
Multiobjective Placement Optimization
for High-performance Nanoscale

Integrated Circuits

by

Myung Chul Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor Igor L. Markov, Chair
Professor David T. Blaauw
Professor Mark S. Daskin
Professor Pinaki Mazumder

c© Myung Chul Kim 2012
All Rights Reserved

To my family and friends

ii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF FIGURES . vii

LIST OF TABLES . xi

ABSTRACT . xiv

PART I Introduction & Background

Chapter I. Circuit Placement in Physical Design 2

1.1 Challenges . 4
1.2 Our Contributions . 7
1.3 Organization of the Dissertation . 9

Chapter II. State of the Art in Placement Algorithms 11

2.1 Essential Concepts and Building Blocks 12
2.2 Wirelength-driven Global Placement Algorithms 17
2.3 Routability-driven Placement . 19
2.4 Optimizing Multiple Objectives in Placement 23

PART II High-Quality Placement for Modern System-on-a-Chip Designs

Chapter III. SimPL: An Effective Placement Algorithm 29

3.1 Introduction . 29
3.2 Key Ideas . 31
3.3 The SimPL Global Placement Algorithm 34

3.3.1 Initial placement . 34
3.3.2 Lookahead legalization . 34
3.3.3 Global placement iterations 39
3.3.4 Asymptotic complexity analysis 41

iii

3.4 Extensions and Improvements . 43
3.4.1 Selecting windows for lookahead legalization 43
3.4.2 Improving asymptotic complexity of lookahead legalization . . 45
3.4.3 Unsuccessful attempts at improvement 46

3.5 Empirical Validation . 47
3.5.1 Analysis of our implementation 48
3.5.2 Comparisons to state-of-the-art placers 49
3.5.3 Scalability study . 49

3.6 Speeding up Placement Using Parallelism 51
3.6.1 Algorithmic details . 51
3.6.2 Empirical studies . 53

3.7 Summary and Conclusions . 55

Chapter IV. SimPLR: High-performance Routability-driven Placement . . 58

4.1 Introduction . 59
4.2 Baseline Algorithms in Our Work . 62
4.3 Simultaneous Place-and-Route . 63

4.3.1 Lookahead routing . 64
4.3.2 Congestion-based cell bloating 67
4.3.3 Dynamic adjustment of target density 70

4.4 Congestion-aware Detailed Placement 71
4.5 Empirical Validation . 72
4.6 Summary and Conclusions . 75

Chapter V. MAPLE: Multilevel Adaptive PLacEment for Mixed-size Designs 77

5.1 Introduction . 77
5.2 Foundational Algorithms . 80
5.3 Analysis of disruptions during analytic optimization 81
5.4 Multilevel Adaptive Placement . 84

5.4.1 Top-level placement iterations 84
5.4.2 A placement density metric - ABUγ 86

5.5 A Methodology for Graceful Optimization in Placement 87
5.6 Placing Macro blocks . 91
5.7 Empirical Validation . 92

5.7.1 ProLR versus ILR . 93
5.7.2 Comparisons on ISPD 2005 testcases 95
5.7.3 Runtime considerations . 96
5.7.4 Comparisons on ISPD 2006 testcases 97

5.8 Summary and Conclusions . 99

iv

PART III Broadening the Scope of Placement Optimization

Chapter VI. ComPLx: A Competitive Primal-dual Lagrange Optimization
for Global Placement with Extensions to Mixed-size and Timing-
driven Placement . 101

6.1 Introduction . 101
6.2 A Primal-Dual Lagrange Method . 103
6.3 Convergence analysis . 109
6.4 Comparisons to Previous Work . 111
6.5 Algorithmic Extensions . 115
6.6 Empirical Validation . 117

6.6.1 Evaluating the core placer . 118
6.6.2 Direct comparisons to prior art 120
6.6.3 Extensibility of the core placer 121

6.7 Summary and Conclusions . 123

Chapter VII. SAPT: Structure-Aware Placement Techniques 126

7.1 Introduction . 127
7.2 Motivation and Background . 129

7.2.1 The need for a unified placement framework 129
7.2.2 StWL and HPWL comparisons for datapath circuits 130
7.2.3 Implicit StWL optimization through bit-stack alignment 132
7.2.4 Alignment groups . 134
7.2.5 Alignment net insertion . 134

7.3 Unified Placement Flow with Alignment Constraints 135
7.4 Structure-Aware Global Placement 138

7.4.1 Skewed weighting with step size scheduling 138
7.4.2 Step size scheduling . 138
7.4.3 Target skew-ratio generation 140
7.4.4 Fixed-point alignment constraint 143
7.4.5 Imposing order constraints between alignment groups 145

7.5 Structure-Aware Detailed Placement 148
7.6 Experimental Results . 149

7.6.1 Benchmark circuits . 150
7.6.2 Wirelength results on ISPD2011 datapath benchmarks 151
7.6.3 Wirelength results on hybrid designs 153
7.6.4 Routing congestion results 154
7.6.5 Runtime results . 156

7.7 Summary and Conclusions . 157

Chapter VIII. Conclusions . 158

v

8.1 Our Results in Perspective . 158
8.2 The Impact of Our Research . 161
8.3 Open Challenges . 163

BIBLIOGRAPHY . 166

vi

LIST OF FIGURES

Figure

2.1 Blue boxes represent movable modules and black boxes represent fixed
modules. Connections between modules are shown with black lines. . . 16

3.1 The SimPL algorithm uses placement-dependent B2B net model, up-
dated on every iteration. Gap refers to the difference between upper and
lower bounds. 33

3.2 Clustering of overfilled bins in Algorithm 1 and adjustment of cell-area
to whitespace median by nonlinear scaling (also see Figure 3.3). Mov-
able cells are shown in blue, obstacles in solid gray. 36

3.3 Nonlinear scaling in a region with obstacles (I): the formation of CB-
aligned stripes (II), cell sorting by distance from CB (III), greedy cell
positioning (IV). 37

3.4 Nonlinear scaling after the first vertical cut and two horizontal cuts (ADAPTEC1)
from intermediate steps between iterations 0 and 1 in Figure 3.7. 37

3.5 An anchor with a pseudonet. 39

3.6 Lower and upper bounds for HPWL, the scaled overflow per bin of the
lower-bound placement at each iteration, and HPWL of the legal place-
ment (ADAPTEC1) . 42

3.7 A progression of global placement snapshots from different iterations
and algorithm steps (adaptec1). IP=Initial Placement, LAL=Lookahead
Legalization, LSS=Linear System Solver. Left-side placements show
lower bounds and right-side placements show upper bounds. 44

3.8 Generation of double-sized netlists. 50

vii

4.1 The impact of placement density on routability, with bin capacity 2
and edge capacity 1. The dense, low-wirelength placement on the left
is unroutable. The sparse, high-wirelength placement in the center is
routable. The placement on the right is routable, with low wirelength
and density. 60

4.2 Our simultaneous place-and-route (SimPLR) flow. The baseline compo-
nents are shown in transparent boxes, and the added routability-driven
components are indicated by light-blue fill. 66

4.3 Accounting for routing blockages, where dim(e) = 50 for each edge.
Two of three routing blockages overlap. On the left, the lengths of each
routing blockage and non-blocked region are shown. On the right, the
normalized capacities are calculated for each edge. Here, the original
capacity of each edge is 40, and each net on this layer uses 4 tracks.
With no blockages, an edge has a normalized capacity of 10. 67

4.4 Congestion maps for the benchmark SUPERBLUE15 for the best-reported
placement at the ISPD 2011 Contest (left) and SimPLR (right). 73

5.1 Progressions of wirelength and the density metric ABU10 over the ILR
iterations on ADAPTEC1. Unclustering is marked with a vertical line.
ILR disruptively improves ABU10 and increases the wirelength. Each
ILR iteration traverses all movable modules once. 82

5.2 Progressions of wirelength and the density metricABU10 over FastPlace-
DP iterations on ADAPTEC1. The start of detailed placement is marked
with a vertical line. Placements with high utilization undergo significant
changes as full legalization completes. 83

5.3 Progression of the density metric ABU10 versus wirelength, comparing
SimPL lower-bounds (w/ FastPlace-DP) and FastPlace3 on ADAPTEC1.
Steeper slope and datapoints closer to the origin indicate better tradeoffs.
Each square box indicates the beginning of detailed placement. 87

5.4 Progressions of wirelength and the density metricABU10 over ProLR it-
erations (BIGBLUE2). Unclustering is marked with a vertical line. ProLR
alternates ProLR-w (shaded) and ProLR-d phases. 91

5.5 Macro placement on NEWBLUE1. (left) Macros are fixed at top-level
placement iteration 30. (right) Further iterations optimize cell locations. 93

viii

5.6 Snapshots of global placement (ADAPTEC1) after each phase of Algo-
rithm 3 for MAPLE with ILR (left) and MAPLE with ProLR (right).
Phase1 is top-level placement (BestChoice+SimPL). Phase2a and Phase2b
perform LR placement of the coarsened and flat netlist, respectively. . . 94

6.1 Progressions of L (the total Lagrangian), Φ (netlist interconnect), and
Π (L1-distance to legal) over ComPLx iterations on BIGBLUE4. L in-
creases steeply in the early placement iterations, as λ increases. Π de-
creases while Φ gradually increases. 108

6.2 Macro shredding for feasibility projection PC on NEWBLUE1 (an inter-
mediate placement). Red boxes show the locations of macro cells at the
centers of gravity of constituent cells (shown as green dots). Standard
cells are shown as blue dots. 115

6.3 The final λ and total number of ComPLx iterations performed, against
the number of nets. 120

6.4 A hard region constraint imposed on 50 cells that were initially placed
unconstrained (left). The resulting ComPLx placement (right) satisfies
the constraint. HPWL drops from 145.39 to 144.57. 122

6.5 In a ComPLx placement of BIGBLUE1 (upper left), three critical sig-
nal paths between registers are chosen. Subsequent ComPLx runs are
performed with progressively larger net weights on those paths, which
straightens the paths and reduces their lengths. Legal HPWL values are
reported in parentheses. 124

7.1 An example circuit where StWL of the manually placed design is bet-
ter than that of the automated placement, but HPWL of the automated
placement solution is better than that of the manual placement. Net1 has
fanout of 10. 132

7.2 Proposed datapath-aware placement flow. The baseline components are
shown in transparent boxes and the added datapath-aware components
are shaded. 136

7.3 Bell-shaped step size scheduling function. 139

7.4 Average wirelength improvement using the proposed bell-shaped step-
size scheduling function on the ISPD2011 Datapath Benchmark Suite at
different values of β. 140

7.5 Skewed weight force example. 142

ix

7.6 Example of a fixed-point alignment constraint for a horizontal bit-stack.
Lookahead legalization generates new zero-area fixed-points and the lo-
cations of these points are modified to be in alignment with ηnk 144

7.7 Placement of MUX select signals within a supergroup (left) and MUX[0]
signals across supergroups (right) on SPBA. Red lines indicate alignment
nets with ~dk = 0 while blue dotted lines indicate alignment nets with
~dk = 90. Blue boxes are MUX cells. For both cases, one quarter of the
horizontal nets (i.e., alignment nets with ~dk = 0) are shown. 147

7.8 Forty structured bit-stacks are randomly chosen to show the alignment
impact of the proposed placer in Benchmark A. (a) is generated by SimPL
[86] whereas (b) is generated by the proposed placer. Movable cells are
shown lightly shaded while the cells in the datapath group are shown
dark. Note that cells that are not defined by alignment groups become
aligned as well and form a regular structure (right). 153

8.1 The SimPL family of placement algorithms. The baseline algorithm has
been re-implemented by four research groups, facilitating further exten-
sions. 162

x

LIST OF TABLES

Table

2.1 Prior congestion-driven placement techniques. 21

2.2 Prior congestion-driven placement techniques. 22

3.1 Legal HPWL (×10e6) and total runtime (minutes) comparison on the
ISPD 2005 benchmark suite. Each placer ran as a single thread on a
3.2GHz Linux workstation. HPWL was computed by the GSRC Book-
shelf Evaluator [1]. In benchmark names, AD stands for ADAPTEC and
BB for BIGBLUE. 46

3.2 Legal HPWL (×10e6), total runtime (minutes), and peak memory us-
age (Gigabytes) comparison on the double-sized ISPD 2005 benchmark
suite. The failure of mPL6 in BIGBLUE4X2 is not caused by out-of-
memory conditions. 51

3.3 Speed-up ratios for Conjugate Gradient (CG), B2B net model construc-
tion (B2B), and top-down geometric partitioning and nonlinear scaling
(T&N) on the ISPD 2005 benchmark suite. Runtimes are compared to
single-threaded execution without support of SSE instructions. C+S in-
dicates our CG implementation with SSE instructions. 53

3.4 Speed-up ratios for global placement on the ISPD 2005 benchmark suite.
Runtimes are compared to single-threaded execution without support of
SSE instructions. 55

4.1 Routed wirelength (RtWL, ×10e6), routing overflow (OF), and runtime
(in minutes) on the ISPD 2011 routability-driven contest benchmark
suite. The placements were evaluated by coalesCgrip [41]. 74

4.2 The impact of our congestion-aware detailed placement on HPWL(×10e6),
routed wirelength (×10e6), and overflow (OF) on the ISPD 2011 Routability-
driven Contest Benchmark Suite. The runtime is reported in minutes.
The placement solutions are evaluated by coalesCgrip [41]. 75

xi

5.1 HPWL (×10e6) produced by ProLR and ILR on ISPD 2005 benchmarks
ADAPTEC (AD) and BIGBLUE (BB). 95

5.2 Runtime comparison (minutes) on ISPD 2005 benchmarks for APlace2
(AP2), NTUPlace3 (NTU3), mPL6, FastPlace3 (FP3), SimPL and MAPLE. 96

5.3 Legal HPWL (×10e6) comparison on the ISPD 2005 benchmark suite.
The previous best wirelengths are marked with gray. The placers marked
by asterisks were unavailable to us in binary, and we reproduce HPWL
from respective publications. Kw2=Kraftwerk2. 97

5.4 Comparison of scaled HPWL (×10e6) which includes overflow penalty
w.r.t the given target utilization on the ISPD 2006 benchmark suite.
Overflow penalty values computed by the contest script are reported in
parentheses. The placers marked by asterisks were unavailable to us in
binary, and we reproduce results from respective publications. This hin-
ders runtime comparisons. 98

6.1 Legal HPWL (×10e6) and total runtime (in min.) comparison on ISPD
2005 benchmarks. Each run uses a single thread on a 2.8GHz worksta-
tion. Best-published numbers are annotated with the placers that pro-
duced them – SimPL [86] or RQL [141]. mPL6 and NTUPlace3 were
included this comparison. We regenerated placements of SimPL without
a cell-orientation optimization. 119

6.2 Comparison of scaled HPWL (×10e6) on ISPD 2006 benchmarks. Over-
flow penalties are reported in parentheses. RQL results are from [141]. . 121

7.1 Legalized HPWL and StWL comparison on the ISPD 2011 Datapath
Benchmark Suite [150] between manually placed and automated place-
ment solutions. Placement results are sorted by increasing HPWL value.
The best HPWL solution does not indicate the best StWL solution. NTUPl3
stands for NTUPlace3 and FastPl3 stands for FastPlace3. 130

7.2 The net degrees (Deg.) used to define alignment groups, the number of
supergroups (#SGs) and their cardinalities (‖SG‖) on the ISPD 2011
datapath placement benchmarks. On SPBB, ‖SG‖were 1 for both ~dk = 0

and ~dk = 90, which indicates no logical ordering were found between
any alignment groups. 148

7.3 Legal HPWL and StWL (×10e6) comparison varying the ordering con-
straints. We employed the fixed weighting scheme for the experiments.
On SPBB, results in the first two columns are identical since no logical
ordering were found. 148

xii

7.4 Circuit statistics. Datapath ratio is calculated as the total number of dat-
apath cells divided by the total number of cells. 151

7.5 Total HPWL ratio comparison on the modified ISPD 2011 Datapath
Benchmark A and B variants with legalized placement. The ratios are
computed with respect to the manually placed solution. 151

7.6 Total StWL ratio comparison on the modified ISPD 2011 Datapath Bench-
mark A and B variants with unfixed latches after legalized placement.
The ratios are computed with respect to the manually placed solution.
Numbers in bold are the best automated placement results published for
these benchmarks. 152

7.7 Total HPWL and StWL ratio comparison on hybrid designs. The wire-
length ratios are compared to the proposed placer. The Dragon placer
was unable to complete for Hybrid G. 154

7.8 Total Overflow (×10e+5) results produced with the router and evaluation
script from the ISPD 2011 routability-driven placement contest on the
modified ISPD 2011 Datapath Benchmark A and B variants with unfixed
latches after legalized placement. The ”Total Overflow”, a measure of
the routing congestion of the placement solution, is reduced to zero on
six of the benchmark A variants and reduced by at least 6.7 times for all
benchmark B variants. 155

7.9 Average Peak Weighted Congestion (PWC) in datapath benchmark. . . 155

7.10 Total Overflow (TOF) and ACE routing metrics for hybrid designs. . . . 155

7.11 Comparison of runtime on the hybrid designs. 157

xiii

ABSTRACT

Multiobjective Placement Optimization
for High-performance Nanoscale Integrated Circuits

by
Myung Chul Kim

Chair: Igor L. Markov

With aggressive scaling of semiconductor manufacturing technology in recent decades,

the complexity of integrated circuits has increased rapidly leading to multi-million gate

chips that require over ten metal routing layers. At current and future technology nodes,

semiconductor devices are connected by narrower and more resistive wires, shifting the

performance bottleneck from gate delay to interconnect delay. These trends confound

modern design technologies for timing closure and require major improvements in physi-

cal design automation to maintain the current pace of innovation in chip architecture.

Modern VLSI design flows require considerable effort and time in physical layout,

where transistor locations affect nearly all downstream optimizations during timing clo-

sure. However, despite impressive improvements developed in academia and industry

during the last decade, state-of-the-art algorithms for placement leave room for improve-

ment both in quality and speed. Additionally, mainstream wirelength-driven placement

algorithms are not geared for optimizing various objectives that are required by advanced

VLSI processes and design styles.

xiv

Our research addresses new challenges in physical optimization by (i) identifying the

necessary new objectives, constraints and concerns imposed by contemporary and future

semiconductor technologies, (ii) integrating these objectives with the existing objectives

and tools, and (iii) developing new computational techniques to enhance scalability and

robustness. We present new algorithms and methodologies for placement optimization

subject to various constraints. In particular, we develop a standalone wirelength-driven

global placement algorithm to significantly improve quality of standard-cell locations and

decrease runtime. This algorithmic framework was recently adopted in the industry and

has been extended by several university groups to support multiobjective optimization. In

addition, our research shows how to integrate routability analysis within placement opti-

mization, which is becoming increasingly important at upcoming semiconductor technol-

ogy nodes. Experimental results indicate that the produced placements are significantly

easier to route. We further enhance wirelength-driven placement using a multilevel frame-

work and novel combinatorial optimization techniques. To broaden the scope of placement

optimization, we study the theoretical aspects of our placement algorithms, and develop

a variety of extensions: to different interconnect models, macro placement, and timing-

driven placement. Another such extension is a placement framework that significantly

improves the handling of datapath designs.

xv

PART I

Introduction & Background

1

CHAPTER I

Circuit Placement in Physical Design

With ever-increasing chip complexity and expansive global communication, the num-

ber of components on an integrated circuit (IC) has doubled over every 18 months, accord-

ing to Moore’s law. Traditionally, device delays have dominated chip performance. With

current technology trends, however, the bottleneck lies with interconnect delay, as device

delays improve faster than interconnect delay and the amount of interconnect grows su-

perlinearly with the number of components (except for grid-like circuits such as memory

blocks). These trends pose significant challenges to IC designers who must also optimize

other performance metrics, such as power consumption and area, and close timing [58].

Therefore, during the VLSI optimization process, chip designs often pass through several

iterations of placement, routing, and timing optimization transforms.

While every design step ultimately affects timing closure, circuit placement has been

and still remains at the core of physical design as a gating factor for downstream optimiza-

tions [10]. This process of computing non-overlapping locations for all circuit components

not only significantly impacts the final product’s delay, power, and area, but also affects

the success of subsequent design-flow steps.

2

The first algorithms for circuit placement were developed independently at Bell Labs

and IBM Research in the 1960s following the divide-and-conquer paradigm [19]. These al-

gorithms motivated heuristics for balanced graph-partitioning by Kernighan and Lin [83]

that minimize edge cut and, later, by Fiduccia and Mattheyses [51]. In the mid 1980s,

circuit placement was a key application of the newly invented simulated annealing meth-

ods [56, 74, 129] . However, after rigorous technology scaling, simulated annealing was

no longer scalable to handle the 1990s industrial designs. As a result, there academic

researchers focused on scalable placement algorithms, and the divide-and-conquer frame-

work regained momentum when it was combined with bottom-up clustering and multi-

level partitioning [5,23,121,136,137]. Linear programming [116] and network flows [48]

were also tried with limited success.

In the mid 2000s, increasing transistor density again demanded faster algorithms with

better performance. IBM Research spearheaded the ISPD 2005 and 2006 placement con-

tests and inspired the creation of many academic placers. In particular, analytical place-

ment techniques (e.g., [26, 79, 140]) have generated a great deal of attention due to their

superior performances at the ISPD 2005 and 2006 placement contests [107]. This joint

industry-academic initiative motivated further advances in placement, such as those that

consider routability [57,64,85,98,133]. Recently, analytical placement has been integrated

with more comprehensive optimizations that can reduce interconnect by restructuring the

circuit [10], and explicitly consider timing optimization [24, 77, 142], TSV count mini-

mization for 3-d IC designs [63], buffer planning [35,128] or other design objectives [95].

3

1.1 Challenges

Not only circuit placement serves as the foundation of many other optimization steps,

but it is also often invoked between design steps, especially after timing analysis, phys-

ical synthesis, and congestion improvement. Therefore, having a fast, scalable, and ro-

bust placement engine is crucial for faster turnaround and lower time-to-market. How-

ever, with the sheer number of components and the increased circuit complexity, finding

non-overlapping locations for all circuit components while meeting every performance

constraint is becoming increasingly difficult. To improve scalability, circuit placement is

divided into three steps: global placement, where every component is assigned a “coarse”

and possibly overlapping location, legalization, which shifts the global locations to avoid

overlaps and fit rows and columns, as well as detailed placement, where component lo-

cations are swapped and slightly displaced to further optimize design metrics. Despite

impressive improvements reported by researchers [107], global placement algorithms still

suffer from several challenges: (i) quality and runtime tradeoff, (ii) integration with other

optimizations, and (iii) lack of parallelism. Each of these challenges is outlined below and

addressed in subsequent chapters.

Tradeoff between speed and solution quality. State-of-the-art algorithms for global

placement can be categorized as (i) force-directed quadratic placers, and (ii) nonconvex

optimization techniques. Force-directed quadratic placers model the total interconnect

length by a quadratic cost function of component locations and minimize it by solving

a large sparse system of linear equations. To discourage component overlap, forces are

added pulling components away from high-density regions. On the other hand, placers

4

based on nonconvex optimization model interconnect length and also component overlap

by more sophisticated differentiable functions. Then a combined cost function of intercon-

nect length and overlap is constructed with placer-specific net weights (that may change

dynamically) and is minimized by nonconvex optimization techniques. Minimizing the

combined cost function provides more systematic and precise quality control of result-

ing placements than control affored by force-directed methods. Not surprisingly, placers

based on this method previously claimed the best results among academic implementa-

tions and industry software. However, placers based on nonconvex optimization are sig-

nificantly slower than force-directed quadratic placers due to their complicated objective

function and optimization algorithms, which is problematic for extremely large modern

chip designs. A representative nonconvex-optimization placer mPL6 [26] outperforms a

force-directed quadratic placer FastPlace3.0 [140] by more than 2% in solution quality,

but is about 6.5 times slower.

Simplicity and integration with other optimizations. Traditional techniques for place-

ment that optimize only total interconnect length are often found to be insufficient to

handle diverse challenges arising from advanced VLSI process technologies. Placements

highly optimized with respect to traditional metrics can lead to failures during wire rout-

ing. Producing high-quality placements is becoming increasingly difficult with dramatic

increases in size and complexity of designs along with multiple objectives, such as ensur-

ing routability, optimizing timing critical nets, aligning structured components, or limiting

power density while minimizing the total interconnect length. Even though novel methods

are needed to close timing and accomplish multiple design goals, such integration is highly

5

complex and challenging. The complexities in placement that prohibit such integration fall

into three categories: (i) fast and conclusive evaluation of important objective function on

intermediate placements, (ii) effective optimization of multiple objectives while limiting

the total interconnect length increase, and (iii) an increase in the complexity of software.

Given that circuit components may overlap during global placement and may lack

proper alignement (illegal locations), numerical estimates of target objectives on com-

puted intermediate placements can be inconclusive and misleading. For instance, actual

routes and interconnect delays are often hard to estimate when locations of components are

not yet fully determined. Even with legal placements, accurate measurements of routabil-

ity and timing can be intractable if full-fledged routers or sign-off quality timers are naively

invoked between placement iterations. Reliable integration of multiple optimization re-

quires stable placement algorithms, as well as (i) accurate and fast estimation techniques,

(ii) strategic invocations of such estimation techniques, and (iii) effective methods to

influence the intermediate placements. Additionally, an increase in the complexity of soft-

ware due to the integration should be kept manageable, which may require redesign of

algorithms. For example, clustered netlists in multilevel placers can obscure analysis of

routing congestion and timing, and complicate circuit restructuring.

Support for parallelism. Effective parallelization of CAD optimizations often requires

redesign and simplification of entire algorithms to use fewer components, especially stan-

dard solvers, to avoid well-known limits to parallelism described by Amdahl’s law [13].

On the other hand, recent literature on parallel algorithms and GPGPU programming of-

ten focuses on algorithms that are easier to parallelize, but are not the fastest or best-

6

performing available [52, 71, 103]. Such results may be useful to illustrate specific paral-

lelization techniques, but do not justify the need for parallelization. We believe that new

EDA tool development should not solely focus on parallel processing, but rather on novel

high-performance algorithms amenable to parallel processing.

As mentioned above, tools based on nonconvex optimization achieve the best results

reported for academic implementations [36] and EDA vendor tools, but are significantly

slower. To scale the basic nonconvex optimization framework, all tools in this family em-

ploy netlist clustering and multilevel extensions, sometimes at the cost of solution quality.

Such multilevel placers perform many sequential steps, obstructing efficient paralleliza-

tion, and therefore do not fully benefit from modern multicore CPUs.

1.2 Our Contributions

This dissertation includes the following contributions:

A simple and effective algorithm for global placement. Chapter III presents a self-

contained, flat, force-directed placement algorithm for large-scale placement that outper-

forms prior art both in runtime and solution quality on standard benchmarks. The algo-

rithm is iterative and maintains two placements — lower-bound and upper-bound place-

ments that converge to a final solution. The upper-bound placement is produced by our

new feasibility projection algorithm based on top-down partitioning and nonlinear scaling.

Our implementation, SimPL, is self-contained and relies on a small set of optimization

techniques, which provides a clear path to both instruction-level and thread-level paral-

lelism. This framework was recently adopted in the industry (Chapter V) and has been

extended by several university groups to support multiobjective optimization [14,57,152].

7

Chapter V extends the SimPL algorithm to further optimize interconnect length and han-

dle movable macros by employing a new multilevel framework in conjunction with novel

combinatorial optimization techniques. Our framework, called MAPLE (Multilevel Adap-

tive PLacEment for Mixed-size Designs), produces the best published results in total wire-

length on a wide variety of publicly available benchmarks.

