processing of these parts in isolation. Howerepractice, the similarities
that often exist between different parts of the search spsamn that redundant analysis
is performed across the different parts. To counter this,athors in [55] develop an
approach to explore disjoint parts of the search space Pyngebn the shared memory of
multi-core systems to transfer learned information betwtbem. The approach considers
dividing the problem instance using different variableégssents calledjuiding pathsas
originally described in [89]. One major limitation of thigte of search space partitioning
is that poor partitions can produce complex sub-problentls widely varying structure
and complexity.

The benefits of learning between solvers working on diffegarts of the search
space in parallel suggest potential super-linear impr@&rgnHowever, the improvements
achieved by current strategies seem more consistent vathlierent variability of solving
many real-world SAT problems and the effect of randomizatia reducing this variabil-
ity. Through clever randomization strategies, sequestidlers can often avoid complex

parts of the search space and outperform their paralleltecuerts.
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2.2 Scalable Logic Synthesis

Due to the development of powerful multi-level synthesigoaithms [74], scalable
logic synthesis tools have been able to optimize increfsiagge designs since the early
1990s. During logic optimization, different multi-leveptimization strategies are inter-
leaved and executed several times, including fast extma¢finding different decompo-
sitions of a node based on algebraic transformations) add simplification (exploiting
circuit don’'t-cares). These techniques are correct by tcoctson, so that the resulting
netlist is functionally equivalent to the original assumino implementation errors are
present in the synthesis tool. We outline several key aspgdétproving the quality and

scalability of synthesis below.

2.2.1 Don’t Care Analysis

To enhance synthesis, circuit flexibility in termsdafn’t-carescan be exploited. Figure
2.3 provides examples of satisfiability don’t-cares (SD&%) observability don’t-cares
(ODCs). An SDC occurs when certain input combinations doanste due to limited
controllability. For example, the combination = 1 andy = 0 cannot occur for the
circuit shown in Figure 2.3a. SDCs are implicitly handledentusing SAT in validating
the netlist because SDC input combinations cannot occuaigrsatisfying assignment.
ODCs occur when the value of an internal node does not affiecotitputs of the circuit
because of its limited observability [26]. In Figure 2.3hema = 0 andb = 0, the output
value ofF is a don’t-care.

Figure 2.4 shows a strategy for identifying ODCs for a nad&irst, the circuitD is
copied, anda is inverted in the copyp*. Then an XOR-basenhiter [13] is constructed

between the outputs of the two circuits. A miter is a singlgpatfunction typically imple-
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b)

Figure 2.3: Satisfiability don’t-cares (SDCs) and obseilitgldlon’t-cares (ODCs). a) An
example of an SDC. b) An example of an ODC.

oDC a’nalysis on
internal node

a4\>“a’

| Design D*
(D-modified)

Figure 2.4:0DCs are identified for an internal noden a netlist by creating a modified
copy of the netlist whera is inverted and then constructing a miter for each
corresponding output. The set of inputs for which the mitelgates to 1
corresponds to the care-set of that node.

mented with XOR gates that compares the outputs of two ¢gciuinctional equivalence
is proven if the output is a constant 0. The care set, denct€@{a, can be derived as

follows:

(2.1) Ca= U X
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whereX; is an input vector.
A SAT solver can deriv€ by adding successive constraints caliéacking clause$o

invalidate previous assignments satisfying the miter. OBeC of a is therefore:

(2.2) ODC(a) = U>q —C(a)

that is, the difference between the set of all input vectarstae care set.

This approach can be computationally expensive and scata$ypparticularly when
the XORs are far froma. In [61], this pitfall is managed by examining only small wows
of logic surrounding each node being optimized. The doaies extracted are used to
reduce the circuit’s literal counts. In [95], a very effidianethodology is developed to
merge nodes using local don’t-cares through simulation @At The authors limit its
complexity by considering only a few levels of downstreagiddor each node. However,
these techniques fail to efficiently discover don’t-caresulting from logic beyond the
portion considered, a limitation that is directly addrekse this dissertation.Another
strategy to derive don’t-cares efficiently entails algoris for computing compatibility
ODCs (CODCs) [71, 72]. However, CODCs are only a subset of [2€d fail to expose
certain types of don't-cares; specifically, CODCs only daaiptimizations of a node

which do not affect other node’s don’t-cares.

2.2.2 Logic Rewriting

Performing scalable logic optimization requires efficieetlist manipulation, typi-
cally involving only a small set of gate primitives. Given et ®f Boolean expressions
that describe a circuit, the goal of synthesis optimizatoto minimize the number of

literals in the expressions along with the number of logiels. Several drawbacks of
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Figure 2.5: Two examples of AIG rewritingn the first example, rewriting results in a
subgraph with less nodes than the original. Through strathashing, exter-
nal nodes are reused to reduce the size of the subgraph \as shibve second
example.

C
Example 1 Example 2

these techniques are discussed in [62], including limitadadility. To this end, an ef-

ficient synthesis strategy calledwriting was introduced [62]. Logic rewriting is per-
formed over a netlist representation called an And-Invesi@aph (AIG) [47], where each

node represents an AND gate, while complemented (dotteghsecbpresent inverters. In
logic rewriting, the quality of different functionally-egvalent implementations for a small
logic block in a circuit is assessed. For example, in FiguBet2e transformation on the
left leads to an area reduction. Moreover, by using a teclenaalledstructural hashing

[47], nodes in other parts of the circuit can be reused. Fsiaimce, in the example on the
right, there is a global reduction in area by reusing gatpustalready available in other
parts of the circuit. In [63], logic rewriting resulted inrcuit simplification and was used

to improve the efficiency of combinational equivalence ¢ieg.

2.2.3 Physically-aware Synthesis

Logic synthesis can be guided by metrics other than liteoalrt reduction. Although
detailed wire information is unavailable during logic dyesis, rough delay estimates can

be made by placing gates before synthesis optimizatioteddsof reducing literals, one
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favors delay-improving transformations [21]. Howeverlageestimation is becoming in-
creasingly inaccurate before detailed placement andmgutis the actual interconnect
routes become more significant with every technology nodes dontinuing trend sug-
gests the need to integrate new synthesis algorithms déieempent and routing, rather
than optimize beforehand with inaccurate estimates, wb&hhave undesirable conse-

guences for other performance metrics.

2.3 Logic Simulation and Bit Signatures

Logic simulation involves evaluating the design on manyedént input vectors. For
each simulation vector, the circuit output response caretexchined by a linear topological-
order traversal through the circuit. In our work, we expbitype of information known
as asignature[50], that can be associated with each node of the circuitigedmputed
through simulation.

A given nodeF in a Boolean network can be characterized by its signa®dréor

K-input vectorsX - - - Xk.

Definition 2.3.1 § = {F(X1),...,F(Xk)} where KX;) € {0, 1} indicates the output of F

for input vector X

VectorsX; can be generated at random and usehitiparallel simulation [1] to com-
pute a signature for each node in the circuit. For a netwotk Winodes, the time com-
plexity of generating signatures fé¢ input vectors for the whole network B(NK).
Nodes can be distinguished by the following implicati®:# Sg = F # G. Therefore,
equivalent signatures can be used to efficiently identifieptal node equivalences in a

circuit by deriving a hash index for each signature [50]. c8if- = S does not imply
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thatF = G, this potential equivalence must be verifiedy, using SAT. In [59], simula-
tion was used to merge circuit nodes while incrementallyding a mitered circuit.The
resulting mitered circuit is much smaller and is typicalser to formally verify since the

corresponding SAT problem has fewer clauses, and it is thies easier to solve.

2.4 Summary

Improving algorithms for logic synthesis and verificatigran important, difficult and
multi-faceted challenge. Effective and scalable solioray significantly impact elec-
tronic design automation and consumer electronics indgstin developing such solu-
tions, we leverage logic simulation used in conjunctiorhveynthesis and verification to
improve scalability. While some research has shown theflierad using simulation to
boost the performance of combinational equivalence checkising signatures to guide
synthesis optimizations has only been considered in a feweld forms. In our work, we
develop novel techniques to exploit signatures for symshgstimization and to improve

verification coverage.
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CHAPTER III

Challenges to Achieving Design Closure

Achieving timing closure is becoming more difficult becao$¢he increasing signif-
icance of interconnect delay. When gate delay was the pyic@nponent of chip delay,
logic synthesis tools could accurately estimate and impaelay by reducing the maxi-
mum number of logic levels in a circuit. However, the resisaand capacitance of wires
have increased, preventing interconnect delay from sga#well as gate delay. Figure
3.1 shows a plot from the 2005 report of the Internationahietogy Roadmap for Semi-
conductors (ITRS) indicating that gate delay is foreseatetrease for future technology
nodes faster than local interconnect and buffered glol@téonnect delay.

Because of the increasing significance of interconnecygdeésigns that are optimized
by traditional logic synthesis strategies often contailaygl®iolations that are discovered
only after accurate interconnect information is availabieard the end of the design flow.
Therefore, optimization is typically confined to physicarisformations, as opposed to
logic or high-level design optimizations. Performing hegievel optimizations is often
problematic at the late design stages because they couldipeell placement and cause
modifications that would violate other performance metaiod constraints. Furthermore,
there are less opportunities to perform logic optimizaianth new timing information

late in the design flow, because the design has already béenizgd thoroughly based
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on earlier incomplete and inaccurate information. Theesfonore restrictive physical
synthesis techniques are used after placement, includiaegconnect buffering [56], gate
sizing [45], and cell relocation [3], which can all improvecauit delay without signif-

icantly affecting other constraints. When timing violatsocannot be fixed with these
localized techniques, a new design iteration is required, tae work of previous opti-
mization stages must be redone. In many cases, several tnsiming iterations are

required, and even then, the finished product may not achiéttee desired objectives.

100 * Gate Delay (fanoutof 4),
B Local (scaled) (
"' Global with Repeaters

* Global w/o Repeaters

Relative Delay
S

N

0.1
250 180 130 90 65 45 32
Technology Node (nm)

Figure 3.1:Delay trends from ITRS 2005. As we approach the 32nm teclgyahmde,
global and local interconnect delay become more significantpared to gate
delay.

Achieving timing closure without undergoing many desigerations is a pervasive
problem studied in electronic design automation, and theife) cause of growing times to
market in the semiconductor industry. For this reason, wetgemuch effort to this issue
in the dissertation. In this chapter, we highlight previedferts dedicated to improving

timing closure, as well as their shortcomings. We first dbsddeas to improve the quality

30



of physical synthesis; then we discuss how the design flowbkas transforming over
time from several discrete steps into a more integratedesgfyahat can better address
interconnect scaling challenges. Finally, we conclude lyiring our strategy to tackle

the timing closure challenge while overcoming the limitas of previous work.
3.1 Physical Synthesis

Physical synthesis is the optimization of physical chamastics, such as delay, using
logic transformations, buffer insertion, wire taperingte sizing, and logic replication.
Static timing analysis (STA) is used to estimate the delagigg the physical synthesis
optimizations. The accuracy of timing analysis is depehdeithe delay model considered
and the wire information available. For instance, the Endelay model [30] is a well-
established approximation for delay based on cell locatidhe following equation gives
the Elmore delay for a wire segment of lendithvith wire resistance and capacitance
per unit length:

2

L
(3.1) ED= rc7

Notice that delay increases quadratically as a functionicé ¥ength. The Elmore delay
model is commonly used, but tends to overestimate delayfay hets. Other delay mod-
els, such as D2M [6], are more accurate because they usglaualélay moments, but are
also more complex.

Physical optimizations can produce a placement whereaxltions overlap. Overlap-
ping cells can be eliminated through placemlegtlization Effective legalization strate-

gies must produce a placement with no cell overlaps, whilsigmificantly disrupting the
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bulk of the alreadyegalplacement. Even small changes in the placement can sulbditant
alter circuit timing. Therefore, after legalization, ieonental STA is performed to assess
the quality of the optimization. Evidently, an optimizatithat produces large changes in
the netlist is undesirable because the legalization proeedould be more disruptive to

the pre-existing placement than the benefit brought by thienagation.

highly critical S S
sink \ o highly critical
sink
\
b b
a a
c C

a) original topology b) embedding and buffer assignment  ¢) embedding and buffer assignment
for original topology for improved topology

Figure 3.2:Topology construction and buffer assignment [43]. Parthews the initial
topology and part b) shows an embedding and buffer assigrfiorahat topol-
ogy that accounts for the time criticality bf In part c), a better topology is
considered whose embedding and buffer assignment imptogetelay forb.

The primary optimization strategies used in physical sgsithinclude reducing capac-
itive load to improve the delay of long wires. Unbuffereddomires experience quadratic
increase in delay as a function of wirelength, as shown indday model of Equation
3.1. However, by optimally placing buffers along a wire, teday can be made linear
[67]. Moreover, buffers have been successfully deployeidhfarove delay for cells that
have large fanoutFor example, given a source signal that fans out to sevetd)®p-
timal buffering involves both 1) constructing an intercenhtopology that maintains the

connections between the source and the fanout and 2) asgiguifers to the topology so

that timing is optimized.
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In Figure 3.2, we show an example of a netlist portion wherewace signak fans
out to signalsa, b, andc. In part a), we show the original topology connecting therseu
signal with its fanout. The topology indicates how fanoutles are partitioned in the
interconnect. For instanca and b are grouped together in part a). Findingamout
embeddindor this topology corresponds to determining how the irdareect is routed
given the topology. One of the problems related to buffersthat of determining the
actual buffer locations once the topology is fixédffer assignmeint In [82], the authors
develop an efficient algorithm for placing buffers into aenvinterconnect topology to
optimize delay. Their approach would take into account dgiired arrival time by each
of the fanout nodes in placing the buffers. If fandwis timing critical, their solution
applied to the topology of Figure 3.2a would produce the duffissignment shown in
Figure 3.2b where there is a short unbuffered path to fanddre recently, the authors of
[43] considered approaches for finding an optimal topoleggddition to optimal fanout
embedding and buffer assignment. For instance, if fatoist timing critical, a better
topology can be constructed as shown in Figure 3.2c, whereapacitive load of signal
is reduced and the arrival time at fandwis still earlier thara andc.

Fanin embeddingstudied in [42], is the process of finding optimal cell laoas for a
one output subcircuit also for the purpose of improving yelhis is conceptually simi-
lar to the fanout embedding described above, where a rontettonnect tree is derived
from a given topology. In fanin embedding, a fanin tree cstssof a single output signal,
input signals, and internal nodes representing the subt#togic cells. The topology of
the subcircuit is determined by the logic implementatiothef output. The goal of fanin

embedding is to find a placement that optimizes delay, winigeieng that no cell overlaps
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occur. However, because of logic reconvergence, mostisuiitsi are not trees in practice.
To address this issue, the authors of [42] explore a proeetthat uses replication to con-
vert any subcircuit into a tree. Unlike the work in [43] thahsiders fanout embedding on
different topologies, fanin embedding has limited rangsaditions because the topology

is fixed by the logic implementation.

earlier ~>~_
arrival time

Figure 3.3:Logic restructuring. The routing of signalwith late arrival time shown in
part a) can be optimized by connectingo a substitute signal with earlier
arrival time as in part b). In this example, the output of taeeAND(b, c) is a
resynthesis o&.

So far, in this section we have analyzed physical synthdsigegies that involve
buffering, finding optimal cell locations, and cell replicen. We now discuss logic re-
structuring techniques. Logic restructuring are netlighsformations that preserve the
functionality of the circuit. For example, in [18, 53, 78 restructuring is performed
by using only simple signal substitutions, thus missing ynaitner restructuring oppor-
tunities. The authors in [84] develop an approach to idgmaktructuring opportunities
involving more types of logic transformations, but globahd-cares are not exploited.
For example, consider Figure 3.3, where sigmahn be replaced by using the output of
the AND(b,c) gate, producing a small change to the netlist that hopehaly minimal
impact on the existing placement. The work in [18] uses satioth to quickly identify

potential substitutions, but does not explore the full mafjpotential transformations; for
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instance observability don’t-cares are not taken into ic@mation. In [53], redundancy
addition and removal (RAR) techniques are proposed to irgewrcuit timing. Our em-
pirical analysis of RAR in Chapter IX shows that these teghas leave significant room
for improvement because the transformations they conaidesomewhat limited.
Examining a broader set of transformations is challengmgtirrent synthesis strate-
gies. In a post-placement environment, a netlist has ajreaen mapped to a standard-cell
library and restructuring must be confined to a small seatiologic, so that placement
is not greatly disrupted. If this small section were rednied using rewriting [62] (as
explained in Section 2.2.2), logic sharing would be diffionlth AlG-based structural
hashing [47] since the netlist may be mapped to somethingiderably different from
an AIG. The solution we propose in Chapter IX overcomes im#ation by integrating

logic sharing on an arbitrarily mapped netlist with aggnessestructuring.

3.2 Advances in Integrated Circuit Design

Figure 3.4a illustrates the traditional division of desggages outlined in Chapter I. In
this flow each stage is invoked only once, and design closwuerpected to be achieved at
the end of the flow. In practice, extensive physical verifarats required to assess whether
design goals are achieved and whether all constraints tiséiexh Often, design closure
fails in several ways. For example, logic synthesis faithé total area of the synthesized
netlist is greater than specified. The result is a re-itenatif synthesis, perhaps with a
modified objective function. In a more dramatic scenari@, design might need to be
re-optimized at a higher level of abstraction. As anotha@n@xle, if routing resources are
insufficient for a wire, an iteration of the placement phased reduce congestion.

To avoid costly iterations of several of the design stadas,ttaditional design flow
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Figure 3.4:Evolution of the digital design flow to address design clesthtallenges due
to the increasing dominance of wire delay. a) Design flow sé&beral discrete
steps. b) Improved design flow using physical synthesis efiiged timing es-
timates to achieve timing closure more reliably. ¢) Modeesign flow where
logic and physical optimization stages are integrateduerbege better timing
estimates earlier in the flow.

comprising several discrete optimization stages has edahto a more integrated strategy
where the boundary between synthesis and place-and-nautduared. The goal of design
integration is to perform optimizations that are simultaumgy aware of many objectives
and constraints, such as performing logic optimizationsndusynthesis to lower wire
congestion in the placed design. The evolution of the defigym is described in the
following paragraphs and is shown in Figure 3.4.

Figure 3.4b illustrates a design flow incorporating phylsgathesis and iterative feed-
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back to achieve timing closure. Initially, post-placemeptimizations (physical synthe-
sis) were sufficient to manage increasing wire delay by imipigp delay of global in-
terconnects through buffer insertioHowever, as wire delay has become more and more
prominentwire-loadmodels have been incorporated in logic synthesis to taagesgvith
large capacitive loads. Even though these models only denaigate’s input capacitance,
inaccurate estimates and optimizations could be easilkectad at later stages through
gate sizing [45]. Eventually these approximate models ieceadequate too, as wire
capacitance and resistance became even more significaualkting in additional design
iterations and requiring better delay models.

To address the challenges posed by increased wire delaywesnneore integrated
design flow is currently in use (shown in Figure 3.4c), whemeerphysical information is
used at earlier stages of the design flow. For example, toowepwire delay, the authors
in [40] incorporate wirelength estimation in logic syntlseso that the netlist generated
would likely have fewer wire detours. In [21, 41, 68], incremtal placement is coupled
with logic synthesis to assess the quality of each synthesisformation in terms of its
impact on placement (this approach is knowrcaspanion placementThe companion
placement can even be generated by attempting to placeist nedpped to a simple gate
library before synthesis optimization. Another strategiegrates physical information
in early design stages to control the dominance of globarawinnect (as forecasted in
Figure 3.1). This solution generates an RTL floorplan befogéc optimization, so that
it can estimate timing for about the 10% of wires mostly citaghg global interconnect

[104].
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3.3 Limitations of Current Industry Solutions

Even with better integration in the design flow, physicaltBgsis remains essential to
avoid delay violations and only grows in importance withrgstechnology node. Physical
optimizations are limited because there is less oppostupit logic transformations at
late design stages, reducing opportunities for improventeurthermore, post-placement
optimizations must minimize the region affecting placemmncontain hard-to-predict
impact to delay due to legalization.

There are several additional limitations to the currenthoeology [103, 104] that are

expected to exacerbate in future technology nodes:

1. Timing-driven transformations may fail to improve delbyt still negatively impact
area. This may occur due to inaccurate timing estimatesdditian, incorporating
timing models in traditional synthesis and technology-piag increases computa-

tional effort.

2. Maintaining a companion placement during logic synthescis computational
overhead and may be inadequate for future technologiesavdwem more accurate
delay estimates are needed. First, generating placemean fon-optimized netlist
with more logic cells than those in the final layout undulyestes placement al-
gorithms. Second, the accuracy is still limited becausectmapanion placement
estimates cell locations approximately and cannot deterractual wire routes and

parasitic effects that can significantly affect delay.

3. The impact of poor optimization on shorter interconnecb&coming more pro-

found, and using common physical synthesis strategies, asibuffering, may be
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insufficient. In [73], it was observed that future technoésgwill require buffers at
much smaller wire lengths. It was estimated that at the 453ode, 35% of cells
in a large synthesizable block would be buffers. This frattis projected to in-
crease to 70% at the 32-nm node. Even if timing is maintairsgagubuffering, the
consequences for area utilization and power consumptitiroerisevere. Current
methodologies using higher-level estimates before physimthesis will be unable

to account for the increasing relevance of shorter intareots.

To achieve better design flows, intuition suggests to ino@i@ synthesis optimization
after placement because at that point the synthesis proarsgilize more accurate timing
information. This allows for more powerful timing optimizans since more detailed
estimates are available, while minimizing negative imgaaither performance metrics.
However, traditional post-placement synthesis optinnzeis inadequate because it only
considers a small subset of possible transformations,alsdd fully exploit the full range

of possibilities (for instance, due to don’t-cares).

3.4 Contributions of the Dissertation

In this chapter, we have described the evolution of the deBayv in the last few
decades to address the increasing dominance of intercoriniedecoming more difficult
to provide accurate timing information to logic synthesisd current physical synthesis
strategies are becoming inadequate at generating the idgiagvement necessary to re-
duce costly design iterations. Our work overcomes theiotisgness of current physical
synthesis methodologies in improving interconnect delaysummary, the major contri-

butions of this dissertation to achieve this goal are:
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e A post-placement resynthesis strategy that tightly irgsg accurate physical con-
straints to improve critical path delay by constructing @tduit topologies using
static timing analysis. Our strategy greatly exceeds thigragation capabilities of
traditional logic synthesis techniques, and, at the same,tminimizes perturba-

tions to the placement.

e A novel metric for identifying sections of critical path inreetlist that are most

amenable to logic resynthesis.

e A comprehensive simulation-based framework that usesgiges to identify post-
placement optimizations in complex designs. The compaenehbur framework

include:

— A solution that identifieutomaticallyareas of a circuit inadequately sensi-
tized under random simulation and relies on a SAT-basediquh to gener-
ate new simulation vectors to target these areas. This weprthe quality of
signatures, which enables more efficient identificatioresynthesis opportu-
nities.

— A novel parallel SAT solver infrastructure that producestdreutilization of
multi-core systems and therefore faster verification otlsgsis optimizations

identified with signatures.