Routability-driven placement. In earlier technology generations, placement and rout-

ing algorithms were designed and implemented in separate software tools due to their

complexity, even when the user interface exposed a single optimization to chip designers.

After a placer generates row- and site-aligned, non-overlapping locations of components

while minimizing interconnect length, a global router then routes all signal nets, with

small total wirelength, subject to track capacity constraints. Yet, due to the increasing

design complexity, solely minimizing traditional placement metrics no longer guarantees

violation-free solutions after routing [12,124]. Furthermore, highly-optimized placements

may lead to routing congestion and failures when the placer is unaware of routing re-

source supply and demand. Chapter IV extends the SimPL placer to explicitly account for

routability. We develop an accurate routing-congestion estimation technique to give the

placer advance knowledge of congestion spots as well as the ability to respond early and

often. These techniques are seamlessly incorporated in a simultaneous place-and-route

framework for global placement, called SimPLR, as well as a congestion-aware detailed

placement algorithm.

8

Part III introduces additional enhancements and extensions of our techniques.

Multiobjective placement optimization. Placement techniques driven entirely by in-

terconnect length are often insufficient to address diverse algorithmic challenges, design

specifications and constraints posed by advanced VLSI designs and technology nodes.

Supporting a variety of such objectives early in placement has been highly desirable as

it can accelerate physical design iterations and timing closure. Yet, such integration is

sometimes considered prohibitive in the industry because it may sharply increase soft-

ware complexity. Our research simplifies such integration by reducing the complexity of

relevant algorithmic components and clarifying their roles in multiobjective optimization.

Chapter VI provides theoretical justification for the SimPL algorithm and other placement

algorithms derived from it along with an improved convergence analysis and control. To

broaden the scope of placement optimization, it also proposes several extensions for han-

dling various constraints imposed by new technologies and design styles. Chapter VII

describes our joint work with IBM Research on integration of structure-awareness into

placement with SAPT (Structure-Aware Placement Techniques). On datapath and hybrid

designs, SAPT extracts relative orders between datapath groups and enforces alignment

constraints. SAPT significantly improves overall quality of automatic placement on such

designs, reducing the quality gap with manual placement.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows: Part I outlines relevant background

in VLSI modern physical design in general and placement algorithms in particular. Part

II covers our work in VLSI placement: Chapters III and V describe our wirelength-driven

9

placement algorithms SimPL and MAPLE. Chapter IV focuses on routability-driven place-

ment and introduces the SimPLR algorithm. Part III presents extensions and new tech-

niques that broaden the scope of placement optimization. Chapter VI provides theoretical

justification for our placement algorithms, generalizes them and develops several exten-

sions. Chapter VII describes our approach to placing circuits with regular structures (dat-

apath). Part IV concludes the dissertation and discusses open challenges in Chapter VIII.

10

CHAPTER II

State of the Art in Placement Algorithms

The success of placement determines all aspects of modern IC layout and physical syn-

thesis [10] because it controls the amount of interconnect, which increasingly dominates

on-chip resources and circuit performance [80]. Placement seeks the locations of circuit

components on a fixed outline such that no overlap exists between pairs of modules and

minimizes some cost metrics (e.g., interconnect length). A proven NP-hard combinatorial

optimization problem, circuit placement is typically split into three steps: global place-

ment, legalization, and detailed placement. (i) Global placement assigns every (movable)

circuit module a coarse location such that the total interconnect length between all modules

is minimized. (ii) Legalization removes all overlaps between modules and assigns them to

rows and sites. A typical objective function of legalization is to minimize the total (linear

or quadratic) displacements from the global placement solution. (iii) Detailed placement

further optimizes the legalized placements, typically in an iterative manner by rearranging

a small groups of modules in local regions. Among these three steps, global placement

is generally considered the most critical due to its significant impact on the overall layout

quality.

11

This chapter discusses foundational components of placement algorithms and prior

state of the art in placement research. Section 2.1 presents essential concepts and building

blocks of modern placement algorithms. Section 2.2 reviews leading wirelength-driven

placement algorithms. Section 2.3 describes recent challenges in ensuring routability and

prior art to address them. Section 2.4 discusses optimization of multiple placement objec-

tives in modern VLSI designs.

2.1 Essential Concepts and Building Blocks

Circuit placement typically operates on a gate-level netlist, which consists of standard

cells (NAND, NOR, MUX, half-adders, etc), macro modules, and interconnect. Each

standard cell has rectangular footprint with well-defined area. Some standard cells drive

multiple other cells — such interconnects are captured by signal nets. Given a netlist

N = (E, V) with nets E and nodes (cells) V, global placement seeks node locations

(xi, yi) such that the area of nodes within any rectangular region does not exceed the area

of (cell sites in) that region.1 Some locations of cells may be given initially and fixed.

The interconnect objective optimized by global placement is the weighted Half-Perimeter

WireLength (wHPWL). For node locations ~x = {xi} and ~y = {yi}, wHPWLN (~x, ~y)=

wHPWLN (~x)+wHPWLN (~y), where

wHPWLN (~x) = Σe∈Ewe[max
i∈e

xi −min
i∈e

xi] (2.1)

This piecewise-linear function lends itself to linear programming (LP) and min-cost max-

flows, but these techniques have been successful only for smaller netlists. In large-scale

1In practice, this constraint is enforced for bins of a regular grid. The layout area is subdivided into equal,
disjoint, small rectangles, and each rectangle limits total area of cells placed within.

12

placement, wHPWLN is approximated by convex twice-differentiable functions Φ(~x, ~y)

and optimized numerically by linear or nonlinear Conjugate Gradient as illustrated in

quadratic approximations.

Constraints in placement include legality, target utilization, routability, resource-type

constraints, etc.

(~x, ~y) ∈ C

which prohibit multiple pairs (xi, yi) from concentrating in small regions. The demands

for physical on-chip resources (gate area or number of routes in a region) must not ex-

ceed available supplies/design constraint (area for placing logic gates, target utilization,

number of routing tracks) [80]. This is typically expressed by inequalities, e.g., allowing

at most Cj,k placeable objects in grid-cell (j, k). These inequalities are easy to satisfy

when no optimization is performed. Unlike Φ, the constraints are noncovex, as illus-

trated by constraints on locations of two non-overlapping rectangles. Another type of

constraints — routability of modern IC layouts — is NP-hard to evaluate with sufficient

accuracy [80]. Some layout regions may be blocked by fixed obstacles and unavailable

to (xi, yi), leading to discrete choices, such as placing an object on one side of an ob-

stacle. This inhibits smooth convex optimization and, historically, motivated specialized

global-placement techniques tailored to variant objective functions and constraints [107].

Quadratic approximations are used in many placers. Consider a graph G = (EG, V)

with edges EG , vertices V and edge weights wij > 0 for all edges eij ∈ EG . The quadratic

objective ΦG is defined as

ΦG(~x,~y) = Σi,jwi,j[(xi − xj)2 + (yi − yj)2] (2.2)

13

ΦG is separable and its x and y components are cast in matrix form [18, 134]

ΦG(~x, ~y) =
1

2
~xTQx~x+ ~fx~x+

1

2
~yTQy~y + ~fy~y + const (2.3)

The Hessian matrices Qx and Qy that are derived from the netlist captures connections be-

tween pairs of movable objects and vectors ~fx, ~fy reflect connections between movable and

fixed objects. When sufficiently many nodes in a connected netlist are fixed,ΦG is strictly

convex and can be optimized quickly [80, Section 4.3.2]. When Qx is non-degenerate,

ΦG(~x) is a strictly convex function with a unique minimum, which can be found by solv-

ing the system of linear equations Qx~x = −~cx. Solutions can be quickly approximated by

iterative Krylov-subspace techniques, such as the Conjugate Gradient (CG) method and

its variants [127]. Since Qx is symmetric positive definite, CG iterations provably mini-

mize the residual norm. The convergence is monotonic [138], but its rate depends on the

spectral properties of Qx, which can be enhanced by preconditioning. In other words, we

solve the equivalent system P−1Qx = −P−1~cx for a non-degenerate matrix P , such that

P−1 is an easy-to-compute approximation of Q−1
x . Given that Qx is diagonally dominant,

we chose P to be its diagonal, also known as the Jacobi preconditioner. Our placement

algorithm (Section 3.3.3) deliberately enhances diagonal dominance in Qx.

To approximate the HPWL by quadratic functions, one uses a linearization tech-

nique [132], adjusting the approximations at every global placement iteration. In par-

ticular, single-edge terms of the form wij(xi − xj)2 are changed to wij(xi−xj)2

|x′i−x′j |+ε
where the

primed values are constants based on the result of the last iteration (a.k.a. the last iterate).

Multipin nets are decomposed into sets of edges using stars, cliques or the Bound2Bound

model [134].

14

The Bound2Bound net model [134]. To represent the HPWL objective by the quadratic

objective, the netlist N is transformed in two graphs, Gx and Gy, that preserve the node

set V and represent each two-pin net by a single edge with weight 1/length. Larger nets

are decomposed depending on the relative placement of vertices — for each p-pin net, the

extreme nodes (min and max) are connected to each other and to each internal node by

edges, with the following weight

wB2B
x,ij =

1

(p− 1)|xi − xj|
(2.4)

For example, 3-pin nets are decomposed into cliques with edge weight 1/2l, where l is the

length of a given edge. In general, this quadratic objective and the Bound2Bound (B2B)

net decomposition capture the HPWL objective exactly, but only for the given placement.

As locations change, the error may grow, necessitating multiple updates throughout the

placement algorithm.

Most quadratic placers use the placement-independent star or clique decompositions, so

as not to rebuild Qx and Qy many times [18, 140, 141]. Yet, the B2B model uses fewer

edges than cliques (p > 3), avoids new variables used in stars, and is more accurate than

both stars and cliques [134].

Quadratic placement example. Consider the graph G and edge weights wij in Figure

2.1. Quadratic placement minimizes the separable quadratic cost function ΦG in the x- and

y- directions. For the x-direction,

ΦG(~x) = w12(x1 − x2)2 + w13(x1 − x3)2 + w1f1(x1 − f1)2

+w23(x2 − x3)2 + w34(x3 − x4)2 + w4f2(x4 − f2)2

15

Figure 2.1: Blue boxes represent movable modules and black boxes represent fixed mod-
ules. Connections between modules are shown with black lines.

Setting the partial derivative to 0 (the condition for force equilibrium), we solve for the

global minimum cost.

∂ΦG(~x)

∂x
= 0⇔ Qx~x = −~cx ⇔ (2.5)

5.0 −1.0 −1.0 0.0

−1.0 2.0 −1.0 0.0

−1.0 −1.0 4.0 −2.0

0.0 0.0 −2.0 6.0

x1

x2

x3

x4

=

3.0f1

0.0

0.0

4.0f2

The connectivity matrix Qx has entry wij in the ith row and jth column, and −~cx has

entry ci in the ith row. The diagonal entries wii correspond to the sum of net weights

of all connections to movable module i. The off-diagonal entries wij are calculated as

the negative sum of net weights of connections between movable modules i and j, and

the resulting connectivity matrix becomes symmetric. Each element cx for a movable

module i is calculated as the sum of wij ·xj where xj is the pin location of each connected

fixed module. With (f1, f2) = (1.0, 3.5), a linear system solver finds a unique solution

~x = [1.4762 1.9524 2.4286 3.1429]T that minimizes the quadratic wirelength ΦG(~x).

16

2.2 Wirelength-driven Global Placement Algorithms

VLSI design flow often includes numerous stages of placement, routing and timing

optimization transforms, and the quality of individual stages is ultimately evaluated by

the timing closure of the design. Yet, wirelength is commonly used as a concrete goal

in VLSI placement stage. This is because not only wirelength is easy to measure, but

also it is closely related to the amount of overall routing resource demand and timing

optimization effort. Given that significant portion of circuit delay is dominated by inter-

connect in modern high-performance VLSI designs, those with lower interconnect length

can often achieve faster overall delay. Circuit placements with faster delay require smaller

iterations of timing optimization transforms to close timing, enabling a shortcut in design

time and effort. Therefore, state-of-the-art algorithms for placement commonly minimize

wirelength that connects circuit modules while ensuring legality of module placement.

Even in multiobjective placement, e.g., routability-driven or timing-driven placement, the

choice-of the wirelength-driven global placement engine is paramount as demonstrated in

the ISPD 2011 routability-driven placement contest [143].

State-of-the-art analytical algorithms for global placement form two families: (i)

force-directed quadratic placers, such as Kraftwerk2 [134], FastPlace3 [140] and RQL [141],

and (ii) nonconvex optimization techniques, such as APlace2 [79], NTUPlace3 [36] and

mPL6 [26]. Force-directed quadratic algorithms model total net length by a quadratic

function of cell locations and minimize it by solving a large sparse system of linear equa-

tions. To discourage cell overlap, forces are added pulling cells away from high-density

areas. These forces are modeled by pseudopins and pseudonets, which extend the original

17

quadratic function [65]. They are updated after each linear-system solve until iterations

converge. Nonconvex optimization models net length by more sophisticated differentiable

functions with linear asymptotic behavior which are then minimized by advanced numeri-

cal analysis techniques [79]. Cell density is modeled by functional terms, which are more

accurate than forces, but also require updates after each change to placement [36, 79]. Al-

gorithms in both categories are used in the industry or closely resemble those in industry

placers [78, 87, 141].

Tools based on nonconvex optimization achieve the best results reported for academic

implementations [36] and EDA vendor tools, but are significantly slower, which is prob-

lematic for modern flat SoC placement instances with tens of millions of movable ob-

jects. To scale the basic nonconvex optimization framework, all tools in this family em-

ploy netlist clustering and multilevel extensions, sometimes at the cost of solution quality.

Such multilevel placers perform many sequential steps, obstructing efficient paralleliza-

tion. Moreover, clustering and refinement do not fully benefit from modern multicore

CPUs. Due to their complexity, multilevel placers are also harder to maintain, improve,

and combine with other physical-design techniques. In particular, clustered netlists com-

plicate accurate static timing analysis, congestion maps and physical synthesis transforma-

tion, such as performance-driven buffering, gate sizing, fanin/fanout optimization, cloning,

etc [10]. Hence, timing-closure flows often repeat global placement 3-4 times, alternating

it with timing analysis, physical synthesis and congestion improvement.

State-of-the-art force-directed quadratic placers tend to run many times faster than

nonconvex optimization, but also use multilevel extensions in their most competitive con-

18

figurations. Their solution quality is mixed. FastPlace3 underperforms mPL6, but the

industry tool RQL closely related to FastPlace outperforms these two nonconvex placers.

Kraftwerk2 is the only competitive flat placer (i.e., it does not use clustering) and rivals

other force-directed quadratic placers in speed. However, it lags behind in solution qual-

ity and poses several challenges, such as quickly solving Poisson’s equation, ensuring the

convergence of iterations and avoiding halos of unused space around macros. Our expe-

rience indicates that the performance of Kraftwerk2 can be uneven, and stability can only

be achieved with some loss of solution quality [82]. Several placers are described in the

book [107] and journal papers [18, 36, 134].

2.3 Routability-driven Placement

In earlier technology generations, placement and routing algorithms were designed

and implemented in separate software tools due to their complexity. After logic synthesis,

large-scale placers generate row- and site-aligned, non-overlapping locations for cells with

small interconnect length (HPWL). A global router then routes every signal net, seeking

to minimize total wirelength, subject to track capacity constraints. However, at advanced

technology nodes, the traditional placement metrics no longer suffice to quantify solu-

tion quality [12, 124] and consider congestion objectives. Furthermore, highly-optimized

placements often lead to routing failures when a wirelength-driven global placer has no

information about actual routes.

Traditional congestion-aware placement algorithms focused on allocating / injecting whites-

pace to congestive regions to improve routability [78, 98, 162]. However, due to the lack

of interaction between the placement and the routing stages, routers may not honor the

19

resource allocation preserved by a placer. Previous work shows how to incorporate con-

gestion analysis into global placement.

Congestion estimation methods [12]. A successful estimator, potentially based on a

global router, must account for up to twelve metal layers with wire widths and spacings that

differ by up to 20 times. Blockages and per-layer routing rules must be accounted as well.

Other constraints include via spacing rules and limits on intra-gcell routing congestion.

With the 2007 and 2008 ISPD contests [69, 108], several academic routers — NTHU-

Route 2.0 [28], NTUgr [61], FastRoute 4.0 [159], BFG-R [67] — have emerged to account

for some of these issues. More recent routers — PGRIP [158], PGR (SGR) [101], GLADE

[29, 96] — have improved upon the solution quality and runtime of the routing solutions,

and accounted for different layer directives.

Congestion maps. To estimate congestion, prior approaches can be divided into three

main categories: (i) static congestion estimation, (ii) probabilistic congestion estimation,

and (iii) global routing estimation. Traditionally, the first two options have been the most

popular approaches, but due to the recent advances of global routers and the increased

complexity of global routing, the last approach is gaining popularity. In addition, there

is evidence that constructive methods, e.g., generating routes, is faster and more accurate

than using probabilistic methods [156]. All three approaches are summarized in Table 2.1.

Congestion-driven placement. Once the congestion information is generated, the op-

timizations can be divided into four main approaches: (i) during global placement, (ii)

external optimizations applied to intermediate solutions, (iii) during detailed placement,

and (iv) external optimizations applied after placement. During global placement, the two

20

GENERAL APPROACH SPECIFIC TECHNIQUES

STATIC

Rent’s Rule [47, 49, 104, 163]
net bounding box [37, 124]
pin density [20, 166]
counting nets in each region [148]
(uniform) wire density [133]

PROBABILISTIC pseudo-constructive wirelength [76]
probabilistic pattern routing [155]

CONSTRUCTIVE

generating routes using A* on a
collapsed (2-d) routing grid [156]
using FastRoute [111] within
an integrated framework [39]

Table 2.1: Prior congestion-driven placement techniques.

most popular optimizations are to either adjust the movable cells’ location, or modify the

cells themselves (e.g., cell bloating). These ideas must be adapted to specific placer types

(e.g., quadratic, min-cut, annealing-based). Additional optimizations can be performed on

intermediate placement solutions, During detailed placement, the most common approach

is to swap cells so as to reduce congestion without significantly increasing wirelength. All

four approaches are summarized in Table 2.2.

Generally, routability-driven placement has remained an open challenge. Until recent-

lyk, direct comparisons between different tools were difficult, partially due to the lack

of modern large-scale standard benchmarks and common protocols. In the ISPD 2011

routability-driven placement contest, a new industry benchmark suite was released along

with the official evaluation protocol [143]. Leading-edge academic tools submitted to the

contest represented prior art and several emerging new techniques.

21

GENERAL APPROACH SPECIFIC TECHNIQUES

relocating the movable objects
DURING [73, 133, 140]
GLOBAL cell bloating or cell inflation [20, 59]

PLACEMENT growing or shrinking
placement regions [114]

INTERMEDIATE local placement refinement [39]
linear placement based on Steiner

DURING length in small windows [72, 124]
DETAILED incorporating congestion into

PLACEMENT the objective function [165]
cell swapping based on only
congestion and overlap [39]
whitespace injection
or reallocation [98, 124, 162]
simulated annealing [37, 65, 145]

AFTER linear programming [100]
PLACEMENT network flows [146, 147]

shifting modules by expanding
global routing grid tiles [165]
using pin density and congestion
map to spread and bloat cells [120]

Table 2.2: Prior congestion-driven placement techniques.

22

2.4 Optimizing Multiple Objectives in Placement

Next generation fabrication technologies and advanced VLSI processes raise new physical-

design challenges, especially in placement. Traditional wirelength-driven placement algo-

rithms are not geared for multiobjective optimization at new technology nodes and as a

result, placement often requires a great deal of manual intervention to ensure timing clo-

sure. For example, placement engines that do not consider routability or cannot support

macro placement ultimately require more design effort in subsequent stages. Several re-

cent state-of-the-art placement algorithms seek to reconcile such diverse demands early in

placement.

Large macro placement. To facilitate fast-growing design complexity, modern VLSI

designs often integrate thousands of predesigned macros due to the massive reuse of Intel-

lectual Property (IP) modules (microprocessors, controllers, signal/graphic processors) or

embedded memories. Traditional sea-of-gates ICs design style with a handful of macros is

being replaced by the sea-of-hard-macros design style [154]. In a traditional design flow,

macro placement mostly occurs in floorplanning, and locations are fixed at the designers’

discretion. Such flow typically does not achieve the optimal macro placement given that it

cannot fully consider interconnect between macros and standard cells. With macros being

responsible up to 50%-70% of the total area [154], the impact of suboptimal macro place-

ment solutions is more pronounced and often cannot be compensated for even by state-of-

the-art standard cell placement, resulting in the failure of timing closure. In turn, macro

and standard cell co-placement (or mixed-size placement) is highly desirable to achieve

placements with superior quality for modern designs with movable macros. However,

23

macros can differ greatly in aspect ratios, sizes and pin locations with standard cells, which

causes challenges to traditional standard cell-based analytic placement algorithms. Exist-

ing approaches to mixed-size placement can be largely classified into three categories: (i)

two-stage approach, (ii) floorplanning methods, and (iii) one-stage approach. In the two-

stage approach, placers first determine legal locations of macros and performs standard

cell placement while macros are fixed [32, 33]. In contrast to the traditional forward flow,

the macro-placement stage often requires an initial placement for global positioning, typ-

ically obtained by using a traditional standard cell placer. A common objective of macro

placement in the two-stage approach is to preserve the relative placement among macros

acquired from initial placement while ensuring the legality. For example, [33] explicitly

packs macros around chip / predefined boundaries to maximize routability of circuits. In

the flooringplanning-based methods, placers determine locations of macros cells and stan-

dard cells constructively. Placers based on these methods [121, 160] partition the layout

regions considering clustered block sizes and assign these clusters / macro cells to parti-

tions and floorplanning is performed as necessary in the subregion. The membership and

locations of macros are then incrementally refined over subsequent placement iterations.

Even though these placers maintain overlap-free macro solutions during placement itera-

tions, they often do not generate competitive solutions due to intrinsic limitations of the

partitioning-based approach. In the one-stage approach, placers represent cell sizes with

differential functions and perform simultaneous standard cell and macro placement while

allowing macro overlaps during the analytic placement [26, 36, 79]. However, analytical

placers sometimes cannot reliably generate legal placement especially in the presence of

24

big macros and/or high design utilization [33, 160]. Recent macro-placement algorithms

try to further optimize wirelength by employing flipping and rotation moves for macros as

demonstrated in [32, 33, 62, 160].

Timing-driven placement. While traditional placers are not explicitly timing-aware, they

can satisfy timing constraints implicitly by wirelength minimization. Since interconnect

delay is dominant in modern designs and is linearly proportional to interconnect length

with proper buffering, scaled interconnect length is a good first order approximation of

the overall delay. However, there exists a gap between the total wirelength and actual

delay, and the wirelength of individual timing-critical paths. Since traditional wirelength-

driven placers do not try to regulate the wirelengths among different paths and fail to

consider gate delays, even highly wirelength-optimized solutions can have considerable

timing violations on critical (or near-critical) paths, which are often hard to compensate

for by timing transformations during later timing optimization stages, such as buffering

and gate resizing.

To adress performance optimzation challenges, timing-driven placement algorithms

have been studied extensively. Timing-driven placement typically assumes an initial wirelength-

optimized placement (can be post-processed by rough buffering / fanout optimization) and

timing analysis tools for the tentative solution to guide the timing-driven placement en-

gine. The most critical aspect of timing-driven placement is the mechanism to use timing

information to influence the core placement engines. Prior art can be classified as (i) path-

based methods and (ii) net-based methods. Path-based methods [27, 70, 135] consider

all or a subset of paths directly, and thus have more accurate timing view and control,

25

However, these methods have suffered from poor scalability due to the exponentially in-

creasing number of paths [27]. On the other hand, net-based methods [77, 90, 117, 142]

translate timing-analysis information into net weights or net constraints as a way to mod-

erate computational complexity. The main idea of net-weighting is to assign heavier net

weights to more timing-critical nets while minimizing the total weighted wirelength ob-

jective. However, these techniques often lack the global view of the full path, and may not

be able to optimize timing effectively because they do not have exact control of net or path

lengths. Recent research shows that hybrids of path-based and net-based approaches are

promising [102].

Structured logic placement. As SoC frequencies exceed 1 GHz and shrinking design

schedules necesitate design automation for microprocessor chips, the boundary between

manually designed datapath logic and random logic macros is blurring. A new design

style, referred to as hybrid designs, is emerging that integrates random logic with datap-

aths. Such datapaths often perform parallel operations on different bits of the same CPU

word (often called the bit-stack), and their careful optimization is crucial for high fre-

quency designs [109]. Prior work [68] has shown that, with separate placement engines, a

dedicated datapath placer may overconstrain the random logic placement solution causing

overall degradation in congestion and wirelength. A single placement flow handling both

structures is extremely valuable, improving design time, quality, and saving development

and maintenance costs. However, results in [149] demonstrate that even state-of-the-art

placers are incapable of handling designs with regular structure, largely because they are

unaware of datapath structure. Despite its importance, structure-aware placement is often

26

considered by researchers too difficult due to the complexity of the problem and the failure

of numerous previous attempts.

Other technology-driven objectives. Methodologies to include other emerging technol-

ogy trends are receiving considerable attention in the literature. Such objectives include

power-driven clocked element distribution [95], power-network planning [97], TSV count

minimization [35] and thermal-awareness [44] for heterogeneous / 3-d ICs, detailed rout-

ing (pin-density)-awareness [120], or manufacturability [34]. Research on multiobjective

placement optimization seeks more custom-like quality of placement by extending to con-

sider logic/hierarchy information [40] or even by restructuring [10, 30].

27

PART II

High-Quality Placement
for Modern System-on-a-Chip Designs

28

CHAPTER III

SimPL: An Effective Placement Algorithm

We propose a self-contained, flat, quadratic global placement algorithm that is sim-

pler than existing placers and easier to integrate into timing-closure flows. It maintains

lower-bound and upper-bound placements that converge to a final solution. The upper-

bound placement is produced by a novel lookahead legalization algorithm. The lower-

bound placement is produced by solving a linear system with spreading forces. Our placer

SimPL outperforms mPL6, FastPlace3, NTUPlace3, APlace2 and Capo simultaneously in

runtime and solution quality, running 7.1 times faster than mPL6 (using a single thread)

and reducing wirelength by 3% on the ISPD 2005 benchmark suite. Greater improve-

ments are achieved on larger benchmarks. The new algorithm is amenable to parallelism.

We report empirical studies with SSE2 instructions and up to eight parallel threads.

3.1 Introduction

Global placement currently remains at the core of physical design and is a gating factor

for downstream optimizations during timing closure [10]. Despite impressive improve-

ments reported by researchers [107] and industry software in the last five years, state-

of-the-art algorithms and tools for placement suffer several key shortcomings which are

29

becoming more pronounced at recent technology nodes. These shortcomings fall into four

categories: (i) speed, (ii) solution quality, (iii) simplicity and integration with other op-

timizations, (iv) support for multi-threaded execution. We propose the SimPL algorithm

that simultaneously improves results in the first three categories and lends itself naturally

to thread-level and instruction-level parallelism on multicore CPUs.

In this chapter, we develop a new, self-contained technique for global placement that

ranks as a flat partition-based and force-directed placement algorithm. It maintains lower-

bound and upper-bound placements that converge to a final solution. The upper-bound

placement is produced by a novel lookahead legalization algorithm based on top-down

geometric partitioning and nonlinear scaling. Our implementation outperforms published

placers simultaneously in solution quality and speed on standard benchmarks. The lower-

bound placement is produced by solving a linear system with spreading forces. Our al-

gorithm is simpler, and our attempts to improve overall results using additional modules

and extensions from existing placers (such as netlist clustering [26,79,140], iterative local

refinement (ILR) [140], and median-improvement (BoxPlace) [82]) were unsuccessful.

In the remainder of this chapter, Section 3.2 introduces our key ideas and articulates

our solution of the force modulation problem. The SimPL algorithm is presented in Sec-

tion 3.3 along with complexity analysis. Extensions and improvements are discussed in

Section 3.4, and empirical validation is described in Section 3.5. The use of parallelism is

discussed in Section 3.6, and Section 3.7 summarizes our results.

30

3.2 Key Ideas

Analytic placement techniques first minimize a function of interconnect length, ne-

glecting overlaps between standard cells, macros, etc. This initial step places many cells

in densely populated regions, typically around the center of the layout. Cell locations are

then gradually spread through a series of placement iterations, during which interconnect

length slowly increases, converging to a final overlap-free placement (a small amount of

overlap is often allowed and later resolved during detailed placement).

Our algorithm also starts with pure interconnect minimization, but its next step is un-

usual — most overlaps are removed using a fast lookahead legalizer based on top-down

geometric partitioning and nonlinear scaling. Locations of movable objects in the legal-

ized placement serve as anchors to coerce the initial locations into a configuration with

less overlap, by adding pseudonets to baseline force-directed placement [65].

Each subsequent iteration of our algorithm produces (i) an almost-legal placement

that overestimates the final result — through lookahead legalization, and (ii) an illegal

placement that underestimates the final result — through linear system solver. The wire-

length gap between lower-bound and upper-bound placements helps monitor convergence

(Section 3.3.3).

Solving the force-modulation problem. A key innovation in SimPL is the interaction

between the lower-bound and the upper-bound placements — it ensures convergence to

a no-overlap solution while optimizing interconnect length. It solves two well-known

challenges in analytic placement: (1) finding directions in which to spread the locations

(force orientation), and (2) determining the appropriate amount of spreading (force mod-

31

ulation) [82, 141]. This is unlike previous work, where spreading directions are typically

based on local information, e.g., placers based on nonconvex optimization use gradient

information and require a large number of expensive iterations. Kraftwerk2 [134] ori-

ents spreading forces according to solutions of Poisson’s equation, providing a global

perspective and speeding up convergence. However, this approach does not solve the

force-modulation problem, as articulated in [82].1 The authors of RQL [141], which can

be viewed as an improvement on FastPlace, revisit the force-modulation problem and ad-

dress it by a somewhat ad hoc limit on the magnitude of spreading forces. In our work,

the lookahead legalization algorithm (Section 3.3.2), invoked at each iteration, determines

both the direction and the magnitude of spreading forces. It is global in nature, accounts

for fixed obstacles, and preserves relative placement to ensure interconnect optimization

and convergence. Our placement algorithm does not require exotic components, such as a

Poisson-equation solver used by Kraftwerk; our C++ implementation is self-contained.

Global placement with lookahead. The legalized upper-bound placements constructed

at every iteration of our placer can be viewed as lookahead because they are used only

temporarily and not refined directly. They pull cell locations in lower-bound placements

not just away from dense regions, but also toward the regions where space is available.

Such area lookahead is particularly useful around fixed obstacles, where local information

does not offer sufficient guidance. While not explored in this chapter, similar congestion

lookahead and timing lookahead based on legalized placements can be used to integrate

our placement algorithm into modern timing-closure flows.

1The work in [82] performs force modulation with line search but is not currently competitive with state
of the art.

32

Figure 3.1: The SimPL algorithm uses placement-dependent B2B net model, updated on
every iteration. Gap refers to the difference between upper and lower bounds.

33

3.3 The SimPL Global Placement Algorithm

Our placement technique consists of three phases: initial placement, global placement

iterations and post-global placement (Figure 3.1). Initial placement, described next, is

mostly an exercise in judicious application of known components. Our main innovation

is in the global placement phase. Post-global placement is straightforward, given current

state of the art.

3.3.1 Initial placement

Our initial-placement step is conceptually similar to those of other force-directed plac-

ers [134, 140, 141] — it entirely ignores cell areas and overlaps, so as to minimize a

quadratic approximation of total interconnect length. We found that this step notably

impacts the final result. Therefore, unlike FastPlace3 [140] and RQL [141], we use the

more accurate Bound2Bound net model from [134] reviewed in Section 2.1. After the

first quadratic solve, we rebuild the circuit graph because the B2B net model is placement-

dependent. We then alternate quadratic solves and graph rebuilding until HPWL stops

improving. In practice, this requires a small number of iterations (5-7), regardless of

benchmark size, because the relative ordering of locations stabilizes quickly.

3.3.2 Lookahead legalization

Consider a set of cell locations with a significant amount of overlap as measured using

bins of a regular grid. Lookahead legalization changes the global positioning of those

locations, seeking to remove most of the overlap (with respect to the grid) while preserving

the relative ordering. This task can be formulated at different geometric scales by varying

34

Algorithm 1 Lookahead Legalization by Top-down Geometric Partitioning
and Nonlinear Scaling
Maximum allowed density γ, where 0 < γ < 1
Current grid cell size
Floorplan with obstacles
Placement of cells
Queue of bin clusters Q = ∅

1: Identify γ-overfilled bins and cluster them // Fig. 3.2(a)
2: foreach cluster c do
3: Find a minimal rectangular region R ⊃ c with density(R) ≤ γ
4. R.level=1
5: Q.enqueue(R)
6: while !Q.empty() do
7: B=Q.dequeue()
8: if (Area(B) < 4·grid cell size || B.level ≥ 10) then
9: continue
10: M={movable cells in B}
11: if (B.level % 2 == 0) then axis direction D=HORIZ
12: else axis direction D=VERT
13: Cc=D-aligned cutline to evenly split cell area in M
14: CB=D-aligned cutline to evenly partition whitespace in B
15: (S0, S1)={two sub-regions of B created by cutline Cc}
16: M0={movable cells in S0}
17: M1={movable cells in S1}
18: (B0, B1)={two sub-regions of B created by cutline CB}
19: Perform NONLINEAR SCALING on M0 ⊥ to D in B0

20: Perform NONLINEAR SCALING on M1 ⊥ to D in B1

21: B0.level=B1.level=B.level+1
22: Q.enqueue(B0)
23: Q.enqueue(B1)
24: end while
25: end foreach

the grid. The quality of lookahead legalization is measured by its impact on the entire

placement flow. Our lookahead legalization is based on top-down recursive geometric

partitioning and nonlinear scaling, as outlined in Algorithm 1. Cutlines Cc and CB are

chosen to be vertical at the top level and they alternate between horizontal and vertical

directions with each successive level of top-down geometric partitioning.

35

(a) (b)

Figure 3.2: Clustering of overfilled bins in Algorithm 1 and adjustment of cell-area to
whitespace median by nonlinear scaling (also see Figure 3.3). Movable cells
are shown in blue, obstacles in solid gray.

Handling density constraints. For each grid bin of a given regular grid, we calculate

the total area of contained cells Ac and the total available area of cell sites Aa. A bin is

γ-overfilled if its cell density Ac/Aa exceeds given density limit 0 < γ < 1. Adjacent

γ-overfilled bins are clustered by Breadth-First Search (BFS), and lookahead legalization

is performed on such clusters. For each cluster, we find a minimal containing rectangular

region with density ≤ γ (these regions can also be referred to as clusters). A key insight

is that overlap removal in a region, which is filled to capacity, is more straightforward

because the absence of whitespace leaves less flexibility for interconnect optimization.2

If relative placement must be preserved, overlap can be reduced by means of x- and y-

sorting with subsequent greedy packing. The next step, nonlinear scaling, implements

this intuition, but relies on cell-area cutline Cc chosen in Algorithm 1 and shifts it toward

2In the presence of whitespace, the placer can move cells around without changing their relative ordering
[8]. Removing whitespace suppresses this degree of freedom, giving fewer choices to the placer.

36

Figure 3.3: Nonlinear scaling in a region with obstacles (I): the formation of CB-aligned
stripes (II), cell sorting by distance from CB (III), greedy cell positioning (IV).

the median of available area CB in the region, so as to equalize densities in the two sub-

regions (Figure 3.2).

Nonlinear scaling in one direction is illustrated in Figure 3.3, where a new region was

created by a vertical cutline CB during top-down geometric partitioning. This region is

subdivided into vertical stripes parallel to CB. First, cutlines are drawn along the bound-

aries of obstacles present in this region. Each vertical stripe created in this process is

 0 2000 4000 6000 8000 10000 12000

 0 2000 4000 6000 8000 10000 12000

Figure 3.4: Nonlinear scaling after the first vertical cut and two horizontal cuts
(ADAPTEC1) from intermediate steps between iterations 0 and 1 in Figure 3.7.

37

further subdivided (by up to 10 evenly distributed cutlines) if its available area exceeds

1/10 of the region’s available area. Movable cells in the corresponding sub-region created

by Cc are then sorted by their distance from CB and greedily packed into the stripes in

that order. In other words, the cell furthest from the cutline is assigned to the furthest

stripe. Each subsequent cell is assigned to the furthest stripe that is not filled yet. For each

stripe, we calculate the available site area Aa and consider the stripe filled when the area

of assigned cells reaches γAa. Cell locations within each stripe are linearly scaled from

current locations (non-linearity arises from different scaling in different stripes).

Lookahead legalization applies nonlinear scaling in alternating directions, as illustrated

in Figure 3.4 on one of ISPD 2005 benchmarks. Here, a region R is selected that contains

overfilled bins, but is wide enough to facilitate overlap removal. R is first partitioned by a

vertical cutline, after which nonlinear scaling is applied in the two new sub-regions. Subse-

quently, lookahead legalization (Algorithm 1) considers each sub-region individually and

selects different horizontal cutlines. Four rounds of nonlinear scaling follow, spreading

cells over the region’s expanse (Figure 3.4).

Despite a superficial similarity to cell-shifting in FastPlace [140], our nonlinear scaling

does not use cell locations to define bins/ranges, or map ranges onto a uniform grid.

Cutline shifting. Median-based cutlines are neither necessary nor sufficient for good

solution quality. We therefore adopt a fast cutline positioning technique from [119]. On

benchmarks whose obstacles cover <20% of total sites area, we find cutline positions Cc

minimizing net cut for the top two levels of top-down geometric partitioning, with <60%

of cell area per partition. We record the ratio ρ of cell areas in the two partitions and adjust

38

Figure 3.5: An anchor with a pseudonet.

the region’s CB cutline to the position that partitions the region’s available area with the

same ratio ρ. A related technique called ACG was developed at IBM in the context of

min-cut placement, and their paper [8] describes relevant intuition.

3.3.3 Global placement iterations

Using legalized locations as anchors. Solving an unconstrained linear system results

in a placement with significant amount of overlap. To pull cells away from their initial

positions, we gradually perturb the linear system. As explained in Section 3.3.2, at each

iteration of our global placement, top-down geometric partitioning and nonlinear scaling

generates a roughly legalized solution. We use these legalized locations as fixed, zero-area

anchors connected to their corresponding cells in the lower-bound placement with artificial

two-pin pseudonets. Furthermore, following the discussion in Section 2.1, we note that

connections to fixed locations do not increase the size of the Hessian matrix Q, and only

contribute to its diagonal elements [80, Section 4.3.2]. This enhances diagonal dominance,

condition number of P−1Q, and the convergence rate of Jacobi-preconditioned CG.

In addition to weights given by the B2B net model on pseudonets, we control cell

movement and iteration convergence by multiplying each pseudonet weight by an addi-

39

tional factor α > 0 computed as α = 0.01 · (1 + iterationNumber). At early iterations,

small α values weaken spreading forces, giving greater significance to interconnect and

more freedom to the linear system solver. As the relative ordering of cells stabilizes, in-

creasing α values boost the pull toward the anchors and accelerate the convergence of

lower bounds and upper bounds.

Grid resizing. To identify γ-overfilled bins, we overlay a uniform grid over the entire

layout. The grid size is initially set to Sinit = 100 × 100 to accelerate the lookahead le-

galization. However, in order to accurately capture the amount of overlap, the grid cell

size decreases by β = 1.06 at each iteration of global placement until it reaches 4 times

the average movable cell size.3 Grid resizing also affects the clustering of γ-overfilled

bins during lookahead legalization (Section 3.3.2), effectively limiting the amount of cell

movement and encouraging convergence at later iterations. A progression of global place-

ment is annotated with HPWL values in Figure 3.7. The upper-bound placements on the

right appear blocky in the first iteration, but gradually refine with grid resizing.

Convergence criteria. A convergence criterion similar to that in Section 3.3.1 can be

adopted in global placement. We alternate (1) lookahead legalization, (2) updates to an-

chors and the B2B net model, and (3) solution of the linear system, until HPWL of solu-

tions generated by lookahead legalization stops improving. Unlike in the initial placement

step, however, HPWL values of upper-bound solutions oscillate during the first 4-7 iter-

ations, as illustrated in Figure 3.6. To prevent premature convergence, we monitor the

gap between the lower and upper bounds. Global placement continues until (1) the gap is

3This is similar to mesh sizing for finite-element methods in numerical analysis and especially in adaptive
mesh refinement. Parameters can be optimized for benchmark suites using binary search. However, we have
not tuned parameters to individual benchmarks.

40

reduced to 25% of the gap in the 10th iteration and upper-bound solution stops improving

or (2) the gap is smaller than 10% of the gap in the 10th iteration. On the ISPD 2005

benchmark suite, this convergence criterion entails 26-47 iterations of global placement.

The final set of locations (global placement) is produced by the last lookahead legalization

as shown in Figure 3.1.

Convergence is guaranteed by the increasing weights of pseudonets. At each iteration,

these pseudonets pull the lower-bound placement toward a legalized upper-bound place-

ment. As the lower-bound placement becomes closer to a legal placement, it exhibits a

decreasing amount of cell overlap. This, in turn, results in smaller cell displacements dur-

ing lookahead legalization. In the extreme, very high pseudonet weights force the lower-

bound placement so close to the upper-bound placement, that lookahead legalization does

not change it, resulting in immediate convergence.4 In practice, pseudonet weights are

changed gradually to ensure low interconnect length. After the first few iterations, one

typically observes monotonic convergence, as illustrated in Figure 3.6.

3.3.4 Asymptotic complexity analysis

Modern placement algorithms are too complicated for asymptotic complexity analysis,

but the bottlenecks of the SimPL algorithm yield to traditional analysis.

The runtime of global placement iterations is dominated by the Conjugate Gradi-

ent (CG) solver and lookahead legalization. The complexity of each CG invocation is

O(m
√
κ), where κ is the conditioning number of the matrix and m is the number of

nonzero elements [138]. The number of nonzeros reflects the number of graph edges
4This convergence argument only assumes that lookahead legalization does not change an upper-bound

placement. It does not make any other assumptions about the lookahead legalization algorithm or consistency
of its results between iterations. Neither does it say anything about the quality of results.

41

4.0e+7

6.0e+7

8.0e+7

1.0e+8

1.2e+8

1.4e+8

1.6e+8

 0 10 20 30 40 50
 0

 10

 20

 30

 40

 50

H
P

W
L

S
c
a

le
d

 O
v
e

rf
lo

w
 p

e
r

b
in

Iteration number

Wirelength lower bound

Scaled overflow per bin

Wirelength upper bound

Legal solution

4.0e+7

6.0e+7

8.0e+7

1.0e+8

1.2e+8

1.4e+8

1.6e+8

 0 10 20 30 40 50
 0

 10

 20

 30

 40

 50

H
P

W
L

S
c
a

le
d

 O
v
e

rf
lo

w
 p

e
r

b
in

Iteration number

Wirelength lower bound

Scaled overflow per bin

Wirelength upper bound

Legal solution

Figure 3.6: Lower and upper bounds for HPWL, the scaled overflow per bin of the
lower-bound placement at each iteration, and HPWL of the legal placement
(ADAPTEC1) .

in the B2B model of the netlist. It grows linearly with the number of pins (cell-to-net

connections) — a key size metric of a netlist. Another way to estimate the number of

nonzeros is to observe that the average cell degree (the number of nets connected to a cell)

is bounded by d = 5, or perhaps a slightly larger constant, for practical netlists.5 Since

m ≤ (d+ 1)n for n cells,6 CG runs in O(n
√
κ) time.

Asymptotic runtime of lookahead legalization is dominated by sorting cell locations by

their x and y coordinates because nonlinear scaling takes O(n) time (several other linear-

time steps take even less time in practice, therefore we do not discuss them). Given that

lookahead legalization operates on blocks of progressively smaller size, we can separately

consider its processing pass for the top-level blocks, then the pass for half-sized blocks,

etc. Only O(log n) such passes are required for n cells. Each pass takes O(n log n) time

because top-level blocks do not experience significant overlaps — in fact, each subsequent

5Even with large macros, whose number is limited by design area.
6Including diagonal matrix elements.

42

pass becomes faster because sorting is applied to smaller groups of cells. Hence, looka-

head legalization runs in O(n log2 n) time. We have observed that due to preconditioning,

iteration counts in CG grow no faster than log n, and each iteration takes linear time in n.

Therefore one global placement iteration takes O(n log2 n) time.

Empirically, SimPL requires <50 placement iterations, even for circuits with millions

of cells. While the number of iterations might grow for larger circuits, this growth is

very slow — possibly a polylog function of n. Empirical results in Section 3.5 show that

SimPL’s advantage in runtime and solution quality over its closest competitor (FastPlace3)

increases on larger netlists. Min-cut placement (Capo) exhibits asymptotic complexity

O(n log2 n), but lags behind SimPL in runtime and quality.

Space complexity of our algorithms is linear in the size of the input, and our imple-

mentations require a modest amount of memory.

3.4 Extensions and Improvements

The algorithm in Section 3.3 can be improved in terms of runtime and solution quality.

However, some of our attempts at improvement were unsuccessful. We report them here

to warn the reader about their futility.

3.4.1 Selecting windows for lookahead legalization

During early global iterations, most movable cells of the lower-bound placement reside

near the center of the layout region (Figure 3.7). In such cases, there is usually one ex-

panded minimal rectangular region (cluster) that will encompass most of γ-overfilled bins.

However, as global iterations progress, γ-overfilled bins will be scattered around the lay-

43

 0 2000 4000 6000 8000 10000 12000

HPWL=4.484e+07, Stage=IP, Iter=0

 0 2000 4000 6000 8000 10000 12000

HPWL=1.501e+08, Stage=LAL, Iter=1

 0 2000 4000 6000 8000 10000 12000

HPWL=5.556e+07, Stage=LSS, Iter=2

 0 2000 4000 6000 8000 10000 12000

HPWL=1.173e+08, Stage=LAL, Iter=3

 0 2000 4000 6000 8000 10000 12000

HPWL=6.496e+07, Stage=LSS, Iter=10

 0 2000 4000 6000 8000 10000 12000

HPWL=9.208e+07, Stage=LAL, Iter=11

 0 2000 4000 6000 8000 10000 12000

HPWL=6.824e+07, Stage=LSS, Iter=20

 0 2000 4000 6000 8000 10000 12000

HPWL=8.572e+07, Stage=LAL, Iter=21

Figure 3.7: A progression of global placement snapshots from different iterations and al-
gorithm steps (adaptec1). IP=Initial Placement, LAL=Lookahead Legaliza-
tion, LSS=Linear System Solver. Left-side placements show lower bounds
and right-side placements show upper bounds.

44

out region, and multiple clusters of bins may exist. In our implementation, we process γ-

overfilled bins in the decreasing order of density. Each expansion stops when the cluster’s

density drops to γ or the cluster abuts the boundaries of previously processed clusters. This

strategy may generate incompletely expanded clusters, especially in mid-stages of global

placement iterations. However, as the densest bins are processed first, the number of re-

gions with peak density is guaranteed to decrease at every iteration except when the peak

density itself decreases. At each iteration of global placement, lookahead legalization is

repeated up to ten times with increasing grid cell sizes until maximal density is decreased

below γ.

3.4.2 Improving asymptotic complexity of lookahead legalization

As explained in Section 3.3.4, asymptotic runtime of lookahead legalization is largely de-

termined by sorting cells by positions in directions perpendicular to cutlines. This sorting

occurs at each level of top-down geometric partitioning. One way to improve asymptotic

runtime complexity of lookahead legalization is to invoke sorting less often, given that

lookahead legalization is to preserve the relative ordering among cells. Instead of sort-

ing cells in each sub-region, we first establish two cell arrays sorted by x-coordinates and

y-coordinates, respectively. At the second level of top-down geometric partitioning, two

sub-regions inherit corresponding cells in-order from two sorted arrays of cells. In this

way, if sorting is performed once at the top level of geometric partitioning, sorting at all

successive levels can be replaced by selecting appropriate cells belong to current region

in-order from two sorted arrays of higher level. This improves asymptotic runtime com-

plexity of lookahead legalization from O(n log2 n) time to O(n log n).

45

Benchmark APLACE2.0 CAPO10.5 FASTPLACE3.0 MPL6 NTUPLACE3 SIMPL
size (#cells) HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time
AD1 211K 78.35 35.02 88.14 25.95 78.16 2.50 77.93 18.36 81.82 8.20 76.87 2.47
AD2 255K 95.70 50.57 100.25 36.06 93.56 3.66 92.04 19.91 88.79 7.57 90.37 3.40
AD3 452K 218.52 119.53 276.80 78.19 213.85 8.48 214.16 58.92 214.83 15.62 206.38 6.68
AD4 496K 209.28 131.57 231.30 79.32 198.17 7.10 193.89 55.95 195.93 16.18 186.00 5.88
BB1 278K 100.02 44.91 110.92 41.78 96.32 3.77 96.80 22.82 98.41 13.22 95.85 3.47
BB2 558K 153.75 100.96 162.81 80.55 154.91 9.62 152.34 61.55 151.55 26.17 143.56 7.58
BB3 1.10M 411.59 209.24 405.40 182.94 365.59 21.59 344.10 85.23 360.07 51.08 336.19 13.02
BB4 2.18M 871.29 489.05 1016.19 567.15 834.19 40.93 829.44 189.83 866.43 115.06 796.78 37.37

Geomean 1.09× 15.34× 1.20× 12.17× 1.05× 1.20× 1.03× 7.10× 1.05× 3.05× 1.00× 1.00×

Table 3.1: Legal HPWL (×10e6) and total runtime (minutes) comparison on the ISPD
2005 benchmark suite. Each placer ran as a single thread on a 3.2GHz Linux
workstation. HPWL was computed by the GSRC Bookshelf Evaluator [1]. In
benchmark names, AD stands for ADAPTEC and BB for BIGBLUE.

3.4.3 Unsuccessful attempts at improvement

Compared to other placement algorithms, SimPL uses a very modest set of interconnect

optimizations. Therefore, we experimented with adding to SimPL several algorithms that

were reported essential to the performance of other placers.

1. Our first attempt was to use netlist clustering to extend SimPL into a multilevel

algorithm [26, 79, 140]. To this end, we implemented BestChoice clustering [106] used

in FastPlace3 and were able to match its performance observed in FastPlace3 logs. This

accelerated the initial CG solve in SimPL by about 2 times, with essentially the same qual-

ity of results, but unclustering increased the amount of cell overlaps, and the refinement

techniques that we tried were either ineffective or too time-consuming.

2. In our second attempt, we implemented iterative local refinement (ILR) [140],

which is a stage of FastPlace-global where it spends 40-50% of its runtime. ILR is a

simple move-based algorithm that post-processes results of quadratic placement by relo-

cating cells to nearby grid bins, while keeping track of both HPWL and cell density. ILR

did improve the results of our early prototypes, but adding it to SimPL does not improve

46

final results. We believe that our lookahead legalization algorithm provides sufficient

density control with a moderate increase in HPWL. We also tried, unsuccessfully, the

median-improvement (BoxPlace) algorithm from [82], which moves single cells to their

HPWL-optimal locations, while considering adjacent cells fixed.

3. In a third attempt, we evaluated ad hoc force modulation used in RQL [141] that

neglects 10% strongest forces. Sweeping the range from 1% to 10% did not reveal any

improvement in our experiments.

4. In our fourth attempt at improvement, we reordered vertices in the netlist to improve

memory locality for each invocation of CG. This technique is often applied to the matrices

of linear systems and is known to reduce cache misses and runtime. We implemented the

Reverse Cuthill-McKee (RCM) reordering, which is standard in numerical analysis. The

locality of nets has significantly improved. However, CG did not run faster on any of our

benchmarks — the default ordering in our benchmarks was already good enough.

In summary, we obtain state-of-the-art results without extensions reported essential

to other placers (FastPlace3 [140], FDP [82], and RQL [141]). We have also experimented

with several preconditioners for CG, but found the simplest of them — the diagonal (Ja-

cobi) preconditioner — to work best in our application.

3.5 Empirical Validation

Our implementation was written in C++ and compiled with g++ 4.4.0. Unless indi-

cated otherwise, benchmark runs were performed on an Intel Core i7 Quad CPU Q660

Linux workstation running at 3.2GHz, using only one CPU core. We compared SimPL to

other academic placers on the ISPD 2005 placement contest benchmark suite with target

47

density γ=1.0. Focusing on global placement, we delegate final legalization (into rows

and sites) and detailed placement to FastPlace-DP [112], but post-process it by a greedy

cell-flipping algorithm from Capo [23]. HPWL of solutions produced by each placer is

computed by the GSRC Bookshelf Evaluator [1].

3.5.1 Analysis of our implementation

The SimPL global placer is a stand-alone tool that includes I/O, initial placement and

global placement iterations. Living up to its name, it consists of fewer than 5,000 lines

of C++ code and relies only on standard C++ libraries. There are four command-line

parameters that affect performance — two for grid resizing (initial and step), and two for

pseudonet weighting (initial and step). In all experiments we used default values described

in Section 3.3.

Running in a single thread, SimPL completes the entire ISPD 2005 benchmark suite in

1 hour 18 minutes, placing the largest benchmark, BIGBLUE4 (2.18M cells), in 38 minutes

using 2.1GB of memory. We report the runtime breakdown on BIGBLUE4 according to

Figure 3.1, excluding 1.4% runtime for I/O.

Initial placement takes 5.0% of total runtime, of which 3.7% is spent in CG, and 1.3% in

building B2B net models and sparse matrices for CG. Global placement iterations take

47.4%, of which 19% is in the CG solver, and 9.9% is in sparse matrix construction and

B2B net modeling. Inserting pseudonets takes 0.8%, and lookahead legalization 17.7%.

Post-global placement takes 46.2%, predominantly in detailed placement. Greedy orien-

tation improvement and HPWL evaluation were almost instantaneous.

48

3.5.2 Comparisons to state-of-the-art placers

We compared SimPL to other placers whose binaries are available to us. We run each

available placer,7 including SimPL, in default mode and show results in Table 3.1. The

HPWL results reported by APlace2 [79], Capo10.5 [23], [121] and mPL6 [26] were con-

firmed by the GSRC Bookshelf Evaluator. However, FastPlace3 [140] reported lower

HPWL by 0.25% to 0.96%. For consistency, we report the readings of the GSRC Book-

shelf evaluator.

SimPL found placements with the lowest HPWL for seven out of eight circuits in the

ISPD 2005 benchmark suite (no parameter tuning to specific benchmarks was employed).