— A powerful synthesis approach that uses signature-bastichations to quickly
identify functionally equivalent logic structures up t@ghl circuit don’t-cares

increasing the number of post-placement resynthesis tpptes.
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Part |l

Improving the Quality of Functional
Simulation

The effectiveness of bit signatures in enabling powerfyigital optimizations is the cen-
terpiece of this dissertation. This effectiveness depemdihe ability of signatures to 1)
distinguish circuit nodes that are functionally differantd 2) identify potential logic trans-
formations that elude traditional logic synthesis techeg} In Chapter 1V, we introduce
a strategy that improves the quality of the input stimuligonulation so that it produces
high-quality signatures,e., signatures that better distinguish functionally diffaraodes
with just a few simulation cycles. Then in Chapter V, we pregpan algorithm to incor-
porate circuit don’t-cares in signatures, so that they @lebkeraged to expose additional

optimization opportunities.
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CHAPTER IV

High-coverage Functional Simulation

As mentioned in Section 1.4, the advantage of using a bibsiga to identify potential
logic optimizations lies in its ability to characterize acatiit node’s functionality with
only a partial truth table. To generate a signature, inpators are applied to the inputs
of the circuit. The input vectors chosen determine qo@lity of the signature. High-
guality signatures are defined as those that require fewt wgutors to generate, where
the signatures’ values distinguish functionally diffearemdes. However, the usefulness
of signatures in guiding powerful design optimizationoalepends on the efficiency of
generating these high-quality signatures. If prohibiteenputation efforts are required,
the benefits of using signatures are negated.

Quickly generating high-quality input vectors is the chafie that this chapter ad-
dresses. Traditionally, input vectors for verification areated by performing a mixture of
random simulation anduidedsimulation strategies. Guided simulation involves choos-
ing input vectors either manually or through an automatedhaeism to achieve some
simulation coverage goal. The advantages of random simonlate 1) the speed at which
new input vectors can be generated and 2) the ability of timpse vectors to often expose
scenarios that guided simulation fails to capture. Howengrdom simulation does not

always produce high-quality signatures. In fact, two naday have similar functionality
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(and truth tables), which often requires a large number ofloan input vectors to dis-
tinguish them. To reduce the number of input vectors requioegenerate high-quality
signatures requires either manually deriving input vectming the expertise of the de-
signer or automatically deriving input vectors using a pemine like SAT. For instance,
a SAT solver can be used to derive an input vector that digisigs two circuit nodes [59].
However, using either manual or automatically-guided $ation to distinguish nodes is
often time consuming compared to random simulation.

In complex designs, random simulation struggles to expotgasting behavior, as
many components of a circuit are deep in the circuit’'s stmgcaind thus difficult t@won-
trol from the primary inputs. In other words, applying differemput vectors often does
not correspond to differences in the internal nodes of thepoment under analysis re-
sulting in signatures that do not distinguish functionalifferent nodes. The use of for-
mal methods can improve the signature quality of a singleenbdwever, many of the
logic transformations described in later chapters requoie signatures for many internal
nodes, and making numerous invocations of formal engindsmamnes the computational
efficiency of using signatures as an abstraction.

In this chapter, we introduce an approach that producesdpuiglity input vectors by
leveraging the benefits of both random and guided simulafibis approach, callefiog-
gle, involves 1) identifying components in a design that areawottrolled adequately by
random input vectors and 2) targeting each component wittegiusimulation leveraging
a SAT solver. Our guided simulation overcomes the limitadiof previous methodology
by generating input vectors that target several circuiesaimultaneously, rather than one

at a time. Furthermore, our approach is applicable to viegfyhe functional correctness
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of a design, as we show a correlation between improving ttaditguof signatures and

improving the verification coverage in a design.

4.1 Improving Verification Coverage through Automated Congrained-
Random Simulation

Constrained random simulatiocan be used to expose interesting behavior in a de-
sign [96]. Constrained random simulation involves the fddiof constraints that limits
and controls the input combinations that are sent to thegdedilowever, there are ma-
jor challenges involved in constrained-random simulatioet we address in this chap-
ter. First, generating constraints suggests that the nlésam has a thorough knowledge
of internal aspects of the desigriiecond, generating specific input vectors that satisfy
given constraints requires the use of formal methods. Téussrsd challenge is partially
addressed by [86], where constraints are modeled as BDDsirawthtion vectors are ob-
tained through a random walk of the BDD. However, the apgraad86] still requires
complex constraint specifications, and it is limited in tlb@straint complexity that it can
handle by its dependency on BDD size. Toggle overcomes ttitedkenges by automati-
cally generating constraints that guide simulation withrequiring detailed knowledge of
the design. Furthermore, these constraints are small iargeand input vectors can be
efficiently derived using a novel SAT-based approach.

The high-level flow of Toggle is illustrated in Figure 4.1.r$t we apply low-effort
synthesis to the behavioral specification of a design, s d&sverage gate-level tools.
Then, we apply random simulation vectors to the netlist. falyze the toggle activity
of each signal in the netlist, we have introduced a novelopytbased coverage metric.

Using an entropy calculation, we search for internal sigtitat suffer from low switching
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Figure 4.1:0Our Toggle framework automatically identifies the compdsaesf a circuit
that are poorly stimulated by random simulation and geperatput vectors
targeting them.

activity, because they produce signatures that are Ikslrtio be capable of distinguishing
functionally different nodes. These signals are used tdegaipartitioning of the design,
so that signals experiencing low activity are grouped togiet Low-activity partitions
are then targeted by our SAT-based guided simulation, asrslab the end of the flow.
By targeting several partitions with guided simulation, sexk to evenly sensitize the
different components of a design.

The key theoretical result that we leverage to increasewtitetsng activity of a parti-
tion is from [81]. It enables us to derive an even distribatid input vectors stimulating a
partition by automatically generating small random caaists that involve XORing sets
of inadequately stimulated signal§Ve then derive targeted stimuli by invoking a SAT
solver. Our technique is flexible in that it can evenly semsiparts of the design while
incorporating other designer-specified constraints. Wayapur analysis to commonly-
used benchmark designs and demonstrate that many of thesnienge very low toggle
coverage under random simulation. In contrast, our teclenaghieves higher simulation

coverage than random simulation and is orders of magnitasterf when compared to a

45



guided simulation approach.

The chapter is organized as follows. In Section 4.2, we pe@osolution for mon-
itoring activity in a design based on entropy. In Section &8 introduce a strategy to
re-simulate areas of a circuit to increase its togglingvétgti Finally, experimental results

comparing Toggle to constrained-random simulation arevalio Section 4.4.

4.2 Finding Inactive Parts of a Circuit

In this section, we adapt the notion of Shannon’s entropy {@®stimate simulation
coverage within a gate-level circuit and propose its useno iinadequately-stimulated
regions. We then show that obtaining high entropy corredpda evenly sensitizing a
design and thus minimizes unintended simulation bias, hvtén help in exposing corner-

case behavior.

4.2.1 Toggle Activity of a Signal

The toggle coverage for a single sigsah a circuitC can be determined by the dis-
tribution of Os and 1s seen under input stimuli. Each O cpoeds to anaxtermand
each 1 to anintermof the function implementing. We capture this distribution with two
frequency values, and estimate the uncertainty (or toggbhthe signal usinghannon’s

entropy[75] Es:

nOne nOne nZeroe nZeroe
(4.1) By =~ logy((o ) — T Togy

K

wherenOnes(nZeroedis the number of simulation cycles for whish= 1 (s= 0) andK
is the total number of simulation cycles examinéd.assumes values ranging from 0 to

1, where higher entropy indicates a more even distributfaanes and zeroes. #is the
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output of a function depending on the set of Boolean vargKleve can relatd to the
entropy of the input&y, by the following:

X
(4.2) Es < min(.Z Ex.,1)

Based on Equation 4.2, if the input vectors applieKtare uniformly distributed (and
thusEx, = 1 for every input), the maximum entropy f&s is 1. For instance, an even
distribution of input vectors applied to an XOR functionuks in highEg; in contrast, for
an AND function,Es is low because it has 1 minterm anef/2- 1 maxterms. I fans out
to other parts of the circuit, the signal’s low entropy careldemiting factor in achieving
high switching activity in downstream logic, as indicatedBquation 4.2.\We observe
that the signal entropy can be increased by setting the Isigregther 0 or 1 (depending
on which value occurs less frequently) and then derivinghauti vector that satisfies this
condition with a SAT solver.

As a practical example of guiding simulation based on sigmatopy, consider the
impact of random simulation on an 8-bit bidirectional camts shown in Figure 4.2a.
The results indicate that after many simulation vectonsgoan stimuli do not adequately
toggle the most significant bit of the counter. We toggle thépot bit of the counter
with the smallest entropy by deriving a sequence of courgerations that flip this value
using Toggle. Figure 4.2b shows that the techniques destiibthis work achieve an
even distribution of entropy across each counter bit aftéy 800 additional simulation
vectors, while the same result requires over 10000 vectoespure random simulation

environment.
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a) entropy per counter bit in random simulation
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b) entropy per counter bit in guided simulation

Figure 4.2:The entropy of each bit for an 8-bit bidirectional counte¢ernfL00, 1000, and
10000 random simulation vectors are applied is shown ing)aRart b) shows
the entropy achieved after 100, 200, and 300 guided vecterapplied after
initially applying 100 random vectors.

4.2.2 Toggle Activity of Multiple Bits

We extend the notion of signal entropy for a single signal se&of signals that ex-
perience low activity when correlated to each other. We iiitsttify these sets of signals
as small cuts in the circuit determined by automatic nepléstitioning. We then define
a coverage metric to assess the activity along the pariiijouts that accounts for signal
correlation.

Automatic circuit partitioning. Circuit partitioning has been explored in physical place-

ment applications where net-cut minimization strategiessegally lead to smaller wire-
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length. The Fiduccia-Mattheyses (FM) min-cut partitioning algion [31] is commonly
used for circuit partitioning and runs in linear time on thetlist size per optimization
pass. Typically, only a few passes are required to achieaod partition.Furthermore,
multi-level extensions of this algorithm scale near-lig#o very large designs.

In our Toggle flow, we only need to generate a partition of timeudt once, hence
its runtime is amortized by the subsequent input generaflenpartition the circuit, we
perform recursive bisectiong., apply multiple cuts in the circuit until it is partitioned t
a desired granularity (specified by a designer). The godiisefgrocedure is to minimize
the total number of nets connecting the different partgiamile ensuring that partitions
have similar sizes. This leads to the generation of larggtipaus with few input signals,
so that the activity for a large section of logic can be deteeth by only a small set of
controlling signals.

To identify input cuts that experience low activity, we uke signal entropy defined
in Equation 4.1 to guide the partitioning objective funatioNe note that the maximum
entropyEr of a set of signal§ is bound byy o Es. After assigningss as a weight to net
s, we can employ netlist partitioning to find cuts with smallrepy. This creates partitions
with inputs whose total entropy is small, which, in turn, egps parts of the circuit that
are inadequately sensitized.

Estimating cut activity and biasing through entropy. The activity along a derived cut
can be analyzed to assess the amount of simulation coveyagadh partition. Consider

the following metric for cut activity on partitioR:

(4.3) Ag = numdiff vecg< Fy, -+, Fn>)
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wherenumdiff_vecsis the number of different value combinations that occur artifion
F’s mrinput cut. We observe that this formula does not considefriequency of certain
combinations — it only provides the number of different canaltions that is simulated.

Consider the following Boolean functidf(gn(X), hm(Y)) whereXnY = 0 andg, and
hn aren andm output functions respectively. We analyze the activitynglthe outputs of
g andh respectively using Equation 4.3. According to Equation 4igh activity would
occur if Ay = 2" (if all output combinations are possible), and likewisgjf= 2". Func-
tion F hasn+ minputs. Assuming maximum activity along the outputggandh, the
maximum activity alondg=’s input cut would be 22™. Because the activity metric does
not account for the frequency of combinations, there is sgint on whether repetitive
value combinations occur frequently fBr(gn, hm). Avoiding repetitive combinations is
desirable so that the broadest span of behavior in the tiscekplored. However, we do
know that there are at leastin(2",2™) different combinations.

We improve this coverage metric to account for repetitiMe@aombinations, so that
we can better guide our re-simulation efforts. To accounttis repetition, which we call
simulation bias, we develop a measure based on the amoumfoaiiation (entropy) as-
sociated with the signals along a partition inputs urillsimulation vectors. We compute

the entropy of as:

ocqveg ocqveg

(4.4) Ef =— K |092(T)

vec: ocqveQ#0

whereocc is the number of occurrences of a particular vestec representing a value
combination along the input cut, which is represented byréeger value. Under this

formulation, the entropy is high when there are severa¢thifit value combinations.
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Using the entropy metric we can defieeen sensitizatioformally under entropy as:

Definition 4.2.1 A set of inputs X to function F is evenly sensitizetlrifix .. o Ef = |X|

where2/X| is the number of possible input combinations along X.

When the number of possible input combinations is less thandue to limited control-
lability, the entropy corresponding to even sensitizat®log,(the number of maximum
different value combinations). Because the number of impatorsK applied during sim-
ulation is typically much smaller than the number of possibput combinations, a set of
inputs is evenly sensitized unde€rinput vectors WhEIEFK ~ K.

Considering the Boolean functidf(gn(X),hm(Y)), we can determine the maximum
entropy along the outputs of, asEé< = |X|, where|X] is the number of inputs tg. In
other words, we see that the outputs of a function can betesstsat best as evenly as its
inputs. For aeversiblecircuit, there is a one-to-one mapping between input angdudut
combinations, so that the entropy over the inputs is equahtoopy of the outputs. The

entropy for then+ minputs ofF, EX, can now be bound as follows:

(4.5) min(Eg, EfY) < Ef < ES +Ef

Unlike the metric in Equation 4.3, by using entropy we carvjte a bound to measure
how even is the sensitization Bf In other words, we encapsulate more information about
the behavior of circuit by using entropy rather than simpyrmting the number of input
vectors (we later explain how to estimate the number of pésgiput vectors so that the
maximum possible entropy is known). There is an additioealdfit to using the entropy
metric. By stimulating the partition with the smaller ergypeitherg,, or hy,, we increase

the lower-bound in Equation 4.5 for downstream logic.
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4.3 Targeted Re-simulation

Toggle uses the entropy measure previously described t@éirtd of the design with
low activity. We now introduce a SAT-based strategy thaswuaedom XOR constraints to
produce an even distribution of simulation vectors alongudition cut with low activity.
The motivation for producing an even distribution is to finorreer-case behavior, that
could not be be exposed previously without detailed knogdedf the design and the
generation of complex constraints.

Deriving a distribution of input vectors that evenly seiz&tcertain signals using a SAT
solver is challenging because state-of-the-art SAT ssldernot provide any guarantees
on the quality of the distribution. On the other hand, traireg a BDD to derive an even
distribution of input vectors as in [86] may require prolil@ amounts of memory to
represent the circuit. These challenges can be partiatlyeaded by using techniques
developed in the Al community, where a SAT solver is modifiecetenly sample the
solution space [25, 44]. However, these approaches arenpatible with DPLL-based
SAT solvers, which are often more effective in solving EDAtamces. This limitation is
partially addressed in [36], which uses randomly gener&@R constraints to modify the
SAT instance so any SAT solver can sample its solution space Bvenly. At first sight,
these techniques are not directly applicable to IC verificasince we desire to derive
input vectors that expose corner-case behavior in a cjrouitour work provides several

missing links to make this connection.

4.3.1 Random Simulation with SAT

In this section, we first discuss the theoretical underpigaihat are used in our strat-

egy to evenly sample the SAT solution space. We then propateategy to improve
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the sensitization quality of a set of signals in a circuitjlelsatisfying the circuit’s input
constraints.
Theoretical background. Consider a SAT instance witN > 1 solutions. According
to [81], it can be transformed to an instance that admits only of those\ solutions,
requiring only a randomized polynomial-time algorithmttla@ds a limited number of
XOR constraints. The algorithm succeeds in producing snahstance with probability
> 1/4. Below, we discuss an aspect of this result that is relet@our work, that is,
adding a random XOR constraint reduces the solution spaaghly by half with high
probability.

Assume that we are given a SAT instarfcevith variablesx, xo, ..., X,, and with solu-
tionsv € {0,1}". To reduce the solution space, we randomly choose an assigrahthe
variableswv; € {0,1}" and add the following constraint fo vew; = 0 in base-2 arithmetic

(wheree is the dot product). This can be expressed as follows:

(4.6) fFAX, ©X, - ©X; D)

wherei;j represents the indices &f wherew; is 1. This results in an XOR constraint
whereby an even polarity of, determined byv; needs to be assigned to 1. Alternatively,

a CNF representation can be given as:

(4.7) TA(Y1E X OXp) A (Y20 Y1OXig) A A(Yj-1E Yj-20%)A(Yj-1D 1)

where they; variables are additional auxiliary variables requiredxpress the XOR con-

straint.
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Example 1 Consider the CNF formulda+ b+ c’)(b' +d)(a + d’)(a+ c+d), where
the solutions are :{abcd} : {0001,0101,011110001010. The number of solutions
can be reduced by generating an XOR clause correspondingetoandomly generated
wp:a=0b=1c=1d=0. The resulting CNF would béa+b+c)(b+d)(a +

d)(a+c+d)(y< bac)(y® 1) where only3 solutions{0001,0111 1000} remain.

If S= represents the set of all solutionstefthen the addition ok randomwy vectors,
or equivalently ofk random XOR constraints, reduces the size of the solutionespa
~ 2K
Random simulation with SAT. Through XOR-based reductions toaique-SATU-SAT)
instance (an instance with one solution), any particularti&m! can be generated, which
is the basis for our approach for deriving an even distrdsutif simulation vectors. Based
on the results in [81], we can estimate that addingOR constraints for a CNF with
variables produces a U-SAT instance. (Since this is an agtirsome instances may have
no solutions.e., are over-constrained, and some have multiple solutiamstaihces with
no solutions are calledNSAT) Therefore, we can add multiple setsrodlifferent XOR
constraints to derive U-SAT instances where the uniquetisolsi are evenly distributed
following from the randomness of the reduction. In a cir@application where we wish
to generate random input patterns, the XOR constraints oelgdnvolve primary input
signals since the different ways to stimulate a circuit isptetely determined by the as-
signments to the primary inputs of the circuit. Consequyeiithn entire circuit is mapped
to a CNF, the XORs added will not involve internal signals émerefore they will typi-

cally only increase the size of the original instance by allamount. In principle, any

1The constraints derived from Equation 4.7 are satisfied vetmeeven number of variables in each con-
straint is assigned 1, which always permit the all-Os sofuti
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SAT solver can be used to derive solutions for this modified B&tance.

While our approach does not always produce instances withigue solution, this
happens very frequently [81]. In our strategy, if an un$atide instance is produced, we
derive another one. If an instance has multiple solutidress AT solver selects one of the
remaining solutions. Using a SAT solver, we can derive am@listribution of simula-
tion vectors as we show empirically in Section 4.4. Howeilfemne desires only a small
number of input vectors, a more efficient procedure can be tinsd requires the addition
of fewer constraints and minimizes the number of unsatifiatstances produced. For
example, consider the case where only 64 evenly distribnfad vectors are desired for
circuit C with n primary inputs where 2> 64. In this case, 6 XOR constraints can be
added to approximately reduce the solution spacéatof the original size. By adding
different random sets of 6 XOR constraints 64 times, we céinashieve an even dis-
tribution of solutions for the number of solution vectorssied, with faster simulation
runtimes as shown in Section 4.4. In general, if we d€akmulation vectors, we solve
SAT instances each with different setdof;(K) XOR constraints.

The addition of designer-specified constraints for targetiesign properties to the
original SAT instance does not affect the XOR formulatioayiously described. There-
fore, an even distribution of input vectors can be deriveat gatisfies these additional
constraints. Consider a circuit with |Sc| solutions and a circuit constrained with ad-
ditional designer-specified constrail@$ that has|Sc+| solutions. When&+| << |,
solutions that exist if}c, &;, may rarely exist insc: as illustrated in Figure 4.3a. By
adding log(K) XOR constraints, we can derivevectors&:- that are evenly distributed.

If numerous UNSAT instances occur, implying th&at> |S+|, then one can alternatively
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exhaustively enumerate all the solutions.

Addition of XOR constraint
partitions C’s solution space

|
/
d
AN
C*s sparse \
solution space \’_ D) %

I
& s

C’s original solution space

a) b) n inputs: IS¢l =2

Figure 4.3: a) XOR constraints are added to reduce the salgpace of a SAT instance
C*, which is sparser than the solution spac€ob) ComponenA is targeted
for simulation, so that iteninputs are evenly sensitized within circ@it

4.3.2 Partition-Targeted Simulation

We now propose an approach to automatically stimulatenatgrartitions while sat-
isfying input constraints.
Stimulating a component within a design.Evenly stimulating an inadequately sensitized
component by choosing certain input vectors is not stréogivard, because the relation-
ship between the distribution of stimuli on the primary itgpand on the inputs of the
component is often complex. In Figure 4.3b, we show a compoheith minput signals
that that we desire to stimulate and that is deeply buriekdardesign hierarchy. We denote
the solution space ok with respect to the input constraints g, and denot&, as the
solution space when not considering the input constraiBisapplying random vectors
to them signals and checking whether the input constraints arefatj we can evenly

stimulateA. However, limited controllability could mean that the inpmonstraints are
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rarely satisfied leading to prohibitive runtimes. To thislewe propose a new SAT-based
methodology that expands upon our circuit simulation sgain Section 4.3.1. For circuit

C and its subcircuif\, we observe the following relation between CNF formulae:

(4.8) CNF(C) = CNF(C\ A) ACNF(A)

Therefore a solution t€ implies a solution téA. Since them signals uniquely determine
every legal input combination t4, we can reduce the solution spaceSafand subse-

quentlySyc by adding XOR constraints involving the variables

(4.9) CNF(C\A) ACNF(A) A (M, &m,&---&m, &1)

This formulation reduceS, roughly in half, and since the input constraints are accsaint
for by the constrainENF(C\ A), subsequently reduc&sc in half. Although manys,
may map to one&s,,, the intention of this formulation is to generate input westthat
evenly sensitize the component, not the entire circuit.

Algorithm. Functionparti ti on_si n(), shown in Figure 4.4, generates an even dis-
tribution of simulation vectors by adding multiple randor®R constraints according to
Equation 4.9. The number of random XOR constraints addeeteshined by the number
of simulation vectorsi{umsi ns) desired. After constructing the CNF, designer-specified
constraints can be addeadd_addi t i onal _.constrs() ). Then, we add different sets
of XOR constraints for each pass of the while loop by functaid_xor _constrs().
When large XOR constraints are added, the increased cosbpégating implications on

a large set of clauses can be mitigated by (easily) addingaped data structures and

decision procedures. However, our experiments indicatedimall XOR constraints are
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most common in our application and these usually do not slowndthe SAT solver ap-

preciably. Therefore, specialized solver extensions fORX, as in [35], are unnecessary.

partition sim(Partitionpart, Circuit C, int numsimg{
numxor = log,(numsims;
CNF = constructcnf(C);
add additionalconstrsCNF);
while(numsimg{
add xor_constrsfium.xor, part, CNF);
if (SolveCNF, solution) {
add.vector&olution);
numsims— —;
}
removexor_constraintggart, CNF);
¥
}

Figure 4.4:Partition simulation algorithm.

If the instance is satisfiable, we add the new simulationoresstd decrememumsi ns.
If the solution space considered is small relatively to thenher simulation vectors ap-
plied, the SAT solver frequently derives the same simutatiector again. This can be
eliminated by adding blocking clauses to the SAT instandso Anumerous unsatisfiable
instances are produced when the number of desired sinmulaiors is similar to the size
of the solution space. We can avoid these scenarios by dstgrtae size of the solution
space as described below.
Controllability estimation with XORs. To maximize the effectiveness of our SAT-based
simulation, we seek to target poorly-sensitized regionsrelthe number of possible vec-
tors is also greater than the ones observed so far, so th&/Jubased simulation has the
potential to generate many new vectors. Ensuring this regustimating the number of
solutions for partitiorA with respect to its input constraintSxc|.