On average, SimPL obtains wirelength improvement of 7.73%, 16.47%, 4.38%, 2.98%,

and 4.48% versus APlace2, Capo10.5, FastPlace3, mPL6, and NTUPlace3 respectively.

SimPL was also the fastest among the placers on all eight circuits. It is 7.01 times faster

than mPL6, which appears to be the strongest pre-existing placer. SimPL is 1.20 times

faster than FastPlace3, which has been the fastest academic placer so far.

While we managed to obtain almost all best-performing academic placers in binaries,

RQL reportedly outperforms mPL6 in HPWL by a small amount [141]. Comparing our

HWPL results to numbers in [141], we observe five wins for SimPL and three losses. RQL

is 3.1 times faster than mPL6, making it more than twice as slow as SimPL.

3.5.3 Scalability study

To demonstrate SimPL’s scalability to larger netlists, we generated variants of ISPD

2005 benchmarks with netlists that are twice as big with the same area utilization. In such

7The KraftWerk2 binary we obtained did not run on our system.

49

Figure 3.8: Generation of double-sized netlists.

a double-sized benchmark, each movable cell is split in two cells of smaller size, and each

connection to the original cell is inherited by one of the split cells. Additionally, the two

split cells are connected by a new two-pin net (Figure 3.8).

We compared SimPL to FastPlace3, mPL6, and NTUPlace3 on the double-sized bench-

mark suite and show results in Table 3.2. mPL6 could not finish bigblue4. For bigblue3,

FastPlace-DP was unable to completely legalize solutions produced by FastPlace3-global,

hence we post-processed FastPlace-DP with Capo10.5’s legalizer.

SimPL was the fastest among the placers on all eight circuits. It is 8.96 times faster

than mPL6, and 1.49 times faster than FastPlace3. SimPL also found placements with

the lowest HPWL for six out of eight circuits in the double-sized ISPD 2005 benchmark

suite (no parameter tuning to specific benchmarks was employed). Comparing results in

Table 3.2 to those in Table 3.1, we observe that our placer has greater advantage on larger

benchmarks. Furthermore, our runtime comparisons include detailed placement, but if

SimPL is compared to FastPlace3-global without detailed placement, the average speed-

up increases to 1.82 times from 1.58 times.

Compared to other placers, our implemantation uses a modest amount of memory —

1.65 times and 2.39 times less than mPL6 and NTUPlace3 rpdfectively, and 1.61 times

more than FastPlace3. SimPL is using more memory than FastPlace3 when it constructs

sparse matrices based on the Bound2Bound net model.

50

Ckts FASTPLACE3.0 MPL6 NTUPLACE3 SIMPL
HPWL Time Memory HPWL Time Memory HPWL Time Memory HPWL Time Memory

AD1X2 80.30 3.67 0.20 79.11 24.95 0.43 80.20 19.6 0.72 77.02 3.05 0.36
AD2X2 98.88 6.06 0.23 93.64 38.00 0.82 91.56 17.6 0.86 92.41 4.11 0.36
AD3X2 258.71 13.47 0.42 232.87 88.71 1.11 225.32 44.7 1.62 215.56 7.58 0.71
AD4X2 219.35 11.54 0.44 206.24 85.72 1.16 197.90 39.6 1.76 193.18 7.25 0.69
BB1X2 97.93 5.68 0.25 100.37 30.35 0.53 99.33 22.0 0.93 96.39 4.71 0.43
BB2X2 164.74 12.13 0.49 159.24 79.84 1.22 154.47 44.2 1.94 148.43 9.02 0.77
BB3X2 515.61 49.89 0.93 395.26 172.96 3.38 386.65 154.9 3.82 403.40 22.24 1.44
BB4X2 865.30 56.36 1.94 fail fail fail 866.78 267.9 7.86 854.64 42.43 2.91

GM 1.10× 1.49× 0.62× 1.04× 8.96× 1.65× 1.02× 4.40× 2.39× 1.00× 1.00× 1.00×

Table 3.2: Legal HPWL (×10e6), total runtime (minutes), and peak memory usage (Giga-
bytes) comparison on the double-sized ISPD 2005 benchmark suite. The failure
of mPL6 in BIGBLUE4X2 is not caused by out-of-memory conditions.

3.6 Speeding up Placement Using Parallelism

Further speed-up is possible for SimPL on workstations with multicore CPUs.

3.6.1 Algorithmic details

Runtime bottlenecks in the sequential variant of the SimPL algorithm (Section 3.5.1)

— updates to the B2B net model and the CG solver — can be parallelized. Given that

the B2B net model is separable, we process the x and y cases in parallel. When more

than two cores are available, we split the nets of the netlist into equal groups that can

be processed by multiple threads. To parallelize the CG solver, we applied a coarse-

grain row partitioning [60] scheme to the Hessian Matrix Q, where different blocks of

rows are assigned to different threads using OpenMP [46]. A critical kernel operation

in CG is the Sparse Matrix-Vector multiply (SpMxV). Memory bandwidth is a known

performance bottleneck in a uniprocessor environment [55], and its impact is likely to

aggravate when multiple cores access the main memory through a common bus. We reduce

memory bandwidth demand of SpMxV by using the CSR (Compressed Sparse Row) [127]

memory layout for the Hessian matrix Q.

51

In addition to thread-level parallelism, our implementation makes use of streaming

SIMD extensions level 2 (SSE2) [115] (through g++ intrinsics) that perform several floating-

point operations at once. SSE2 instructions are extensively used in our CG solver. Since

SSE2 instructions are available in most modern CPUs, we used them in the default mode

evaluated in Table 3.1 and Table 3.2. The overall speed-up due to parallelism varies be-

tween different hardware systems, as it depends on the relation between CPU speed and

memory bandwidth.

/ / i n n e r p r o d u c t o f two f l o a t v e c t o r s x and y
f l o a t i n n e r p r o d u c t (v e c t o r<f l o a t>&x , v e c t o r<f l o a t>&y)
{

f l o a t p a c c [4] , i n n e r p r o d u c t =(f l o a t) 0 . ;
m128 X, Y, acc = m m s e t z e r o p s () ;

unsigned i ;
pragma omp p a r a l l e l f o r s c h e d u l e (s t a t i c)
p r i v a t e (X,Y) l a s t p r i v a t e (i) r e d u c t i o n (+ : acc)
n u m t h r e a d s (NUM CORES)
f o r (i =0 ; i<=x . s i z e ()−4 ; i +=4)
{

X = mm load ps (&x [i]) ;
Y = mm load ps (&y [i]) ;
acc = mm add ps (acc , mm mul ps (X, Y)) ;

}
m m s t o r e p s (p acc , acc) ;

i n n e r p r o d u c t = p a c c [0] + p a c c [1] + p a c c [2] + p a c c [3] ;
f o r (; i<x . s i z e () ; i ++)

i n n e r p r o d u c t +=x [i]∗ y [i] ;
re turn i n n e r p r o d u c t ;

}

Listing 1. Sample code for OpenMP and SSE2 parallelization for inner-product operations.

After we parallelized the main bottlenecks, we noticed that lookahead legalization

started consuming a significant fraction of overall runtime. Fortunately, top-down geo-

metric partitioning and nonlinear scaling are amenable to parallelization as well. Notably,

top-down partitioning generates an increasing number of sub-tasks of similar sizes which

can be solved in parallel. LetQ be the global queue of bin clusters, as defined in Algorithm

1, and each thread has a private queue of bin clusters Qi. First, we statically assign initial

52

Ckts 1 CORE 2 THREADS 4 THREADS 8 THREADS
C+S CG C+S B2B T&N CG C+S B2B T&N CG C+S B2B T&N

AD1 1.37 1.88 2.21 1.45 1.41 2.03 2.87 1.64 1.59 1.92 3.28 1.91 1.48
AD2 1.61 1.77 2.09 1.50 1.53 2.12 3.01 2.04 2.17 2.06 3.22 1.98 1.40
AD3 1.57 1.76 2.20 1.48 1.62 1.88 3.17 1.62 2.25 2.00 3.55 1.79 1.66
AD4 1.50 1.65 2.07 1.51 1.56 1.81 3.03 1.58 2.17 1.77 3.33 1.72 1.36
BB1 1.57 2.03 2.11 1.27 1.71 2.02 3.14 1.66 2.93 2.05 3.70 1.78 2.93
BB2 1.62 2.07 2.24 1.48 1.49 1.72 2.97 1.68 1.89 1.79 3.50 1.74 1.58
BB3 1.54 1.53 2.25 1.60 1.32 1.68 3.04 1.64 2.04 1.81 3.30 1.85 1.32
BB4 2.01 2.63 3.04 2.01 1.59 2.71 4.48 2.02 2.12 2.76 5.12 2.18 1.68
GM 1.59× 1.89× 2.26× 1.53× 1.52× 1.98× 3.18× 1.73× 2.12× 2.00× 3.59× 1.86× 1.62×

Table 3.3: Speed-up ratios for Conjugate Gradient (CG), B2B net model construction
(B2B), and top-down geometric partitioning and nonlinear scaling (T&N) on
the ISPD 2005 benchmark suite. Runtimes are compared to single-threaded
execution without support of SSE instructions. C+S indicates our CG imple-
mentation with SSE instructions.

bin clusters to available threads such that each thread has similar number of bin clusters to

start. After each level of top-down geometric partitioning and nonlinear scaling on such

bin cluster, each thread generates two sub-clusters with similar numbers of cells. Then the

thread ti adds only one of two sub-clusters to its own cluster queue Qi for the next level

of top-down geometric partitioning and nonlinear scaling, while the remainder is added

to the global cluster queue Q. Whenever Qi of a thread ti becomes empty, the thread ti

dynamically retrieves clusters from the global cluster queue Q. The number of clusters to

be retrieved N is given by

N = max(Q.size()/Nthreads, 1)

where Nthreads is the total number of threads.

3.6.2 Empirical studies

As part of our empirical validation, we ran SimPL on an 8-core AMD-based system

with four dual-core CPUs and 16GByte RAM. Each CPU was Opteron 880 processor

running at 2.4GHz with 1024KB cache. Single-thread execution was compared to eight-

thread execution as shown in Table 3.3. Our combination of multi-threading and SIMD

53

instruction-level parallelization was 1.6 times faster on average than parallelization based

on multi-threading alone. Theoretically, using SIMD instruction-level parallelization may

speed-up CG by at most four times. However, SIMD-based implementation of SpMxV

only provided marginal speed-ups and was not worth the development effort. This is

because irregular memory access patterns of SpMxV prohibit the aligned loading of values

(MOVAPS or mm load ps in Listing 1) to SSE registers. Nevertheless, SSE instructions

were helpful in other parts of the code and contributed to the overall speed-up in global

placement, as illustrated in Table 3.4.

We note that lookahead legalization operates on large datasets, but performs little com-

putation per datum, which limits its performance by memory bandwidth. The amount of

work per thread is so small that the overhead of thread creation outweighed the benefits.

As a result, this part of SimPL scales poorly to>4 threads on available hardware, although

this is probably not a fundamental limitation of the algorithm.

The overall speed-ups in global placement runtimes are shown in Table 3.4. Solu-

tion quality did not appreciably change, but peak memory usage increased by 1.91 times

whereas runtime of global placement iterations was reduced by 2.4 times on average. The

speed-ups saturate for more than 4 threads as lookahead legalization scales poorly. The

initial placement stage was accelerated by about 3 times. While CG remained the run-

time bottle neck of SimPL on 8 threads (36% of global placement), lookahead legalization

became a close second (> 31% of global placement).

54

Ckts 2 THREADS 4 THREADS 8 THREADS
no SSE SSE no SSE SSE no SSE SSE

AD1 1.70 1.71 1.76 2.03 1.71 2.23
AD2 1.75 1.73 1.91 2.43 1.90 2.35
AD3 1.59 1.72 1.79 2.30 1.81 2.40
AD4 1.55 1.65 1.75 2.24 1.67 2.26
BB1 1.75 1.67 2.17 2.56 2.18 2.67
BB2 1.70 1.72 1.67 2.22 1.66 2.37
BB3 1.49 1.75 1.71 2.28 1.65 2.28
BB4 1.94 2.12 2.01 2.55 2.03 2.69

Geomean 1.68× 1.75× 1.84× 2.32× 1.82× 2.40×

Table 3.4: Speed-up ratios for global placement on the ISPD 2005 benchmark suite. Run-
times are compared to single-threaded execution without support of SSE in-
structions.

3.7 Summary and Conclusions

In this chapter, we developed a new, flat, partition-based and force-directed quadratic

global placer. Unlike other state-of-the-art placers, it is rather simple, and our self-contained

implementation includes fewer than 5,000 lines of C++ code. The algorithm is iterative

and maintains two placements — one computes a lower bound and one computes an upper

bound on final wirelength. These two placements interact, ensuring stability and fast con-

vergence of the algorithm. The upper-bound placement is produced by a new lookahead

legalization algorithm, based on top-down geometric partitioning and nonlinear scaling,

and converges to final cell locations. In contrast, all analytic algorithms we reviewed (both

force-directed quadratic and nonconvex) derive their final solution from a lower-bound

placement.

The use of partition-based techniques in upper-bound placements offers a solution to

the force-modulation problem [82,141] and removes the need for the so-called hold forces

used by several force-directed placers.8 As discussed in Section 3.2, upper-bound place-

8Hold forces are used to ensure that the current placement is a force equillibrium. Then move forces
are added so that the placement can be improved. While this techniques is needed to ensure convergence of

55

ments perform an area lookahead9 that is instrumental in the handling of layout obstacles.

APlace2, NTUPlace3, mPL6, as well as some force-directed placers, model obstacles by

additional smoothened penalty terms in the objective function. Not only such terms intro-

duce extra work, but they also add imprecisions to modeling. For similar reasons, SimPL

avoids netlist clustering used by other placers. We have implemented several other tech-

niques essential to well-known placers, such as BoxPlace [82], ILR [140], and ad hoc

force modulation [141], but they did not improve SimPL results.

SimPL is highly competitive on ISPD 2005 benchmarks where it outperforms every

placer available to us in binary both by solution quality and runtime. SimPL’s advantage

in runtime and solution quality over FastPlace3 and mPL6 grows on larger netlists. How-

ever, its most compelling advantages over prior state of the art deal with practical uses of

placement in modern timing-closure design flows: (1) the reduced complexity of SimPL

allows for fast implementation, parallel processing, and effective software maintenance;

(2) the upper-bound placements facilitate tighter integration of timing and congestion op-

timizations into the global placement process, improving the speed and quality of physical

synthesis.

The SimPL algorithm saw rapid adoption since its first publication at ICCAD 2010.

At the ISPD 2011 placement contest, the winning team successfully implemented SimPL

without having access to our source code. To our knowledge, at least two major EDA

vendors are now using similar placement algorithms, and our own work with a state-of-

iterations, SimPL relies on anchors and pseudonets to ensure convergence.
9The concept of area lookahead was proposed in [43] for block-packing by nested bisection, where it

checks if a given bisection admits a legal block packing in each partition. Area lookahead was not used
in [43] to spread standard cells from dense regions.

56

the-art industry placer quickly produced significant improvements that will be discussed

in later chapters.

The implementation of SimPL described in this chapter is designed for standard-cell

layouts and does not yet handle movable macro-blocks. Our recent industry experience

suggests that the majority of modern large-scale placement instances in practice do not

require this feature, as their macro-blocks are fixed. However, mixed-size placement is

useful for some mixed-signal SoCs, and we are addressing it in our ongoing work.10

Attempting to explain theoretically the strong performance of our placement algorithm,

we have noticed similarities to primal-dual algorithms for convex [157] and combinato-

rial [21] optimization (see Chapter VI). Primal-dual methods maintain lower and upper

bounds, expressed by primal and dual solutions that eventually converge to an optimal

feasible solution. The interpretation of duality as swapping the problem’s constraints for

the objective function [157] is also consistent with our algorithm — lookahead legaliza-

tion corresponds to imposing a no-overlap constraint while relaxing the linear constraints

that capture the global minimum of the quadratic wirelength objective. The key to the

success of primal-dual algorithms [21, 157] is the observation that alternating progress in

primal and dual solutions, i.e., improving the cost of feasible solutions and tightening the

constraints for low-cost solutions, typically leads to faster convergence compared to one-

sided optimizations. This effect is empirically observed in Section 3.5 where SimPL is

compared to pre-existing placement algorithms, all of which are one-sided.

10Academic placers typically introduce this feature in dedicated publications, rather than in the first pub-
lication describing the baseline algorithm.

57

CHAPTER IV

SimPLR: High-performance
Routability-driven Placement

At advanced technology nodes, highly-optimized placements may lead to irreparable

routing congestion due to inadequate models of modern interconnect stacks and the im-

pact of partial routing obstacles. Additional challenges in routability-driven placement

include scalability to large netlists and limiting the complexity of software integration.

Addressing these challenges, we develop lookahead routing to give the placer advance,

firsthand knowledge of trouble spots, not distorted by crude congestion models. We also

extend global placement to (i) spread cells apart in congested areas, and (ii) move cells

together in less-congested areas to ensure short, routable interconnects and moderate run-

time. While previous work adds isolated steps to global placement, our SIMultaneous

PLace-and-Route tool SimPLR integrates a layer-aware global router into a leading-edge,

force-directed placer. The complexity of integration is mitigated by careful design of

simple yet effective optimizations. On the ISPD 2011 Contest benchmarks, SimPLR out-

performs every contestant on every benchmark by 2.03 times on average.

58

4.1 Introduction

Routability-driven placement can pursue several different optimization objectives, such

as ensuring 100% routability, even at the cost of significant routing runtime. Alternatively,

one can evaluate placements by a layer-aware global router with a short time-out, which

nevertheless correlates with the final router (and is potentially based on the same software

implementation). This intermediate objective is more amenable to optimizations in global

placement because its quick evaluation facilitates a tight feedback loop. In other words,

intermediate placements can be evaluated many times, allowing the global placer to make

proper adjustments. As we show in Section 4.5, due to the correlation between the fast and

the final router, resulting routability-driven placements may fare better even with respect

to the former, more traditional objective. This approach offers additional benefits, such as

early estimation of circuit delay and power in terms of specific route topologies. On the

other hand, biasing the global placer away from HPWL to more sophisticated routability

metrics may adversely affect the global placer’s overall optimization capabilities. In other

words, if HPWL increases too much, routability metrics will also increase.

In this chapter, we directly address the challenges of routability-driven placement based

on our observations. First, we develop lookahead routing, which invokes a high-quality

and fast 3-d global router, to quickly estimate routability. Since the produced routes can

be used as a routing solution, our method can accurately and quickly report both conges-

tion and routed wirelength. Second, to produce competitive placements in terms of both

routed wirelength and HPWL, we integrate our lookahead routing into a flat, quadratic

global placer, and enhance placement iterations by gently coercing cell locations and re-

59

a

b

ba

c

c
d

d

a

b

b

a

c

c

d

d

a

b

b

a

c c

d

d

TOF = 2

TWL = 4

D = 100%

TOF = 0

TWL = 7

D = 50%

TOF = 0

TWL = 5

D = 75%

Figure 4.1: The impact of placement density on routability, with bin capacity 2 and edge
capacity 1. The dense, low-wirelength placement on the left is unroutable. The
sparse, high-wirelength placement in the center is routable. The placement on
the right is routable, with low wirelength and density.

lieve congestion while preserving interconnect length. We also account for routability in

detailed placement, but rather than change the objective function [165], we prohibit moves

that aggravate routability. In our global placement, cells in highly-congested areas are

temporarily inflated to reserve whitespace during global placement. Traditionally, this has

been accomplished by either cell bloating [20, 59, 120] during/after global placement, or

by whitespace allocation [98,124,162] after placement. We observe that wirelength-driven

global placers typically limit area utilization by a given amount through the entire layout

based on target density. Therefore, in addition to cell bloating, we dynamically adjust the

target density based on total routed wirelength.1 This simple technique offers two bene-

fits: it allows the placer to move cells in uncongested areas closer, and it preserves overall

solution quality. Third, we develop a simultaneous place-and-route framework, where

routability is addressed both at the global placement and detailed placement stages.

Our proposed methodology has several advantages with respect to routability and qual-

1Theoretically, target density can be changed on a per region basis, and this has been implemented in
partitioning-based placers [20,124]. However, this feature is difficult to implement in force-directed placers,
and, in our experience, unnecessary.

60

ity. First, since we use a global router to estimate congestion, the routes for all nets are

known. Second, by enabling the global placer to directly redistribute whitespace in re-

sponse to routing congestion, we establish a more precise feedback loop (compared to

add-on techniques proposed previously). Third, since we use a variable target density,

we are simultaneously optimizing for routability and solution quality by trading off rout-

ing demand for wirelength. As demonstrated in Figure 4.1, a placer using a lower target

density typically produces a placement that is more likely to be routable, but has higher

total wirelength. Conversely, a placer using a higher target density typically produces a

placement that is less likely to be routable, but has lower total wirelength.

Our implementation uses the SimPL [84] global placer to quickly produce a tentative

solution. Then, we apply lookahead routing by calling a modified version of the BFG-R

[67] global router to estimate routing congestion and wirelength. We use this information

in global placement by means of cell bloating and dynamically adjust the target density.

After several iterations of global placement, performed using a modified SimPL placer,

lookahead routing is invoked again. Such combined place-and-route iterations continue

until convergence. Then, our modified version of the FastPlace-DP [112] detailed placer

applies congestion-aware detailed placement to recover whitespace and improve routed

wirelength while maintaining routability.

Our key contributions include:

• A method to control routability within the global placer while preserving solution

quality by dynamically adjusting the global target density

• An effective cell-bloating technique by dynamically adjusting the width based on

how ‘hard’ the design is

61

• A simultaneous place-and-route framework

• A congestion-aware detailed placement algorithm that moves cells only when this

does not hurt routability

• Empirical results on the ISPD 2011 Contest benchmarks [143] that outperform every

competitor on every benchmark

The remainder of this chapter is structured as follows. In Section 4.2, we classify

the prior work on congestion-driven placers, and review the baseline software tools that

we use. In Sections 4.3 and 4.4, we present the specific techniques that SimPLR uses to

address routability within each design flow step. In Section 4.5, we present our empiri-

cal results, demonstrating the ideas presented in this chapter. Finally, in Section 4.6, we

conclude this chapter.

4.2 Baseline Algorithms in Our Work

We briefly review the baseline placement and routing algorithms used in our work. We

survey congestion maps and prior work on congestion-driven placement in Chapter 2.3.

SimPL (Chapter III) is a flat, force-directed global placer. It maintains both a lower-

bound and an upper-bound placement solution; the final placement is generated when

both solutions converge.2 The upper-bound solution is generated by applying lookahead

legalization, which is based on top-down geometric partitioning and nonlinear scaling.

Using this information, the lower-bound solution is generated by minimizing the quadratic

objective using the Conjugate Gradient method [127]. Here, ~x and ~y are coordinate vectors

2The wirelength gap between the upper-bound and lower-bound solutions is useful to formulate conver-
gence criteria.

62

of the cells’ (x,y) locations, and wi,j represents the connectivity between cells i and j.

Φq(~x, ~y) =
∑
i,j

wi,j
(
(xi − xj)2 + (yi − yj)2

)
(4.1)

FastPlace-DP [112] is a wirelength-driven detailed placer. It uses (i) cell clustering, (ii)

global cell swapping, (iii) vertical cell swapping, and (iv) local reordering to improve

wirelength. To determine which cells should be swapped, FastPlace-DP estimates the

reduction in wirelength from swapping cells i and j by

gain(i, j) =
∑
n∈Ni

(Wn −W ′
n)−

∑
n∈Nj

(Wn −W ′
n) (4.2)

where Ni and Nj are the nets connected to cells i and j, and W and W ′ are the wirelength

measurements before and after the swap.

BFG-R [67] is a global router based on Lagrangian relaxation. It decomposes multi-

pin nets into two-pin subnets using MSTs and then iteratively routes all subnets until no

violations are present. BFG-R prices each (sub)net by summing up the cost of used edges

cost(e) = basee + λ(e)× C(e)× ρ(e) (4.3)

where basee is the base edge cost, λ(e) is the history cost, C(e) is current congestion, and

ρ(e) is the runtime penalty factor.

4.3 Simultaneous Place-and-Route

In this section, we introduce a methodology for simultaneous place-and-route and dis-

cuss its components (see Figure 4.2). Given a placement instance, the baseline global

placer quickly produces a tentative solution. Then, we apply lookahead routing (LAR) by

63

calling our global router to estimate routing congestion and wirelength. We use this infor-

mation during global placement by means of cell bloating and dynamically adjusting the

target density. After several iterations of global placement, where the placer “heals” the

placement for wirelength, lookahead routing is invoked again, and such iterations continue

until overflow stops improving. Then, the placer applies congestion-aware detailed place-

ment to recover whitespace and improve routed wirelength while maintaining routability.

We achieve an initial placement solution once the wirelength gap between the upper-

bound and lower-bound solutions is within 25% of the 10th iteration’s total wirelength

(see Section 4.2). After cell bloating, we run four iterations of lookahead legalization.

Our disjunctive convergence criterion checks for three conditions: (i) the overflow has

improved less than 3% after two consecutive rounds of LAR, (ii) the total overflow is less

than 1% of the total edge capacity, or (iii) the global placement timeout of 60 iterations.

4.3.1 Lookahead routing

To improve routability while preserving wirelength, global placement invokes looka-

head routing (LAR). Unlike previous approaches, where only congestion information is

reported, LAR estimates both interconnect length and routing congestion. Our router im-

plementation accounts for (i) different wire widths and spacings, (ii) routing blockages,

and (iii) pins on different metal layers.

Wire widths and spacings at each metal layer are modeled separately. The resources

consumed by a net are then estimated by

Usage(net) =
∑
e∈net

minSpacing(le) +minWidth(le) (4.4)

64

where net is the net routed, e is each edge in net, le is the metal layer that e is on, and

minSpacing(le) and minWidth(le) are the respective minimum spacing and width re-

quired for le.

However, congestion estimates produced by this model can be misleading. For exam-

ple, suppose two edges e1 and e2 on different metal layers are overflown, where e1 is on

Metal1, having minSpacing(Metal1) + minWidth(Metal1) = 2, and e2 is on Metal4,

having minSpacing(Metal4) +minWidth(Metal4) = 8. Suppose e1 has two violating

nets, yielding an overflow of 4, and e2 has one violating net, yielding an overflow of 8.

These actual overflows are now misleading, as e1 is considered more congested, but its

overflow is lower than that of e2. Therefore, to accurately report congestion, we normalize

the capacity for every edge e on metal layer l by

nCap(el) =
Cap(el)

minSpacing(le) +minWidth(le)
(4.5)

where Cap(el) is the original capacity of edge e on layer l. Note that when normalizing

capacity, we also normalized, where each segment is defined as one routing segment,

regardless of the layer.

Routing blockages are specified as physical locations in the layout area. Therefore, the

routing resources blocked at each edge are proportional to the length of the blockage.

However, if two obstacles overlap, the overlap is only counted once. To properly calculate

capacity, we first take the union of all routing-obstacle shapes on each edge, and then

consider each non-blocked region separately. For each non-blocked region r, the amount

of usable capacity is

65

Figure 4.2: Our simultaneous place-and-route (SimPLR) flow. The baseline components
are shown in transparent boxes, and the added routability-driven components
are indicated by light-blue fill.

υ(re) =
dim(re)

dim(e)
(4.6)

where dim(r) is the length of the non-blocked region on edge e, and dim(e) is the length

of e (i.e., height if e is a vertical edge, and width if e is a horizontal edge). Then, each

edge’s normalized capacity is

nCap(el) =
∑
re∈Re

υ(re)× Cap(el)
minSpacing(le) +minWidth(le)

(4.7)

The calculation of normalized capacity in the presence of routing obstacles is demon-

strated in Fig. 4.3. In the example, let the length of every edge be 50, let the lower left

coordinate be (0,0). Let the original edge capacity be 40, and let the minimum spacing plus

the minimum width of this layer be 4. Since the vertical edge (50,0)-(50,50) has coordi-

nates (50,40)-(50,50) blocked off, it only has (50− 10)/50 = 80% usable capacity. Since

there is only one non-blocked region, the normalized capacity would be (80%×40)
4

= 8.

Similarly, the horizontal edge (50,50)-(100,50) has no usable capacity, as it is entirely

66

50

50

20
3

12
15

25
2525

10

dim(ev) = dim(eh) = 50
origCap(ev) = origCap(eh) = 40
minWidth(e) + minSpacing(e) = 4

108
05

5
2 6

5

5

0
0 0

Figure 4.3: Accounting for routing blockages, where dim(e) = 50 for each edge. Two
of three routing blockages overlap. On the left, the lengths of each routing
blockage and non-blocked region are shown. On the right, the normalized
capacities are calculated for each edge. Here, the original capacity of each
edge is 40, and each net on this layer uses 4 tracks. With no blockages, an
edge has a normalized capacity of 10.

blocked off, so its normalized capacity is 0.

Elevated pins. The ISPD 2011 contest benchmarks, derived from industrial ASICs and

SoCs designs, include contact pins on multiple metal layers. This poses a challenge for

the common global routing approach, where routing is first performed on a 2-d grid and

then projected onto a 3-d grid. Therefore, we pursue a different strategy. We decompose

all multi-pin nets into two-pin subnets, and perform 3-d maze routing.

4.3.2 Congestion-based cell bloating

After lookahead routing, we inflate all cells located in congested regions. The conges-

tion at gcell g, located at (x,y), is

C(g(x, y)) =
nUsage(g(x, y))

nCap(g(x, y))
(4.8)

where nUsage and nCap are respectively the normalized usage and capacity at g(x, y).

67

The usage at each gcell is defined as

Usage(g(x, y)) = (4.9)

max(nUsage(e(x± 1, y), nCap(x± 1, y))) +

max(nUsage(e(x, y ± 1), nCap(x, y ± 1)))

and the capacity at each gcell is defined as

Cap(g(x, y)) = nCap (e(x± 1, y)) + nCap (e(x, y ± 1)) (4.10)

where nUsage is the normalized usage for edge e, and nCap is the normalized capacity

for e. Therefore, if C(g(x, y)) > 1, then g(x, y) is considered congested. If at least one of

the neighboring edges is congested, then the gcell is considered congested.

Then, for every cell in each congested gcell, we apply cell bloating by setting the cell’s

new width to

max(width(cell) + 1, 1 + θ · Λ(cell) · C(g(x, y)) · deg(cell)) (4.11)

where width is the current width of cell, θ is an adaptive function (described below), Λ is

the number of times cell has been in a congested gcell, and deg is the cell’s degree.

Our cell bloating approach is inspired by CRISP [120], but differs in three major

ways. First, we apply cell bloating during global placement, while CRISP bloats cells

after placement. We can therefore perform large-scale changes and, in our experience, our

placer better adjusts to bloated cells, resulting in a smaller wirelength penalty. Second,

we use gcell-centric congestion estimation, while CRISP uses edge-centric congestion

estimation with a pin-density map. Our style of congestion estimation improves integra-

tion with a global router. Pin density has been a popular estimation technique for designs

68

with relatively few metal layers. However, with modern 9+ layer interconnect stacks, it

primarily affects the success of detailed routing, which is orthogonal to our work.3

Third, while CRISP relies on a constant θ, our θ is a routing-solution-dependent func-

tion (described below), and based on the design’s estimated difficulty and its routability.

The intuition is that if a design is difficult to place or route, cells in congested regions need

additional whitespace. Therefore, cells in those areas should be more inflated. We define

θ(G) as

θ(G) = max (0, α · η(G) · ξ(G) + β) (4.12)

where G is the set of all gcells, α and β are constants determined from linear regressions,

η(G) indicates how hard a design is (e.g., how much available routing capacity there is),

which is relatively insensitive to the routed solution, and ξ(G) indicates the routability of

the design, and is based on lookahead routing. We define η(G) as

η(G) =
∑
g∈G

Usage(g)

Cap(g)
(4.13)

and ξ(G) as

ξ(G) =
TOF (G)

TCap(G)
(4.14)

whereOF (G) and Cap(G) are the respective total overflow and total capacity of all gcells

in G. In our implementation, we empirically determined the values α = 0.017 and β =

−0.01 based on numerical regressions (no benchmark-specific tuning was performed).

3CRISP could be applied after our techniques, but the improvements will not be detectable by our exper-
imental configuration that uses only a global router.

69

4.3.3 Dynamic adjustment of target density

Target density (utilization) is one of the most critical parameters to trade off routabil-

ity for wirelength in the final placement. However, finding the best target density for

routability-driven placements remains an open problem. Unnecessarily high target density

leads to better HPWL, but may also cause routing failures [4]. Lower target density, on

the other hand, may increase the overall routed wirelength, which would lead to longer

detours and consume more routing resources. Initially, we set the target density as

γ = Dut + min(max(γ0 −Dut, 0%), ωD) (4.15)

where Dut is the design utility (given), γ0 is a prediction of a good target density, and ωD

is the target density lower bound. If Dut is too low (e.g., less than 35%), then the target

density should be higher to encourage cell clustering. Conversely, cells should be spread

apart if Dut is too high. Empirically, we observed that setting γ0 = 50% when ωD = 15%

provides a reasonable tradeoff between routability and routed length.

After lookahead routing and cell bloating, the target density is updated as

γ =
area(Cm)

area(D)− area(Cf)
+ φ (4.16)

where Cm is the set of movable cells, Cf is the set of fixed cells, D is the design, area

returns the total area of input (bloated cells included), and φ is a constant that increases

every time LAR reports an increase in routed wirelength. In our implementation, φ is

initially γ0 −Dut, and increases by 1% when wirelength increases.

70

4.4 Congestion-aware Detailed Placement

Traditional wirelength-driven detailed placement may pack cells in areas that are dif-

ficult to route. In the context of the FastPlace-DP algorithm, we modify both global cell

swapping and vertical cell swapping to be congestion-aware (see Algorithm 2) in two

ways. First, we only allow cells to move when such moves do not harm routability. Sec-

ond, we encourage cells to move out of congested areas.

Algorithm 2 Congestion-aware Detailed Placement
1. Cm = Set of all movable cells

2. Gc = Set of all congested gcells
3. C(i) = Congestion in the position cell i
4. foreach ci ∈ Cm
5. find the optimal region Ri of ci
6. find bswap, the benefit of swap with a cell cj ∈ Ri

7. find bmove, the benefit of move to a space s ∈ Ri

8. if (ci /∈ Gc && cj /∈ Gc)
9. if (bswap ≥ bmove)
10. perform swap(ci, cj , (bswap > 0))
11. else
12. perform swap(ci, s, (bmove > 0))
13. else if (ci ∈ Gc && cj /∈ Gc)
14. perform swap(ci, s, true)
15. else if (ci /∈ Gc && cj ∈ Gc)
16. perform swap(ci, cj , (deg(ci) < deg(cj)))
17. else
18. if (C(ci) > C(cj))
19. perform swap(ci, cj , (deg(ci) > deg(cj)))
20. else
21. perform swap(ci, cj , (deg(ci) < deg(cj)))
22. end foreach

The subroutine perform swap(ci, cj , pred) swaps two cells ci and cj if pred is true.4

For each movable cell ci, we consider its best swap (with cj) or move (with empty space

s). If both actions result in positive gain, and both are in non-congested areas, then we
4To move a single cell c, a cell can swap with an empty location s.

71

revert to wirelength-driven decisions. If ci is in a congested region and cj is not, then we

can improve routability by moving it to s. If ci is not in a congested region, but ci is and

has fewer pins than cj , we can potentially improve routability in subsequent moves if we

decrease the number of routes that go through the congested region. Similarly, if both cells

are in congested regions, then we only swap them if deg(cj) < deg(ci). This ensures that

the detailed placer does not harm routability.

4.5 Empirical Validation

Our implementation was written in C++, compiled with g++ 4.4.3, and validated on a

3.00 GHz Intel Core 2 CPU X9650 Linux workstation. We modified and integrated the (i)

SimPL global placer [84], (ii) BFG-R global router [67], and (iii) FastPlace-DP detailed

placer [112]. Significant changes were made to all three tools, and new algorithms were

added, as described in Sections 4.3 and 4.4.

The evaluation of placement solutions was performed by coalesCgrip [41], which was

mandated by the ISPD 2011 Routability-driven Contest [143]. coalesCgrip was compiled

with gcc 4.4.1, as specified by the contest organizers. Its runtime limit was set to 300

seconds for initial routing and 900 seconds for rip-up and reroute (RRR), which makes

results machine-dependent. Therefore, we downloaded all placements produced by the

top contestants, and reevaluated them on our servers.

Routability. As shown in Table 4.5, our implementation consistently reduces the total

overflow across all benchmarks. Compared to baseline wirelength-driven placer SimPL,

we improve total overflow by 4.52 times on average. Compared to the best-reported re-

sults from the ISPD 2011 Routability-driven Contest, we improve total overflow by 2.03

72

Figure 4.4: Congestion maps for the benchmark SUPERBLUE15 for the best-reported
placement at the ISPD 2011 Contest (left) and SimPLR (right).

times on average. We were also able to produce placements with the smallest overflow

for all eight circuits in the ISPD 2011 benchmark suite (no parameter tuning to specific

benchmarks was employed). As shown in Figure 4.5, our congestion map on superblue15

is competitive with that produced by the top contestants of the contest.

Runtime. We compared SimPLR to SimPL runs with the same initial target density (50%).

In our single-threaded implementation, SimPLR takes about twice as long as SimPL. This

is due to invoking lookahead routing 3-5 times per benchmark, and consuming 27-58% of

the total runtime, averaging at 47.88%.

Congestion-aware Detailed Placement. We measure the (i) recovered HPWL, (ii) re-

covered routed length, and (iii) total overflow improvement using our congestion-aware

detailed placement (Ca-DP), as compared to FastPlace-DP [112]. On average, Ca-DP did

not change the HPWL or the routed wirelength on the design, and improved overflow by

4%. Our approach consistently reduced the overflow with the exception of superblue10.

73

BENCHMARK SimPL Best in Contest SimPLR
RtWL OF Runtime RtWL OF RtWL OF Runtime

SUPERBLUE1 847K 14.33 1468 23.89 14.70 108 14.48 0 51.69
SUPERBLUE2 1.01M 27.22 1203412 37.87 30.77 797898 29.20 740050 108.30
SUPERBLUE4 500K 10.55 12744 7.54 10.86 85538 10.68 18444 24.79
SUPERBLUE5 772K 16.99 262358 23.53 17.29 126186 16.98 121894 51.84

SUPERBLUE10 1.13M 26.19 479352 33.68 25.16 616742 26.69 567780 73.34
SUPERBLUE12 1.29M 19.44 1998998 35.18 22.89 415428 22.58 181350 43.32
SUPERBLUE15 1.12M 16.24 335756 24.21 17.91 125936 17.07 49286 43.33
SUPERBLUE18 483K 10.62 178398 14.36 9.84 31440 10.63 21020 21.38

Average 0.96× 4.52× 0.51× 1.00× 2.03× 1.0× 1.0× 1.0×
Geometric mean 0.96× 2.79× 0.49× 1.00× 1.78× 1.0× 1.0× 1.0×

Table 4.1: Routed wirelength (RtWL, ×10e6), routing overflow (OF), and runtime (in
minutes) on the ISPD 2011 routability-driven contest benchmark suite. The
placements were evaluated by coalesCgrip [41].

This confirms that our approach not only maintains the original quality of the wirelength-

driven detailed placer, but also improve routability.

Implementation. In SimPLR, we use BFG-R for lookahead routing instead of the evalu-

ation router for two reasons. Empirically, our router is able accurately predict the areas of

congestion reported by coalesCgrip. Since our strong results are achieved without running

coalesCgrip, it is likely that SimPLR does not require the knowledge of a specific down-

stream router. Though we do not advocate using a different router than the evaluation

router, we show that this is possible.

Since lookahead routing is used for estimation, it produces a valid routing solution,

where all nets are routed, but not necessarily legal or well-optimized for wirelength. In our

implementation, we simply limited the number of iterations that BFG-R uses. However, it

is possible to run a full router during this process. In particular, the produced routes can

be used for other applications, such as targeting specific nets for timing optimization.

74

BENCHMARK FastPlace-DP Ca-DP
HPWL RtWL OF Runtime HPWL ∆RtWL ∆OF Runtime

SUPERBLUE1 847K 277.03 14.45 0 5.37 279.01 0.376 0 9.83
SUPERBLUE2 1.01M 657.03 29.09 782348 19.22 660.09 -0.195 -42298 32.06
SUPERBLUE4 600K 231.78 10.71 22192 2.96 231.44 -0.336 -3748 4.62
SUPERBLUE5 772K 354.23 17.02 139012 5.58 355.05 -0.386 -17118 9.68

SUPERBLUE10 1.13M 586.62 26.48 556678 7.99 592.18 0.113 11102 18.26
SUPERBLUE12 1.29M 376.59 22.7 293516 7.71 377.27 -0.119 -112166 13.33
SUPERBLUE15 1.12M 337.04 17.04 56866 6.60 337.96 0.128 -7580 8.43
SUPERBLUE18 483K 165.09 10.64 23708 2.92 165.75 -0.125 -2688 4.44

Average 1.00× 1.00× 1.04× 0.60× 1.00× 1.00× 1.00× 1.00×

Table 4.2: The impact of our congestion-aware detailed placement on HPWL(×10e6),
routed wirelength (×10e6), and overflow (OF) on the ISPD 2011 Routability-
driven Contest Benchmark Suite. The runtime is reported in minutes. The
placement solutions are evaluated by coalesCgrip [41].

4.6 Summary and Conclusions

Tight integration of major CAD tools is sometimes frowned upon in the industry be-

cause it may sharply increase software complexity, introduce subtle discrepancies and

complicate software maintenance. However, such integration is highly sought in place-

and-route, where high-performance global placers often generate hard-to-route solutions,

creating unnecessary complications for downstream tools. The strategy pursued in our

work is to give the placer advance, firsthand access to tentative net routes and resulting ac-

tual congestion maps (rather than crude estimates), as well as the ability to respond early

and often. We believe that our proposed integration of global routing into global place-

ment, based on lookahead routing of upper-bound placements in the SimPL algorithm,

offers a particularly promising and “clean” path to effective simultaneous place-and-route.

By communicating through a lightweight interface, the placer and the router quickly ex-

change multiple updates to cell locations and net routes, while maintaining the software

infrastructure separated. This framework facilitates several further extensions, especially

75

in timing optimization, where the placer has early and direct access to actual routes to im-

prove the accuracy of delay estimation. Empirical data show that our approach is able to

effectively improve routability, reducing total overflow by 2.03 times on average compared

to the best-reported results at the ISPD 2011 contest.

76

CHAPTER V

MAPLE: Multilevel Adaptive PLacEment
for Mixed-size Designs

Extending the SimPL placement algorithm introduced in Chapter III, we propose a

new multilevel framework for large-scale placement called MAPLE that respects utiliza-

tion constraints, handles movable macros and guides the transition between global and

detailed placement. In this framework, optimization is adaptive to current placement con-

ditions through a new density metric. A novel component called Progressive Local Refine-

ment (ProLR) helps mitigate disruptions in wirelength that we observed in leading placers.

Our placer MAPLE is implemented using EDA infrastructure at IBM and outperforms all

previously published empirical results — RQL, SimPL, mPL6, NTUPlace3, FastPlace3,

Kraftwerk and APlace3 — across the ISPD 2005 and ISPD 2006 benchmarks, in terms of

official metrics of the respective contests.

5.1 Introduction

Large-scale placement remains one of the most influential optimizations in interconnect-

driven physical design and physical synthesis [10]. Despite the long history of research,

three ISPD contests on placement have shown that recent algorithms achieve sizable gains

77

over prior state of the art [107]. The ISPD 2011 routability-driven placement contest [143]

has demonstrated that the choice of the wirelength-driven global placement engine is

paramount even in multiobjective placement — two of the top three teams relied on the

high-quality SimPL framework [86], including the contest winners, who reimplemented

SimPL without having access to the original source code [57]. Yet, no placer dominated

across the entire benchmark set, indicating possible improvements. Such improvements

are described in this chapter, although our work is orthogonal to and compatible with the

innovations developed for the ISPD 2011 contest [57, 64, 85].

In this chapter, we develop MAPLE — a multilevel force-directed placement algorithm

that pioneers key algorithmic components and a more effective way of combining individ-

ual components into a reliable multiobjective optimization. MAPLE generates a coarsest-

level placement by a variant of the SimPL algorithm (Chapter III) but also employs mul-

tilevel extensions reinforced by our new Progressive Local Refinement (ProLR).1 This

combination enhances tradeoffs between wirelength and module density. Compared to

recent literature, our implementation improves solution quality with reasonable runtimes.

The improvement on ISPD 2006 benchmarks is particularly encouraging because it demon-

strates that MAPLE not only reduces the wirelength but also avoids highly concentrated

placements, thus promoting routability and providing greater flexibility for timing op-

timization transforms. Note that the original SimPL algorithm was not evaluated with

utilization constraints of the ISPD 2006 benchmark suite and could not handle movable

macros present in those benchmarks. At a more conceptual level, our work explores lim-

its to optimization imposed by noise inherent in analytic placement algorithms. After

1The implementation used in this chapter was written from scratch.

78

studying sources of this noise, we develop techniques to avoid noise or suppress it, which

consistently improve end results beyond the best reported in the literature.

Our key contributions include:

• A study of obstacles to extending analytic placement with multilevel techniques.

We observe that straightforward extensions cause disruptions between successive

optimizations during global placement.

• A key insight to combine unclustering with two-tier Progressive Local Refinement

(ProLR) so as to ensure graceful transitions between optimizations at different clus-

ter levels. Optimization adapts to current wirelength/density tradeoffs, which we

track by a newly developed metric — ABUγ .

• A placement algorithm (MAPLE) that relies on SimPL iterations, but augments

them with two-level clustering and ProLR. MAPLE guides the transition from global

to detailed placement to avoid unnecessary disruptions. This guidance allows MAPLE

to derive the final placement from the lower- rather than the upper-bound placement

as in the original SimPL, enhancing solution quality.

• Extensions of the MAPLE algorithm to handle movable macros. This includes ex-

tending the SimPL algorithm and dealing with macros during refinement.

• Empirical evaluation against best published results on ISPD 2005 and ISPD 2006

benchmarks using official metrics. MAPLE consistently outperforms all leading-

edge placers described in the literature.

The remainder of this chapter is structured as follows. Section 5.2 presents background

and prior art. Section 5.3 analyzes disruptions during multilevel placement optimization

79

that undermine solution quality. In Sections 5.4 and 5.5, we present the MAPLE algorithm

and specific techniques to ensure graceful transitions between successive optimizations.

Section 5.6 describes extensions of the MAPLE algorithm to handle movable macros.

Section 5.7 empirically validates our ideas and algorithms. Section 5.8 summarizes the

results of this chapter.

5.2 Foundational Algorithms

FastPlace-Global [140] is a force-directed quadratic placer with two-level Best-choice

clustering [9]. It relies on a hybrid (star-clique) net model2 and employs cell shifting

to spread the modules during the early stages of placement flow. The Iterative Local

Refinement (ILR) technique is applied after quadratic optimization to reduce HPWL and

spread the modules (see Section 5.5). RQL [141] extends FastPlace-Global by limiting

spreading forces (force-vector modulation). FastPlace-DP [112] is a wirelength-driven

detailed placer based on (i) single segment cell clustering, (ii) global cell swapping, (iii)

vertical cell swapping, and (iv) local reordering.

SimPL (Chapter III) is a flat, force-directed global placer. It maintains a lower-bound

and an upper-bound placement and progressively narrows the displacement between the

two. The final solution is derived from the upper-bound placement when the two bounds

converge. The upper-bound placement is generated by lookahead legalization (LAL). Ap-

plying the upper-bound placement as fixed-points, the lower-bound placement is generated

by minimizing the quadratic objective using the CG method. Unlike FastPlace-Global and

RQL, the SimPL algorithm relies on the Bound2Bound net model [134].

2The numerical equivalence of the clique model and the star model with a star node was pointed out
in [92] and proven in [81].

80

5.3 Analysis of disruptions during analytic optimization

State-of-the-art algorithms for placement integrate multiple optimization steps, which

sometimes target different objectives. Poor coordination between successive steps may

cause radical changes in intermediate placements. These changes become disruptive when

they reverse improvement obtained by previous steps, increasing overall runtime and un-

dermining final solution quality. We now investigate the sources of disruptive changes

between successive stages of analytic placement.

Unclustering. In multilevel global placement algorithms, placement iterations after un-

clustering often include changes to the optimization objective as well as the netlist. This

may abruptly increase wirelength as illustrated in [78, Figure 4] for APlace. The authors

state that “Clustering helps to spread cells more quickly, but wirelength is impaired during

cell expansion. It is clearly seen from the figures that when wirelength weight is decreased

and the conjugate gradient optimizer restarts, discrepancy drops sharply and wirelength

is often increased at first and then refined during the optimization”. However, in contrast

to our observation in Section 5.5, the authors claim that when both discrepancy (overflow)

and wirelength change slowly, they obtained a near stable suboptimal solution, in which

additional iterations did not further reduce discrepancy and wirelength without a major

change to the parameters.

Transition to the HPWL objective. FastPlace [140] and RQL [141] use the ILR iterations

to recover HPWL after quadratic optimization and before detailed placement. The ILR

iterations include bin resizing over wide ranges to allow large moves across the placement

region [107, Chapter 8]. Moreover, each bin maintains a bin-specific utilization weight

81

0 ≤ θ ≤ 1, which changes depending upon the current bin’s utilization. As history

accumulates on dense bins over iterations, ILR increasingly penalizes such bins and allows

abrupt moves to decrease local density (Figure 5.1). The density metric ABU10 is defined

in Section 5.4.2.

7.0e7

7.5e7

8.0e7

8.5e7

9.0e7

9.5e7

1.0e8

1.1e8

1.1e8

 0 50 100 150 200 250 300 350 400
 1

 1.5

 2

 2.5

 3

H
P

W
L

d
e

n
s
it
y
 m

e
tr

ic
 A

B
U

1
0

Iterations

HPWL

ABU10

Figure 5.1: Progressions of wirelength and the density metric ABU10 over the ILR iter-
ations on ADAPTEC1. Unclustering is marked with a vertical line. ILR dis-
ruptively improves ABU10 and increases the wirelength. Each ILR iteration
traverses all movable modules once.

Hand-off to detailed placement. Recall that the SimPL algorithm maintains two place-

ments throughout its iterations, and legalization is invoked on the upper-bound placement,

when the lower- and upper-bound placements are reasonably close. The lower-bound

placement within SimPL is analogous to module locations maintained by other algorithms.

Instead of using the upper-bound, invoking (full) legalization on the lower-bound place-

ment should be potentially better in preserving wirelength optimized by the linear system

solver. However, these placements typically exceed target utilization and undergo signif-

icant changes during full legalization (Figure 5.2). Despite local improvement in wire-

82

7.0e7

7.5e7

8.0e7

8.5e7

9.0e7

9.5e7

 0 10 20 30 40 50 60 70 80 90 100

 1

 1.25

 1.5

 1.75

 2

 2.25

H
P

W
L

d
e

n
s
it
y
 m

e
tr

ic
 A

B
U

1
0

Iterations

HPWL

ABU10

Figure 5.2: Progressions of wirelength and the density metric ABU10 over FastPlace-DP
iterations on ADAPTEC1. The start of detailed placement is marked with a
vertical line. Placements with high utilization undergo significant changes as
full legalization completes.

length during detailed placement, such abrupt changes are detrimental to solution quality

in terms of wirelength, routing congestion and timing.

Strategies for mitigating disruptions. Disruptions during analytic optimization can be

mitigated by ensuring gradual transitions between successive optimizations. With this in

mind, we develop a new use of placement metrics to make these transitions more adaptive

to the actual module distribution and interconnect characteristics. (1) the overall placement

flow is modified at the points where the objective function abruptly changes, as identified

in the above analysis — before/after unclustering, and before detailed placement. We in-

troduce a new intermediate stage that optimizes a linear combination of the preceding and

succeeding objective functions, while gradually modifying parameters to ensure smooth

transition between the objectives. (2) At each substage, we seek near-monotone improve-

ment of either wirelength or module density in a predictable manner without disrupting the

83

other objective. (3) Specifically, each intermediate stage prohibits abrupt cell movement

and significant changes in key objective functions. Small moves are encouraged instead,

as this smoothens changes in wirelength and module density. (4) Weighting is adaptively

updated according to a new placement metric.

5.4 Multilevel Adaptive Placement

We developed our global placement algorithm to address or circumvent the pitfalls in

prior art discussed above. This technique consists of three phases: clustering, top-level

(coarsest-level) placement iterations, and Progressive Local Refinement (ProLR) used in

conjunction with unclustering (Algorithm 3). We apply Best-choice clustering [9] until the

number of clusters is reduced to half the size of the flat netlist. Top-level placement itera-

tions perform quadratic optimization on a coarsened netlist and globally regulate module

densities over the placement region while moderating wirelengh increase. We adopt a vari-

ant of the SimPL algorithm [86] for this phase. The ProLR technique discussed in Section

5.5 improves both wirelength and module density before and after unclustering. Section

5.7.3 gives an outlook for using more than two levels of clustering.

5.4.1 Top-level placement iterations

Top-level placement for the coarsest netlist is performed by the SimPL force-directed

placement. It generates lower- and upper-bound placements at each iteration and reduces

the displacement gap between the two upon convergence. In contrast to the original SimPL

algorithm, MAPLE chooses the last lower-bound placement as a final solution of quadratic

placement iterations. This choice is based on our observation that our implementation of

84

Algorithm 3 Multilevel Adaptive PlacEment (MAPLE)
1: Phase 0: Clustering of Standard Cells
2: N0 = number of modules in flat netlist
3: while number of clusters > N0 / 2.0 do
4: cluster netlist using the Best-choice clustering algorithm
5: end while
6:
7: Phase 1: Top-level Placement Iterations (SimPL extended)
8: initial HPWL optimization
9: while ABU10 of lower-bound placement > threshold do
10: transform the lower-bound placement into an upper-bound
— placement by Extended Lookahead Legalization (E-LAL)
11: fix movable macros upon stabilization (Section 5.6)
12: update pseudopin locations and pseudonet weights
— in the linear system [86]
13: solve the updated linear system using
— the preconditioned CG method
14: end while
15:
16: Phase 2: Refinement for Mixed-size Netlists
17: determine parameters for ProLR
18: perform ProLR-w and ProLR-d optimizations
19: legalize and fix all movable macros // the end of Phase2a
20: while number of modules < N0 do
21: uncluster the netlist
22: place unclustered cells side by side
23: end while
24: recalculate parameters for ProLR
25: perform ProLR-w and ProLR-d // the end of Phase2b

85

SimPL in MAPLE does not completely close the gap between lower and upper bounds.