We now show how to estimate [Bxc| > (1+ A) * numdiff _vecsusing XOR con-
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straints? In other words, we use XORs to find whether less than half ofpibssible
vector combinations have already been observed along thigqes inputs. To do this,
we use the result from [37] to estimate the number of SAT smhgtwith random XOR
constraints. For instance, if the additiomodlifferent XOR constraints does not produce
an UNSAT result, we can estimate that the solution space &zef> 2%. By examin-
ing multiple sets of different XOR constraints, we can abtadunds with high accuracy,
as proved in [37]. Since we desire a lower-bound computatimhneed XOR constraints
that only involve the partition inputs, we can improve thigcegncy of [37] for our specific

circuit application.

4.4 Empirical Validation

We show that adding XOR constraints can evenly stimulatesaggdeand that Toggle
can improve activity for poorly stimulated partitions, Wehbeing considerably more effi-
cient than a guided random simulation approach. In our éxgetal evaluation, we use
MiniSAT [29] to derive simulation vectors and hMetis [46]gerform circuit partitioning.
We examine circuits from the IWLS 2005 suite [102] and coesiohly their combina-
tional portions.

Efficiently generating random stimuli with XOR constraints. In Table 4.1, we show
the results of performing our SAT-based simulation on thmary inputs of circuitalu4 .
We report the entropy, the number of different simulatioctoes @i f f si m) generated,
and the runtime in seconds. For the results ur8ker- based, we add 14 random XOR
constraints to generate U-SAT instances, until we de#isem vect or s (number of

simulation vectors). We compare this approach with randomlation and achieve com-

2ywe conside = 1 in this work.
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#sim rand SAT-based approx SAT-based

vectors| diff entropy time(s) diff entropy time(s)| #xor diff entropy time(s
sim sim sim

64| 64 1.00 <1l 63 0.99 2 6 58 0.97 <1
128 | 128 1.00 <1] 128 1.00 4 7 119 0.98 1
256 | 253 1.00 <1| 256 1.00 6 8 240 0.98 1
512 | 499 0.99 <1] 499 0.99 13 9 485 0.99 2
1024 | 991 0.99 <1} 989 0.99 260 10 968 0.99 5

Table 4.1:Generating even stimuli through random XOR constraintgtier14 inputs of
alu4. We normalize the entropy seen along the inputs by(kgimvector$, so
that 10 is the highest entropy possible.

petitively high entropy. Since many of the reductions usidgKOR constraints produce
UNSAT instances, this formulation is computationally exgige. Therefore, we show,
underappr ox SAT-based in Table 4.1, that by adding fewer XOR constraints, de-
termined by log(#simvector$, we can significantly improve the runtime of the previous
SAT-based formulation with nominal degradation to the @oyr Although random simu-
lation is sufficient for this simple example, we now show téxatn distributions of simu-
lation can be efficiently generated for internal signalslevkatisfying input constraints.
Identifying inactive parts of the circuit with Toggle. In Table 4.2, we show circuits that
are partitioned using the signal-entropy weighting oliyectising 1024 random simula-
tion vectors. After extensively experimenting with paatits of different sizes, we chose
partitions that are- 100 gates in size. Compared to partitions of larger or smaiie,
we observed empirically that this partition size most dffety balances our desire for
examining the coverage of large parts of the circuit whil@imizing the number of the
signals considered for entropy analysis and re-simula@unr results are averaged over 5

independent runs.

We show the average and worst entropy, wher® ithe maximum entropy possible
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circuit #gates| average| worst guide+32 rand+32
entropy | entropy || new comb| %entr incr| new comb| %entr incr

spi 3010 | 9.5 6.4 +26.2 2.67 +1.6 0.12
systemcdes| 3196 | 9.1 5.6 +15.0 0.48 +14.0 0.19
tv80 6847 | 8.9 1.6 +18.6 5.17 +0.8 -0.17
systemcaes| 7453 | 9.7 5.2 +26.6 1.01 +12.4 0.16
ac97ctrl 10284 | 10.0 9.5 +24.8 0.43 +21.8 0.35
ushfunct 11889 9.9 7.4 +26.4 1.10 +12.2 0.24
aescore 20277| 7.5 4.1 +17.0 2.60 +4.6 0.14
wb_conmax| 28409 | 8.8 6.2 +25.2 2.12 +3.6 0.26
ethernet 37634 | 9.9 1.6 +26.2 2.12 +1.4 0.22
desperf 94002 | 9.1 5.0 +13.4 0.55 +5.0 0.17

Table 4.2:Entropy analysis on partitioned circuits, the number of mgwut combinations
found and the percentage of entropy increase after addinmi@d input vec-
tors versus 32 random ones.

with 1024 random input vectors. The results indicate thaijerthe average entropy for
each circuit is close to 10, there is usually at least one partition that is considgrab
lower, as int v80. We can then perform simulation mainly over these few pooolyered
partitions.

Improving activity with Toggle. In the next part of Table 4.2, we assess the improvement
of our SAT-based targeted re-simulation on a partition \Wath entropy and a sufficiently
large solution space by deriving 32 additional simulatiesters. Our guided simulation
is compared to generating 32 more random vectoraew conb, we report the number
of new combinations seen at the partition inputs averaged Sundependent runs with
different random seeds, and¥@nt r i ncr we report the percentage increase in entropy
for the partition. Our approach outperforms random simulation on almost ewiecyit.
Random simulation performs poorlg,g, et her net andt v80, indicating strong bias
under random simulatiof no improvements to verification coverage for a partitioa a

possible with random simulation, the percentage incraasatropy hovers around Qur
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circuit guided+32| part.random+32| entropy
time(s) time(s) time(s)
spi 1 210 <1
systemcdes| 1 110 <1
tv80 1 time-out <1
systemcaes| 1 110 1
ac97ctrl 1 2 <1
ushfunct 1 18 <1
aescore 2 time-out 1
wb_conmax| 4 232 1
ethernet 10 107 2
desperf 20 23 2

Table 4.3:Comparing SAT-based re-simulation with random re-simaihabver a partition
for generating 32 vectors. The time-out is 10000 seconds.

approach can still re-derive some previously seen vedbortsye minimize these occur-
rences by our estimation of the partition’s solution spaoe svhich prevents re-simulation
on partitions with limited controllability. Even faac97, which is evenly sensitized by
random simulation, we see some improvements because tist-gase entropy for the
partition targeted for re-simulation is not at the maximuatue of 100.

Runtime efficiency of Toggle.In Table 4.3, we show that evenly simulating a partition
by randomly assigning values to its inputs and checking drethe primary input con-
straints are satisfied, is often much slower than using SAdlegl simulation. The results
indicate that the SAT-based simulation scales well fordaxgrcuits, in part, because the
size of the XOR constraints required is typically small camgal to the size of the circuit.
Also, our SAT-based simulation often achieves orders ofmtade runtime improvement
over random simulation, such a®_conmax andet her net . On the other hand, some
benchmarks time-out at 1000 seconds, such as fov80 andaes_cor e. These re-
sults indicate that the solution space of the partition gkated is sparse with respect to

the input constraints. We expect our technique to perforendwetter when additional
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designer-specified constraints are added, since this wattlder reduce the size of the
solution space. For completeness, the last column showsniiene of the entropy calcu-

lation in Equation 4.4. Clearly, this calculation is fastlaatales to large designs.

4.5 Concluding Remarks

Our framework shows that certain theoretical results, setlin verification and sim-
ulation previously, hold the potential to significantly imge simulation coverage. This
is done through careful feedback on coverage and biasingpot vectors to better stim-
ulate poorly-sensitized parts of the circuit. By improvitig quality of the simulation,
we can expose interesting corner-case behavior in theitcand encode it in signatures.
To achieve these goals, we have introduced 1) an entropyatettharacterize the veri-
fication coverage of internal signals and 2) a novel simoitetiamework that uses XOR
constraints to generate even distributions of stimuli e/s#étisfying complex constraints.
Our coverage metric reveals circuit regions that are inadtsdy stimulated under random
simulation. We also show that adding only a few XOR constsais often sufficient to
evenly sensitize a design. Finally, our results indicatg uided simulation can com-
pensate for coverage bias and can outperform purely randoodagion in quality and

runtime.
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CHAPTER YV

Enhancing Simulation-based Abstractions with Don’t
Cares

In this chapter, we introduce a strategy to efficiently deawnd encode don’t-care val-
ues in a bit signature using logic simulation. Using dorites facilitates more powerful
synthesis transformations as shown in Chapter VIII.

Computing don’t-cares for a node is challenging becauseda'sa@on’t-care set is
determined with respect to the primary inputs and outputs;iwve will refer to agylobal
don’t-care analysis. Table 5.1 compares our analysis andapabilities in computing
don’t-cares with previous work. One common theme amongipuevapproaches is that
they typically do not consider the entire fanin and fanoutecof a node because of the
high cost of computation; we will refer to these solutiond@=al don’t-care analysis.
In [34, 59], a solution is proposed that can exploit satigfigbdon’t-cares (SDCs), but
not observability don’t-cares (ODCs) by relying on a conalion of SAT solving and
simulation in equivalence checking. In [61, 95], ODCs aresidered, but only for a few
levels of logic in the node’s fanout cone.

In our approach, we can handle large circuits and derive 2C$Sand ODCs with
respect to the input vectors used in producing logic sigeatuTo this end, we develop a

novel approximate simulator whose performance scalearyeiith the size of the circuit.

64



Property Simulation-guided | Window-based | Local Our solution

SAT [34, 59] ODC+SDC [61] | SAT-sweep [95]
Don't-cares global SDCs local SDCs global SDCs global SDCs
computed local ODCs local ODCs global ODCs

Computational|| simulation + SAT | primarily SAT simulation + SAT | simulation + SAT
engines

Complexity SAT engine windowing levels of moving-dominator
limited by strategy downstream logid incremental SAT

(Chapter VI)
Primary verification synthesis verification verification; logic &
application physical synthesis
domain

Table 5.1:Comparisons between related techniques to expose cirauit-cares. Our so-
lution can efficiently derive both global SDCs and ODCs.

We evaluate the accuracy of our simulator both analyticailg through empirical results.

5.1 Encoding Don’t Cares in Signatures

When using signatures, there is no need to identify SDCsatpbecause impossible
input combinations are not generated during logic simotatHowever, some of the bits
in signatures do not affect the outputs of the circuit andefwee they represent ODCs. To

account for ODCs, we maintain &DC mask $ for node f in addition to its signature

Sr.

Definition 5.1.1 For input vector X, S = {X; ¢ ODC(f), ... Xx ¢ ODC(f)} denotes the
ODC mask for function f. OD{) is a set of input vectors for which node f has an

observability don’t-care.

When an input vectok; is in the setODC( f), the corresponding bit position is denoted

by a 0.
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Figure 5.1: Example of our ODC representation for a smadiuiir For clarity, we only
show ODC information for node (not shown is the downstream logic deter-
mining those don’t-cares). For the other internal nodesrepert only their
signatureS. When examining the first four simulation patterns, nbde a
candidate for merging with nodeup to ODCs. Further simulation indicates
that an ODC-enabled merger is not possible.

Figure 5.1 shows a circuit with signatures for each node amdddition, a mask for
nodec. Each ODC for a node is marked by a 0 in the ODC mask. We expnedsgic
flexibility of a given node by maintaining ampper-bound signature"Sandlower-bound
signature &. S = S¢|-(S")+, where| represents bit-wise OR, ai@f = S;&S;, where
& represents bit-wise AND.

SP andS} of nodef correspond to the range of Boolean functidf§, "] that can
implementf without modifying the circuit’s functionality because ttogyical difference
between any pair of functions withi'®, "] is a subset of th@DC(f).

After simulation generates the signatures, potentiahoigfitions can be identified. In
the example in Figure 5.1, after the first four simulatiortgrais, nodé is identified as a
candidatefor implementingc, meaning that we have a potential node merger. However,

in this example, further simulation reveals that the caatignerger is not viable because
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b andc are not compatible with respect to their last signature bitChapter VIII, we

present a node-merging application that efficiently explttiis don’t-care encoding.

5.2 Global ODC Analysis

Below we describe a simulator with linear runtime comphgxibat finds ODCs for
each node of a circuit. Generating ODC masSksfficiently is integral to maintaining
the scalability of our signature-based framework. Whileheaode’s signature can be
computed from its immediate fanin, computing each node’€CQbask often requires
analyzing its entire fanout cone.

The maskS' can be computed for each node by using Equatiort 2uthere theX; are
the random simulation vectors. This approach requiresiitisimulation of each¥; for
each circuit's node. FAdf simulation vectors and internal nodes, the time-complexity is
O(r?K).? Although the simulation can be confined to just the fanoutaoirthe node, this

approach is computationally expensive.

5.2.1 Approximate ODC Simulator

To improve upon the baseline algorithm described above, eveldped an approx-
imate ODC simulator whose complexity is on@(nK) (n is the number of nets in the
design anK is the number of simulation vectors). Our approach compite<ODCs
of one node at a time in a manner that reuses previous corigputain outline of the
algorithm for generating the masks in our approximate sitaulis shown in Figure 5.2.

The functionset _out put _S*() initializes the masks of nodes directly connected to

the input of a latch or primary output to all 1s. The nodes hemtordered and traversed

'C(a) = Uip(x)20+(x) Xi-
20(nK) time-complexity for computing the mask for each of theodes.
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genodcmask(NodedN){
setoutput S*(N);
reverselevelize(N);
for_eachnodee N {
nodeS' =0;
for_eachoutpute nodefanout{
tempS" = getlocal ODC(node outpud;
tempS" =tempS" & outputS’;
nodeS’ |=tempS’;
¥
¥
}

Figure 5.2:Efficiently generating ODC masks for each node.

in reverse topological order as generatedrieywer se | evel i ze(). The immediate
fanout of eacinode is then examined. The functiget _| ocal _ODC() performs ODC
analysis for every simulation vector foode, as defined by Equation 2%2except only
the subcircuit defined bypode andout put is considered. This local ODC mask is
bitwise-ANDed without put 's S* and is subsequently ORed witiode’s S'.

The algorithm requires only a traversal of all the nets gilsgrthe twof or _each
loops and the&K simulation vectors considered for each neget | ocal ODC() , re-
sulting in theO(nK) complexity. This algorithm enables our global ODC simuldtobe
more efficient than what can be achieved simply extendingpited observability calcula-
tions in [95] to perform global ODC analysis.

We can apply our algorithm to the circuit in Figure 5.1 to catgpthe ODCs of
nodea from the ODC information shown for node Because node has don'’t-cares
for the second and third simulation bit, nod@lso has don't-cares for those bits. When

get _| ocal _ODCis executed, the first simulation bit of nodés also a don’t-care because

30DC(a) = U; X — C(a).
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nodeb has a controlling value of O.

5.2.2 False Positives and False Negatives

Since we do not consider logic interactions that occur bseaireconvergencet is
possible for the algorithm in Figure 5.2 to incorrectly puod Os false positivesor 1s
(false negativesin S*. For the example shown in Figure 5.3, namisses a don’t-care
(false negative) in the third bit &;. Notice that nodd andc do not have any ODCs and
no local ODCs exist betweemandb or a andc, resulting in no ODCs being detected by
the approximate simulator. However, the reconvergenceoaidtream logic makes the
third value of nodea a don't-care. In a similar manner, false positives may oclug to
the interaction of multiple signals with local ODCs at a newergent node.

False positives do not affect the correctness of signajurged transformations be-
cause each transformation is formally verified by equivedechecking. However, false
negatives limit the pool of potential optimizations avhal&for resynthesis. We show em-
pirically in this chapter and in Chapter VIl that false négas and positives occur rarely

and seldom affect the results produced.

incorrect ma&k

1]0ololb >31111mask

111}
1000 ji(}om
reconvergent

entry node } Tolola
oo1of RIAK

Figure 5.3: Example of a false negative generated by oulcappate ODC simulator due
to reconvergenceS* andS are shown for all internal nodes; on8jis shown
for the primary inputs and outputs.
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5.2.3 Analysis and Approximation of ODCs

We have observed that most ODCs require only a few levelswhdtyeam logic to be
computed. Indeed, consider two nodes in a circu@ndg, wheref is in the fanin cone
of g. If X denotes the set of inputs ¢p the number ok in the ODC set off whereg is

the outputODCy( ), is given by the following:

(5.1) |ODGy(f)| = nZeroegg(f =0,X) ®g(f =1,X))

whereg is expressed as a compositionoandf.

Assuming a uniform input distribution, the probability thq € ODCy( f) is equal to

|ODGy(f)]
21X

. In other words, this gives the probability that the outpluf as a don’t-care for
input vectorX;. We offer a more insightful analysis by considering a sulb$d&oolean

functions that have simple disjunctive decompositions\8jich are defined as:

Definition 5.2.1 Function g X) (input set X) has a disjunctive decomposition if g can be

expressed as‘gh(Y),Z) where X=YUZ and0=YNZ.

In practice, many functions in a circuit can be expressedigartttive decompositions
[11, 70].
We assume thag has the disjunctive decomposition@f( f(Y),Z)* and note the fol-

lowing theorem based on Equation 5.1
Theorem 1 |ODGy(f)| = 2I¥InZeroedg:, (2) & g;(Z)).

Proof. g*(f(X),Z) can be expressed a<a- 1 input functiong*(w,Z) wherew = f(Y).

The Z-input functionsgy, andg;, correspond tay*(w = 1,Z) andg*(0,Z) respectively.

4This is always the case whdris a primary input.
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nZeroesg;, ® gy, is the number of input combinatio@swhereg;,, andgy, are equivalent
(independent ofv). SinceY is independent oF, there are ¥/ different sets of thesg;
combinations where the value wfdoes not affect the output gf O

For the disjunctive decompositiagi(f(Y),Z), the probabilityX; € ODCy(f) can be

expressed as:

nZeroes{g?,(Z)@g’; (Z))

Corollary 1 Py.copgy(f) = 27

Notice that this expression is independent of the functioh.o
We can now develop a lower bound on the probability thaas an ODC for a given

input vectorX; indicated by the following theorem:

> [nOnegg)—nZeroe$g)|
- 2lZ]+1 .

Theorem 2 Py copgy (1)

Proof. nZeroesg;, ©gy,) gives the number of input vectors whewves independent from
g (a don’t-care with respect @g). The difference in the number of minterms and maxterms
in g gives a lower bound to the number of input vectors wherg independent of. O

Note that the entropy af*(w,Z) corresponds to a lower bound of the probability of
ODCs. Functions with low entropye. high information loss, have a high percentage of
input vectors with ODCs.

Example 1. Considerf as a primary input and(X) as a|X|-input AND gate, which

has 1 minterm and® — 1 maxterms.%, given by Theorem 2, is the lower bound of
Pxcopgy(f)- IN this case, the lower bound is also the probability asrgtwe Corollary 1.
For a two-input AND, the probability i% and for five-input AND the probability i%%. If

g is implemented with a set of two-input AND gates whéris at the first logic level, we

see that the first few logic levels account for most 5fODCs.O
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In this example, we observe that most ODCs are due to only defegs of logic.
This trend is made clearer by considering the ODCd afith respect to other nodes
when f has more than one fanout. Consid@bCy, (f) andODCgy,(f). If we assume
thatgy (f(Y),A) andgx(f(Y),B) are disjoint decompositions and thanh B = 0, we can
express the probability of an ODC fdrrelative to outputg; andg, by the following

theorem:

Theorem 3 Px.copgy,, () = Pxeong, (f)Pxeopc, (1)-

Proof. According to Corollary 1Pxcopcf) is independent of the implementation tf
The probability that an ODC exists for input vecris the joint probability that there is
an ODC with respect to botty andgy. Since,A andB are independent, the two relative

probabilities are independent, which results in the abelagion. O

Example 2. If g1, 92, ... gm are n-input ANDs that are fanouts of primary input

P cODCyq,. an(F) = (52)™. As in the previous example, the probability§isfor n = 2

andm= 1. However, the addition of just one fanout significantlyr@ases this probability

to 7, forn=2andm=2.0

In this example, the presence of fanout counteracts the amésain shown earlier for
producing don’t-cares. When a circuit contains many nodids fanout, which is often
the case, the ODCs of a node are often due to the impact of diely éevels of fanout
logic.

Our approximate simulator can be inaccurate for circuith neconvergent paths be-
cause our per-node computation treats the fanout cone bfieswediate output as being

disjoint from each other. We now show why our approximateusator rarely produces
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false positives and negativedo understand the impact of reconvergent paths on the accu-
racy of our simulator, consider the functi@igs,g2), whereg: (f(y),A) andgx(f(y),B)

as beforeG represents a reconvergent node. We note the following:

Theorem 4 The probability that approximate simulation produces aroein f's ODC

setis Ryror < (1— PX;eODCgl(f)>(1_ PNEODng(f))'

Proof. If X; € ODCy, (f) andX; € ODCg,(f), thenf is not observable at the inpuB If
Xi € ODCy, () or X; € ODC,, then the inputs t& can be accurately analyzed indepen-
dently since only one of the inputs experiences an obsexdifference. An error in the
approximate simulator can only occur when neitieg ODCqy, () norX; € ODCy, (f). O
According to Example 1, there is a high probability tiias unobservable with respect
to a single node after a few levels of logic for certain comiparsed functions with low
entropy, such as ANDs and ORs. When there are few reconvengeles, with respect
to the total number of nodes in the circuit (we have obserkiedempirically), the upper-
bound forPgor becomes very small. We also showed in Example 2 the impacutiipie
outputs on the observability of node There may be nodes other thgnand g, that
fanout fromf and increasd’s observability independent of the reconvergence, redpci

the probability of error in the approximate analysis.

5.2.4 Performance of Approximate Simulator

In Table 5.2, we report the empirical data on the runtimeiefficy of our approximate
ODC simulator. The first column indicates the benchmarkesxad. The second column,

si m gives the time required to generate only signatsifer each node. We use this as

5In Section 5.2.2, we explain that false positives and negatian be tolerated in our framework.
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circuit runtime(s)
sim simodc our appro
ac97ctrl 1 6 1
aescore 2 79 1
desperf 9 410 7
ethernet 4 76 2
mem.ctrl 1 119 1
pci_bdge32 | 1 28 1
Spi 0 39 0
systemcaes| 1 48 1
systemcdes| 0 24 0
tv80 1 130 1
ushfunct 1 11 1
wb_conmax| 3 69 4

Table 5.2:Efficiency of the approximate ODC simulator.

circuit consideringx downstream levels [95]  our global

2 4 8 16 32| algorithm (s)
ac97ctrl 1.0 1.0 10 10 1.0 1.0
aescore 30 31 34 63 7.9 3.0
spi 04 05 05 18 11.2 0.4
systemcaes 2.3 24 26 119 1300. 2.3
systemcdes 0.3 0.3 0.3 0.5 0.6 0.3
tv80 22 23 26 82 363.( 2.2
ushfunct 22 23 24 28 3.3 2.2

Table 5.3:Runtime comparison between techniques from [95] and ouraglsimulation.

a baseline to assess the cost of generating masks. The dhirdre, si nodc, shows the
time required to generat® for each node using Equation 2.2. The fourth coluiun;
appr ox, shows the time to comput®* using the approximate simulator. The results
indicate that the approximate simulator’s runtime is corapke to that o6i mand is much

faster tharsi modc. These results were generated by running 2048 random dgiornula

vectors.

In Table 5.3, we compare our simulator that considers ODGsxiaynining all down-

stream logic with the implementation in [95] where a locah@@are analysis is per-
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formed per node considering only a few levels of downstrezgitl We show runtimes for
[95] as a function of downstream levels considered. Notieg¢ dur simulator accounts for
more don’t-cares while achieving better runtimes. In somauis, likesyst entaes,
considering more levels of logic is prohibitive using [9%]edto the depth of the circuit.
The runtime similarities between considering only 2 leaisl our implementation sug-
gests that the contribution of our ODC simulation is insfigaint compared to the runtime
to generate the initial signatures and parse the desigthdranore, these results show that
computing don’t-cares using a&(N?) — time algorithm can become prohibitive. When
ODC analysis needs to be performed repeatedly for eachtaitwnge, such as reliability-
guided synthesis [49], inefficient ODC computation can lbee@ significant computa-

tional bottleneck.

5.3 Concluding Remarks

In this chapter, we developed an efficient algorithm for catimy don’t-cares using
functional simulation. Our strategy scales to large ciscand can compute global don't-
cares whereas previous work is limited to examining smalledows of logic to compute
don’t-cares. By efficiently analyzing don’t-cares throaghthe circuit, we can potentially
expose more optimizations, which is especially importate in the design flow where

fewer opportunities for improvement exist.
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Part |l

Improving the Efficiency of Formal
Equivalence Checking

The results of bit signature-based circuit analysis antsframations must be verified by
formal methods to ensure correctness for all input comlmnat Generating high-quality
signatures using the techniques of the previous chaptersases the likelihood that our
the transformations suggested by our abstraction areatoHlewever, even if the abstrac-
tion is generally accurate in guiding optimizations, veatfion is still necessary and can
be prohibitively time-consuming, especially for largesidms. In this part of the disser-
tation, we propose a solution to accelerate the verificaif@ignature-based abstractions.
Chapter VI introduces a strategy to minimize the size of dggd block considered when
verifying an abstraction. In Chapter VII, we propose a palahethodology for general-
purpose SAT solving that relies on increasingly prevalealtirtcore systems as a means
to partially counteracting the increasing cost of verifygomplex optimizations in larger

designs.
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CHAPTER VI

Incremental Verification with Don’'t Cares

In previous chapters, we have introduced techniques forawipg the quality and flex-
ibility of bit signatures. These signatures can efficiemdigntify logic optimizations be-
cause of their ability to distinguish nodes with a small nemd input vectors. However,
if one desires to determine whether two nodes are equivalteen their corresponding sig-
natures are equal, a formal proof mechanism is needed td ¢hiepossible corner-case
behavior not captured by the given signatures. Therefefimimg the simulation [59] is an
important mechanism to limit the number of signatures thkely suggest equivalence,
thus minimizing the number of expensive proofs.

Additionally, incorporating observability don’t-carestd signatures introduces new
challenges to both producing high-quality simulation aredfying the correctness of the
abstraction. In this chapter, we address these challengegrbducing an incremental
verification strategy that dynamically adjusts the comipeaf the verification instance
based on the amount of downstream logic required to provieaeuace up to don’t-cares.
In Section 6.1, we outline and formalize some of the chaksnigvolved in verifying
abstractions with don't-cares. In Section 6.2, we intr@loar incremental verification

methodology, and provide concluding remarks in Section 6.3
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6.1 Verifying Signature Abstractions

Using a SAT solver to verify equivalence can be computatlpeapensive. However,
a high-quality selection of simulation vectors limits thenmber offalse positives In gen-
eral, random simulation generates signatures capablesthgiiishing two independent
random functiond andg with n inputs. In this case, the probability that the signatures
incorrectly indicate equivalenc®rror, is simply the joint probability tha; = § and

f # g. Underk input vectors this is:

1 1 1

(6.1) Perror:P<(Sf =§)N(f ;Ag)) zi(l—ﬁ)z?

wherePeror decreases exponentially Rincreases. The terrgt corresponds to the prob-
ability thatS¢ = §; for k input vectors. The term % Z—%W corresponds to the probability
that twon-input independent random functions are not equivalenefethe number of
n-input Boolean functions is?). For this case, a small number of random simulation
vectors is sufficient to distinguish nodes and avoid falsstpes.

Logic functions implemented by practical circuits exhsdituctural properties and are
often dependent on one another. We can account for this iamalysis by defining the

DIFFSET between functiorf andg.

(6.2) DIFFSET(f,g) = (ONSET f)NOFFSETg)) U (OFFSET f)NONSET(g))

whereONSET f) is the set of minterms of andOFFSETis its set of maxterms. Equiv-

alently theDIFFSET(f,g) = ONSETf ©g).

'Here we use the terfialse positiveio refer to incorrect equivalent nodes suggested becaussigha-
ture match.
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Given this, we can expre$s o for f £ g, i.e,,

DIFFSET(f,g)| > 0, as:

DIFFSET(f, K
(6.3) Perror = (1_ | 2n ( g)|)
In other words, this is the probability thgtf andS; are equal.'D'FFSZM is the fraction

of input combinations wheré andg are different. As the number & input vectors
increasesPsror decreases.

For functions encountered in practi¢®]FFSET( f, g)| is often fairly large, indicating
that random simulation would rarely produce signatureditento false positives. For
instance, OR functions havé 2 1 minterms, AND functions have 1 minterm, and XOR
functions havez%. These common associative functions can often be disshedifrom
each other quickly by simulation because they exhibit $icgmt differences.

The NOR function has only 1 minterm, as the AND function; giere a large number
of input vectorsk is needed to achieve a loRor Wwhen comparing the signatures of
AND and NOR. To reduce the size bheeded to distinguish nodesmulation refinement
[47, 59] is commonly performed through SAT-generated cexaxamples. In simulation
refinement, a miter is constructed between two nodes withhmrag signatures, and a SAT
solver attempts to satisfy its output. If a solution is foutite solution vectordynamic
simulation vectoyis applied to the circuit so that the signature of each nadhe circuit
increases to sizk+ 1. Not only does this new vector distinguish the two nodes,itbu
typically also improves the quality of the signatures intiogles’ fanin and fanout cones.

The impact of don’t-cares. When ODCs in the circuit are taken into account, more
input vectors are usually required to achieve the s&mg, betweenf andg. Given

ODC( f), we wish to check whetheycan implemenf in the circuit. To do this, we check
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if St&S; = §&S; (whereS; is the ODC mask off). In other words, we check if the
signatures of the two nodes match, after masking the doretloiéss of f. The impact on
the probability of finding a match incorrectly is formulateelow:

DIFFSET(f,g) — ODC( f
(6.4) Parior = (1| (.9) ~ 0DG(1)«

where the elements iDIFFSET(f,g) that are inODC(f) are removed. As a result,

|D'FFSET”2;?)’ODC(”| is the fraction of input combinations whefeandg haveobservable

differences. In some cases, internal nodes in the circainhat easily controllable, and
hence a larg& is needed to limiPgyor.

Limitations of previous approaches. The equivalence of two node$,andg, in a
network can be determined by constructing a miter [13] betwthem and asserting the

output to 1 as shown by the following formula:

(6.5) (F=G) & (" F(X)®&G(X) #1)

whereX is an input vector.

Since exploiting ODCs entails including downstream logezjfying ODC-based merg-
ers could require a miter on the primary outputs of the cirdtigure 2.4 shows how ODCs
can be identified for a given node in a network. In a similar nenwe can prove whether
the signatures df anda match up to ODCs. Instead of usiagin the modified circuiD*,

b is substituted fom and miters are constructed at the outputs. If the care-setrdmed
by Equation 2.1 is nuff, b matchesa. A single satisfiable solution is needed to expose

a difference betweea andb. Notice that this approach requires the entire circuit to be

?C(a) = Uip(x) £+ (x) Xi-

80



considered, resulting in large SAT instances.

6.2 Incremental Equivalence Checking up to Don’t Cares

To improve the quality of equivalency checkers, we proposeeaemental verification
framework where the size of the SAT instance is dynamicaljysted between each SAT
solver call. We only consider the smallest required logarklto determine equivalence.
Furthermore, by reusing internal data structures betwedncalls, decision heuristics
used in SAT solving [65] can be refined. Many learnt claus€} {&n also be reused
between calls to prune the search space and boost the parfoenof the SAT solver.
Our incremental strategy has an important advantage — alguive analyses that are not
critical can be aborted if their verification takes too muichet In other words, we can
use the runtime cost of verification as a factor in deterngimvhether verifying a match is

worthwhile.

6.2.1 Moving-dominator Equivalence Checker

We introduce here a SAT framework that determines equicalém the presence of
don’t-cares by considering only a small portion of dowrestndogic. Consider Figure 6.1,
whereg is a candidate node to be merged withp to don’'t-cares. If a miter is constructed
acrossf andg instead of the primary outputs as shown in part a), a set td@rdifices be-
tween f andg that results in satisfying assignments is giveniyFSET(f,g). (A
satisfying solution here indicates the non-equivalencétfe given circuit nodes.) If one
of these differences between the two nodes is observalile atimary outputs (by exam-
ining the downstream logic df), then non-equivalence that considers ODCs is proven. If

none of these differences are observable or iRhNeF SET is null, theng can be merged
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with f.

However, iff andg have a large sizBIFF SET, this could lead to a prohibitive amount
of simulation since each differencelliFFSET is propagated from nodkto the circuit’s
outputs. To reduce the size BIFFSET, we construct miters farther from the potential
merger site at nodé while minimizing the amount of downstream logic considerethe
mitered circuit. We introduce the notion ofd@minator seto define where we place the

miters.

Definition 6.2.1 The dominator set for node f is a set of nodes in the circuih ghat

every path from node f to a primary output contains a membénendominator set and
where, for each dominator member, there exists at least attefppm node f to a primary
output that contains only that member. Multiple distinctrdioator sets can exist for a

given node.

6.2.2 \Verification Algorithm

In part b) of Figure 6.1, we show miters constructed for a datar set off. Domina-
tor sets close to the source nofleesult in simpler SAT instances but potentially require
more downstream simulation to check whether the satisfggglgnments indeed prove
the equivalence of andg. We devise a strategy that dynamically moves the dominator
set closer to the primary outputs depending on the satiglgasignments generated. Our
“moving-dominator” algorithm is outlined in Figure 6.2.

The moving-dominator algorithm starts by deriving a dorntonaet that is close to the
merger site given byal cul ate.i niti al dom nator (). Then thedomSAT()

function solves an instance where miters are placed achessurrent dominator set.
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Design D

merger —_—
—candidate

merger
— candidate

a) b)

Figure 6.1: An example that shows how to prove that ngpdan implement nodé in the
circuit. a) A miter is constructed betwednandg to check for equivalence,
but it does not account for ODCs because the logic in the facmne off is
not considered. b) A dominator set can be formed in the facone off and
miters can be placed across the dominators to account forsODC

An UNSAT solution implies that the two candidate nodes ameed equivalent, and
the procedure exits. If a satisfying solution is found, itp®pagated on downstream
logic from the current dominator set. If the input vectorresponding to the satisfying
assignment does not result in an ODCfatthen nodeg cannot implement. Other-
wise, the procedure must be refined: a new dominator set ergia as determined by
cal cul at e_new.domi nat or (), which moves the miters closer to the outputs.
With each invocation of the SAT solver, we add constraintd #re particular to

the current dominator set, as well as increase the size o8#ieinstance to account
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bool odc matchg, g){
currentdom= calculateinitial_dominator();
while(dom.SAT (mitercurrentdom f, g)) == SAT){
if (simulation(satisfyingsolution)
returnfalse
¥

elsg

currentdom= calculatenew_.dominator();
}

}

return true;

}

Figure 6.2:Determining whether two nodes are equivalent up to ODCs.

for the additional downstream logic considered. When thmidator set is adjusted by
cal cul at e_new.dom nat or (), some of the constraints needed for the previous dom-
inator set are no longer relevant; we remove these conttraind add new ones to the
SAT instance. By incrementally building the SAT instanceletime the dominator set is
moved, we can reuse information learned by a SAT solver letwgeveral SAT calls.

ATPG techniques can also be substituted for the SAT-engseribed in the previous
algorithm. By placing a MUX with a dangling select input beem the two nodes in the
potential merger, we can generate test patternsifigle-stuck-at faultéSSF) on the MUX
select input. If a test pattern cannot be generated, theaneam take place because both
nodes have the same effect on the outputs. Similarly, tleeiticonsidered can be limited

by the dominator set, and a test pattern counterexampleecasdd to refine it.

6.2.3 Calculating Dominators

Using simulation, we calculate a dominator set that attsrgptinimize the amount of
downstream logic necessary to prove a merger. In generaheek the downstream logic

required to prove specific ODCs for certain input combinaiand use that to determine
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an initial dominator set. We then use counterexamples exdily the SAT solver to
refine the dominator set. Details of this approach are cdlimelow.

In Figure 2.4, ODC(f) is derived by examining observabiltlythe primary outputs.
However, by placing miters along a cut defined betwéend the primary outputs, it is
possible to calculate an ODC-set fbrODCeyt( f), whereODCet(f) C ODC(f). Previ-
ously, we defined this cut as the dominator set. An ideal datoirset would be the closest
cut to the merger site sufficient to prove equivalence. Wenddfie minimal dominator

set as follows:

Definition 6.2.2 The minimal dominator set J, for proving that g can implement f is

the closest cut to f such that DIFFSET, g) C ODCp,,,,(f).

The functioncal cul at e_i ni ti al .dom nat or () is used to calculate an initial
dominator set. We randomly select several input vecXpend generate an approximate
Dmin using Definition 6.2.2 by constructinglFFSET(f,g) andODC(f) from the X;s.
Since not all input vectors are considered, it is possild¢ tire cut obtained is an under-
approximation and that the SAT solver fails to detect edaivee. To improve the ap-
proximation,cal cul at e_.new.dom nat or () extends the cut farther frorhfor every

satisfying assignment found lojomSat () .

6.3 Concluding Remarks

We introduced an incremental verification methodology tuce the complexity of
SAT instances when verifying our signature abstractionmsceSmany ODCs occur within
few logic levels from the focus circuit node [95], ODC anadthrough even a small num-

ber of logic levels can bring significant runtime improvernsenOur dynamic approach
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finds the smallest logic window to verify a node merger thguiees ODCs and produces
counterexamples to refine signatures accordingly. In Etapters, this incremental veri-
fication algorithm is used to verify optimizations in the geace of don’t-cares, where it

outperforms equivalence checking applied at a circuiiisipry outputs.
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CHAPTER VII

Multi-threaded SAT Solving

As shown in the last chapter, our bit signature-based toamsttions rely on SAT-based
equivalence checking for validation, occasionally reagjithe solution of very complex
instances. We observe that SAT computation can be a runttledreck in our signature-
based synthesis framework. In this chapter, we propose el pavallel SAT strategy to
exploit increasingly prevalent multi-core architectynghbich feature a large shared mem-
ory and have the ability to execute several threads simedtasly. Multi-threaded SAT
solving can be used to reduce the runtime of verifying sigreaguided optimizations, so
that more powerful optimizations become practical. We wksahe theoretical underpin-
nings of our approach to SAT parallelization and how it imy@®upon previous parallel

SAT strategies.

7.1 Parallel-processing Methodologies in EDA

“Intrinsically parallel” tasks, such as multimedia proseg, may achievé\ times
speed-up by usiniyl cores (assuming that sufficient memory bandwidth is aviglabd
that cache coherency is not a bottleneck). However, cortdriahoptimization and search
problems, such as SAT-solving and integer linear progrargpare much harder to paral-

lelize. The straightforward solution — to process in paidadlifferent branches of a given
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decision — often fails miserably in practice because suahdirtes are not independent in
leading-edge solvers that rely on branch-and-backtralkk.récent “View from Berkeley”

project [7] designates these problems as one of thirteenamnputational categories for
which parallel algorithms must be developed. In this chapte propose new techniques

to parallelize state-of-the-art SAT solving.

Clients SAT

| Our Concurrent SAT Solver!
lightweight SAT

Logic

thregds/jgbs
completed
threads

| : |
| ﬁ : llelizati xoR | |
i arallelization
i Synthesis P P |
! partitioning |
T . hard | |
— .- } | instances | |
i | scheduler/ _/‘ I
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. - w ; executing |
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Figure 7.1: High-level flow of our concurrent SAT methodolodVe introduce a sched-
uler for completing a batch of SAT instances of varying coemfiyy and a
lightweight parallel strategy for handling the most comglestances.

As of 2008, most EDA frameworks are being rapidly extendechédxe use of multi-
core architectureg,e., run several cooperating threads in parallel. In particidtate-
of-the-art techniques for design optimization such as SA&eping [69, 95], SAT-based

technology mapping for FPGAs [52] and, in our case, logigmésesis require solving
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multiple SAT instances. In the case of many key EDA algorghthhe computation of these
SAT solutions constitutes their bottleneck, and solvirgnthn parallel offers a chance to
speed up a broad range of EDA tools. Shared-memory systetnsalti-core CPUs are
particularly amenable to such parallelization strategies

We first introduce a novel framework for scheduling and saunultiple instances of
hard SAT problems on shared-memory systems such as mekiggors, as illustrated in
Figure 7.1. Different client applications (such as formatlification) produce several SAT
instances which are issued to our concurrent SAT solversé imestances are put into a
priority scheduler, so that easier instances are finishet] Wihile harder ones are solved
using an XOR partitioning strategy.

The first problem we address is that of schedulinlyld8AT instances ol processors
whenM > N. Take, for example, the cabe= 1. If runtimes are known for each instance in
advance, then scheduling instances of increasing runtiraeagtees the belsatch latency
i.e,, as the sum of completion times of all instances from therbegg of the batch. In
other words, a long-running job does not delay numerousigote. Scheduling foN
processors, and withouwat priori runtime information, is more involved, and our work
is the first to address this problem. Furthermore, many egiitins generate individual
SAT instances rather than batches — the technique we prdyaosies this case as well.
The need to parallelize individual SAT instances arisesarily when no other instances
remain to be solved to keep all available cores busy. In @méwork, we parallelize the
hardest SAT instances after they have run sequentiallyoimesime.

In this chapter, we achieve two performance goals: 1) miraton of the average

latency for solving a group of SAT problems while ensuringkimaum resource utiliza-
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tion and 2) minimization of runtime for large problem instas by exploiting concurrent
resources. To reduce the average latency of a collectioAbfiisstances, we introduce a
novel scheduling algorithm that combines the benefits oéisiicing and batch schedul-
ing. We achieve a 20% average latency improvement overqus\vechniques while im-
proving resource utilization. To reduce the runtime fogserlarge instances, we consider
a novel partitioning scheme based on including additionaktraints to an instance to re-
duce the size of the search space. We exploit a theoretmalt feom [81] on randomized
polynomial-time algorithms, where adding a limited numberandom XOR constraints
to a SAT instance can reduce it from one with multiple sohgi®o one with a single
solution. We are the first to apply this result to search-spgaartitioning in multi-core
SAT solving, circumventing a major pitfall common to paehlSAT solver algorithms,
i.e,, unbalanced partitioning [89]. We further observe thatdeapace partitioning is best
performed when the random restart frequency is low, a compnololem when the initial
part of the search is conducted sequentially. We validatgarallel methodology by per-
forming extensive experiments on an eight-core system iapdave resource utilization
by 60.5% over prior work based on solver portfolios.

In Section 7.2, we analyze the issues that are at the coredigin variability of ex-
ecution for SAT solvers. Section 7.3 introduces our schiadudlgorithm for handling
multiple SAT instances of varying complexity in a paralletteng. We discuss the limita-
tions of previously proposed parallel solutions in Secfiof. In Section 7.5, we present
a partitioning strategy that provides search-space oialong with our strategy for load
balancing. We analyze the effectiveness of our approaclkeatic 7.6 and conclude in

Section 7.7.
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7.2 Runtime Variability in SAT Solving

While DPLL SAT solvers typically struggle on randomly geaied instances, most
practical SAT instances possess regular structure andecaolved much faster. However,
it has been observed that many practical instances experexponential runtime variabil-
ity [39] when using backtrack-style SAT solvers even withalgorithmic randomization.
This variability can be observed by comparing runtimes @iédent algorithms on a given
instance, and can be formalized through the notion of héaNyehavior, summarized

below.

Definition 7.2.1 For a random variable X, corresponding to the search costfpartic-
ular heuristic, a heavy-tail probability distribution ests if PrfX > x] 0 x~® as x— oo for

O<ax<?2

If the cumulative probability does not converge to 1 quickhough, the distribution ex-
hibits a heavy-tail. More specifically, the varianceXfis «, and whem < 1 the mean
is alsoco. In performance analysis of a single SAT solving algorithithwandomization,
or multiple SAT algorithms, the random varial{ecan capture the number of backtracks
required to solve a given instance. Also, since the maximumime is exponential, the
bounded heavy-tail produces variance that is actually meptal in the number of back-
tracks.

Random restarting (see Section 2.1.1), which is now extelysiised in DPLL-based
solvers and involves a worst-case polynomial number o&resstcan eliminate heavy-tail
behavior [39]. Intuitively, random restarts prevent a solirom getting stuck in a diffi-

cult part of the search space. Portfolio strategies [3&radfmilar benefits because each
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heuristic tend to explore different parts of the search sp&arthermore, each heuristic
can utilize multiple restarting strategies, which in tuamg@roduce more improvement.
Backdoor variables. We now discuss the impact blhckdoorson the performance of

branch-and-backtrack types of SAT solvers.

Definition 7.2.2 Backdoor [85] variables for a SAT instance are a set of vaealthat

under some assignment produces a sub-problem solvabldyingoial time.

For example, a backdoor may yield a residual SAT instancectra be solved by a

linear-time 2-SAT algorithm.

Definition 7.2.3 Given a Boolean formula /) and a set of variables BV, B is a
backdoor if 3Ag[Fa, € P A Fag # 0], where /& € {0,1}/Bl is an assignment to the set of

variables B.
In [85], it was observed that many common problems contamaldackdoor set

Definition 7.2.4 Given a Boolean formula ), a partial variable assignment B is a

strong backdooif VAg[Fa, € P].

There are £ combinations that need to be examined to solve an unsatésiigtiance
for a total runtime of /P (Fa,), whereP(Fa,) is the runtime of the polynomial algo-
rithm under a given assignment. Empirical evaluation ir] Bgests that many practical
problems havéB| O log(|V|) resulting in total runtime ofV |P(Fa;) if the backdoor set
is known. Although determining this set is not always comagiohally feasible, decision
heuristics such as VSIDS implicitly look for such sets aytiead to favor variable assign-

ments that lead quickly to a full evaluation of an instant®ds also explained in [85] that
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randomly generated instances tend to have consideralglgrlbackdoors, approximately
30% of|V|. The efficient determination of a backdoor, explicitly omlicitly, is often key

to the performance of a branch-and-backtrack SAT solver.

7.3 Scheduling SAT Instances of Varying Difficulty

The goal of our scheduling strategy can be formally expkssefollows: giverv
different SAT instances and afrthreaded machine, we wish to solve them in a way that

minimizes the total accumulated latency:

(7.1) min(%TC(m)) wherev;S <N

whereTe(m) is the completion time for problem, and$ is the number of instances being
solved in a particular time-slide Note, whenN = 1, this formulation considers the case
of having a single thread of execution. Ideally, the compietime T for the last instance
m; when usingN > 1 threads, should bM-times smaller than foN = 1 to fully utilize
the parallel resources.