Also, given that lookahead legalization [86] is unaware of wirelength objectives, the

upper-bound placements are likely to suffer suboptimality. On ISPD 2005 benchmarks,

MAPLE typically exhibits a gap of 5.63% to 13.89% between lower and upper bounds

at its final iterations. However, lower-bound placements typically exhibit higher module

density. To address this challenge, we improve lower-bound placements using local-search

techniques, as described in Section 5.5.

5.4.2 A placement density metric - ABUγ

We now explore density metrics during global placement, which provide insights into

the quality of module spreading in intermediate placements and estimate wirelength im-

pact of legality enforcement. Based on such a metric, the global placer can adaptively

adjust its parameters depending on how concentrated the placement is, as described in

Section 5.5.3 To this end, we propose a new density metric, ABUγ — average bin utiliza-

tion of the top γ% densest bins excluding bins fully occupied by fixed macros. Given that

the top γ% densest bin are averaged,4 this metric reflects the non-uniformity of module

distribution (Figures 5.1 and 5.2). Compared to overflow-based metrics, ABUγ provides a

more intuitive, cross-design perspective into the quality of module spreading. Monitoring

density along with wirelength during placement enables comparisons of different parame-

ter settings and even different placers (Figure 5.3). Such comparisons accelerate algorithm

development and evaluation.

3Little is published on density metrics for global placement. Metrics based on averaged overflow (in-
cluding scaled-overflow per bin in the ISPD 2006 contest) often fail to capture uneven module distribution.
The maximum utilization metric leads to pessimistic estimation in the presence of many fixed modules.

4In our experiments γ = 10% and the square grid bins have 6 standard-cell heights on the side.

86

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4.0e7 5.0e7 6.0e7 7.0e7 8.0e7 9.0e7 1.0e8 1.1e8

A
B

U
1

0

HPWL

SimPL lower-bounds
FastPlace3

Figure 5.3: Progression of the density metricABU10 versus wirelength, comparing SimPL
lower-bounds (w/ FastPlace-DP) and FastPlace3 on ADAPTEC1. Steeper slope
and datapoints closer to the origin indicate better tradeoffs. Each square box
indicates the beginning of detailed placement.

5.5 A Methodology for Graceful Optimization in Placement

After quadratic optimization, placements typically exceed the target utilization in many

regions, and their HPWL can be improved without increasing max module density. Fur-

thermore, unclustering traditionally counts on subsequent quadratic placement and can

be simple-minded in placing modules within clusters. MAPLE improves this situation

by using ProLR — a two-tier technique to reduce wirelength and max module density.

ProLR adopts single iterations of ILR [140, 141] — Local Refinement (LR) — as a base-

line and a vehicle for placement modification. While ILR tends to be disruptive, ProLR

promotes gradual transitions via (1) limited bin resizing, (2) Explicit Bin-Blocking (EBB),

(3) careful scheduling of utilization weights (θ) between wirelength and module density,

and (4) optimizing one objective at a time, while limiting changes to other objectives; such

optimizations are alternated.

87

Bin sizing. ILR and ProLR use regular bin structures and greedily move modules between

adjacent bins based on Formula 5.1. Unlike in ILR, the bins in ProLR are small and remain

unchanged during each invocation of LR. Each bin is 5 times the average movable-module

area (bins shrink after unclustering). This restricts moves in ProLR.

Explicit Bin-Blocking (EBB) makes local-refinement moves less disruptive. The tech-

nique consists of two components: EBB+ and EBB−. EBB+ stops the inflow of mod-

ules to some bins (when such moves are expected to be harmful), while EBB− stops the

outflow of modules from some bins and encourages the inflow of modules into these bins.

Therefore, EBB+ is applied to a handful of bins to limit density, while EBB− is applied

to a larger set of bins to attract modules from remaining bins (the density of these bins

may decrease).

Joint optimization of density and wirelength. Local refinement moves individual mod-

ules based on the linear combination of improvements in HPWL and density.

Score(m) = α ·∆HPWL + β · θ ·∆density (5.1)

where θ is the utilization weight, and α and β are normalizing coefficients [107, Chapter

8]. In FastPlace and RQL, bin-specific θb values are managed after they are reset to values

0.4 ≤ θ ≤ 0.6 when ILR iterations start at each level.

Existing move-based algorithms for optimizing (i) max density and (ii) HPWL use ef-

fective techniques for finding highest-gain moves. Yet, no known algorithms are currently

known for directly finding the best moves with respect to Formula 5.1. ProLR inspects

best moves for each objective and select those that do not harm the other objective. ProLR

performs two simpler optimizations ProLR-w and ProLR-d, which optimize wirelength

88

and module density, respectively. To smoothen placement changes, utilization weight (θ)

starts from a small value θ0
w = 0.1 for ProLR-w with a coarsened netlist, and θ0

step is found

via a monotonic function

θ0
step = f(Υtarget −Υdesign) (5.2)

When the difference between design utilization (Υdesign) and target utilization (Υtarget)

is small, placement iterations should aggressively reduce density, which is achieved by

using a large θ0
step (greater emphasis on spreading in LR). On the other hand, a wider gap

between the two justifies a greater weight for wirelength, and the best wirelength is often

achieved by using a small θ0
step (greater emphasis on wirelength in LR). To implement

Formula 5.2, MAPLE uses a step function that distinguishes three different cases: (i)

emphasis on wirelength optimization, (ii) no bias, and (iii) emphasis on spreading. Given

that Υdesign is fixed, the step function only depends on Υtarget, which is typically chosen

by the designer. Assuming fixed-outline placement (Υtarget ≥ Υdesign),

θ0
step =

0.0250, if Υtarget −Υdesign ≥ 0.5
0.0275, if Υtarget −Υdesign ≥ 0.05 (5.3)
0.0375, if Υtarget −Υdesign < 0.05

The utilization weight for ProLR-w with a flat netlist, θ1
w is determined as θ1

w = θM−1
d

where M is the number of ProLR-d invocations performed for the coarsened netlist. The

θkd values in the k-th invocation of ProLR-d are determined by

θkstep = θk−1
step · (1 +

ABU10

100Υtarget

) (5.4)

θkd = θk/Mw + θkstep ∀k ∈ {0,M} (5.5)

θkd = θk−1
d + θkstep ∀k /∈ {0,M} (5.6)

ProLR-w improves placement wirelength while maintaining the initial module density

89

distribution. As ProLR-w begins, bin-specific θb are reset to θ0
w for the clustered netlist

and to θ1
w for the flat netlist. These values are updated throughout the LR iterations of

ProLR-w. Given that ProLR-w maintains θb over the entire 300 LR iterations, it closely

resembles the use of ILR in FastPlace [140]. However, ProLR-w prohibits abrupt cell

movement and significant changes in placement by (1) EBB+ for bins whose utilization

exceeds ABU10 and (2) keeping small bin sizes. ProLR-w terminates when ABU10 of the

current placement exceeds the initial ABU10. Otherwise, ProLR-w continues until there

is no improvement in wirelength.

ProLR-d reduces module density of a given placement while keeping wirelength low.

The changes in wirelength and density are nearly monotonic. Unlike ProLR-w, ProLR-

d consists of up to 15 LR iterations, and bin-specific θ are reset to θkd of each ProLR-d

invocation. ProLR-d initially rejects abrupt moves that greatly impact wirelength, and in-

creasing θkd progressively puts a greater emphasis on spreading over multiple invocations.

In contrast to ProLR-w, EBB− is applied to bins with below-target utilization, attracting

modules to sparse bins. We repeat ProLR-d up to 12 times until ABU10 stabilizes.

Refinement. When a cluster is broken down, constituent modules are placed side by side.

The placement is refined by ProLR.5 Note in Figures 5.1 and 5.2 that during disruptions,

wirelength increases sharply and density decreases. Therefore, we schedule ProLR-d be-

fore the disruption and ProLR-w after the disruption. Figure 5.4 shows that this schedule

smoothens disruptions in both objectives.

Hand-off to detailed placement. Preprocessing lower-bound placements by ProLR gives

5Unclustering is followed by interpolation in [25,31] to improve ordering, but ProLR explicitly optimizes
HPWL and module density.

90

1.3e8

1.4e8

1.5e8

1.6e8

 0 100 200 300 400 500 600

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

H
P

W
L

d
e

n
s
it
y
 m

e
tr

ic
 A

B
U

1
0

Iterations

ProLR-w ProLR-d ProLR-w ProLR-d

ABU10HPWL

Figure 5.4: Progressions of wirelength and the density metric ABU10 over ProLR itera-
tions (BIGBLUE2). Unclustering is marked with a vertical line. ProLR alter-
nates ProLR-w (shaded) and ProLR-d phases.

better tradeoffs between wirelength and density than passing either upper-bound or lower-

bound placements to detailed placement algorithms as in original SimPL [86].

5.6 Placing Macro blocks

In placers based on nonconvex optimization, the handling of pre-placed macro blocks

requires dedicated techniques (sigmoid functions, level smoothing, etc). In MAPLE, the

handling of pre-placed macro blocks is inherited from the SimPL algorithm [86] and LR.

To handle movable macros, we extend lookahead legalization (LAL) of SimPL, and call the

resulting step E-LAL. With E-LAL, upper-bound placements are generated in two steps:

macro positions are determined first, followed by standard-cell placement [110]. As in

original SimPL, roughly legalized placements generated by E-LAL produce fixed pseu-

dopins for subsequent quadratic optimization. Movable macros are legalized by a variant

of the cell shifting algorithm in FastPlace2 [139]. Our variant uses larger regular bins at

6 times the row height, and employs a 3 × 3 Laplacian [140] to smoothen bin utiliza-

91

tion. A broader view of utilization allows E-LAL to move macros further than FastPlace-

Global can and find an almost-legal placement. In the early top-level placement iterations,

MAPLE simultaneously places movable macros and standard cells. Upon stabilization

(when the gap between the upper- and lower-bounds reduces below 50% from the gap

at the 10th iteration), we fix only movable macros with heights that are greater than 2

times the row height. Further iterations optimize locations of standard and double-height

cells (Figure 5.5). Recent macro placement literature [32, 33] points out that naive force-

directed methods do not reliably find overlap-free placements and that a poor macro place-

ment may cause large overlaps and substantial disruption when removing those overlaps.

To address this problem, unlike other force-directed placers, MAPLE fixes macro posi-

tions from the upper-bound placement, which tend to have little overlap among macros

(Figure 5.5). Local refinement (LR) moves double-height and standard cells. For double-

height cells, bin-specific θb and the utilization weights are averaged over all relevant bins.

Following the contest protocol, flipping and rotation of macro blocks were disallowed in

this chapter. While macro placement [32, 33, 110] is not a primary focus of this chapter,

our techniques produce competitive results on ISPD 2006 benchmarks. Ongoing work

indicates that our algorithms for mixed-size placement can be improved further.

5.7 Empirical Validation

The MAPLE algorithm is implemented in C/C++ within an industry infrastructure for

placement optimization, including a variant of FastPlace-DP [112] for final legalization

and detailed placement. We compared MAPLE to other state-of-the-art academic and in-

dustry placers on the ISPD 2005 and ISPD 2006 placement contest benchmark suites. For

92

Figure 5.5: Macro placement on NEWBLUE1. (left) Macros are fixed at top-level place-
ment iteration 30. (right) Further iterations optimize cell locations.

placers available to us, benchmark runs were performed on an Intel Core i7 860 Linux

workstation running at 2.8GHz with 8GB RAM, using only one CPU core. For other plac-

ers (marked with asterisks), results were quoted from respective publications. To ensure

the reproducibility of our empirical results, Formula 9 reports specific constants used in

our experiments. All benchmarks were placed with identical parameter settings. HPWL of

solutions produced by each placer was computed by the GSRC Bookshelf Evaluator [1].

5.7.1 ProLR versus ILR

Figure 5.6 illustrates the use of ProLR and ILR in MAPLE through snapshots of place-

ments at different phases of Algorithm 3, starting with identical placements at Phase1. The

use of ILR in Phase2a relocates many cells over great distances across fixed macros, as

seen in the upper left regions of ILR plots on the left. These moves decrease maximal

density, but change the placement abruptly and increase HPWL. After Phase2b, the differ-

ence in HPWL between ILR and ProLR decreases, but ILR results remain inferior. One

93

Figure 5.6: Snapshots of global placement (ADAPTEC1) after each phase of Algorithm
3 for MAPLE with ILR (left) and MAPLE with ProLR (right). Phase1 is
top-level placement (BestChoice+SimPL). Phase2a and Phase2b perform LR
placement of the coarsened and flat netlist, respectively.

can also see that ILR placements on the left are more clustered than the ProLR placements

on the right and deviate more from the top-level placements. Table 5.1 compares MAPLE

with ProLR to MAPLE with ILR on ISPD 2005 benchmarks in terms of final HPWL. The

results confirm the superiority of ProLR. On the two largest benchmarks — BIGBLUE3

and BIGBLUE4, ProLR was on average, 1.5 times slower than ILR.

94

5.7.2 Comparisons on ISPD 2005 testcases

As shown in Table 5.3, MAPLE found placements with the lowest HPWL for seven out

of eight circuits in the ISPD 2005 benchmarks (no parameter tuning to specific benchmarks

was employed). On average, MAPLE improves wirelength by 9.50%, 6.24%, 6.53%,

7.10%, 8.06%, 4.72%, 2.73% and 2.09% versus APlace2 [79], NTUPlace3 (V7.05.30)

[36], FastPlace3 [140], Kraftwerk2 [134], mFAR [66], mPL6 [26], SimPL [86] and RQL

[141], respectively.

Table 5.2 compares the runtime of MAPLE with mPL6, APlace2, NTUPlace3, Fast-

Place3 and SimPL. On average, MAPLE is 1.13 times, 2.68 times faster than mPL6,

APlace2, and 2.32 times, 6.25 times, and 7.14 times slower than NTUPlace3, FastPlace3

and SimPL, resp. On BIGBLUE4, top-level placement iterations consume 26.3% of total

runtime: 64.1% is in CG, and 18.3% in building sparse matrices for CG. ProLR iterations

consume 65.4% total time split almost evenly between ProLR-w and ProLR-d. Best-

choice clustering and unclustering consume 0.2% of total runtime. Detailed placement

takes 5.5%.

Ckts MAPLE W/ ILR MAPLE W/ PROLR IMPROV.
AD1 77.41 76.36 1.37%
AD2 89.07 86.95 2.38%
AD3 210.13 209.78 0.17%
AD4 190.07 179.91 5.35%
BB1 95.25 93.74 1.59%
BB2 149.84 144.55 3.53%
BB3 345.20 323.05 6.42%
BB4 792.20 775.71 2.08%
Avg 1.03× 1.00× 2.86%

Table 5.1: HPWL (×10e6) produced by ProLR and ILR on ISPD 2005 benchmarks
ADAPTEC (AD) and BIGBLUE (BB).

95

5.7.3 Runtime considerations

As MAPLE is currently slower than some of its competitors, we note that industry im-

plementations like ours tend to be handicapped (versus standalone academic implementa-

tions) by the use of a multipurpose design database. Because such a database stores infor-

mation unnecessary to placement, the decreased cache locality increases runtime. Other

relevant legacy infrastructures in our database include netlist-query support for accurate

timing analysis and physical synthesis. In contrast to academic placers, our implementa-

tion can work with a netlist that is dynamically changed during physical synthesis.

Unlike the original SimPL, our implementation does not use SSE instructions and is

almost twice as slow (so far, we focused on solution quality and not runtime). Also, ProLR

should parallelize well on multicore CPUs. Another consideration deals with the role of

placement in physical synthesis, where it is invoked several times [10]. Fast execution is

particularly important for early runs that estimate interconnect before netlist optimization.

The top-level placement step from MAPLE produces good estimates because the final

placement result does not look very different (Figure 5.6). Top-level placement consumes

only 25 − 30% of MAPLE runtime and can be accelerated as outlined above. As timing

Ckts AP2 NTU3 MPL6 FP3 SIMPL MAPLE
AD1 46.29 7.92 21.45 2.36 2.48 17.48
AD2 65.49 7.28 21.87 3.58 3.46 24.30
AD3 144.27 14.98 67.14 7.56 6.43 47.34
AD4 158.30 15.47 57.70 6.69 5.44 44.32
BB1 56.68 12.67 24.56 3.67 3.53 24.31
BB2 110.96 25.18 65.44 6.51 6.36 43.96
BB3 233.70 49.70 88.87 19.85 13.25 94.36
BB4 516.37 109.82 199.74 32.27 29.50 214.86
Avg 2.68× 0.43× 1.13× 0.16× 0.14× 1.00×

Table 5.2: Runtime comparison (minutes) on ISPD 2005 benchmarks for APlace2 (AP2),
NTUPlace3 (NTU3), mPL6, FastPlace3 (FP3), SimPL and MAPLE.

96

analysis and optimizations dominate the runtime of physical synthesis, greater effort in

placement can be justified by improved results.

Runtime can sometimes be reduced by deeper clustering (more levels). To estimate its

potential impact in MAPLE, we note that top-level placement takes 26% and ProLR takes

65% of MAPLE runtime on BIGBLUE4 (195.52 min. / 91% total). ProLR runtime is split

1:2 between the coarse and flat netlists. For three levels of clustering, top-level placement

will take 13%, and ProLR will take 11% + 22% + 43% = 76% runtime. The total (191.23

min. / 89%) is only a 2% reduction versus two levels.

Benchmarks AP2 NTU3 FP3 KW2* MFAR* MPL6 SIMPL RQL* MAPLE
[79] [36] [140] [134] [107] [26] [86] [141]

ADAPTEC1 78.35 81.82 78.66 82.43 82.50 77.93 78.58 77.82 76.36
ADAPTEC2 95.70 88.79 94.06 92.85 92.79 92.04 91.24 88.51 86.95
ADAPTEC3 218.52 214.83 214.13 227.22 217.56 214.16 208.90 210.96 209.78
ADAPTEC4 209.28 195.93 197.50 199.43 197.90 193.89 185.39 188.86 179.91
BIGBLUE1 100.02 98.41 96.67 97.67 98.80 96.80 97.54 94.98 93.74
BIGBLUE2 153.75 151.55 155.74 154.74 160.40 152.34 145.28 150.03 144.55
BIGBLUE3 411.59 360.66 365.16 343.32 368.70 344.10 340.24 323.09 323.05
BIGBLUE4 871.29 866.43 836.20 852.40 865.40 829.44 801.35 797.66 775.71
Geomean 1.10× 1.07× 1.07× 1.08× 1.09× 1.05× 1.03× 1.02× 1.00×

Table 5.3: Legal HPWL (×10e6) comparison on the ISPD 2005 benchmark suite. The
previous best wirelengths are marked with gray. The placers marked by aster-
isks were unavailable to us in binary, and we reproduce HPWL from respective
publications. Kw2=Kraftwerk2.

5.7.4 Comparisons on ISPD 2006 testcases

We compared MAPLE to other state-of-the-art academic and industry placers on the

ISPD 2006 benchmark suite. Table 5.4 reports scaled HPWL and overflow penalty for

several placers. Following the contest protocol, scaled HPWL is calculated as HPWL ·

(1 + 0.01 · overflow penalty). On average, MAPLE achieved 11.28%, 5.59%, 13.58%,

6.63%, 11.57%, 4.37%, 3.13% scaled HPWL improvements versus APlace3 [107], NTU-

97

Benchmarks AP3* NTU3 FP3 KW2* MFAR* MPL6 RQL* MAPLE
(Υtarget) [107] [36] [140] [134] [107] [26] [141]

ADAPTEC5 520.97 430.73 541.22 449.84 476.28 431.27 443.28 407.33
(0.5) (15.9) (12.2) (36.5) (3.69) (6.21) (1.09) (9.25) (4.76)

NEWBLUE1 73.31 62.39 76.56 65.95 77.54 68.08 64.43 69.25
(0.8) (0.14) (0.76) (1.02) (0.05) (0.23) (0.14) (0.34) (1.05)

NEWBLUE2 198.24 211.77 240.56 206.53 212.90 201.85 199.60 191.66
(0.9) (0.42) (3.21) (1.97) (1.28) (0.59) (1.52) (1.45) (1.01)

NEWBLUE3 273.64 280.19 301.72 279.58 303.91 284.11 269.33 268.07
(0.8) (0.00) (0.01) (0.78) (0.38) (0.11) (0.59) (0.07) (0.77)

NEWBLUE4 384.12 302.25 306.07 309.44 324.40 300.58 308.75 282.49
(0.5) (1.74) (9.22) (7.74) (1.71) (5.42) (1.63) (15.2) (5.86)

NEWBLUE5 613.86 547.20 633.72 563.15 601.27 537.14 537.49 515.04
(0.5) (12.5) (20.82) (28.31) (2.69) (5.92) (1.42) (13.6) (4.05)

NEWBLUE6 522.73 518.25 531.56 537.59 535.96 522.54 515.69 494.82
(0.8) (0.03) (6.08) (1.26) (1.70) (1.63) (1.40) (4.33) (1.08)

NEWBLUE7 1098.9 1114.2 1116.7 1162.1 1153.8 1084.4 1057.8 1032.6
(0.8) (0.06) (5.19) (1.33) (3.15) (1.58) (1.14) (2.57) (1.70)

Geomean 1.13 × 1.04 × 1.16 × 1.07 × 1.13 × 1.06 × 1.03 × 1.00 ×
(0.32) (2.55) (3.47) (1.09) (1.29) (1.22) (2.30) (1.90)

Table 5.4: Comparison of scaled HPWL (×10e6) which includes overflow penalty w.r.t the
given target utilization on the ISPD 2006 benchmark suite. Overflow penalty
values computed by the contest script are reported in parentheses. The placers
marked by asterisks were unavailable to us in binary, and we reproduce results
from respective publications. This hinders runtime comparisons.

Place3 (V7.05.30) [36], FastPlace3 [140], Kraftwerk2 [134], mFAR [66], mPL6 [26], and

RQL [141], respectively. MAPLE obtains the best scaled HPWL results on seven out of

eight circuits. Furthermore, compared to the other two best-performing placers on the

benchmarks — RQL and NTUPlace3, MAPLE achieves lower overflow penalty on aver-

age. Thus, MAPLE not only reduces the wirelength but also avoids highly concentrated

placements. Recall that the original implementation of SimPL [86] does not support den-

sity constraints of ISPD 2006 benchmarks and does not perform mixed-size placement.

98

5.8 Summary and Conclusions

The significance of large-scale placement in IC physical design is well-documented

in recent literature [10] and is continuing to grow with the amount of on-chip random

logic and current trends in interconnect scaling. Placement algorithms in the industry

and academia were initially developed with the HPWL objective in mind [107] and later

extended [10] to account for other objectives and concerns [57, 64, 85]. Despite known

pitfalls, the HPWL objective appears to be a good performance predictor for various ex-

tensions of core placement algorithms. Focusing on the HPWL objective and module

density, our research (i) contributes the discovery of essential deficiencies in prior tech-

niques and (ii) advances the state of the art by developing algorithms that improve the

quality of benchmark layouts beyond all published results.

99

PART III

Broadening the Scope
of Placement Optimization

100

CHAPTER VI

ComPLx: A Competitive Primal-dual Lagrange
Optimization for Global Placement with Extensions

to Mixed-size and Timing-driven Placement

We develop a projected primal-dual Lagrange optimization for global placement, that

can be instantiated with a variety of interconnect models. It decomposes the original non-

convex problem into “more convex” sub-problems. It generalizes and extends our SimPL

algorithm introduced in Chapter III, the SimPLR algorithm from Chapter IV and the re-

lated Ripple algorithm [57] derived by our colleagues from SimPL. Empirically, ComPLx

demonstrates strong results in runtime and performance on ISPD 2005 and 2006 bench-

mark suites.

6.1 Introduction

The success of global placement determines all aspects of modern IC layout and phys-

ical synthesis [10] because it controls the amount of interconnect, which increasingly

dominates on-chip resources and circuit performance [80]. However, the diverse algo-

rithmic challenges posed by global placement and its complexity continue to surprise re-

searchers [107]. Current algorithms still lag behind manual layout on circuits with struc-

101

tured components [149], do not always scale to extremely large circuits and are inconsis-

tent in handling of objective functions and various constraints. Analysis and comparisons

of placement algorithms have been mostly empirical [107], with little formal justification

and convergence analysis.

A recent approach to global placement promises to support a variety of discrete and

continuous constraints and was extended to handle routability-driven placement. Repre-

sented by the SimPL [86] and SimPLR [85] algorithms, this approach consistently outper-

forms previous state of the art in speed and solution quality, is amenable to thread-level

and instruction-level parallelism, requires only a modest amount of code, and was success-

fully re-implemented by independent researchers [14,57]. The SimPL algorithm saw rapid

adoption in both academia and industry, including power-aware placement with integrated

clock-network synthesis in [94] and multilevel optimization in [87]. Recently, it was also

extended to thermal-aware placement in [14] and datapath-aware placement in [151,152].

However, a convincing mathematical foundation for this empirical success was lacking.

While the SimPL approach is based on quadratic placement, the significance of this con-

nection has remained unclear vis-à-vis techniques based on the log-sum-exp interconnect

model [126].

Our contributions in this chapter can be summarized as follows

• A projected primal-dual Lagrange optimization (ComPLx) for global placement

compatible with a variety of interconnect models, including linearized quadratic,

log-sum-exp, etc.

• Convergence analysis and ensuing enhancements.

102

• Casting existing algorithms SimPL [86], SimPLR [85] and Ripple [57] as special

cases of ComPLx. In particular, ComPLx inherits their competitiveness and lends

them mathematical substantiation.

• Algorithmic extensions for mixed-size, timing- and power-driven placement.

• Empirical validation of the theoretical framework underlying ComPLx. On ISPD

2005 benchmarks, ComPLx is 10% faster than FastPlace [140] (including detailed

placement runtime). It outperforms SimPL and RQL (the best-published placers)

by 1%. On ISPD 2006 benchmarks, ComPLx outperforms the leading placer RQL

[141] by 1% in terms of scaled HPWL while running 2.5× faster.

In the remainder of this chapter, Section 6.2 introduces our primal-dual Lagrangian re-

laxation ComPLx, whose convergence is discussed in Section 6.3. Section 6.4 points out

that the SimPL, SimPLR and Ripple algorithms are special cases of ComPLx. It also dis-

cusses other related prior work. Section 6.5 outlines extensions to mixed-size, timing and

power-driven placement. Section 6.6 presents empirical studies that evaluate ComPLx and

its extensions, and compare ComPLx to prior art. Summary and conclusions are given in

Section 6.7.

6.2 A Primal-Dual Lagrange Method

We propose a general method for handling constraints in global placement with a vari-

ety of possible interconnect models, and show how to decompose the original nonconvex

problem into “more convex” sub-problems.

A Lagrangian relaxation of global placement can be constructed if constraints are spec-

103

ified as equalities Π(~x, ~y) = 0. Since supply-demand inequalities are usually given in-

stead, the more general Karush-Kuhn-Tucker conditions may at first seem more relevant.1

However, working with supply-demand inequalities directly is difficult because they are

specified algorithmically, not as closed-form expressions in (~x, ~y). Without derivatives,

one resorts to subgradient optimization [15], while the nature of the constraints calls for

approximation. Placement techniques based on nonconvex optimization [26, 36, 79] fit

demand distribution to smooth functions using kernel-density estimation, and this facili-

tates gradient estimation. Each such step is laborious, and many steps may be required

because, after moving in the gradient direction, one may need to “make turns” (as il-

lustrated by moving around a rectangular obstacle). The reliance on local subgradient

information in [36,79] is common in analytical placement and with possible exceptions of

Kraftwerk [134] and mPL6 [26] which estimate subgradients by solving second-order lin-

ear elliptic PDEs with global supply-demand information. Solutions of these PDEs can be

written as convolutions of the density function with a fixed Green’s function G(s, t) (de-

pendent on boundary conditions), which sometimes vanishes away from s = t. Further,

local subgradient computations leave undefined the tradeoff between demand-distribution

subgradients and the gradients of the objective function. This force modulation problem

was articulated in [141], but addressed there with ad hoc thresholding.

In contrast to other methods, our subgradients point to a closest C-feasible solution,

and their magnitude is modulated by respective distance. Thus, we define ΠC(~x, ~y) as the

1Inequalities can also be converted into equations by adding slack variables, but we avoid this common
technique, to limit computational complexity.

104

L1-distance from (~x, ~y) to a closest C-feasible solution.

ΠC(~x, ~y) = min
(~x∗,~y∗)∈C

||(~x, ~y)− (~x∗, ~y∗)||1 (6.1)

= min
(~x∗,~y∗)

(
||~x− ~x∗||1 + ||~y − ~y∗||1

)
(6.2)

Clearly, ΠC(~x, ~y) = 0 ⇔ (~x, ~y) ∈ C. Therefore, in addition to primary variables (~x, ~y),

we introduce one dual variable (multiplier) λ ≥ 0, and establish the following Lagrangian

LΦ,C(~x, ~y, λ) = Φ(~x, ~y) + λ Π(~x, ~y) (6.3)

We use L1-norms so that costs and penalties are expressed in meters and can be compared.

Hence, λ is dimensionless.

Primal-dual Lagrangian relaxation [6] alternates minimization over the primal variables

with maximization over the dual variable(s). min Φ(~x, ~y) subject to (~x, ~y) ∈ C can be

found by sequential unconstrained optimization

max
λ

min
(~x,~y)
LΦ,C(~x, ~y, λ) (6.4)

Starting with λ0 = 0, the first primal iterate is produced by minimization of Φ(~x, ~y) (us-

ing quadratic optimization or nonlinear Conjugate Gradient, depending on the function).

At subsequent iterations, primal optimization must also account for the penalty term. A

straightforward argument by contradiction shows that for λk < λk+1

min
(~x,~y)
LΦ,C(~x, ~y, λk) ≤ min

(~x,~y)
LΦ,C(~x, ~y, λk+1) (6.5)

As λ increases, so does the sensitivity of LΦ,C to Π. Therefore, the minimization of LΦ,C

affects the Π term more, and this term decreases. However, since the minimized value of

105

LΦ,C increases (per Formula 6.5), Φ must increase. Eventually, (~x, ~y) become C-feasible

(or very close to), making the Lagrangian insensitive to λ and indicating that an optimum

is near. The following weak duality bounds hold for any C-feasible solution (~x◦, ~y◦) and

any iterate (~x, ~y) after primal optimization.

Φ(~x, ~y) ≤ LΦ,C(~x, ~y, λ) ≤ LΦ,C(~x
◦, ~y◦, λ) = Φ(~x◦, ~y◦) (6.6)

The first≤ is due to λ ≥ 0 in Formula 6.3. The second≤ is due to (~x, ~y) being argmin from

Formula 6.4 and the third = is due to Π(~x◦, ~y◦) = 0 (C-feasible). The second inequality is

strict unless (~x, ~y) is C-infeasible, hence Φ(~x, ~y) < Φ(~x◦, ~y◦). The duality gap is

∆Φ = Φ(~x◦, ~y◦)− Φ(~x, ~y) (6.7)

minimized over best available primal feasible (~x◦, ~y◦) and (~x, ~y) at a given point during

optimization.

Approximating the penalty term allows us to replace the nonconvex Lagrangian by a

convex one. Here we use the feasibility projection

PC(~x, ~y) = argmin(~x∗,~y∗)∈C||(~x, ~y)− (~x∗, ~y∗)||1 (6.8)

that finds a closest C-feasible approximation (performs pseudo-legalization) of (~x, ~y).2

Since PC(~x′, ~y′) is C-feasible, Φ(~x, ~y) ≤ Φ
(
PC(~x

′, ~y′)
)

by Inequalities 6.6. Given that Φ is

continuous, the convergence ||(~x, ~y) − PC(~x, ~y)||1 → 0 would necessitate Φ
(
PC(~x, ~y)

)
−

Φ(~x, ~y) → 0. Hence, Φ
(
PC(~x, ~y)

)
must generally decrease, providing upper bounds on

final placement cost.

2One can additionally require breaking ties toward smaller values of Φ (or even some tradeoff with Φ),
but this does not seem necessary for practical success (Section 6.6).

106

After finding C-feasible anchor locations (~x◦, ~y◦) = PC(~x, ~y), we establish the simplified

Lagrangian

L◦Φ(~x, ~y, λ) = Φ(~x, ~y) + λ||(~x, ~y)− (~x◦, ~y◦)||1 (6.9)

To minimize it with respect to fixed (~x◦, ~y◦) and λ, the L1-term can be approximated by the

same type of function as Φ (see Section 6.4). Thus, for quadratic Φ, the optimality condi-

tion ∇L◦Φ(~x, ~y, λ) = 0 turns into a system of linear equations. For other functional forms,

such as the log-sum-exp expressions, one can minimize L◦Φ(~x, ~y, λ) using the nonlinear

Conjugate Gradient method or other known alternatives.3 In addition to being (strictly)

convex, L◦Φ(~x, ~y, λ) is usually separable into its x and y components which can be opti-

mized independently. One can verify Inequalities 6.5 and 6.6 for L◦Φ(~x, ~y, λ) subject to

(~x◦, ~y◦) = PC(~x, ~y).

The ComPLx framework re-solves∇L◦Φ(~x, ~y, λ) = 0 and PC(~x, ~y) = 0 until convergence.

The result of global placement can be read from the last iterate (~x, ~y) or the last C-feasible

iterate (~x◦, ~y◦) as discussed in Section 6.3.

Feasibility projection for density constraints. The notion of a feasibility projection is

related to lookahead legalization (LAL) in the SimPL placer [86] (more details in Section

6.4). To handle density constraints, ComPLx uses a similar algorithm, which we here

restructure to expose the convexity of underlying optimization.

Whereas LAL was defined recursively in [86, Section 4], the top-level structure of PC

in our description is that of alternating horizontal and vertical spreading passes. Each

pass operates over a slicing floorplan, which gets refined between the passes. Specifically,

3Techniques such as Newton’s method that approximate the objective f by quadratic functions based on
Hessian(f) essentially perform sequential quadratic optimization.

107

5.0e8

5.5e8

6.0e8

6.5e8

7.0e8

7.5e8

8.0e8

8.5e8

 0 10 20 30 40 50
0.0e0

1.0e9

2.0e9

3.0e9

4.0e9

5.0e9

6.0e9

In
te

rc
on

ne
ct

T
ot

al
 d

is
pl

ac
em

en
t

Iterations

Πκ

Φκ

Lk

Figure 6.1: Progressions of L (the total Lagrangian), Φ (netlist interconnect), and Π (L1-
distance to legal) over ComPLx iterations on BIGBLUE4. L increases steeply
in the early placement iterations, as λ increases. Π decreases while Φ gradually
increases.

spreading occurs only inside the rooms of the floorplan. For example, at the very first

iteration, there is only one room, and one-dimensional spreading evens out the density.

To formalize the problem solved by one-dimensional spreading from [86, Section 4], we

note that relative placements are preserved. This justifies a change of variables: initial cell

locations xi (or yi) are sorted, and the new variables δi ≥ 0 represent distances between

neighboring x (y) locations, subject to Σiδi ≤ Wx (or Wy) for a Wx ×Wy floorplan room

(a convex constraint). This linear change of variables preserves the convexity of the opti-

mization objective (L1-distance from given locations). The density constraint requires that

for (some m and) all k, Σk+m
i=k δi is sufficiently large (based on cell sizes). This constraint

min
k
{Σk+m

i=k δi − (1/
√
γ)Σk+m

i=k width(celli)} ≥ 0

is convex since the minimum of downward convex (linear) functions is also downward

convex (the ≥ sign is important).

108

As pointed out in [86, Section 4], after one-dimensional spreading, the median location

should divide cell area evenly. Since this equalizes average densities on both sides, this

new median location indicates a fixed point of the spreading transform. Hence, the walls of

the slicing floorplan built by alternating one-dimensional spreading steps represent fixed

lines. As slicing floorplan is gradually refined, the displacement affected by later steps of

PC rapidly decreases.

6.3 Convergence analysis

It is sufficient for PC to find a C-feasible solution that is reasonably close, rather than

closest, to a given (~x, ~y). Such approximate projected subgradient methods are relatively

recent in the operations-research literature [89, Section 1] but are proven to converge as

long as PC does not increase the distance to the set C and typically reduces it during

iterations [16, Sections 2 and 3]. In particular, PC should return its input when the input is

C-feasible. Convergence can be improved if PC exhibits reasonable fidelity with respect to

the exact feasibility projection, and is self-consistent

||(~x, ~y)− PC(~x, ~y)||1 > ||(~x′, ~y′)− PC(~x, ~y)||1 ⇒ (6.10)

||(~x, ~y)− PC(~x′, ~y′)||1 > ||(~x′, ~y′)− PC(~x′, ~y′)||1 (6.11)

In other words, if (~x′, ~y′) is closer to PC(~x, ~y) than (~x, ~y), then it should also be closer

to PC(~x′, ~y′). The ComPLx implementation of PC reviewed in Section 6.4 handles both

standard cells and macros. It is self-consistent through almost all iterations, as we shown

empirically in Section 6.6. Figure 6.1 illustrates changes in Lk, Φk, and Πk over ComPLx

iterations on BIGBLUE4. The same trends show on all other benchmarks, validating the

109

discussion in Section 6.2.

Global placement iterations stop when a C-feasible value is reached, which must happen

when λ exceeds its optimal value. But the resulting solution may be far from optimal. To

avoid this, we propose to improve the efficiency of the first few iterations, since the first

iterates are crucial to the overall success (given that we are solving a nonconvex problem

overall). The earliest nonzero value of λ must be sufficiently small so that Φ(~x, ~y) �

λΠ(~x, ~y), to make sure that LΦ,C(~x, ~y, λ) is dominated by the convex cost term rather than

the penalty term. Hence, we initially select λ1 = Φ/100Π. This calculation is supported

by the fact that Π and Φ are expressed in the same units (meters). To avoid premature

progress, a maximum increase in λ can be imposed, say 100% per iteration.

λk+1 = min{2λk, λk + (Πk+1/Πk)h} (6.12)

where h is a scaling constant. λ increases proportionally to Π changes to ensure that Π

decreases by a sufficient amount, as Φ increases. Considering the number of iterations until

λ reaches its optimal value, there is no explicit dependency on the number of variables.

In practice, the maximal λ values and the iteration count do not grow with the size of the

problem instance as shown in Section 6.6.

Convergence criteria can be defined in terms of r(~x, ~y) = ||(~x, ~y) − PC(~x, ~y)||1, rather

than L — when the placement is close to C-feasible, a detailed placer can produce op-

timized site-aligned legal locations. Given that pseudo-legalization (~x◦, ~y◦) = PC(~x, ~y)

is performed at every iteration, one can run detailed placement on (~x◦, ~y◦) rather than on

(~x, ~y). This would allow an even more aggressive convergence criterion in terms of the

110

duality gap ∆Φ = Φ(~x◦, ~y◦)−Φ(~x, ~y).4 To substantiate this idea, we observe that perform-

ing detailed placement on a feasible solution (~x◦, ~y◦) should not increase costs (rather the

opposite), whereas performing detailed placement on (~x, ~y) is likely to (as observed in

practice). This observation upper-bounds the difference in final costs between these two

scenarios by ∆Φ.

6.4 Comparisons to Previous Work

We now point out that the SimPL (Section III), SimPLR (Section IV) and Ripple [57]

algorithms are special cases of the proposed primal-dual Lagrangian relaxation. They im-

plement Φ as a quadratic approximation ΦQ of HPWL, adjusted at every iteration through

the linearized Bound2Bound net model [134]. Linearization is also applied to represent

the L1-norm in the penalty term Π. To model this term, each movable object is connected

to its anchor location by a pseudonet, contributing wi(xi − x◦i)
2 to the overall objective

(and a similar y-term), where wi = λ
|xi−x◦i |+ε

is based on the last iterate. ε > 0 is used to

bound the denominator away from zero and make the objective function strictly convex.

In SimPL and SimPLR, ε is calculated as 1.5 times row height.5 This matches Formula

6.9 if the L1-distance term is approximated by a linearized quadratic function (Section

2.1). SimPL, SimPLR and Ripple maintain a lower and an upper-bound placement at each

iteration, and these placement satisfy conditions in Formula 6.6 as seen in [86, Figure

6], [85, Figure 4].

The SimPL (Section III), SimPLR (Section IV) and Ripple [57] algorithms differ in

how they define and implement the feasibility projection PC . In practice, to identify over-

4As Φ is Lipschitz, r(~x, ~y)→ 0 implies ∆Φ → 0.
5In [132], a lower bound on the distance between two modules is defined as the average module width.

111

filled bins with respect to a target utilization/density limit 0 < γ ≤ 1 [86, Section 4], a

uniform grid is superimposed over the entire layout. Then the feasibility projection seeks

to satisfy the given target utilization/density limit within each grid-cell. To this end, the

SimPL PC first localizes the changes in (~x, ~y) to the smallest rectangular grid-cell sub-

arrays that satisfy a given target utilization/density limit, and then processes each region

by a top-down geometric-partitioning framework. SimPL alternates (i) piecewise-linear

scaling in x and y directions with (ii) spreading locations in each dimension to even out

density, while preserving the relative order (determined by sorting). As a runtime tradeoff,

SimPL gradually increases the accuracy of PC as the grid-cell size decreases, and we use

this feature in Section 6.6 to show that PC does not need to be implemented precisely. Sim-

PLR and Ripple generally follow the SimPL techniques, but are concerned with routability

in addition to HPWL. Therefore, they estimate congestion after placement iterations (Sim-

PLR calls a global router, whereas Ripple estimates congestion directly) and modify PC to

produce low-congestion placements. SimPLR preprocesses PC by temporarily increasing

the dimensions of some movable objects, so as to enhance geometric separation between

them. Ripple distinguishes congestion maps for horizontal and vertical wiring, and scales

minimal-sized rectangular regions differently each direction. Despite the technical differ-

ences, all these variants compute PC by a series of convex optimizations. The use of feasi-

bility projections is not only common between SimPL [86], SimPLR [85] and Ripple [57],

but also distinguishes them from other placement algorithms. This is why SimPL, Sim-

PLR and Ripple are particularly good at handling nonlinear, nonconvex layout constraints,

such as numerous fixed obstacles present in modern SoC layouts.

112

Lookahead legalization (LAL) was earlier used for macro placement in PolarBear [42]

and SCAMPI [110]. In both cases, the main issue was the feasibility of macro packing

within a given fixed outline. Both algorithms use top-down min-cut partitioning to mini-

mize interconnect and need to check if each geometric partition is feasible. The result of

this check is binary — a positive result for both partitions allows top-down partitioning

to proceed, while a negative result for one of partitions triggers backtracking or end-case

processing. The locations of macro blocks in a feasible placement are typically not used

directly, therefore the LAL algorithm in PolarBear does not seek to optimize any objec-

tive. In contrast, SimPL does not deal with movable macros, and the main concern for

LAL in SimPL is to minimize total displacement from an initial solution, which has not

been considered in PolarBear and SCAMPI. Since relevant algorithms in PolarBear and

SCAMPI do not work with an initial solution, they cannot be considered feasibility pro-

jections. In other words, PC in ComPLx and LAL in SimPL differ from prior work in that

they pursue different goals — finding a closest feasible solution, rather than check packing

feasibility. They are used in a different context (analytic placement vs. top-down min-cut

placement), employ entirely different algorithms, and their results are interpreted differ-

ently (as anchors that influence the next iteration of analytic global placement). Whereas

PolarBear and SCAMPI did not anticipate primal-dual Lagrange optimization in place-

ment, the feasibility projection in ComPLx is a key element of the proposed primal-dual

Lagrange formulation.

ComPLx also differs from PolarBear and SCAMPI in how it handles movable macros.

Whereas prior work seeks to ensure the feasibility of macro placements at every step and

113

sometimes sacrifices interconnect optimization for this, ComPLx pursues a different strat-

egy based on macro shredding — it allows for temporarily overlapping macro placements

and focuses on interconnect optimization.

Related primal-dual Lagrange optimizations. Primal-dual optimization was used once

in global placement in [7], where it was limited to explicit center-of-gravity (CoG) “spread-

ing” constraints. These constraints appear in GORDIAN and GORDIAN-L algorithms [132],

but not in modern placers — being convex and linear, they are insufficient to handle mod-

ern IC layouts (the 1997 implementation reported in [7] is not a full-fledged global placer).

To deal with CoG constraints, [7] introduced slack variables, as is common in linearly-

constrained primal-dual Lagrange optimization [53]. Instead, we deal with more general

nonlinear, nonconvex constraints (such as fixed obstacles) by means of approximate pro-

jected subgradient optimization. Our primal-dual Lagrangian relaxation, in its basic form,

requires only a single real-valued multiplier, making optimization very efficient. Unlike

in [7, 53], we use the linear Conjugate Gradient (CG) method rather than the nonlinear

Newton’s method.

Recent operations research work (unrelated to EDA) by Kiwiel et al [89] discusses

approximate subgradient projected optimization, focusing on step-size selection and con-

vergence analysis. Unlike prior projected subgradient methods, the Lagrangian relaxation

in [89] finds both primal and dual solutions. This is also a key feature of our methods.

However, [89] is not solving global placement and lacks numerous domain-specific details

we described. Vice versa, we are not using their hallmark ballstep strategy that bundles

multiple subgradient iterations.

114

Figure 6.2: Macro shredding for feasibility projection PC on NEWBLUE1 (an intermediate
placement). Red boxes show the locations of macro cells at the centers of
gravity of constituent cells (shown as green dots). Standard cells are shown as
blue dots.

6.5 Algorithmic Extensions

Mixed-size placement requires careful accounting for pin offsets during quadratic opti-

mization (since pin-offsets can be large in macros), as well as an approximate feasibility

projection PC which can handle both macros and standard cells. We have therefore revised

and extended the macro shredding technique from [3]. Macro cells are divided into equal-

sized cells (2×2 standard-cell height), but unlike prior work, ComPLx does not connect

constituent cells (shreds) with fake nets and thus does not modify the linear systems it

solves, limiting computational complexity increases.

The conventional PC [86] is applied to the shreds, after which the action of PC on the

original macro is interpolated by averaging the displacement of the shreds. Given that the

115

conventional PC [86] mostly preserves the relative placement of cells and is approximately

locally isometric, the arrays of shreds are transformed into shapes similar to arrays, as

seen in Figure 6.2. As PC seeks to satisfy the given target utilization (0 < γ < 1), addi-

tional whitespace is inserted among constituent cells. Then the bounding box of projected

locations of shreds outgrows the original macro cell, creating a halo around the macro,

where other cells cannot be placed. To compensate, we multiply the widths and heights

of constituent cells by
√
γ. Stabilizing macro positions early is important, as they greatly

impact adjacent standard cells. To accelerate the convergence of macro cells and decrease

their displacement during legalization, we extend Formulae 4 and 10 with separate, larger

λ values for each macro, computed as the default λ times the ratio of the size of macro

cell to the average standard-cell size. As seen in Figure 6.2, our mixed-size feasibility

projection PC may leave small overlaps between macros. Rather than force complete le-

galization, we let multiple global placement iterations (including PC) gradually decrease

these overlaps. We observe that as PC displaces cells and macros less, the changes in the

shapes of shredded macros also decrease, and this increases the precision of legalization

for macros during PC . Even if slight overlaps remain at the end of global placement, they

can be fixed by the detailed placer without undermining the overall performance. While

less sophisticated than algorithms in [32, 33, 160], our mixed-size approximate feasibility

projection PC is easy to implement and shows good results, motivating additional studies.

Timing- and power-driven placement traditionally rely on net weights computed from

activity factors and timing slacks [80, Chapter 8]. Net-weighting schemes in the literature

include rigorous, provably convergent methods [24]. Since our mathematical formulation

116

for global placement in Section 6.2 accounts for net weights in Φ, existing techniques [24]

and their provable properties apply directly. An extension of SimPL with power-driven

net weights is reported in [94]. However, we observe that the impact of the feasibility

projection and detailed placement suggests revising the penalty term in the Lagrangian.

Minimizing L1-distance to C may leave some cells far from their legal positions, forcing

PC or the detailed placer to displace them. This may stretch out incident nets, which is un-

desirable for timing- and power-critical standard cells. Hence, in the simplified Lagrangian

of Formula 6.9 we weigh the penalty term by timing/power criticality and replace

λ||(~x, ~y)− (~x◦, ~y◦)||1 by λ(~γ · |(~x, ~y)− (~x◦, ~y◦)|) (6.13)

where | | represents the vector of pointwise distances and ~γ represents the vector of cell-

criticalities. Initially, ~γ is populated with switching activity factors (no cells are critical).

When static timing analysis, performed between placement iterations, indicates that cell i

lies on a critical path (violates a timing constraint), the cell’s criticality must be increased

γi = γi(1 + δ), (along with the weights of critical nets in Φ).

6.6 Empirical Validation

Our implementation of ComPLx inherits the performance and runtime advantages of

SimPL (Chapter III). Experiments ran on a 2.8GHz Intel Core-i7 860 Linux server with

8GB RAM, using one CPU core. Detailed placement was done by FastPlace-DP [112]. All

settings were the same for all benchmarks. In this chapter, we do not perform empirical

comparisons with MAPLE (Chapter V) because MAPLE includes SimPL and its local

optimization techniques can be invoked after ComPLx.

117

6.6.1 Evaluating the core placer

Self-consistency (Formula 6.11). To establish the self-consistency of PC it suffices to in-

dependently establish the self-consistency of each horizontal and vertical pass [86, Section

4] in each room of the floorplan (see below). While the overall algorithm described above

using alternating passes differs from LAL in [86], the results produced are essentially

the same. The argument for self-consistency remains valid when the algorithm is applied

multiple times.

Since the self-consistency condition of Formula 6.11 is transitive, we checked it be-

tween every two consecutive ComPLx iterations. Our implementation of the approximate

feasibility projection PC was self-consistent 96.0% and inconsistent 0.6% of the time,

while the sufficient condition ||(~x, ~y)−PC(~x, ~y)||1 > ||(~x′, ~y′)−PC(~x, ~y)||1 for successive

iterations was not satisfied only 3.3% of the time. Thus, the approximate feasibility pro-

jection PC used by our implementation is approximately self-consistent. The convergence

plots in Figure 6.1 do not show any disruptions that one would expect with a seriously in-

consistent PC . Inconsistencies mostly occur in the early global placement iterations (< 5)

where feasible placements differ significantly between consecutive iterations.

Attempts at further improvement. Given that quadratic optimization in SimPL and

ComPLx is optimal, we tried to improve the feasibility projection PC . One such attempt

used the finest grid during all global placement iterations. In a second attempt, we post-

processed the result of PC by the detailed placer [112] at each iteration. Our data in Table

6.1 show only a marginal improvement, but at a runtime cost. Vice versa, coarsening

the grid speeds up PC without undermining solution quality. Thus, no interconnect op-

118

BENCHMARKS BEST PUBLISHED COMPLX
as of 02/27/2012 FINEST GRID PC+=FASTPLACE-DP DEFAULT CONFIG.

size (# of modules) HPWL (placer) HPWL Runtime HPWL Runtime HPWL Runtime
ADAPTEC1 211K 77.82 (RQL) 79.11 3.86 79.94 93.52 77.73 3.09
ADAPTEC2 255K 88.51 (RQL) 88.66 5.23 90.89 162.07 88.84 4.31
ADAPTEC3 452K 207.67 (SimPL) 206.89 11.54 204.82 323.04 203.55 10.75
ADAPTEC4 496K 186.80 (SimPL) 183.87 10.90 188.37 252.40 183.16 9.57
BIGBLUE1 278K 94.98 (RQL) 96.12 7.22 94.78 140.27 94.41 7.00
BIGBLUE2 558K 145.47 (SimPL) 145.05 9.91 146.32 200.56 145.39 8.53
BIGBLUE3 1.10M 323.09 (RQL) 352.51 32.52 327.49 629.23 330.74 24.80
BIGBLUE4 2.18M 797.66 (RQL) 788.30 47.87 792.26 961.25 788.30 41.89

Geomean 1.00× 1.01× 1.16× 1.00× 26.56× 1.00× 1.00×

Table 6.1: Legal HPWL (×10e6) and total runtime (in min.) comparison on ISPD 2005
benchmarks. Each run uses a single thread on a 2.8GHz workstation. Best-
published numbers are annotated with the placers that produced them – SimPL
[86] or RQL [141]. mPL6 and NTUPlace3 were included this comparison. We
regenerated placements of SimPL without a cell-orientation optimization.

timization during PC is required. While surprising, this is consistent with the discussion

in Section 6.3 and can be explained by the known convergence properties of Primal-dual

Lagrange optimization [6, 15]. This decreases the risk of incorrect implementation.

Scalability. Figure 6.3 plots the final values of λ (solid red line) and the number of global

placement iterations of ComPLx (dotted blue line with a greater range) on ISPD 2005 and

2006 benchmarks. The number of iterations correlates with the final λ value because each

iteration increases λ by a limited amount until the final value is reached. All final values

in our experiments are well below 1.0, and the iteration counts do not grow systematically

with the size of the input. This phenomenon is consistent with the rapid convergence for

which primal-dual Lagrange optimization is known. Given that ComPLx spends near-

linear time O(n(log n)p) per iteration [86], the overall runtime is near-linear as well. In

comparison, the runtime of FastPlace is estimated as Θ(n1.38) [107].

119

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

0.0e0 5.0e5 1.0e6 1.5e6 2.0e6 2.5e6 3.0e6
 40

 42

 44

 46

 48

 50

F
in

al
 λ

of

 C
om

P
Lx

 it
er

at
io

ns

of nets

Figure 6.3: The final λ and total number of ComPLx iterations performed, against the
number of nets.

6.6.2 Direct comparisons to prior art

On ISPD 2005 benchmarks, ComPLx outperforms SimPL, sometimes by a small amount,

sometimes significantly. The similarities are not surprising because ComPLx generalizes

SimPL. The improvements are due to the refined convergence criterion (Section 6.3) and

improved scheduling of λ (λ corresponds to the pseudonet weight in [86]). ComPLx out-

performs SimPL and RQL (the best-published placers excluding MAPLE [87]) by 1%.

ComPLx produces best results on more benchmarks than any prior placer, while running

10% faster than FastPlace (including FastPlace-DP runtime in both cases).