Optimizing the objective above, subject to resource cands, can lead to a schedule
that minimizes the total latency for completing all SAT erstes. Assuming that incoming
instances are independent and equally important to solvenmzing latency is a way to
ensure that feedback is provided to as many clients as pessib timely manner. This
may unblock the largest number of clients waiting for res(see also Figure 7.1). In the
case where the runtimes for all instances are approximatglgl, optimizing the latency
objective is trivial as the problems can be solved in any iordédowever, as shown in

Figure 7.2, a block of instances can experience a wide wigrruntime. In particular, by
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analyzing the distribution of runtimes from the SAT 2003 @atition [51], which contains
several benchmark suites, we observe a bipolar trend wienebt instances either finish
in the first five minutes or timeout after 64 minutes. An optisenedule for amN-threaded
machine involves scheduling problems in increasing orfleomplexity on each thread.
Unfortunately, predicting actual runtimes beforehandas possible. However, we will

discuss strategies for mitigating this limitation latethis section.
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Figure 7.2: Number of SAT instances solved vs. time for th& 3803 collection. The
timeout is 64 minutes.

Because the distribution of runtimes is uneven, it is pdedibat, random schedul-
ing could result in some threads completing execution mdien athers, leading to poor
resource utilization. To even the execution latency acitwssads, we can leverage sched-
ulers available in most operating systems, which usualptaixtime-slicing. Through
time-slicing, problems with short runtimes finish fairlyigkly, while longer instances

tend to complete at approximately the same time.
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Our solution relies on an estimate of the distribution of 3AMtimes to predict a time
threshold beyond which the unsolved problems are likelyatehigh complexity. We also
explore other techniques which are not dependent on preglidistributions to evaluate
possible overall better latency. From Figure 7.2, we settths time threshold should
be approximately 5 minutes. Thus, for the first solving periap to the threshold time,
we perform time-sliced scheduling over all the problemtgrahat we increase the thread
priority for only N instances (wherbl is the number of threads available) so that they run
in batch mode.

To further reduce the average latency, we can lower theifyritor instances that
require large memory resources, and thus negatively impatem performance. This
was unnecessary in our experimental evaluation since stanoes we considered had

low memory profiles.
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Figure 7.3: Percentage of total restarts for each minute@tgion for a random sample
of instances from the SAT 2003 collection.

Although not implemented here, scheduling can be basedrdimre estimates gener-

ated from progress meters found in some SAT solvers [4]. ifeat priority for simpler
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instances can be increased in this manner. For examplepoieeaonsider random restart
frequency, or the percentage of restarts performed eacttenin Figure 7.3, we show
a distribution of restarts over a randomly chosen samplasifinces from the SAT 2003
collection. It reveals an exponential decay in frequendyictv can be used as a guide to
lower thread priority. When few restarts occur, there aveefeopportunities to quickly

arrive at a solution due to a better variable order.

7.4 Current Parallel SAT Solvers

Previous efforts at parallelizing algorithms for solvirgndom SAT instances have
been effective as indicated in [58], but random instanceshat common in EDA appli-
cations whose, problems exhibit structure. For such inst®n[55] represents the state
of the art, proposing a solution that exploits shared menmmnable efficient learning
between solvers running on different threads. In this eactve overview some pitfalls of
this approach and discuss some limitations of portfolive.

Search space partitioning using guiding paths, as propogé8], is limited because
the partitioning may be unbalanced. This may circumventetifiectiveness of random
restarts by forcing initial assignments to each concursehter. Addressing this problem
by undoing the initial assignments for a thread after eacbaen restart appears to under-
mine the benefits of partitioning. The partition itself mdswcagenerate sub-problems that
demand very different runtimes. Furthermore, learningveeh threads is not always an
effective means of boosting performance. As discussedij {&ingl-UIP learnt clauses
is often more effective at improving the solver’s perforro@than using minimally-sized
learnt clauses. This counter-intuitive result suggests plarallel schemes for learning,

which often use the size of learnt clauses as a filtering nmesimg are not an effective
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mechanism for boosting the performance of a particulaethm execution.

Implementing these parallelization strategies requiagsfal selection of a successful
sequential solver. Choosing a poor heuristic for parakion still leads to poor perfor-
mance, especially in a portfolio where it consistently urAalerforms compared to other
heuristics. Furthermore, the heuristics implementedemtiost successful SAT solvers are
finely-tuned, which would require much careful and time<suoming development when
porting to parallel optimizations. The slightest perturato the quality of the sequen-
tial algorithm caused by parallelization (such as excesgarning between threads) can
significantly degrade runtime performance. For exampénieg increases the size of the
clause database which, in turn, increases the cost of Boot@astraint propagation. Fur-
thermore, decision heuristics, such as VSIDS, are guiddédiying, and can therefore
be affected by it.

Portfolio solvers are advantageous because their implaten overhead is minimal
and have low risk of performing poorly on instances with hygkariable runtime. How-
ever, this approach requires that the various heuristies tdferent performance charac-
teristics on different types of instances. As larger conmgusystems become available,
it is increasingly difficult to find large collections of défent heuristics. Furthermore,
even where orders-of-magnitude improvements are possiniee instances may show no

improvement, resulting in small overall speed-up.

7.5 Solving Individual Hard Instances in Parallel

In this section, we propose an algorithmic methodologyutiizes available resources
to reduce the runtime of hard instances. We overcome thealiimms described previously

by introducing a novel approach for partitioning the seaphce, which allows for more

97



flexible random restarts. Furthermore, our approach caasiy@dopted by any state-of-

the-art DPLL-based solver.

7.5.1 Search Space Partitioning

Our technique for partitioning the search space of a SATesakiies on the inclusion
of additional XOR constraints to the instance. In this setctiwe first elaborate on the
theoretical underpinnings of adding XOR constraints amuh tiliscuss its significance in
dividing a search space approximately evenly.

Reducing the search space through XOR constraintslo partition the search space,
we extend the work for solution-space reduction that wasally presented in [81]. The
authors of [81] show that the inclusion of an XOR constrajgi G xo @ --- © % © 0) as
shown in Equation 4.6) to an instan€€V ) probabilistically reduces its solution space by
approximately half. We call the instance obtained afteiragithis constrainEeenbecause
the assignments to the variables must have even polarity to satiffye, Correspond-

ingly, we callFyqg, the instance:

(7.2) Fodd=FA(X1@®X@---®X $0)

where thex; variables are the same ashg&en {Feven Fodd} iS then a disjoint partition of

the solution space. More formally:

Definition 7.5.1 A disjoint partition exists when (1) E FevenV Fodds (2) Fevern/\ Fodd = 0,

and (3) the set of variables ¥ V is the same for dgenand Fyyg.

This partitioning generates two sub-problems that can bigiasd to different solvers.

The sub-problems can be recursively divided by adding m@&Xonstraints. As a gen-
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eralization of the result in [81], each XOR constraint praibstically divides the num-
ber of possible assignments of tkfevariables roughly in halfj.e, 2VI-1. Hence, the
constraint divides the search space approximately in pedbhabilistically balancing the
workload between different solvers addressing the twomoblems.

In practice, simply adding large XOR constraints is inaggguor reducing the search
space, because no conflict is generated until all okthariables are assigned, approxi-
mately% variables! In other words, such a constraint divides the search spaa@yev
but it is ineffective at restricting the search until aftezanly all assignments have been
made. To address this, we investigate smaller XOR constraierived from the original
complex ones, that still achieve the same theoreticaltesul

Connection between backdoors and randomized reductionsAs an example of
how we can add smaller constraints, consider a combindtoieait D with m inputs (a
more general strategy is presented in Section 7.5.2). Tiagiccan be converted to a
SAT instanceD(V) with V variables where the set of possible solutions determined by
assignments to the primary inputsNg with [M| = 2™. Therefore, the set of solutions
(Sp € 2V1) corresponds to the set of solutidds In other words, any assignmelky € 2"
results in precisely one solution. According to DefinitioB.4,M is a strong backdoor for
D(V). By restricting the set of variableg to variables inVl, we can construct a partition
that gives the same probabilistic guarantees as the orifgimaulation, but produces a
smaller XOR constraint while generating conflicts soonehdése variables are assigned
first. Namely, an XOR constraint on the variabledMrdivides the solution space roughly

in half.

LIn [81], each variable is randomly chosen to be in the XOR trairg with the probability of%.
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7.5.2 Lightweight Parallel SAT

For a general SAT instance, we can restrict XOR constramiisvblve only the typi-
cally small set of backdoor variables, where the XOR condtean cut the search space
roughly in half to 28/-1,

Multi-threaded SAT framework. For a circuit, we showed that the primary inputs can
be used to derive small XOR constraints. In the following pr@ose a more general ap-
proach that approximately determines the backdoor setr@hilas to generate small XOR
constraint. Because computing the smallest backdoor pétitly is not always feasible,
we use, as an approximation, highly ranked variables daétexrby selection heuristics
in modern DPLL-based solvers like VSIDS. Since [85] obsdyat many backdoor sets
have cardinality log(|V|), we choose; from the top log(|V|) variables to generate small
XOR constraints. To generate variable rankings, we run asier for a certain amount
of time (determined experimentally) before generating&€OR constraints.

Algorithm. In Figure 7.4, we show the pseudo-code of our algorithm uXiQ& par-
titioning to improve the performance of SAT in a parallel eamment.psat _sol ve()
is a SAT solver invoked with the CNF instanaaf), the number of random restarts af-
ter which the problem should be partitiongzhések the mode of execution (the default
mode is sequentialeq, and any initial variable assignmergssumps This allows very
simple instances to be completed sequentiallytamids the solver so that good variables
are chosen for partitioning. When partitioning is requjrae add an XOR constraint
involving the toplog(|N|) variables througladd xor _const r ai nt s() . Because the
XOR constraint is typically small, we don’t require a spéizied XOR constraint repre-

sentation as in [35]. We then spawn two threads and wait fair tlesults. Notice that
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the threaded mode uses the same infrastructure as the safjueyde with only a few
minor changes. To maintain an even division of work betwéertwo threads, we ensure
that the partitioning variablggar t _var s are ranked high (we increase their rank after
restarting). Because multiple variables are used to dne@artitioning constraint, there is
more flexibility in the search procedure than having an egaaling path. Finally, in the
DPLL_sear ch() function, we share learnt clauses between threads whenatswitcur
to facilitate quick search-space pruning (this is simi@[35]). We expect our partition-
ing to produce sub-problems with similar characteristicsreby making our inter-thread
learning more powerful. If one thread finds its instancesatisable, we do not reparti-
tion the problem. We have observed that frequent reparirtgphinders the effectiveness
of the underlying sequential algorithm. In practice, weerkes that the even partitioning
results in threads that compute for a similar amount of time.

Solution Space.ltis possible to exploit the theoretical qualities of ourtggening and
note that the number of solutions to the SAT instance undelysthould be approximately
evenly distributed. Therefore, if one sub-problem is fotode unsatisfiable, we can
estimate that the other sub-problems have none or very fewi@as. This could be used
to guide the selection of a portfolio of solvers on-the-fly.

Note that, we do not partition a SAT instance until the batabtde time threshold in
the methodology of Section 7.3 is reached. In addition, wg also partition an instance
when its restart frequency is low. This way, we reserve pelrabmputation only for
the hard problems and avoid deterministically partitigrine search space when variable
rankings change frequently. As a consequence, we can §mopii procedure in Figure

7.4 to not increase the ranking of variables chosen for thigipaing.
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bool psatsolve(CNFcnf, int passesModemod=seq, Litassumpj
static Varpart_vars,
initialize_assumps(ssump)ys
while( not.done() && (passes-— || mod=seq)){
if(mod== parallel) increaseank(art_vars);
randomrestart();
result = DPLLsearchod);
¥
if(mod== seq && notdone()X
part_vars= top_vars();
addxor_constraintsgnf, part_vars);
threadpsat solve cnf, 0, parallel, neg;
threadpsat solve cnf, 0, parallel, pos;
while(wait){
if (SAT) returnSAT,
else i{numthreads——) returnUNSAT,
}
¥
returnresult
}
bool DPLL search(Modenod) {
while (true){
propagate();
if (conflict) {
analyzeconflict();
if (top_levelconflict) returnUNSAT,

backtrack();
if(mod== parallel) parallellearnbacktrack();

}

else ifsatisfied) returr8AT;
elsedecide();

18

Figure 7.4:Parallel SAT Algorithm.
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7.6 Empirical Validation

To evaluate our new solver framework, we consider SAT 2008\@sition bench-
marks [51] from thehandmade andi ndustri al categories, both including several
suites. The runtime of each benchmark is profiled using MimiIR [29] on a four-
processor dual-core Opteron system clocked at 1GHz with B6fSmemory running
the Fedora 8 SMP OS. We set a timeout for each benchmark atré#eniand created a
distribution of runtimes over the entire suite. Our resuiticate that most benchmarks
complete in either less than one minute or over one hour. fAigislights the wide vari-
ance in runtime performance motivating our proposed metlogy. Statistics for the

benchmarks as well as runtime distributions can be foundainler 7.1 and Figure 7.2

respectively.
SAT suite | # benchmarkg #SAT | #UNSAT | #TimeOut| total time
> 64min (min)
handmade 353 48 90 215 13779
industrial 100 19 33 48 3160

Table 7.1:MiniSAT 2 results on the SAT 2003 benchmark suite.

7.6.1 Effective Scheduling of SAT Instances

We first consider an upper-bound on resource utilizatiordegeting several problems
concurrently in the ideal case where each benchmark is fpadlthe same complexity.
Here, we consider only small benchmarks from the suite ptesly analyzed and we show
how a multi-threaded machine can effectively be used sortkiateads result in approxi-
mately ann-times speed-up. This analysis, shown in Table 7.2, is witahowing that if

nindependent problems are available, the correspondingcteq speed-up is indeed pos-
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sible. The slight deviation from ideal speedups is due toselr@tion in runtime demands
from instance to instance. Below, we show our results forisgla set of instances with a

potential wide variance in runtime.

#threads| runtime(min) | speed-up
1 67 1
2 34 1.98
4 18 3.72
8 10 6.70

Table 7.2:Running MiniSAT on a set of benchmarks of similar complexigyng a varying
number of threads.

Scheduling SAT problems with varying complexity. To evaluate a parallel solving
methodology under a realistic distribution of runtimes, naedomly selected a subset of
benchmarks with a total runtime ef 32 hours, and with the distribution of Figure 7.2.
In Figure 7.5, we plot the performance of a non-ideal methmglothat schedules the
SAT problems as a batch of jobst ch nopde in an 8-threaded machine. Although the
total runtime for all the problems is approximately four rguwe note that several fast
problems are not scheduled until late in the batch. In pagrc small instances tend to
be penalized in their latency. Tha me- sl i ce node uses the operating system to
schedule threads. Notice that although several simplaniss finish early, the latency for
harder instances increases over batch mode. Irpouority node, we transition to
batch-mode by adjusting thread priorities after a timeghodd is reached. Notice that the
integral of our priority mode plot is smaller, indicatingttes overall latency. We achieve
a 20% improvement in average latency obert ch node and 29% improvement over
ti me-slice node. Figure 7.5 shows wall-clock time; however, we have obstthiat

the system time is insignificant for each strategy?(minutes). This is due, in part, to the
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Figure 7.5: The number of SAT instances solved (within threetallowed) by considering
three different scheduling schemes for an 8-threaded machDur priority
scheme gives the best average latency, which is 20% bedigo &t ch node
and 29% better thani me- sl i ce node.

efficiency of the OS scheduler along with the relatively dmmamory profile required for

the random slice of 55 instance considered.

7.6.2 Solving Individual Hard Problems

Ultimately, fast verification turn-around may require atéassolution of individual
hard SAT instances. Solvers such as SatZilla [87] try to@kfte fact that some solvers
perform better on certain classes of SAT problems than sthBy carefully assigning
different solvers to each instance, one can improve runtampared to using any one
solver. In the parallel setting, the choice can be simplibgdunning until one of them

completes. However, unlike the single-threaded portfeéicant, it is desirable that the
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improved runtime is comparable to the extra computing ressurequired. Although
super-linear runtime improvement over the runtime of M&ISs possible due to the
high variability of performance of different approachesaugiven problem instance, it
is important to achieve consistent improvements by explpiavailable computational

resources. In the following analysis, we choose a subsatstémces in the suites we

considered where MiniSAT requires significant computaieri hour).

solver portfolio MiniSAT variants || portfolio w/MiraXT || portfolio w/pMiniSAT
heuristic | # solved || heuristic | # solved|| heuristic | # solved || heuristic # solved
MiniSAT 6 || ml 3 || MIiniSAT 6 || pMiniSAT 5
MiralT 0| m2 2 || MiraXT 1 || MiralT 1
Jerusatl.3 1 m4 1 || Jerusatl.3 O || Jerusatl.3 1
marchks 0|l m5 1 || marchks 0 || marchks 0
picosat 2 || m6 2 || picosat 2 || picosat 2
rsat 0|l m7 1 || rsat 2 || rsat 1
zchaff 2 || m8 1 || zchaff 2 || zchaff 2
HaifaSat 1| m3 1 - -l - -
time(min) 321 326 335 200
speed-up 1.67 1.65 1.60 2.69
%util 20.9 20.6 20.0 33.6

Table 7.3:Hard SAT instances solved using 8 threads of computation aviportfolio of
solvers.

heuristic | # solved || heuristic | # solved
MiniSAT 7 || pMiniSat 8
picosat 2 || picosat 2
zchaff 2 || zchaff 2
Jerusatl.3 1] - -
time(min) 359 218
speed-up 1.50 2.46
%util 37.4 61.6

Table 7.4:Hard SAT instances solved using 4 threads of computatioh avportfolio of
solvers.

Table 7.3 shows the speed-up achieved by running multipledtes simultaneously
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Figure 7.6: a) The percentage of satisfiable instances wheife'st thread that completes
finds a satisfying assignment. b) The standard deviatiommtime between
threads. Using XOR constraints as opposed to splitting @n@e can sig-
nificantly improve load balance and more evenly distributieititons among
threads.

where we consider different solver portfolios. We hightigfe improvement of incor-
porating our approach in the last two columns. The totalinmatwithout parallelization
for MiniSAT (variantml in Table 7.3) is 537 min. The heuristics columns list differe
heuristics organized in a portfolio. We report the numbeharfd instances that a partic-
ular heuristic solves the fastest. The first column showslleatmn of state-of-the-art
SAT solvers. Notice that the speed-up on 8 cores is fairlyllsaha.7, meaning that only
20.9% of the 8-times ideal speed-up is realized. The third calsmows a portfolio of
different variants of MiniSAT given byr# produced by adjusting several tunable knobs
such as: restart frequency, variable decay rate, and dadiguristic. These results re-
veal similarly poor utilization where neither randomness different heuristics achieve
high utilization. We then tried running MiraXT [55] with twihreads but did not see ad-
ditional speed-up in the portfolio (one heuristic is remibW#®m the original portfolio to

account for the extra thread required by MiraXT) . Becaus@érformance is dominated
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by MiniSAT, parallelizing this solver is ineffective at ireasing utilization. Furthermore,
the results reported in [55] consider only 2-threads witktespup much less than 2. Addi-
tionally, we have observed that their heavyweight apprdacipartitioning and learning
experiences diminishing returns when considering mosatifs.

By incorporating our parallel version of MiniSApM ni SAT, discussed in Section
7.5 inthe solver portfolio, we are able to achieve signifisgpeed-up and higher utilization
of 60.5% with respect to the 8 threads of execution compared togkedolver portfolio
(pMinisat also requires 2 threads). Furthermore, in Tablewe show that our utilization
is even better when considering only 4 threads. This indgtite limitation of large solver
portfolios, illustrating that our lightweight approactr fparallelization can be beneficial

for achieving greater utilization by applying it across tiplé heuristics.

7.6.3 Partitioning Strategies

We compared our XOR-based partitioning to a partitionimgtegy with a single guid-
ing variable, a special case gfiiding path489]. In Figure 7.6, we show the effectiveness
of using XOR constraints for achieving balanced workloaw®iag threads. Figure 7.6a
shows the percentage of satisfiable problem instancesf@étiostances), where the first
thread that completes delivers at least one solution. Wepeoena single variable parti-
tioning strategy against XOR constraints of size 2 and consider parallelization using
2, 4, and 8 concurrent threads. Note that, in the 2-threael d&#9% of the threads that
finish first are satisfiable using XORs of size 4, compared tp 85% using one variable.
In general. this experiment reveals that our partitionsigiore effective at distributing
solutions. We expect even better performance in applicat@mains where the number

of solutions is much greater than the number of availablesttls of computation.
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Figure 7.7: The effectiveness of sharing learnt clauseshbpsing the most active learnt
clauses compared to the smallest learnt clauses.

Figure 7.6b shows the runtime balance between 2, 4, and &hr&Ve examined dif-
ferent partitioning strategies on a set of 29 unsatisfialelpm instances and calculated
the standard deviation of thread runtime divided by averageéme. We disabled learning
for this experiment to analyze more accurately how the $espace is partitioned. For
the single variable partitioning for two threads, the ndingal standard deviation is8b,
compared to a much smaller22 for XOR-based partitioning with 4 variables. In general,
we observe almost a 2-time improvement in the runtime dieviddetween single variable

strategy and 4 variable XOR when considering different neirslof threads.
7.6.4 Parallel Learning Strategies

We note that efforts in previous parallel learning stragedocus on minimizing com-

munication and subsequently favoring small learnt clauSke work in [55] incorporates
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all learnt clauses within a size threshold. However, adogrtb [90], the size of the clause
is not the best indicator for its effectiveness. We considiéizing VSIDS to choose learnt
clauses that more effectively prune the search space rglevahe current sub-problem
being solved. We show our results in Figure 7.7 by companvg different strategies
for sharing learnt clauses between 4 SAT solvers executipgiallel. Each SAT solver
chooses available learnt clauses ranked either by size[@&]inor by our strategy, which
uses the activity of the learnt clauses. We notice that thiiecement results in improve-

ments for most of the benchmarks considered.

7.7 Concluding Remarks

The computational complexity of SAT solving along with theatime variability ex-
hibited between different solver heuristics challengasesbf-the-art parallel algorithms.
We proposed a two-part strategy for exploiting parallelcessing more effectively, so
that more powerful SAT-based optimizations become prakti€irst, we introduced a
scheduling algorithm that incorporates the approximai@atedge of runtime distribu-
tions for a given set of SAT instances to minimize averagenia over batch scheduling
by 20%. Since several instances require prohibitive ansoofiuntime, we also proposed
a lightweight parallel SAT algorithm that effectively pigidns the search space after first
exploring part of the search space sequentially. We obdkateur partitioning results in
~ 50% better run-time balance than simply choosing one sittariable. Our strategy
enables us to improve resource utilization over solverfplos by 605%. By incorpo-
rating our partitioning strategy with different SAT solgesolver portfolios can be further
improved because the randomness vital to solve SAT inssagftieiently is better coordi-

nated.
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Part IV

Improving Logic and Physical Synthesis

In the previous chapters, we have introduced strategi@spoove bit signatures’ ability to
distinguish functionally different nodes and to verify tt@rectness of abstractions more
efficiently. We now leverage these advances to enable puoitegdic optimizations guided
by signatures. First, in Chapter VIII we introduce novelitogansformations which would
require prohibitive amounts of computation without usiignatures. Then, in Chapter IX
we use these novel transformations to enable powerful dgations in post-placement

restructuring to improve critical path delay.
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CHAPTER VIII

Signature-based Manipulations

Bit signatures provide an effective means to approximaté®sis transformations. In
addition, the ability to encode don't-care information e tsignatures enables more op-
timization opportunities for the transformations consgdk In this chapter, we introduce
two general techniques for using signatures to enable pgolvaptimizations. We first
describe a node-merging strategy that uses ODCs and ashaesa reductions of 25%
on average. Then, we discuss a goal-driven synthesis tpatnilistinct from other logic
synthesis approaches, that can efficiently determine wheatlogic implementation exists
for a topology corresponding to a desired subcircuit. Inrtéxt chapter, we leverage both

of these synthesis strategies to restructure criticalspaitier placement.

8.1 Logic Transformations through Signature Manipulations

Algorithms for logic synthesis typically operate on sompresentation of Boolean
functions that represent circuit nodes — algebraic expyasssums-of-products and other
Boolean formulas, such as BDDs, AlGs, etc. After logic sgsth, these representations
are converted back to circuits. To justify such manipulaiby proxy, one has to ensure
that any circuit-based operation is faithfully represdrig its counterpart on a given rep-

resentation. To demonstrate that signature-based atistrasatisfy this condition (where
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operations on the signatures correspond to operationseoactinal circuit), we formally
denote the assignment of a Boolean functoto a value of 0 or 1 by the homomorphism
evak, for an inputX. evalx gives a mapping of the Boolean function space for an input

vector to 0 or 1j.e, 22" — {0,1} for |X| primary inputs.

(8.1) eval (F(X;)-G(X)) = evak (F (X)) oevak (GX))

The symbol denotes any Boolean operation in the Boolean function spate— {0,1},
and symbob denotes the corresponding bit operation.

For example, if is the Boolean AND operation, theno is the bit-wise AND operation
&. The relation in Equation 8.1 indicates that, for any inpettor, evaluating the output of
a Boolean function (composed of Boolean functiénandG) is equivalent to evaluating
the outputs oF andG and applying the corresponding bit operation. By extendivig)
relation on one input vector € input vectors, we produce the following mappin?éxbe
{0,1}K, which is the signature of a function. Therefore, manipngathe signatures df
andG, S 0 S, is equivalent to generating a signaturé-ofG. The resynthesis dfl with

inputsF andG corresponds to the generation®f from S ands.

Example 2 For nodes, H, F, and G assumg S {0,1,1,0}, S ={1,1,1,0},and & =
{0,1,1,0} under 4 simulation vectors.F& s = $4 = {0,1,1,0} where& is a bitwise

AND. If evak (H) = evak (F)&evak (G) for all input vectors, H=F A G.

8.2 ODC-enhanced Node Merging

Merging equivalent circuit nodes is an effective technitueeduce the area of a logic

circuit. It scales to very large netlists, but, unlike BDBRsed techniques to determine
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equivalence, it requires non-trivial algorithms to idénpotential mergers and verify the
results. Such algorithms for node merging were first devedap the context of formal
verification to detect possible cut-points in equivalenkbeaking [34, 57]. To this end,
the work in [47, 59] uses a combination of SAT solving and datian. Candidate nodes
for merging are first selected by checking whether their atstgorrespond when stimu-
lated with random patterns applied to the design’s inputen] their actual equivalence
can be verified using SAT. The simulation is refined throughnterexamples generated
by SAT, which reduces the number of checks resulting in rquivalence. Rather than
finding equivalent nodes as a post-processing step, theiw@sR] improves equivalence
checking by merging equivalent nodes while constructirgyrtiitered circuit. However,
incremental approaches, such as [59], do not allow for thectien of ODCs because
no information about the downstream logic is maintained. SiMew that by taking into
account ODCs additional node mergers should be possible.

Because of the computational complexity involved in deigvODCs, previous work
[95] tends to emphasize local computation as a synthesimization before technology
mapping. This emphasis is well justified for AIGs, which haveuch larger number of
internal nodes, and thus possible mergers, compared toedajguits. However, our in-
tended applications are in physical synthesis, where tdogg mapping can significantly
affect circuit delay, and the placement of standard celtsusial. In this context, fewer
nodes are exposed, and one must search for additional ceme&s- not found by existing
techniques. Thus, our goal is to quickly identify nodes egeint up to global don't-cares,
efficiently verify their equivalence, and use the resultsitaplify the design structure.

Additionally, our implementation can operate on mappedgieswithout requiring costly
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netlist conversions, which otherwise lead to a loss in ptatshformation and delay es-
timates. In the following, we first explain how merger carades can be identified using

logic signatures and then provide empirical results.

8.2.1 Identifying ODC-based Node Mergers

In this section, we develop the theory involved in ODC-basede merging and de-
scribe the use of signatures to identify candidate mergers.

ODC-substitutability. Traditionally, a node merger can occur between nadad
nodeb when they are functionally equivalent. We define node merigetweera andb in

the presence of ODCs when noaless ODC-substitutabléo nodeb.

Definition 8.2.1 Node a is ODC-substitutable to node b if ONSEBJJU ODC(b) =

ONSETb) UODC(b).

Whena is ODC-substitutable tb, a merger betweemandb means thaa can be sub-
stituted forb. Because the ODCs of only one node are considered, ODCisiisility
is not symmetric ab might not be ODC substitutable &

Using signatures and ODC-masks described in the previcasteh we can define a

candidatemerger as follows:

Definition 8.2.2 Node a is a candidate for ODC-substitutability with node &ntl only if
(S2®S) € —S,. This can be re-expressed asS[g°, S, in other words, $is contained

within the range of signatures defined H§ 8nd §'.
where theC relation is defined using the signatures of two nodes:

Definition 8.2.3 §, C S, if and only if $|S; = S; where| represents bit-wise OR.
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circuit #candidates %incorrect %missed
(false positives) (false negatives)
ac97ctrl 63758 0.0 0.0
aescore 315917 0.1 0.0
desperf 296095 0.0 0.0
ethernet 8852009 0.3 0.8
mem.ctrl 867145 1.0 1.4
pci_bdge32 1158654 0.2 0.4
spi 156291 0.0 3.1
systemcaes 285189 0.2 0.2
systemcdes 5288 2.8 0.7
tv80 1348277 15 9.0
ushfunct 1685374 2.2 1.8
wb_conmax 1904773 0.0 0.0

Table 8.1:Evaluation of our approximate ODC simulator in finding noderger candi-
dates: we show the total number of candidates after gengra48 random
input patterns and report the percentage of false posgindsegatives.

Therefore, by simple application &, it can be determined thais an ODC-substitutable
candidate withb. Similar to Definition 8.2.1, ifais an ODC-substitutable candidate with
b, it does not imply thab is an ODC-substitutable candidate with

The approximate ODC analysis is capable of finding many ckates while filtering
out false positives or negatives in the ODC mask due to theoappation of the simulator.
Table 8.1 shows the number of ODC-substitutability cantisiéor all nodes in the circuit
identified by our approximate simulator and the percentdgaamrrect candidates due
to false positives% ncor r ect ) in the ODC mask and missed due to false negatives
(%m ssed). In the experiment, we generated 2048 random input patterextract the
candidates. The results indicate that several candidaistsamd that the number of false
positives and negatives is typically only a small fractidénhe opportunities identified.

Finding candidates with signatures. Constant-time complexity hashing, as in [59],

cannot be used to identify ODC-substitutability candidatg¢ere, each node needs to apply
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its mask to every other node to find potential candidates. rékelt is that forlN nodes,
finding all ODC-substitutability candidates for a desigguigesO(N2K )-time complexity,
assuming that applying a mask is @(K )-time operation. Thus, we developed a strategy
that significantly reduces computation in practice. Fiadit,of the signaturesS, in the
design are sorted by the value obtained by treating &ablt signature as a singl€-bit
number. This operation requir€{NKlogN)-time. Then, for a given node candidates
can be found by performing two binary searches v@ithand ' to obtain a lower and
upper bound on the sort&] an O(KlogN)-time operation. Searching for complemented
candidates can be accomplished by simply complemeifhand using this to derive an
upper bound. Similarhg"' must also be complemented and used to derive a lower bound.
The following equation defines the set of sighatusegthat is checked for candidacy (we

ignore the case of negation for simplicity):

(8.2) JScif num(S2) < num(S,) < num(Y)

X

wherenumrepresents thK-bit value of the signature. This set is traversed linearlijrtd

candidates according to Definition 8.2.2.

8.2.2 Empirical Validation

Experimental setup. We developed our solution and relied on a specialized SAT
engine based on MiniSAT for validating candidates. We usedom simulation patterns
to generate the initial ODC signatures. We used testbemchits from the IWLS 2005
suite [102]. Our experiments run on a Pentium-4 3.2 GHz nmechfhe ODC-based node-
merging algorithm examined each node in a circuit in oneltmgioal traversal. Each time

a merger is applied, the signatures in the fanout cone ofejplaced node could become
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inaccurate, due to different don’t care sets. Howevergessignatures are only used to find
candidates to be validated by a SAT solver, incorrect sigeatcan never lead to incorrect
mergers and updates are thus not necessary.

For the experiments on combinational simulation and edgmae checking, we extract
the combinational portion of the IWLS 2005 testbencheshémaxperiment, every internal
node with a non-empty ODC-set is examined for merging opmities; however, we
ignore mergers that increase the number of logic levelsendésign. After completing
the analysis, we check the correctness of the transfornsatising the ABC’s equivalence
checking tool [98].

Post-synthesis optimization.In this section, we show that our global ODC analysis
discovers node mergers even after synthesis optimizafgh98]. These additional re-
ductions can be easily performed in conjunction with layiafdrmation to help achieve
design closure.

To create a realistic experimental setup, we first optimtbednetlist of each circuit
by running a synthesis optimization phase in ABC [98], whiaither compressed the
designs (the original netlist was mapped to a barebone depiuf gates) The results
of this evaluation are reported in Table 8.2. The first colu#fgat es, gives the number
of gates in each design after synthesis with ABC. The secoharn gives the synthesis
optimization runtimes with theesyn2 script. We then report the number of ODC-based
mergers that we detected and applied, and the corresporetingtion in area. The final
column gives the additional runtime required by our merdgorithm. We set a timeout

of 5000s for the merger algorithm: for a few testbenches \aetred this limit and report

lWe used the esyn2 script in the ABC package, which performs local circuit riting optimization
[62].
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circuit #gates ABC(s) #merge %areseduct mergers(s
dalu 1054 0 91 12.0% 10
i2c 1055 0 30 3.2% 3
pci_spocictrl 1058 0 97 9.2% 6
C5315 1368 0 8 0.7% 2
C7552 1541 1 25 3.4% 8
s9234 1560 0 10 1.2% 8
i10 1884 1 38 1.3% 12
alu4 2559 1 469 22.9% 64
systemcdes 2655 1 111 4.7% 9
513207 2725 1 15 1.8% 17
spi 3342 1 23 1.3% 84
tv80 8279 3 606 7.1% 1445
s38417 9499 2 33 1.0% 275
systemcaes 10093 4 518 3.8% 360
s38584 11306 Y. 150 0.8% 223
memctrl 12192 5| 1797 18.0% 738
ac97ctrl 13178 3 185 2.0% 188
ushfunct 15514 5 186 1.4% 681
pci_bridge32 19872 6 82 0.1% 1134
aescore 21957 9 2144 8.6% 1620
b17 24947 6 224 1.6% 5000
wb_conmax 49236 19 2433 6.2% 5000
ethernet 67129 28 45 1.4% 5000
desperf 80218 50 3148 3.7% 5000
| average \ 4.9% \

Table 8.2:Area reductions achieved by applying the ODC merging allgoriafter ABC'’s
synthesis optimization [62]. The time-out for the algaomittwas set to 5000
seconds.
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the improvements achieved within this time. Despite the AGSed pre-optimization, we
observe that the designs can still be further optimized wighrovements of over 10% in
some cases.

Table 8.3 reports potential mergers when using don’t-ckamsthis experiment the
netlists were generated by Synopsys DesignCompiler [I#8.circuits were synthesized
with high effort and the results were mapped using the gel&fECH library. Columns
DC(s) andodc(s) give the runtime for running DesignCompiler and the nodegimer
algorithm, respectively. The runtime overhead of node mers shown by®over head
and it is small for most testbenches. The final two columns gie number of mergers
produced and the percentage of gates eliminated. Thes@sditate that even after state-
of-the-art synthesis, our node-merging application, Whga special case of our more
general proposed strategy, allows for additional areaatsmhs in many circuits.

ODC locality. We now show that several levels of downstream logic are afiesived
in proving equivalence with ODCs. Because of our efficientudation and incremental
verification technique, we can enhance the local ODC arsabf$D5] by considering node
mergers of unbounded depth.

In Table 8.4, we compare the percentage of mergers exposeglisevels of down-
stream logic, for K=1..5, against using unbounded K. Ciscuiere optimized as in the
previous experiment. The results indicate that most msrgen be detected using only a
few levels of logic. However, on average, our solution carecte25% more mergers by
not limiting the depth of logic under consideration.

To evaluate the impact aircuit unrolling on merging opportunities, we devised a spe-

cific experiment. Circuit unrolling is a key step in boundeddal checking and in finding
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circuit #gates DC(s) odc(s) %overhead #merge %gadect
pci_spocictrl 281 15 0 0 5 2.5
dalu 315 11 2 18.2 3 1.0
9234 375 23 1 4.3 0 0.5
systemcdes 437 33 0 0 9 2.5
s13207 487 44 1 2.3 3 1.0
i2c 544 17 1 5.9 8 1.8
alu4 806 18 6 33.3 23 4.1
spi 821 44 2 4.5 4 0.7
C5315 828 14 2 14.3 6 0.7
C7552 1046 17 2 11.8 24 2.4
i10 1185 18 4 22.2 17 15
aescore 1758 293 3 1 29 1.8
tv80 1953 135 15 111 16 11
pci_bridge32 2079 488 23 4.7 18 1.0
ac97ctrl 2119 284 12 4.2 35 1.7
systemcaes 2175 135 10 7.4 10 0.6
mem.ctrl 2560 258 23 8.9 19 0.8
s38417 2578 236 36 15.3 28 1.2
s38584 3922 207 20 9.7 69 1.8
ethernet 4163 3053 47 15 25 0.6
ushfunct 4718 293 44 15 36 0.8
wb_conmax 9833 885 203 22.9 122 1.3
b17 11133 1041 343 33.0 87 0.8
desperf 12685 4719 216 4.6 255 2.1

| average 10.7 1.4 \

Table 8.3:Gate reductions and performance cost of the ODC-enhancdmerging algo-
rithm when applied to circuits synthesized with DesignCdeng104] in high-
effort mode. The merging algorithm runtime is boun%tof the corresponding
runtime in DesignCompiler.

sequential don’t-care opportunities in physical syntheghis motivated us to investigate
if additional netlist compression opportunities were ke for unrolled circuits. We

expect unrolled circuits to have higher potential for noderging because of the larger
amount of combinational logic available. In the experimem¢ considered a range of
sequential designs and unrolled them between 1 and 5 titmes, for each scenario, we

compared the percentage of mergers discovered by congidenly five levels of logic
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circuit K=1 K=2 K=3 K=4 K=5 K=o
dalu 99 143 198 319 385 100
i2c 36.7 53.3 60.0 66.7 80.0 100
pcispocictrl 21.6 515 67.0 845 93.8 100
C5315 875 875 875 875 875 100
C7552 36.0 64.0 64.0 68.0 72.0 100
s9234 0 0 20.0 20.0 40.0 100
i10 158 289 605 711 86.8 100
alu4 132 269 352 426 501 100
systemcdes 26.1 38.7 604 748 86.5 100
s13207 13.3 46.7 60.0 80 93.3 100
spi 60.9 82.6 91.3 957 100 1Q0
tv80 119 234 38 49 56.3 100
s38417 12.1 545 78.8 100 100 100
systemcaes 21.6 458 705 728 739 100
s38584 17.3 553 70.7 820 853 100
memctrl 26,5 43.0 554 683 77.0 100
ac97ctrl 63.2 88.1 935 96.8 97.8 100
ushfunct 425 69.4 817 87.6 914 1Q0
pci_bridge32 45.1 549 68.3 78.0 87.8 100
aescore 9.7 154 229 316 423 100
b17 21.4 304 357 424 442 100
whb_conmax 79 165 26.0 365 485 100
ethernet 31.1 489 689 77.8 84.4 1p0
desperf 16.8 274 394 557 740 1Q0
\ average 27.0 445 57.3 66.7 746 100 \

Table 8.4:Percentage of mergers that can be detected by consideting tevels of logic,
for various K.

circuit unrolling depth

1 2 3 4 5
i2c 80.0 57.0 42.8 431 43P
pci_spocctrl 93.8 87.8 86.5 84.8 84.b
$9234 40.0 51.4 42.0 38.2 429
systemcdes 86.5 85.3 88.7 86.2 86.3
spi 100 70.7 71.7 64.6 67.p
ac97ctrl 97.8 832 64.2 46.6 38.9
| average 83.0 726 66.0 60.6 60.6]

Table 8.5:Comparison with circuit unrolling. Percentage of total gees exposed by the
local ODC algorithm (K=5) for varying unrolling depths.
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versus considering the whole unrolled netlist. As shownabl& 8.5, for a few of the
circuits, the percentage of mergers missed by local ODC cbatipn is highly affected
by the unrolling depth: the more the circuit is unrolled, tiigher the missed fraction.
An example isac97 _ct r | where, with no unrolling, only 2% of the mergers are missed,
however, with an unrolling depth of 5 the missed percentageimnes 60%. On one hand,
the local analysis has better performance (we could not shevull range of results for
all designs because of timeout conditions). On the othed haur solution presents better
flexibility to adjust to a wide range of design sizes.

Framework assessment.Table 8.6 shows the quality of our signature-based frame-
work on unoptimized circuits by assessing the effectiverésignatures in finding good
merger candidates#ner ge gives the number of mergers applied to a circuit. We then
show the number of SAT calls required to prove the correstoésach merger, along with
the corresponding percentage of those calls that confirrgatvaence (columngSAT
and%equi v). Merger candidates that required over 10 seconds to bigegbwere timed-
out, so to favor faster mergers. The colu#alyn- si mdenotes the number of dynamic
simulation vectors derived from counterexamples proviokethe SAT-based verification
engine. The final column shows how many SAT calls were prueedise of the inclusion
of the dynamic vectors.

The results indicate that, on average, almost 50% of the SNE cesult in ODC
merging. Moreover, it is clear that the use of dynamic sitioiavectors had a great
impact on this high-quality result. Reducing the number AT 8alls is key because SAT-
based equivalence checks contribute to most of the runtste Eurthermore, the dynamic

vectors added are typically much fewer than the number séfpbsitives pruned.
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circuit #merge #SAT %equiv #dyn-sim #prune
i2c 39 206 18.9% 167 36960
pci_spocictrl 170 472 36% 302 34345
alu4 697 1306 53.4% 609 273497
dalu 636 1040 61.2% 404 25808
i10 257 580 44.3% 323 22029
spi 112 557 20.1% 445 78721
systemcdes 255 287 88.9% 32 153
C5315 161 192 83.9% 31 194
C7552 340 524 64.9% 184 107665
s9234 821 1959 41.9% 1138 514875
tv80 658 1781 36.9% 1117 832861
systemcaes 658 750 87.7% 88 8852
s13207 300 1007 29.8% 707 2208345
ac97ctrl 80 256 31.3% 176 26803
memctrl 2758 4356 63.3% 1580 2710614
ushfunct 246 1739 14.1% 1493 1206172
pci_bridge32 158 1189 13.3% 1031 295101
s38584 2253 3610 62.4% 1357 3487613
aescore 2072 2317 89.4% 245 2205
s38417 636 2416 26.3% 1780 11544973
wb_conmax 2313 5068 45.6% 2755 441002
b17 614 3588 17.1% 2974 21984143
ethernet 370 2084 17.8% 1509 2979472
desperf 2505 2614 95.8% 109 1198

| average 47.7% \

Table 8.6:Statistics for the ODC merging algorithm on unsynthesizeclids. The table
reports the SAT success rate in validating merger candidate the number
of SAT calls that could be avoided because of the use of dymamiulation
vectors.
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8.3 Determining Logic Feasibility with Signatures

In the previous section, we showed that finding equivaledesaon a circuit may lead
to significant area reductions. In this section, we intredagoal-driven synthesis strat-
egy that can efficiently find a gate-level logic implemermatfor a given function. The
strategy can be applied in logic resynthesis to transforouitiblocks so to optimize one
or more physical parameters.§, area, timing, etc). In the next chapter, we will apply this
technique in building circuit structures optimized for thg delay. To express our goal
more formally, we assume to have a subcircuit witthputs,{as, a, ...,am} and outpuf
to resynthesize, and we want to find several restructurihgisas that we can then eval-
uate based on their parameters. We represent the inputracuibeis a directed graph:
with mincoming edges, one outgoing edgeandn internal vertices. Our goal is to deter-
mine whether there is a labelin@;, of n vertices with gateg € G, such thaf is logically
equivalent to the subcircuit that implemeiits with respect to the outputs of the circuit.
In defining the data structures necessary to achieve ouy@gedkeverage a few previous
works. In particular, in [93]sets of pairs of functions to be distinguish@PFDs) are
introduced as a way of representing a node’s functionalltyctv can be used to exploit
circuit flexibility in logic optimization. In [77], the autbrs propose a technique that uses
SPFDs to find a logic implementation given a topological t@mst, but their resynthesis
approach does not incorporate physical parameters su@miag &nd is limited to only
a few neighboring levels of logic to reduce the memory andmatational requirements
of SPFDs. In an alternative strategy to reduce the memonyineagents of SPFDs, the
authors in [94] choose a subset of SPFDs for a node using &iiomiland compatibility

don’t-cares in a logic rewriting application.
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Because we efficiently encode global circuit don’t-cares,are not limited by levels
of logic or required to have don’t-cares that are compatiBlerthermore, our approach
encodes the distinguishing bits in a compact data struetitrelogic signatures so that
these operations can also be performed with bitwise pésalie This is particularly bene-
ficial in our development of a novel goal-driven synthesthteque where fast evaluation
of topological constraints is essential to tightly couple/gical optimization and logic
synthesis.

We now define several properties for grahthat is the input to our strategy. We

define thdogic feasibilityof the graphlg as:

Definition 8.3.1 Tg is logically feasible iHc-ONSETTgec) = ONSETF).

whereONSETis the set of input combinations for which the subcircuitdaroes 1 in
output. This definition can be relaxed by considering itatieh within the care-set which

could be considerably smaller thafi,2lue to controllability and observability don’t-cares.

Definition 8.3.2 T is logically feasible up to circuit don’t-cares Hg-ONSET Tgc) U

DC(F) = ONSETF) UDC(F).

whereDC is the don’t-care set.

A naive algorithm for determining the logic feasibility @ requires that every possi-
ble labelingG* is evaluated. Fom vertices, this requires checkif@|" labelings. If the set
of two-input logic functions is considered, there afddbelings? Furthermore, perform-

ing equivalence checking betweekt(Te ) andTg is an NP-complete problem. Below, we

2Although there are 16 different functions in the two-inpuidBean function space over a switching
algebra, the tautology and two one-variable identity fions along with the negated form of each function
do not need to be explicitly considered.
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discuss how signatures can be used to determine a minimefl sgtuts that implements
a given function and how this can be extended to quickly dates logic feasibility up to
the signature approximation.

Pairs of bits to be distinguished.
Definition 8.3.3 A function F is said to be dependent on an inpufaF,—o @ Fa—1 # 0.

A similar relationship between the signat@eof the functionF and input signatures
S, ..., Sn can be established. In [19] it was observed that a set of isjgmiatures can
implement a target signature if and only if every pair of eiéint bits inSs is distinguished

by at least one of the input signatui®s

Definition 8.3.4 A pair of bits to be distinguished (PBD) is an unordered pdirmalices
{i, i} suchthat $(i) # S=(j).

Definition 8.3.5 A candidate signature,,Sdistinguishes a PBD inSif Sy(i) # Sn(j)

where{i, j} € SEBP where $BPis F’s set of PBDs.

Example 3. Assume a target sign&; = {0,0,1,1} and candidate§; = {0,0,0,1},
$=1{0,1,0,1}, andS3 = {0,1,1,1}. The PBDs ofS: that need to be distinguished are
{0,2},{0,3},{1,2},{1,3}. Note thatS; andS, together cannot impleme®: because
they do not distinguisf0,2}. However, if allSy are used, then all the bit pairs can be
distinguished and it is possible to construct a functiont gemerate$s: from theS. In

this exampleéss = S3- (S19S). O

Essential PBDs. Input signatures form an irredundant coverSgfs PBDs when 1)
every PBD is covered by at least o§eand 2) removing on& results in at least one

uncovered PBD. The resultirtg form the support of the function to be resynthesized.
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Definition 8.3.6 A PBD that is distinguished by only ongiSanessentiaPBD for S.

According to the definition of an irredundant cover and PB&s;hS must have at least
one essential PBD (or else that input can be discarded). uBecthere is at least one
essential PBD for each inpu; is dependent ofyj, independently of its implementation,

if the following condition holds:

(8.3) JiSr(5=0 O F(5=1 =1

In the case of functiof (ay, ..., an) resynthesis, we note that the cardinality of the irre-
dundant cover can be less tham becausd= may be independent of an inpat up to
don’t-cares and the signature abstraction might not exass#ficient number of essential
PBDs. Furthermore, several irredundant covers are pessibl this paper, we greed-
ily determine irredundant covers by first selecting sigregithat cover most PBDs and
continuing until all PBDs are covered.

Determining logic feasibility with essential PBDs.We now describe how the logic
feasibility of a given topology can be determined simplyngssignatures. In the next
chapter, we study how to create such topologies and how ftify ke corresponding
signature-based abstraction. Our strategy assumes thaardet library consists of all
two-input logic gates, so that each nateas exactly two input edges (although the initial
subcircuit can be mapped into any cells). In general, we doastrict our topologies to
befanout-freetrees (a topology is fanout-free if each nadimm T has only one outgoing
edge).

Note, however, fanout-free topologies form a critical a&$pe our goal-driven syn-

thesis strategy because, under two assumptions, they ggaiicuits with optimal area
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and timingif such a fanout-free circuit existgirst, we assume that each gate in the li-
brary requires the same area. Second, we assume that tlyethielagh the subcircuit
is solely determined by its path length, that is, we assuraedhch wire is optimally
buffered. With these assumptions, fanout-free topoldgae® smaller area than their non-
fanout free counterpartwhen implementing a single-output functibecause they have
fewer internal nodesii— 1 nodes). Furthermore, fanout-free topologies have the gam
smaller delay as non-fanout free trees. The proof of thisraghtforward because if a
non-fanout free topology has optimal delay based on patittheconverting this topology
to a fanout-free tree by removing edges and nodes does neas&path length.

In the next few paragraphs, we introduce an algorithm foemheining logical feasibil-
ity on fanout-free circuits where each primary input hasg/ame outgoing edgg, which
can be uniquely defined by &d(|SEBP| + m)-time algorithm using signatures. Because
logic feasibility is not always possible for a fanout-freed that optimizes a particular
performance criterion, we extend our synthesis techniqodsgandle arbitrary non-tree
topologies.

First, we associate a signatugeto each input ofl¢. If we assume that eack under
simulation distinguishes at least one essential PBD, we ti& following for each two-

input gate in a fanout-free topology:

Theorem 5 Given input signaturesi$ S, and the two-input functio®, the signature,

S12 = P(S,S) has all the essential PBDs of &nd $.

Proof. Any cut throughTg gives a set of inputs that implemeriis Therefore, the PDBs
of S¢ must be distinguished by each cutdkt(Tg) for any feasible topology. Since in a

fanout-free tree$; andS, do not reoccur in the topology, the output of the node conmigini
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S andS,, Sy, must contain their essential PBDs to distingussh O

As a direct consequence, each two-input transformaticsepves at least two essential
PBDs. Furthermore, PBDs that only occur in b&handS, must also be preserved to
uphold the invariant that every cut through the topologyreran input supportin a
similar manner, the work in [77] upholds this invariant imnetructing a subcircuit but
considers SPFDs.€., sets of pairs of functions to be distinguished) insté&d.note the

following:

Theorem 6 Given two input signatures where each one has at least orenessPBD,
there are at most two two-input Boolean functions (ignonegated version of these func-

tions) that can preserve all the essential PBDs.

Proof. A two-input Boolean function has a 4 row truth table with autt@ or 1. One

essential PBD adds the following constraint:

(8.4) [®(a,b) =Z A [®(d,b) =Z]

wherea, b, andz are variables with value 0 or 1. In other words, two distiraws of
the truth table must have different values. For a gimemdb where an essential PBD is
defined, there are only 2 such assignmentsttat satisfy this constraint. The remaining
2 rows in the truth table can have any of 4 possible output @oations. Therefore, there
is a total of 8 different functions that satisfy this constta\We ignore negated versions
of the Boolean function since that negation can be propdgatthe inputs of later gates.
Given this, there are 4 distinct functions that can presene essential PBD. However,

since two essential PBDs must be preserved, the followingtcaint needs to be satisfied:
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(8.5) [®(a,b) =Z A [®(&,b) =Z]A[®(d,e) =y A[D(d,€) =V]

If {(a,b),(a,b)} is disjoint from{(d,e), (d,€)}, there are only 4 possible output combi-
nations ofz andy that satisfy the constraints, where 2 of them are the nedatad This
is also the case if(a,b),(a/,b)} is not disjoint from{(d,e), (d,€)} (it is impossible for
two different functions to have essential PBDs on the sanwerows). Therefore, there
are at most only 2 distinct Boolean functions that can pxestre essential PBDs of its
inputs.O

If the fanout-free tree is traversed in topological orderhaice between two different
two-input gates is available for each node. In the worst,cagossible combinations
must be evaluated to preserve all the essential PBDs, g@mesn O(|S£BP|2™)-time
complexity (there aren— 1 nodes) for the final algorithm. For the typically small tapo
gies that are considered for resynthesizing portions ofctiteeal paths, this result is a
significant practical runtime improvement over trying alsgible gate combinations with-
out considering PBDs. Moreover, we note that in many casesuhtime complexity is

linear.
Theorem 7 Consider the following assumptions.

1. Tr is an m-input fanout-free tree.

2. The m-input function F is completely specified pyuSder simulation.

Under these conditions, the logical feasibility gfdan be determined in @8:5P)] xm)

time in the worst case.
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Proof. A fanout-free topology specifies a disjoint partition of timputs. If an imple-
mentation exists with a disjoint partitioning of inputschanternal node corresponds to
a function that is specified independently of the rest of thplementation. Therefore,
when the signatures completely spedify(a complete truth table), each internal node is
also completely specified. Because of this, each two-inpetaiion must preserve at
least 3 essential PBDs (the minimal number of distinguighiits a two-input function
can have) and therefore only one function satisfies thisioelaBecause there is only one
such candidate function, the complexity of finding an impgesation iSO(|SEEP| +m). O

Although we often resynthesize functions with small supgand therefore small truth
tables, a logic signature does not always completely spadiinction’s behavior resulting
in a reduction in the number of bits that need to be distifgrds Also, the ability of
simulation to quickly identify circuit don't-cares furtheeduces the number of bits that
need to be distinguished. By not having a completely specftiaction, we facilitate
multiple feasible implementations. Despite the advardagéhis flexibility in determining
a feasible implementation, an internal two-input operativay only need to preserve 2
essential PBDs rather than 3, which can increase the runfifiredling an implementation.
However, in practice, this runtime penalty is minor becaitigetopologies are typically
small. Also, in many cases logical feasibility can still germined irO(|S2BP| + m) time
depending on which bits need to be distinguished.

Although we work with a functionally complete set of two-irtates, our approach is
capable of targeting any standard-cell library. This iselbg allowing topologies where
each node can have more than two incoming edges. For a catypdpiecified fanout-free

tree, we still only require a linear traversal to discoveettter a logically feasible imple-
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mentation exists. Alternatively, after first decomposihg implementation to two-input
gates (where this decomposition already improves the palysharacteristics), further
improvement by applying technology mapping using largéiseceay be possible.

In some cases the optimal topology with respect to a givefopeance goal is not
logically feasible. Furthermore, some very common funisuch as the multiplexor
function cannot be implemented using a fanout-free topolddherefore, a viable tech-
nique must handle a broader family of topologies. We theeettescribe how essential
PBDs can be used to guide synthesis for non-tree topolodieserneach operation pre-
serves at least one of its inputs’ essential PBDs. Thisifatgk reconvergence and the

implementation of useful functions including multiplespas shown below.
Theorem 8 Consider a logic circuit with the following conditions:

1. Atleast one input to each node in the circuit does not fatmanother node at the

same or greater logic levél.

2. The only implementations considered are those wheradhatsires along each cut

through the topology form an irredundant cover.

Under these conditions, the logical feasibility of an n-addpology F can be deter-

mined in Q{|SEBP| x 3M) time.

Proof. By traversing the graph in topological order, note that ast®ne essential PBD is

transferred to the output. Also, when the implementatiosasansidered are those where

3The logic level of a node is determined by the path from theertodhe primary inputs with the greatest
number of edges.

“4In general, a topology may have an implementation with rednh covers. However, we focus on
implementations that do not use this redundancy to improeefficiency of our approach.
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the signatures along each cut of the topology form an irrddohcover, each signature
along the cut has at least one essential PBD. The constmiBtpuation 8.4 suggest that
there are four distinct two-input functions that preserxie essential PBD. However, one
of these functions will correspond to the 1 input identitgdtion,i.e., a buffer (or inverter
in the negated case). Ignoring this case, there are threedaistinct functions can be tried
at each node, which requires no more thdnt&al gate combinations to determine logic
feasibility. O

Handling arbitrary topologies with no implementation cioamts requires more com-
putation where 8 gate combinations are examined. However, in practice, pprcach
is faster than the naive enumeration described at the hiegiof the section because the
operations are performed on the signatures, not over théevituth table. Also, essential
PBDs can still significantly prune the search space. Eacimest still cover all of the
PBDs. If an edge from internal node or primary input does ppear past a certain logic

level in the topology, its signature’s essential PBDs megpiteserved across that level.

8.4 Concluding Remarks

We introduced two techniques that can enable powerful ggloptimizations using
global don’t-cares, which is critical for post-placemeptimization where less design
flexibility exists. We first presented a node-merging strategy that can operateig on
mapped netlists. Unlike the work in [95], our techniquesspeer global ODCs, which
are successfully evaluated against logic synthesis wamsitions. By exploiting global
don’t-cares, we identify several node mergers even aftensive synthesis optimizations,
resulting in up to 23% area reduction. Furthermore, ourrieghes are not restricted to

mapped circuits and can be used directly on AlGs in sequev@rdication applications.
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In this context, global ODC analysis becomes more impotianause of the greater depth
in unrolled circuits.

Finally, we introduced a novel, goal-driven synthesistetyg that quickly finds logic
implementations for arbitrary topologies. In the next degpwe demonstrate the effec-
tiveness of this approach by targeting a critical path dedmuction optimization goal.
This synthesis approach coupled with node merging enalgagisant optimizations in

the physical domain.
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CHAPTER IX

Path-based Physical Resynthesis using Functional
Simulation

In this chapter, we apply the scalable simulation-baseddrork developed through-
out this dissertation to the physical synthesis domain. driigular, we introduce (1) a
novel criterion, based on path monotonicity, that idergifieose interconnects amenable
to optimization through logic restructuring and (2) a swsis algorithm relying on logic
simulation and placement information to identify placeti@rcuits that hold promise for
interconnect reduction. Experiments indicate that ounnegues find optimization oppor-
tunities and improve interconnect delay by 2% on average, at less than 2% wirelength
and area overhead.

As mentioned in [10], many critical paths cannot be improtl@@ugh cell reloca-
tion and better timing-driven placement. Furthermore,itldcuracy of timing estimates
before detailed placement limits the effectiveness ofrigpies from [40] in eliminating
path non-monotonicity. We target these non-monotone dath®synthesis by generat-
ing different logic topologies that improve circuit delaWe use the synthesis strategy
introduced in Chapter VIII to efficiently determine whetladogic implementation for the
desired topology is possible.

In the example of Figure 9.1, we suggest that by applying ethrtique, a subcircuit
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with a long critical path can be transformed to a functionaltjuivalent subcircuit with

smaller critical path delay. Unlike most techniques fromgidosynthesis, the circuit re-
structuring can work directly on mapped circuits with coexpstandard cells. Compared
to work in [84], our approach exploits global don’t-caregtiance logic restructuring. In
[53], redundancy addition and removal (RAR) are used to aw@rcircuit timing. How-

ever, these rewiring techniques consider only a subset ofransformations, where we
use redundancy and physical information in conjunctioniteatly guide the resynthesis

of subcircuits containing multiple cells.

shortened

critical path and
more routable

layout

F = ((AC)B)D @} F = (AD)(BC)

Figure 9.1: The resynthesis of a non-monotone path can peocwch shorter critical
paths and improve routability.

Our experiments indicate that large circuits often contaamy long critical paths that
can be effectively targeted with restructuring. Improvihgse paths results in consistent
delay improvements, of 17% on average, with minimal degradation to other perforraanc
parameters. Furthermore, we achieve almost twice the dalayvement of that achieved
by RAR-based timing optimizations. Our techniques are dast scale to large designs,
whereas completely characterizing node functionalitthvBDDs would require a pro-
hibitive memory footprint.

In Section 9.1, we introduce our interconnect optimizattrategy. In Section 9.2,
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we propose a metric for finding circuit paths that requirdreesuring. Section 9.3 and
9.4 integrate these innovations in a novel physically-avsmthesis approach that uses

simulation. Empirical evaluation is presented in Sectidn 9
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Figure 9.2: Improving delay through logic restructuring.olur solution, we first identify
the most promising regions for improvements, and then weugsire them
to improve delay. Such netlist transformations includeegabning, but are
also substantially more general. They do not require fotrdmesformed sub-
circuits to be equivalent to the original one. Instead, theg simulation and
satisfiability to ensure that the entire circuit remainsiegjent to the original.

9.1 Logic Restructuring for Timing Applications

We introduce a logic resynthesis approach that accountghgsical aspects of per-
formance optimization, by leveraging our simulation-lthf@mework discussed in the
previous chapters. We illustrate the approach in Figure Starting from a fully placed
circuit, we identify critical paths using static timing dysis. We then apply a novel metric,
introduced in Section 9.2, that selects subcircuits forchhogic restructuring could pro-
vide the greatestimprovements. We restructure thesersuiisiusing bit signatures along
with physical constraints, to derive a topology that is éadjly equivalent to the original

one but exhibits better performance. Finally, we legallze altered placement and up-
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date the timing information. Beside timing improvementss technique could can target
other objectives as well, such as wirelength reductionngysignatures for restructuring
applications is advantageous because signatures carraainternal nodes for netlists
mapped to standard cells as well as for technology-indegr@nektlists. In contrast, other
logic rewriting strategies, such as the one in [62], canmpatrate on technology-mapped

circuits and do not take physical information into account.

9.2 Identifying Non-monotone Paths

To maximize the effectiveness of our post-placement ogtitions, we target parts
of the design with critical timing constraints that are amdae to restructuring. In this
section, we introduce our fast dynamic programming (DPprtlgm for finding non-
monotonepaths,i.e., paths that are not of minimal length. Unlike the work in [10&t
considers only paths with two wire segments, we considdrspat arbitrary lengths and
can scale to many more segments in practice. We propose twelsior computing path
monotonicity: (1) wirelength-based and (2) delay-basedndsonotonic paths indicate

regions where interconnect and/or delay may be reduced &tygbacement optimization.

9.2.1 Path Monotonicity

First, static timing analysis is performed to enable ouagdiased monotonicity cal-
culation and identify critical and near-critical paths. W& a timing analyzer whose in-
terconnect delay calculation is based on Steiner-treddgjes produced by FLUTE [23]
and the D2M delay metric [6] that is known to be more accufze Elmore delay. Before

focusing on critical paths, we describe a general apprdattekamines the monotonicity

Timing-driven Steiner trees can be easily used too [5].
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inputs

Nodes: netlist

Dist: length of paths considered
output

NMF: NMF between each node
genNMF(Nodesnodes DistK) {

levelizefodes;

for _eachnodele nodes{

for _eachnode2¢< rangefodel+ 1, nodel+ K)
c_ideal array[nodelnode2 = c_ideal(odel node3;
¥

for _eachnodele nodes{
subtof] =
for _eachnode2¢ rangefiodelsucc nodelsucct K) {
subtofnodelnode2 = maxcubtofnodelnode2pred
+ c(node2pred, nodel);
factor = subtofnodelnode? / c_ideal array[nodelnode2;
NMF[nodelnode2 = factor,
}
}
}

Figure 9.3:Computing the non-monotone factor fohop paths.
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Figure 9.4: Calculating the non-monotone factor for pgdhh}. The matrix shows sub-
computations that are performed while executing the algorin Figure 9.3.
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of every path. We define theon-monotone factor (NMHpr the path{xy,...,x} with
respect to a given cost metric (such as wirelength or dekajglbows:

k—1

C(Xn, Xn+1)
1

9.1) R R AP

wherec(a,b) defines the actualostbetweena andb andcigea(a,b) defines an optimal
cost. WhenNMF = 1, the path is monotone under the cost metric. We explore two
definitions for cost, one based on rectilinear distance badther on delay.

In the former caseg(a, b) is the rectilinear distance between @etindb while Cigeq(a, b)
is the optimal rectilinear distance assuming a monotonib.p&or the delay-based def-
inition, c(a,b) is the AT(b) — AT(a), whereAT is arrival time. We defin€igea as the
delay of an optimally buffered path betweaandb as described by [67] and given by the

following formula:

(9.2) Cideal(a, b) = dist(a, b) (RyutC + RGout + v/ 2RouCputRC)

whereR andC are the wire resistance and capacitance, respectivelyRandandCyy s
are the intrinsic resistance and input capacitance of tiferisudist(a, b) is the rectilinear
distance between andb. Unlike the distance calculation where the ideal path lengt
betweera andb can be equal to the actual path length, the optimal buffeiiesl vetween
aandb has delay< AT(b) — AT(a). We only attempt to optimize paths with large non-

monotone factors.

9.2.2 Calculating Non-monotone Factors

We now present our algorithm for calculating the NMF oflatiop paths in a circuit,

for a givenk > 2. Our experiments reveal the existence of high NMFs on esfatively
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short paths, which is advantageous since optimizationk@setsmaller paths often mean
fewer perturbations to the existing placement while sigaiit performance benefits are
achieved.

2-hop non-monotonic path topology construction with signatures and

physical constraints
AT(A) > AT(B), AT(C)

A resynthesize F A F
0011 0001 0011 find 0001
1001 optimal
pl= topology
fanout 1011 fanout
C 0011

1011 C 0011
duplicate logic for other
\ outputs in subcircuit
signatures indicate reduced critical

functional correctness path delay

0001
Am
0011

B
1001

1001 :>

verify with SAT and
1011 legalize solution

C

Figure 9.5: Our flow for restructuring non-monotone intencect. We extract a subcir-
cuit selected by our non-monotone metric and search fanatiee equivalent
topologies using simulation. The new implementations hem tconsidered
based on the improvement they bring and verified to be eanvabith an
incremental SAT solver.

The non-monotone factor can be efficiently computed foryepaith using éO(nk)-
time algorithm forn nodes in the circuit, as shown in Figure 9.3. First, the dirisu
levelized. Thengigeal is computed for node pairings with a connecting patkidf hops,

and the values are stored mi deal _array. All pairs are traversed again, and the

subt ot is generated by computing the maximum cost freadel to node2 through
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Figure 9.6: Extracting a subcircuit for resynthesis fronoaimonotone path.

a recurrence relation. The NMF is computed for the subpgtbdel, node2}, by
dividing the total costsubt ot , byc_i deal [ nodel, node2] . In Figure 9.4, we show
an example computation on a subcircuit being traversedyubliemgen_NVF() function
wherek = 3 and the curremtodel isd. The matrix indicates the NMFs already computed
with #, and nodes not lying on the same path withBecause we traverse the graph in
levelized ordera, b,c have already been examined. Notice, that nodes that areefart
thank hops away are not examined (indicatedkoyn the matrix). For nodel, the non-
monotone factor is computed for pafd, h} by determining all the incoming sub-paths
to h first. In this example{d,h} has the highest NMF if rectilinear distance is the cost

function.
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AT(c) > AT(a) > AT(b)
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Figure 9.7: Signatures and topology constraints guidecloggtructuring to improve criti-
cal path delay. The figure shows the signatures for the immdwutput of the
topology to be derived. Each table represents the PBDs afutjgutF that
are distinguished. The topology that connexctandb directly with a gate is
infeasible because it does not preserve essential PBBswdb. A feasible
topology use® andc, followed bya.
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9.3 Physically-aware Logic Restructuring

We optimize the subcircuits that are identified by the patmotonicity metric as il-
lustrated in Figure 9.5. We first select a region of logic dateed by the non-monotone
path for resynthesis. We then use signatures to find an atteenmplementation with a
topology that improves physical parameters and that itgeckdly equivalent to the orig-
inal implementation (up to the signatures). This impleraganh is then formally verified
by performing SAT-based equivalence checking betweenrigeal and new netlists.

Previous work on improving path monotonicity used logicliegiion [42]. However,
the technique is restricted to the topology of the extrast@ocircuit, and its optimiza-
tion is independent of the subcircuit’s functionality. th@rmore, as observed in [42], cell
relocation sometimes cannot improve path monotonicitythinprevious chapter, we in-
troduced the theoretical framework to resynthesize a stiitigiven a set of inputs and
a target output by using our algorithm for determining lofgasibility. We now intro-
duce an algorithm for constructing subcircuits using sigres and physical constraints to

optimize the interconnect.

9.3.1 Subcircuit Extraction

After identifying the path that is least monotone, we exteasubcircuit (as shown in
Figure 9.6) with incoming path edges as inputs and outgailgg® as outputs. The inputs
and fanout of the subcircuit are treated as fixed cells, fogtihe physical constraints. As
shown in the figure, if there are outgoing edges at interntediades in the path, this logic
is duplicated. In practice, we experience minimal cell anegease because the number of
duplicated cells is small, and the resynthesized circigimsaller than the original in many

cases.
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9.3.2 Physically-guided Topology Construction

In addition to efficientlydeterminingthe logic feasibility of various topologies, we
propose an algorithm that uses PBDs and physical constriaiafficientlyconstructiog-
ically feasible topologies. In this paper, we guide our apph using delay and physical
proximity. In the example shown in Figure 9.7, we try to findagotimal restructuring to
implement the target functiof with inputsa, b, andc. The functionality of the original
circuit is represented by signatures. The figure also shotabla associated with each
signal showing the PBDs that are distinguished. The noartisd PBDs for each input
signature have light-gray background.

The example shows that the arrival time fors the greatest, followed bg, thenb.
Therefore, we should consider alternative topologies w/ibisivalue is required later. We
also consider the proximity of the signals and thereforerera topologies where a direct
operation between andb is performed. Notice that if all possible two-input opevat
are tried, the essential PBDs are not preserved and hersmdhenot feasible topologies.
We then consider another topology wherean be accessed later and thus it generates
an operation connectingandb first. For this topology, we observe that an XOR gate
preserves the essential PBDs. We then can easily derivauth@R gate is needed to
implementr.

Algorithm. Figure 9.8 introduces the pseudo-code of the restructualggrithm
for non-monotone interconnect. After identifying the nmenotone pathsQpti m ze
_I nt er connect () restructures a portion of the critical path. Before restrting the
path, we first simplify the signatures witi npl i f y_si gnat ur es() by noting that

the size of the signatutt&:| can be reduced to the number of different input combinations
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that occur acros$Ss,...S}. Thus, only a subset of the signature is needed for restruc-
turing because the small subcircuits considered have amuamiof 2 possible different

input combinations, smaller than the number of simulatiectors applied.

Optimizecircuit(){
genNMF(); numtries = X;
while(worstnmf > 1) {
if (nckt== Optimize Interconnectforst nmf)) {
if ('check equiv(ck?) {
refinessignatures();
continue;
}
updatenetlist();
legalize placement();
updateNMF();
1
Subckt* Optimizelnterconnect(SubckE){
simplify_signaturedf);
while(find_opt topologyonstrg) {
if (nckt== checklogical feasibility()) {
nckt— opt_place();
return ncktg

}

constrsaddck);

1

Figure 9.8:Restructuring non-monotone interconnect.

In find_opt _t opol ogy(), we find a topology that optimizes delay for the given
physical constraints, such as the physical locations ostheeircuit’s inputs and outputs
The topology is created by a greedy algorithm which derivisaut-free topology from
the current input wires. We examine each pair of wires, applarbitrary cell, and esti-
mate the delay to the output of the subcircuit. The topolsgizén greedily constructed so
that wire pairs with earlier arrival times are favored in gagly computation stages of the

topology. From this initial topology, we can obtain an uppeund for the best possible

2In our experiments, we apply 2048 input vectors and resiracubcircuits with< 10 inputs.
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implementation. If a topology can't be found that satisfies tonstraints, the function
returns.

The topology that is derived is then then checked for logieakibility using PBDs
and signatures inheck_| ogi cal _feasibility(). Ifthe topology is feasible, we
associate the appropriate gate with each vertex and placsuticircuit. Our placement
routine considers only the legality of the subcircuit (w# agplacement legalizer later for
the entire design). In our approach, we determine a locébioeach gate by placing it at
the center of gravity of its inputs and outputs and thenrgjfthe gate to different nearby
locations. This sifting is done over all the gates and oveeisg# passes until a locally
optimal solution is achieved, resulting in no overlaps. thartypically small subcircuits
considered, this requires a small computational effort.

Finally, if the topology is not logically feasible, we addfunctional constraint that
prevents the construction of similar topologies. The a@mst states which wire pairs
should not be combined again. For instance, for the mukiglez = a’b+ ac, there is
no implementation with a fanout-free topology with inpy&b,c}. If a andb form a
wire pair, no implementation can preserve its essential $2BBowever, we can exploit
Theorem 8 and consider implementations that eliminate étleeanputs. In this case, if
the implementatioa’b is attempted, the wirb does not need to reappear in the topology.
Therefore, a constraint is added so that the inputs to tredgp are now{a'b,a,c}. With
these inputs, a fanout-tree does exist which is logicakgilele.

If Optim ze_l nterconnect () returns a subcircuit, we check the equivalence of
the entire circuit using a SAT engine. In the case where oudidate produces a function-

ally different circuit (which is rare, as shown in Sectiob)9 we use the counterexample
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generated by SAT to refine our simulation, hence improvirgsijnatures’ quality. If the
resulting subcircuit passes verification, we update thikshaind legalize the placement.
We update the timing information and the NMFs if a new critigath is found, in which

case we select with the next highest NMF and restructure it.

9.4 Enhancing Resynthesis through Global Signature Matcimg

Our resynthesis strategy considers the inputs to a non-tonagath for resynthesis.
This strategy is convenient because 1) the set of inputs leays implement the target
output and 2) the inputs tend to be physically close to thgetaoutput. However, local
manipulations can be enhanced by incorporating globakimédion. In this section, we
explain how to exploit the same advantages of structurdiihgdor area reductions, by
applying matching to the signature abstraction. Furtheemaur approach is more pow-
erful than logic rewriting because the signatures are neatckhile considering global
don't-cares, and our initial physically-guided local réwg over signatures already ex-
ploits don’t-cares.

Strategy. To resynthesize non-monotone paths, we exploit signatatehing in the

following way:

1. Find a set of candidate wires within a certain distanceftbe output wire to be

resynthesized.

2. Check whether any candidate’s signature is equal to thaibsignature up to don’t-
cares, as discussed in Chapter VIIif a match is found and the timing can be

improved, replace the output wire with the correspondinglacdate wire.
3. While checking logic feasibility in topological ordeh@ck whether any of the in-
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ternal wires can be reimplemented using a candidate witeauihatching signature

to further improve timing.

The candidate wires are chosen by proximity to the outpud W&ing resynthesized as
determined by its half-perimeter wirelength (HPWL). Anye&vannotated with an arrival
time after the current output wire’s annotated arrival tis@ot considered. Unlike the
resynthesis algorithm that uses a simplified signaturesitprature matching, we consider
the whole signature except for the don’t-cares. In this casengle comparison between
signatures can be performed quickly and it is more efficieantfinding a common set of
inputs to both wires and then reducing the signatures touhgber of simulated different
input combinations. Notice that our algorithm is used toserde the previous resynthesis
strategy and improve the timing of a specific implementatiohile in general topology

construction only the inputs to the subcircuit are congder

9.5 Empirical Validation

We implemented and tested our algorithms with circuits ftbmIWLS 2005 bench-
mark suite [102], with design utilization set to 70% to matelbent practices in the in-
dustry. Our wire and gate characterizations are based oh8urf.technology library.
We perform static timing analysis using the D2M delay mdicon Rectilinear Steiner
Minimal Trees (RSMTs) produced by FLUTE [23]; here FLUTE daneasily replaced
by any timing-driven subroutine, without significantly edting the overall trends of our
experiments. Our netlist transformations are verifiedgiaimodified version of MiniSAT
[29] and placed using Capo 10 [16]. We have considered deddfierent initial place-

ments for each circuit by varying a random seed in Capo andrrepsults as average
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improvements over these placements. Our netlist transfiooms are legalized using the
legalizer provided in the GSRC Bookshelf [105].

To evaluate delay improvements, we apply the algorithm glfg 9.8 to the test-
benches. We applied 2048 random simulation patternsligittagenerate the signatures.
We considered paths of less than or equal to 4 hops (5 nodeg) s delay-based met-
ric, which allowed us to find many non-monotone paths whilaimizing the size of the

transformations considered. We conducted several ogtinizpasses until no more gains

were achieved.

9.5.1 Prevalence of Non-monotonic Interconnect

100

R-6 hops (wirelength-based
NMF calculation

90 +

80 ¢

E 70
z distribution of paths
\%
60 - - —
% NMF calculation) 2-hop (11.6%)
25 —3-hop (14.3%)
—4-hop (18.8%)
40 / 5-hop (24.0%)
6-hop (31.3%)
30
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Figure 9.9: The graph plots the percentage of paths whose iNMé&low the correspond-
ing value indicated on the x-axis. Notice that longer pa#drsltto be non-
monotone and at least 1% of paths aré times the ideal minimal length.

Our experiments indicate that circuits often contain maag-monotone paths. In

Figure 9.9, we illustrate a cumulative distribution of trexgentage of paths whose NMFs
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is below the corresponding value on the x-axis. We genertdieske averages over all
the circuits in Table 1. Each line represents a differen@igth examined, where we
considered paths from 2 hops to 6 using the wirelength-bisis&e metric. We also show
the cumulative distribution for the 4-hop delay-based NNl€ualation used to guide our
delay-based restructuring. Of particular interest is thie@ntage of monotonic paths,,
paths with NMF = 1.

Notice that smaller paths of 2-hops are mostly monotone r@dsethe percentage of
monotone paths decreases to 23% when considering 6-hop. pa@ithis indicates that
focusing optimizations on small paths only, as in [10], caesiseveral optimization op-
portunities. Itis also interesting to note that there atépwith considerably worse mono-
tonicity having NMFs> 5, revealing regions where interconnect optimizationsaesled.
We observe similar trends using our delay-based metric. ifitlasion of gate delay on
these paths results in greater non-monotonicity when coedpa the wirelength-metric.

Although not shown, each individual circuit exhibits siaritrends.

9.5.2 Physically-aware Restructuring

We show the effectiveness of our delay-based optimizatyoreporting the delay im-
provements achieved over several circuits. In Table 1, woeige the number of cells
and nets for each circuit. In tHeer f or mance columns, we give the percentage delay
improvement, the runtime in seconds, and the percentagquivaence-checking calls
where candidate subcircuits preserved the functionafithe entire circuit. We also re-
port the overhead of our approach with the percentage oflevigth increase and the
percentage of cell count increase.

Considering 8 independently generated initial placem@tgach circuit, our tech-
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cell net performance overhead
circuit count| count|| %delay| time | %equiv || Y%wire | %cells
improv (s) | checks
sasc 563 568 14.1 41 100 2.35 3.13
spi 3227 3277 10.9| 949 82 4.53 0.73
desarea 4881 | 5122 12.3| 503 93 1.09 0.31
tv80 7161 | 7179 9.1| 1075 71 2.50 0.17
35932 7273 | 7599 27.5| 476 100 2.14 0.19
systemcaes 7959 | 8220 13.9| 748 95 0.89| -0.07
s38417 8278 | 8309 11.7| 481 84 0.68| -0.21
mem.ctrl 11440| 11560 9.2| 678 37 0.05| -0.02
ac97 11855| 11948 6.3| 245 100 0.44 0.02
ush 12808 | 12968 12.2| 605 80 0.30 0.06
DMA 19118| 19809 145| 845 65 0.16 0.08
aes 20795| 21055 6.4| 603 100 0.13 0.01
ethernet 46771 | 46891 3.7| 142 100 0.08 0.06
| average | \ | 11.7%] | 85.1%] 1.20% | 0.34% |

Table 9.1:Significant delay improvement is achieved using our paseddogic restruc-
turing. Delay improvement is typically accompanied by oalymall wirelength
increase.

niques improve delay by 171% on average. For some circuits, suchsds932, several
don’t-care enhanced optimizations enabled even greal&y aeprovements.

Note that, by optimizing only one output of a given subcitcwie greatly reduce the
arrival time of the critical output, while only slightly deading the performance of compu-
tation of other outputs. Moreover, through our efficient obdon't-cares, severat-input
subcircuits could be restructured to require fewer threinputs. As a special case of the
previous point, sometimes an input to the subcircuit is fiomally equivalent to the out-
put of the subcircuit when don’t-cares are considered, lergatelay reduction along with
removal of unnecessary logic. Signatures are efficient ploi#ing these opportunities.
Finally, the decomposition of large gates into smaller gaiitives through our restruc-

turing algorithm often produces better topologies becauwseonstruct a topology that
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meets the physical constraints more precisely.

We also believe that further gains would be enabled by coimdpibuffering, reloca-
tion, and gate sizing strategies in our restructuring op@tons. The wirelength and
cell-count overhead are minimal because only a few restringfs are needed and the
optimizations can simplify portions of logic. In some cagesnumber of cells is reduced.

The runtime of our algorithm scales well for large circuitgedo the use of logic sim-
ulation as the main optimization engine. Furthermore, bl percentage of equivalence
checking calls that confirmed the equivalence of our transéions indicates that signa-
tures are effective at finding functionally equivalent cdates. Furthermore, we observe
that SAT-based equivalence checking requires a smallidract the total runtime com-
pared to constructing optimal topologies, even for ourdargrcuit examples. This small
runtime can be attributed to the locality of most struct@rahsformations. Because the
structures of the original and modified circuits are similae SAT instance can be greatly
reduced in size and complexity. This limits the complexityar approach, which tends
not to grow with the size of the overall circuit.

To check if our techniques provide comparable improvemdrgmthe initial place-
ment is optimized for timing, we performed the following exjent. We first produced
64 independent initial placements optimized for total veingth. Compared to these 64
wirelength-optimized placements, the best placementigsaehi 70% shorter delay on av-
erage and serve as proxies for timing-optimized placeniardsr experiments. Starting
with these initial placements already optimized for detay, logic restructuring approach

can extract further improvements, reducing the delay.b$®%on average.
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9.5.3 Comparison with Redundancy Addition and Removal

We compare our technique with timing optimization usingurediancy addition and
removal (RAR). We implement redundancy removal using siges to identify equiva-
lent nodes up to don’t-cares. In the context of path-bassghtbesis, the inputs to the
subcircuit, along with signals that have earlier arrivalgiand are within a bounding box
determined by the HPWL of the output, are considered as datesi for rewiring. If one
of these signals is equivalent to the output up to don’tsanethe circuit, rewiring is

performed and the timing improved.

circuit %delay
ours| RAR
sasc 13.8| 12.1
spi 15.0| 12.6
desarea 154| 111
tv80 12.7 3.1
s$35932 23.1| 21.8
systemcaes 10.1 4.0
s38417 26.3 2.9
mem.ctrl 12.9 8.2
ac97 5.3 3.1
usb 10.8 0.0
DMA 10.7 0.0
aes 5.3 4.7

average | 13.5%| 7.0% |

Table 9.2:Effectiveness of our approach compared to RAR.

In Table 9.2, we compare the delay improvement of our reggighstrategy to redun-
dancy addition and removal. For this experiment, we repstilts on a random slice of
initial placements from our suite. Note that our technigclei@ves almost twice as much
improvement as RAR in improving delay, and our results areenconsistent over all the

circuits and are never worse than RAR.
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attempts when optimizing the circuits in Table 1.

In Figure 9.10, we demonstrate that our delay-based NMHAmsffective at guiding
optimization. Each data point represents a different rémgis attempt considering all of
the circuits in Table 1. The x-axis shows the predicted pesge delay gain possible
(determined by the optimal-buffered delay). The y-axisgates the actual gain. Data
points that lie on the x-axis indicate resynthesis atterttpas did not improve delay (a
better topology could not be found). The 50% threshold linédds the graph so that
the number of resynthesis attempts are equal on both sidesdidagonal line indicates
an upper-bound prediction for delay gain. Because someeodpiimizations reduce the
support of the original subcircuit, we can improve the dédayond the original estimate
which considers all of the subcircuit’'s inputs. Therefoseme of the data points are

above the upper-bound line. On the other hand, a resyntatsiapt produces a smaller
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than estimated improvement when the ideal topology is ngicélly feasible or when
removing cell overlap degrades the quality of the initig@dment. Although the NMF
and gain calculations do not directly incorporate circuitdtionality, 74% of all delay
gains are found on the right half of the graph. The corretatm our metric could be
further improved by incorporating the percentage of gaiasgae with respect to near-

critical paths.

9.6 Concluding Remarks

In this chapter, we leveraged our simulation-based framlewmimprove the quality
of delay optimization without sacrificing other performanmetrics. In particular, we
introduced a novel simulation-guided synthesis stratbgyis more comprehensive than
current restructuring techniques. We developed a pathetoaictity metric to focus our
efforts on the most important regions of a design. Our oations lead to 17% delay
improvement on average, over several different initiatptaents. Also, our delay-based
monotonicity metric indicated that 65% of the paths analy&ere non-monotone. We
further observe delay improvements on placements injtegitimized for delay, which are
consistent with our reported average improvement. We \aelieat our approach offers
an effective bridge between current topological-basedhggis and lower-level physical
synthesis approaches. It enables less conservative testigates to be made early in the
design flow so that other performance metrics can be impraithdut adversely affecting

timing, and it also reduces the amount of buffering requing@hortening critical paths.
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CHAPTER X

Conclusions

Achieving timing closure is becoming increasingly difficdlue to the increasing sig-
nificance of interconnect delalfor complex designs, failing to achieve timing closure re-
sults in costly design-flow iterations and delays marketyeoitthe final product. Previous
strategies for achieving timing closure are often incapablexploiting logic transforma-
tions that promise significant delay improvements. In thssertation, we introduce an
aggressive physical synthesis application that employwader set of optimizations to
reduce interconnect delay while minimizing impact on theaing circuit. The goal is
to improve timing closure, as interconnect becomes moreimamh and current method-
ologies become less adequate. To enable powerful tranafams, we leverage logic sim-
ulation to characterize the behavior and flexibility of imi@ nodes using bit signatures.
By performing logic manipulations on the signatures indte&the circuit, we abstract
away much of the design complexity enabling numerous toansdtions to be examined.
Transformations that result in the greatest delay impr@msmare verified formally, while

the scalability of such verification is dealt with partiautare.
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10.1 Summary of Contributions

In this dissertation, we developed a comprehensive sigeditased framework that ef-
ficiently identifies logic optimizations in complex digi@signs. This framework consists

of the following components.

e A simulation strategy for sensitizing parts of a design ta difficult to control
from the primary inputs with the goal of exposing cornerechghavior in the de-
sign. We developed a novel metric for determining the infation content (entropy)
of different groups of signals under given simulation vestand introduced a SAT-
based algorithm for evenly sensitizing these signals. érettperimental evaluation,
our techniques evenly sensitized a design where randomlagioru had not suc-

ceeded.

e A strategy for efficiently computing don’t-cares and enogdihem in signatures to
enhance synthesis optimizations. We showed that the ajppatinn used to gener-

ate don’t-cares was both fast and accurate.

e A SAT-solving methodology that leverages the increasirgglakility of multi-core
systems to enable more efficient verification of signatwasebl transformations. We
introduced a priority scheduler for handling multiple SABtances of varying com-
plexity and proposed a lightweight parallelization stggteo solve particularly hard

instances.

e Techniques for logic manipulation based on signatures. Mf®duced a node-

merging optimization that leads to significant area redunsti We also developed a
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signature-based resynthesis strategy that can be efficganted by physical opti-
mization criteria, such as delay and wirelength minimaatias well as routability.
We then introduced a post-placement resynthesis strategegy that uses path

monotonicity to identify paths that are most amenable téoperance optimization.

Empirical results indicated the effectiveness of our sigreebased methodology. We
showed that logic simulation can efficiently target haresémsitize regions in a circuit.
Furthermore, we demonstrated that signatures are a goodxampgation of a node’s func-
tionality, and can account for both controllability andistbility don’t-cares. For exam-
ple, signatures were used to effectively identify nodes$ toaild be merged, and don't-
cares facilitated additional node mergers. These resuilisated the potential of func-
tional simulation to support fast and powerful design otations. In the physical syn-
thesis domain, we demonstrated that the ability to quicl@ntify numerous resynthesis
opportunities is particularly advantageous. Empiricalites confirmed that our techniques

compare favorably with earler algorithms.

10.2 Directions for Future Research

The use of logic simulation as an abstraction representsjar roantribution of our
work. This abstraction simplifies search for powerful optziations subject to functional,
temporal, and physical constraints. Our techniques stipeariety of performance,
power, and manufacturability objectives.

We believe that our don’t-care analysis is also useful taanh verification coverage.
In practice, a simulation vector that toggles logic contagra design bug might not pro-

duce an observable discrepancy with the golden model atutputs. By incorporating
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observability measures in our coverage analysis to guidaTab8sed resimulation, we
could improve the quality of simulation performed.

Finally, we observe that our work in parallel SAT enablesdkeelopment of a new
methodology in CAD tool flows that better utilizes multi-easystems. A future avenue
of research would consider multiple incremental optimaat applied in parallel. Such
optimizations could be automatically handled by our patahtion strategy to maximize

CPU utilization.
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clause database, 21
half-perimeter wirelength (HPWL), 150, 155 netlist, 45, 48-49, 59
hashing search space, 22, 48, 90, 96, 98-101, 108-
signature, 116-117, 149, 150 110
structural (strashing), 26, 35, 149 variable, 132
heavy-tail distribution, 91-92 physical synthesis, vi, 9, 11, 31, 32, 34, 36, 38,

39, 65, 114, 121, 157, 158
placement, v, vi, 57, 13, 27, 29-32, 34, 35, 38—
40, 114, 136, 148, 150, 151, 154, 155,

implication, 19, 21, 57
interconnect, 4
delay, 29, 39, 136, 139, 158 157
dominance, 30, 37, 39, 158 incremental, 37

Opt'”l‘f;‘“fgz’ 30, 32, 33, 37-39, 137, 143y 1450li0, 21, 22, 90, 96, 97, 101, 105-108, 110
’ power consumption, 39
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priority scheduling, 104, 105, 159 structural hashingseehashing

_ _ substitution, 34
random simulation, 42-45, 48, 54, 59-63, 6Zynergies, 11, 14

74,78, 79, 117, 151, 159 synthesis
randomly generated SAT instances, 96 logic, seelogic synthesis
reason side, 19 physical,seephysical synthesis
reconvergence, 34, 69, 73, 133 SystemC, 5
redundancy addition and removal (RAR), 35, 137,

155 technology mapping, 5, 6, 114
relocation, 30, 136, 145, 154 timing closure, v, 6, 7, 10, 12, 29-31, 36, 37,
replication, 31, 34, 145 158
resynthesis, 13, 34, 40, 113, 128, 136, 137, 14iXggle, 43-47, 49, 52, 59-62

145, 149, 150, 155, 156, 160 topological order, 68, 131, 133, 149
rewriting, 26, 35, 118, 125, 139, 149 training a SAT solver, 100
routability, 137 transistor scaling, v, 2—4
satisfiability (SAT) undo variable assignment, 18, 96

DPLL algorithm, 17-18 unique-SAT, 54, 59
parallel solving, 20-22, 96-101 UNSAT, 54, 55, 59, 60, 83

problem formulation, 16-17 _ o
satisfiability don't-cares (SDCs), 23, 24, 64, payaliant-Vazirani theorem, 53-54

126 variability
sets of pairs of functions to be distinguished (SPFDRBJOCESS; 3
125, 130 runtime, 21, 22, 91, 106, 110
Shannon’s entropy, 46 verification _
signature, v, vi, 811, 27, 28, 41-45, 65, 66, 76— €quivalence checking, 15, 16, 26, 28, 64,
79,112, 113, 115, 126-130, 132-134, 69, 86, 114, 118, 126, 145, 154
139, 144, 146-148, 154, 158 incremental, 77, 81-86, 120
definition of, 8 parallel,seesatisfiability
lower-bound, 66 vias, 3, 4

matching,seehashing

upper-bound, 66 window, 25, 65, 75, 86

wire-load model, 37

simulation _ wirelength, 32, 37, 49, 136, 139, 141, 152-154
constrained randonseeconstrained random
simulation XOR clause, 45, 52-57, 59, 60, 62, 63, 98-101,
guided,seeguided simulation 107, 108
random seerandom simulation XOR constraintseeXOR clause

refined,seesimulation refinement

simulation refinement, 79

single-stuck-at faults, 84

Sony, 1

standard cells, 5, 114, 137, 139

static timing analysis (STA), 31, 138, 139, 150
incremental, 32, 149

strong backdoor, 92, 99
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