Table 6.2 covers ISPD 2006 benchmarks, which include density constraints and mov-

able macros, not handled by SimPL. ComPLx outperforms best-published placer RQL

[141] (excluding MAPLE) by 3% in terms of scaled HPWL (the official contest met-

ric). ComPLx is about 12% faster than FastPlace (including FastPlace-DP runtime in both

120

Benchmarks NTUPL3 MPL6 RQL COMPLX

(Υtarget) [36] [26] [141]
ADAPTEC5 451.22 431.27 443.28 415.13

(0.5) (21.0) (1.09) (9.25) (1.92)
NEWBLUE1 62.65 68.08 64.43 64.75

(0.8) (1.09) (0.14) (0.34) (1.02)
NEWBLUE2 205.45 201.85 199.60 194.39

(0.9) (2.53) (1.52) (1.45) (1.03)
NEWBLUE3 277.87 284.11 269.33 273.42

(0.8) (0.00) (0.59) (0.07) (0.93)
NEWBLUE4 306.56 300.58 308.75 292.82

(0.5) (13.1) (1.63) (15.2) (1.44)
NEWBLUE5 509.71 537.14 537.49 507.85

(0.5) (9.56) (1.42) (13.6) (1.78)
NEWBLUE6 520.31 522.54 515.69 501.97

(0.8) (8.40) (1.40) (4.33) (1.15)
NEWBLUE7 1109.6 1084.4 1057.8 1041.4

(0.8) (5.32) (1.14) (2.57) (1.42)
Geomean 1.03× 1.04× 1.03× 1.00×

(2.40) (1.22) (2.30) (1.29)

Table 6.2: Comparison of scaled HPWL (×10e6) on ISPD 2006 benchmarks. Overflow
penalties are reported in parentheses. RQL results are from [141].

cases), as well as 6.88× and 8.47× faster than NTUPlace3 and mPL6, respectively. RQL

is 3.1× faster than mPL6 [141], hence > 2.5× as slow as ComPLx (including detailed

placement by FastPlace-DP).

6.6.3 Extensibility of the core placer

Practical use of standard-cell placers requires multiobjective optimization and support

for design constraints.

Region constraints. Chip designers often impose a region constraint on a subset of cells

to express logic hierarchy and clock domains, to keep clock sinks close to clock drivers, or

to assist the placer in dealing with challenging critical paths. Traditional placers convert

the hard region constraints to soft constraints, which can be addressed by heavily-weighted

fake nets [4, Figure 5] or modification of the objective function [40]. While ComPLx sup-

121

Figure 6.4: A hard region constraint imposed on 50 cells that were initially placed un-
constrained (left). The resulting ComPLx placement (right) satisfies the con-
straint. HPWL drops from 145.39 to 144.57.

ports such techniques, it also allows for a more straightforward and robust implementation

of region constraints by enforcing them as part of the feasibility projection at every global

placement iteration – each cell is snapped to the constraining region after feasibility pro-

jection for density constraints. Figure 6.4 illustrates the enforcement of region constraints

by “before” and “after” pictures. The locations from the modified feasibility projection

are then used as anchors to influence the subsequent iteration of analytic global place-

ment. Rather than degrade, HPWL actually improves — a surprising phenomenon often

observed with industry placers.

Handling timing-critical nets. To demonstrate effective timing optimization, we show

that timing-critical paths can be shortened and straightened by manipulating net weights

without adverse effects on total HPWL. Working with the standard benchmark BIGBLUE1,

we performed 30 global iterations to obtain an unbiased, stable intermediate placement

that allowed us to estimate net lengths. We then selected several critical paths, increased

the weights of nets comprising these paths, and ran our placer to completion in three

122

configurations with different net weights. Figure 6.5 shows that the desired outcome was

achieved. With sufficiently large net weights, selected paths notably shrunk. Given that

only a small fraction of net weights were modified, the overall placement and its wirelength

were largely unaffected. Essential for these results was our scheduling of λ in Formula

6.12. While not a full-fledged demonstration of timing-driven placement, this experiment

confirms that our proposed core placement algorithm is capable of controlling critical paths

without tangible overhead in HPWL. Specific formulas for provably-good timing-driven

net weighting can be found in [24]. Our experiment also demonstrates the stability of

ComPLx to small netlist changes, which is important in the context of physical design [4].

6.7 Summary and Conclusions

We developed a global placement algorithm ComPLx based on subgradient projected

primal-dual Lagrange optimization. In its basic form, it consists of (i) interconnect op-

timization, (ii) a feasibility projection PC that represents placement constraints, (iii) a

penalty term that includes the Lagrange multiplier λ. Our extensions for mixed-size place-

ment handle macros through the feasibility projection PC and establish a separate, larger

λ parameter for each macro. Timing-driven extensions track separate λ for timing-critical

cells and increase λ based on criticality (slack). Our baseline algorithm generalizes recent

SimPL [86], SimPLR [85] and Ripple [57] algorithms and inherits their empirical success.

Vice versa, ComPLx provides mathematical substantiation and convergence analysis for

SimPL, SimPL and Ripple, suggesting improvements and algorithmic extensions.

A key difference from most prior analytical frameworks is in the spreading mechanism

— rather than estimate density gradients based on local information, we use a global

123

Unbiased (HPWL=94.25e6) Net weights = 10 (HPWL=94.24e6)

Net weights = 20 (HPWL=94.15e6) Net weights = 40 (HPWL=94.13e6)

Figure 6.5: In a ComPLx placement of BIGBLUE1 (upper left), three critical signal paths
between registers are chosen. Subsequent ComPLx runs are performed with
progressively larger net weights on those paths, which straightens the paths
and reduces their lengths. Legal HPWL values are reported in parentheses.

feasibility projection PC . Consequently, the handling of region, alignment and other types

of constraints requires only the modification of the feasibility projection. Avoiding local

gradients also improves runtime (compared to APlace and NTUPlace3), and so does our

avoidance of optimization by local search (compared to FastPlace and RQL). The tradeoff

between spreading and interconnect optimization is controlled by Lagrange multipliers λ.

124

A key difference from placers based on nonconvex optimization [26,36,79] is the emphasis

on decomposing the original problem into convex optimizations, which enables duality

and accelerates convergence. Unlike prior works limited to a single interconnect model,

our technique can be used with quadratic, log-sum-exp and other models.

125

CHAPTER VII

SAPT: Structure-Aware Placement Techniques1

This chapter demonstrates that conventional Half-Perimeter Wirelength (HPWL)-driven

placers underperform in terms of Steiner Wirelength (StWL) for hybrid designs, wherein

designs contain a mixture of random logic and datapath standard cell components. The

quality gap between manual placement and automatic placers is more pronounced in the

presence of datapaths. To effectively handle hybrid designs, we develop a new unified

placement flow that simultaneously places random-logic and datapath standard cells. This

flow was developed during an internship at IBM Research and relies on the SimPL placer

introduced in Chapter III. It significantly improved datapath layouts and placement quality

of mixed netlists designed at IBM while leveraging the speed and flexibility of the existing

random-logic placement algorithm. It consists of a set of novel global placement tech-

niques, collectively called Structure-Aware Placement Techniques (SAPT). These tech-

niques effectively integrate alignment constraints into placement, thereby overcoming the

deficiencies of existing random-logic placers when handling designs with embedded data-

paths. Experimental results comparing our placement flow with six state-of-the-art placers

1This work is an extension of [151] and was developed jointly with Samuel I. Ward, who made an equal
contribution to it.

126

on the ISPD 2011 Datapath Benchmark Suite released by IBM Research show at least a

28% improvement in total StWL with over a 6 times improvement in total routing over-

flow. On industrical hybrid designs that integrate datapath into larger netlists, we report a

5.8% improvement in total StWL

7.1 Introduction

As SoC frequencies exceed 1 GHz and shrinking schedules drive increased automation

for microprocessor designs, the boundary between manually designed datapath logic and

random-logic macros is blurring. A new hybrid design style is emerging, wherein designs

contain both random logic and datapath. The datapath logic generally refers to circuit

structures containing highly parallel bit operations [109] (often called the bit-stack), and

careful design is important for high frequency designs. Prior work [68] has shown that

handling the datapath logic placement independent of the random logic, overly constrains

the random-logic placement, degrading overall congestion and wirelength. A single place-

ment flow handling both structures is extremely valuable, improving design time, solution

quality, and saving development and maintenance costs. However, [113,149] demonstrate

that most state-of-the-art placers are incapable of handling designs with regular structure.

This chapter shows that with a small amount of design guidance, existing HPWL-

driven placers can be guided to better handle designs with embedded datapath logic. The

clue is disregarding placement of high fanout nets that can disrupt the structure of the data-

path. Most placers will create a clique with a low weight to model these nets, or treat them

just like other low fanout nets. To minimize HPWL of a high fanout net, a placer would

naturally compact the placement of them in all directions – which is the exact opposite of

127

what is required by placement of regular datapath logic structures, as shown in [91]. To

this end, we propose a novel structure-aware placement flow for hybrid designs via a set of

effective placement techniques that can be incorporated within existing random-logic plac-

ers. The proposed flow leverages the speed and flexibility of state-of-the-art HPWL-driven

placers, while imposing alignment constraints to achieve better regularity and StWL.

The key contributions of this chapter are as follows:

1. A study of the issues with current academic placers: the inadequacies and specifi-

cally the lack of fidelity of the HPWL model versus the StWL model when evaluat-

ing and placing datapath logic.

2. A key insight to bit-stack alignment: alignment of the bit-stack guides indirect StWL

optimization, and significantly improves total StWL and routing congestion.

3. A novel placement flow: Structure-Aware Placement Techniques (SAPT) that can

be incorporated within existing HPWL-driven placers to enable better alignment of

the embedded datapaths during both global and detailed placement.

Section 7.2 outlines the problem faced by current random-logic placers when plac-

ing datapath logic. Section 7.3 provides an overview of the proposed flow with general

descriptions of each technique. Our structure-aware global placement techniques are de-

scribed in Section 7.4 and structure-aware detailed placement techniques are described in

Section 7.5. Experimental results are presented in Section 7.6. A summary and conclu-

sions are given in Section 7.7.

128

7.2 Motivation and Background

A common assumption among IC designers is that circuits with high regularity such as

datapath logic require manual placement. Perpetuating this assumption are two key factors

that limited adoption of past automation attempts. First, prior approaches separate control

logic placement from datapath logic placement. Second, a prevailing evaluation metric for

random-logic placement, HPWL is inadequate for structured circuit styles. This section

addresses each of these factors by first demonstrating the need for a unified placement

framework and then by diagnosing the inadequacy of the HPWL metric for regular struc-

tures. Then, it validates that cell alignment during placement implicitly optimizes StWL

producing significant wirelength improvements for datapath style circuits.

7.2.1 The need for a unified placement framework

Automatic placement of structured circuits has been performed by dedicated datapath

placers such as [109, 131, 164], which generate highly compact, area efficient placements.

Once the datapath layout is generated, these methods construct a larger macro block or

small individual bit-slice macro blocks. These macro blocks are then placed by the main

random-logic mixed-size placer. The primary drawback of these approaches is that even

though a datapath placer may minimize the local wirelength through cell ordering [54] or

optimizing specific bit-stacks [161], global interconnect optimization with the embedded

datapath is not taken into account during placement. As shown by [68, 113, 149], the

constraints added in this process produce suboptimal results in practice.

129

ISPD Datapath Benchmark A ISPD Datapath Benchmark B
Total HPWL Total StWL Total HPWL Total StWL

Manual 11000365 1.00 11066683 1.00 Manual 8642097 1.00 9823680 1.00
Capo 11535525 1.05 21516128 1.94 Capo 10338805 1.20 23881606 2.43
SimPL 11837307 1.08 20180311 1.82 NTUPl3 10433894 1.21 26110039 2.66
mPL6 12919955 1.17 23950663 2.16 SimPL 10631304 1.23 22319594 2.27
NTUPl3 13447753 1.22 24673151 2.23 Dragon 12229019 1.42 28577316 2.91
FastPl3 15672727 1.42 27115750 2.45 FastPl3 14537026 1.68 36642434 3.73
Dragon 16424739 1.49 26182449 2.37 mPL6 16263018 1.88 28846387 2.94

Table 7.1: Legalized HPWL and StWL comparison on the ISPD 2011 Datapath Bench-
mark Suite [150] between manually placed and automated placement solutions.
Placement results are sorted by increasing HPWL value. The best HPWL solu-
tion does not indicate the best StWL solution. NTUPl3 stands for NTUPlace3
and FastPl3 stands for FastPlace3.

7.2.2 StWL and HPWL comparisons for datapath circuits

The second key factor limiting datapath placement automation is that traditional HPWL-

driven placers naturally compact the placement of high-fanout nets to reduce total HPWL

of circuits. However, known optimal layouts for many regular datapath structures are dras-

tically different [91]. This implies that the mere HPWL objective for placement on highly

regular circuits is inadequate because the HPWL metric can significantly underestimate

routed wirelength. To illustrate this point, Table 7.1 compares the placers mPL6 [26],

Capo v10.2 [121], FastPlace v3.0 [140], NTUPlace3 v7.10.19 [36], Dragon v3.01 [137]

and SimPL [86] using both, total Half-Perimeter Wirelength (HPWL) and total Steiner

Wirelength (StWL) on the modified ISPD 2011 Datapath Benchmark Suite [149, 150].2

For improved experimental control, all StWL measurements were performed using coa-

lesCgrip [41], and all reported numbers are total wirelength results for each design. The

HPWL column in Table 7.1 is sorted from smallest to largest for each benchmark. The

2The MISPD 2011 Datapath Benchmark Suite was modified to contain unfixed latch rows com-
pared to the original fixed latch placement reported in ISPD 2011. Benchmarks can be downloaded at:
http://www.cerc.utexas.edu/utda/download/DP/

130

table reports the measured HPWL and StWL values for the benchmark circuits as well as

the wirelength ratio normalized to the manually placed solution. Careful examination of

this table yields the following surprising results:

1. While HPWL from the automated placement solutions for both benchmarks is very

close to the manually placed solution, the StWL results degrade significantly, with

the best automated solution at 1.82 times in StWL for benchmark A and 2.27 times

for benchmark B compared to the manual solution.

2. Fidelity of the HPWL metric appears low for datapath logic. As shown in Table 7.1,

the HPWL column is sorted by increasing value and it is generally expected that

StWL would maintain the same order. But in fact that does not happen. However,

in both cases, the placer with the best HPWL does not generate the best StWL. For

benchmark A, though Capo generates the best HPWL (5% larger than the manually

placed solution), SimPL generates the best StWL (1.82 times higher than the manual

solution). The same holds true for benchmark B. Again, Capo generates the best

HPWL, but SimPL generates the best StWL (2.27 times higher than the manual

solution).

As shown in Section 7.6.4, the significant improvement in StWL also corresponds to

vastly improved congestion metrics. There has been prior work in directly optimizing

StWL [123]. As reported in [123], StWL has much better correlation to the routed wire-

length (rWL) as compared to HPWL. However, the wide-spread adoption of the HPWL

metric empirically shows the effectiveness of the model due to its easy modeling and good

first-order approximation to timing and power on vast number of random-logic designs.

131

(b) (c)Manual Placement:
Total HPWL: 1442
Total StWL: 1443

Automated Placement:
Total HPWL: 1415
Total StWL: 1582

net1

(a)

Fixed
pins

 net1

 out<0>
 out<1>

 out<8>
 out<9>

net1

Figure 7.1: An example circuit where StWL of the manually placed design is better than
that of the automated placement, but HPWL of the automated placement solu-
tion is better than that of the manual placement. Net1 has fanout of 10.

Therefore, instead of completely changing the placement objectives, we seek methodolo-

gies to improve placement quality of datapath logic under the hood of existing HPWL-

driven placement frameworks.

7.2.3 Implicit StWL optimization through bit-stack alignment

Figure 7.1 provides an implication on how to accomplish this. In Figure 7.1a, a partial

logic netlist with one NAND gate, shown as hashed, drives net net1 with a fanout of 10.

All the input and output pins are fixed objects placed on top of the gate. Figure 7.1b shows

a manually placed solution for this partial circuit and Figure 7.1c shows a solution from

an existing placer. The dark-shaded cells match the same dark-shaded NAND gates in

Figure 7.1a. The light-shaded gray cells represent other logic placed within the design.

132

For both solutions, we measure the total HPWL and StWL, and the numbers are shown

in Figure 7.1. As pointed out in Section 7.2.2, even though HPWL of the manual solution

(1442) is greater than HPWL of the automated placement (1415), StWL shows the reverse

trend. While it is impractical to list HPWL and StWL of every single net, clearly for net

net1, the StWL number in Figure 7.1b is better than the StWL number in Figure 7.1c. This

is due to the better alignment of the structured cells in one horizontal row, which produces

much better StWL. Also the solution of Figure 7.1c shows the existing placer compact the

placement of the net in both x- and y-directions to lower HPWL, but degrading StWL.

As this example shows, if a HPWL-driven placer can obtain better alignment for regular

structures, it will have better StWL implicitly without having to directly optimize StWL.

Motivated by the above examples, we develop new techniques to guide an existing

random-logic placer to generate a placement solution similar to Figure 7.1b, with better

StWL than the one in Figure 7.1c. Additionally, by providing alignment constraints to

small portions of the datapath, we observe that during the iterative placement process,

other surrounding cells become aligned as well. This can be observed visually in the

placement results in Figure 7.8 where only some of the cells have been manually defined.

Previously explored approaches, like post ECO datapath placement, or placing the datap-

ath as a macro block, tend to ignore the connections between random logic and datapath

cells since they place every datapath cell a priori. The alignment constraints presented in

this chapter however are providing hints to placers, directing them toward more globally-

optimized solutions. As results will show, with relatively few manually defined bit-stacks,

our framework significantly reduces overall wirelength and congestion.

133

7.2.4 Alignment groups

We first define alignment group gk, as follows.

Definition An alignment group gk ∈ G where 0 ≤ k < |G|, is an unordered subset of

cells from V . An alignment direction ~dk is a preferred placement direction of gk where

0 ≤ ~dk ≤ 90. The collection of gk with the same dk value is pairwise disjoint.

Generally, gk may correspond to bit-stacks in the datapath, but can be other elements

such as cells connected to a single high fanout net that improves through alignment, buffers

that need careful placement to facilitate routing of large buses, or pipelining latches. For

alignment directions, we only horizontal and vertical directions, i.e., ~dk ∈ (0, 90). In the

example shown in Figure 7.1, ~dk = 0 for NET1. In this work, we assume that a set of

alignment groups G and their alignment directions are given. This assumption is valid and

practical; One may use datapath extractors such as [38,118] to extract the alignment groups

based on circuit properties. Alternatively, this information may come directly from logical

descriptions of netlist, or could be provided by designers. As an example, if designers are

trying to structure the latch placement to be aligned, it is trivial for them to provide sets of

latch names and their preferred placement directions (horizontal or vertical).

7.2.5 Alignment net insertion

To generate better datapath alignment, one approach is direct manipulation of exist-

ing nets between the datapath cells. However, this approach interferes with other prior

placement enhancements. Specifically, direct weighting manipulation of current nets dis-

rupts timing- or power-driven placement and net weighting for those cells. Due to the

134

above problem, a new method is instead proposed, and a new category of nets, referred as

alignment nets is defined.

Definition An alignment net sk where 0 ≤ k < |G|, is a weighted multi-pin connec-

tion between all cells in an alignment group gk. For placement, the net weight for this

alignment net is modeled by the Bound2Bound net model [134].

Alignment nets are created at the beginning of global placement and remain persistent

during the entire global and detailed placement stages. A skewed net weight scheduling

(Section 7.4.1) helps these nets align the cells within the corresponding alignment group

gk inside the layout region. By applying alignment constraints to new nets sk, prior tech-

niques relying on net weighting continue to function as before.

7.3 Unified Placement Flow with Alignment Constraints

We employed the SimPL framework (Chapter III) as a baseline. The proposed place-

ment flow is presented in Figure 7.2, where the white boxes highlight the enhancements

applied to each gk and the shaded boxes are the original flow. Though we used the SimPL

framework, the techniques can be adapted to other force-directed placement frameworks

as well. We refer to these structure-aware placement techniques as SAPT. The key algo-

rithmic components of SAPT from the flow diagram are:

1. Alignment Net Insertion: We insert alignment nets to manipulate the placement so-

lution of specific cells during global placement. (Section 7.2.5)

2. Alignment Net Order Extraction: On highly structured circuits, it is possible to ex-

tract specific optimal order between alignment groups. We present a process to

135

G
lo

ba
l P

la
ce

m
en

tInitial HPWL Optimization and Fixed Point Generation

Linear System Solver and Fixed Point Generation

5. Fixed Point and Pseudo Net Alignment Constraint

Convergence

D
et

ai
le

d
P

la
ce

m
en

t
an

d
Le

ga
liz

at
io

n

Start

Pseudo Net Insertion

4. Skewed Weighting with Step Size Scheduling

Datapath Aware Detailed Placement

Legalization

Done

8. Datapath Group Repartitioning

7. Bit-Stack Aligned Cell Swapping

3. Target Skew Ratio Generation

6. Impose Order Constraints among Alignment Groups

2. Alignment Net Order Extraction

1. Alignment Net Insertion

Figure 7.2: Proposed datapath-aware placement flow. The baseline components are shown
in transparent boxes and the added datapath-aware components are shaded.

automatically extract the relative order between alignment groups if they exist prior

to placement. (Section 7.4.5)

3. Target Skew-Ratio Generation: This section describes the process for generating

the specific ratio for the skewed weighting process as described in Section 7.4.1. It

describes two key insights to effectively select the skew ratio and proposes a model

for automatic generation. (Section 7.4.3)

136

4. Skewed Weighting with Step Size Scheduling: This describes the skewed weighting

process applied to each alignment net sk to gradually improve alignment along the

datapath. The weight in a particular direction gradually increases during each place-

ment iteration until it reaches the target skew (described in Section 7.4.3) for that

alignment net (Section 7.4.1).

5. Fixed-Point and Pseudo Net Alignment Constraint: Modern force-directed global

placement frameworks reduce overlap between cells by using fixed-points and pseudo

nets. For datapath logic, this process leads to misalignment. This section describes

a process to modify the fixed-point location minimizing wrong-way perturbations

(Section 7.4.4).

6. Impose Order Constraints between Alignment Groups: Fixed-point alignment con-

straints generate a relative order between alignment groups that is not always op-

timal. Therefore, this section proposes a method for improving the order between

alignment groups during global placement and show how to improve their global

position. (Section 7.4.5)

7. Detailed-Placement Techniques: We employ (i) Bit-Stack Aligned Cell Swapping

and Alignment-Group Repartitioning from [151] for the structure-aware detailed

placement (Section 7.5).

At each step, the modifications apply only to the defined alignment groups gk leav-

ing all other random-logic cells to be placed as they would before. We provide detailed

descriptions of the global and detailed placement techniques in Sections 7.4 and 7.5.

137

7.4 Structure-Aware Global Placement

This section presents our global placement techniques for providing alignment and

ordering constraints to cells. We first present skewed weighting with step size scheduling

and then we propose a method for generating the target skew automatically. Then we

outline methods to force alignment by modifying fixed-point locations and complete this

section by showing how to extract the order for those fixed-point locations.

7.4.1 Skewed weighting with step size scheduling

In this section, we introduce a skewed weighting technique that encourages alignment

of sk in preferred placement directions ~dk. The high level idea is to apply gradually in-

creasing net weights for sk only in orthogonal directions to ~dk. This application of higher

net weights in one particular direction (i.e., skewed weighting) increases corresponding

costs (HPWL(~x) or HPWL (~y)) of a quadratic objective. Consequently, the linear system

solver generates compact placement in unpreferred directions to reduce the overall cost.

The rate of change of the weighting value increases slowly during the initial stages of

global placement, increases rapidly during the middle stages, and slows again near the end

of global placement. This is preferable to applying hard constraints (forced alignment) in

the early stage of wirelength optimization, as it can disrupt the original optimization and

often lead to a solution that suffers from sub-optimality in terms of overall wirelength.

7.4.2 Step size scheduling

Let n be the current global placement iteration and M be its upper bound,3 and we

define p(n) as the alignment weight schedule function for each iteration n. The following

3M is typically set to 50 [86]

138

p(n)

M0 M/4 3M/4M/2

1

0.5

0

Figure 7.3: Bell-shaped step size scheduling function.

equation for p(n) is proposed:

p(n) =

8n2

M2 0 ≤ n < M
4

1− 8(n−M
2

)2

M2
M
4
≤ n ≤ 3M

4
8(n−M)2

M2
3M
4
< n ≤M

(7.1)

To avoid imposing hard constraints during the early iterations of global placement, p(n)

gradually increases during the initial iterations and to minimize large constraint changes

during the final stages, the function decreases towards zero at the last iteration. This

function is also used in [79] to model cell density, but it serves a completely different

purpose here as a scheduling function. Using p(n), Equation 7.2 displays the skewed

monotonically increasing weighting parameters γn and δn for alignment net sk. Using

p(n) directly generates very large weighting steps therefore a constant scaling factor β

is added. This parameter is left default throughout all placement runs. Let x̂, ŷ be the

directional unit vectors and σ2
x,y the nth iteration’s variance in either the x or y direction.

Finally, the modified placement equation is shown in Equation (7.3). For non-alignment

nets, δi,j = 0 and γi,j = 0.

γn = γn−1 + ŷ ·
−→
dk ∗ β ∗ p(n) ∗ σ2

x(n) where γ0 = 1

δn = δn−1 + x̂ ·
−→
dk ∗ β ∗ p(n) ∗ σ2

y(n) where δ0 = 1

(7.2)

139

Step-Size vs Fixed Scheduling on the
Modified ISPD2011 Datapath Benchmarks

0.98

1.00

1.02

1.04

1.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 W
ire

le
ng

th
 (

S
te

p
/ F

ix
ed

)

HPWL StWL

Region Showing WL Improvement
with Step-Size compared to

Fixed Scheduling

β

Figure 7.4: Average wirelength improvement using the proposed bell-shaped step-size
scheduling function on the ISPD2011 Datapath Benchmark Suite at different
values of β.

ΦG(~x, ~y)n =
∑
i,j

[(γni,j + wi,j)(xi − xj)2 + (δni,j + wi,j)(yi − yj)2] (7.3)

Figure 7.4 displays the average change in wirelength between fixed scheduling and the

bell-shaped step-size scheduling using different values of β. It shows that for 0.2 < β <

0.9, the bell-shaped step-size scheduling yields on average, better HPWL as well as StWL.

In our implementation we used β = 0.5 based on empirical data.

7.4.3 Target skew-ratio generation

In section 7.4.1, a method is proposed to systematically increase the skewed weight

for an alignment net by either increasing γi,j or δi,j as placement evolves. However, in our

prior work [149], the final values for γn or δn were provided as inputs, primarily based on

the designers‘ discretion. This section extends this shortcoming by presenting key insights

for automatic selection of target skew ratios and proposes a method for automatically

140

generating the target skew. We first define target skew ratio and target skew multiplier.

Definition Target skew ratio is the final ratio γn/δn of the net weighting in the x-direction

and y-direction for an alignment net at the completion of all global placement iterations.

Definition Target skew multiplier ski is the amount the original γ0 or δ0 alignment net

i will have increased to at the completion of global placement to equal γn or δn. Thus,

γn = γ0 ∗ ski and δn = δ0 ∗ ski.

As an example, given a vertically aligned alignment net, during the initial global place-

ment iteration γ0 = 1 and δ0 = 1. However, by the end of global placement iteration n,

the X-direction weight would have increased to δn = δ0 ∗ ski causing the cells within the

datapath group to become aligned vertically. We now outline key insights for effective

target skew multiplier selection and illustrate them using Figure 7.5. In this figure, the red

alignment net is shown connecting each of the datapath cells within a datapath group and

the dashed lines indicate net connections between each cell within the datapath group and

other cells outside the datapath group.

The first key insight is that the alignment net weight must overcome the interconnect

forces imposed by the nets connected between cells within the alignment group. In other

words, the force pulling the alignment group into alignment must be greater than the force

pulling the cells out of alignment.

To model this force, we propose a modification to rentś rule that relates the internal pin

connections on the alignment net versus the external pin connections on the datapath cells.

In the past, Rentś rule 7.4 was used to predict interconnect where g is the total number

141

Datapath Cell

Alignment Net

Figure 7.5: Skewed weight force example.

of cells, T is the total number of external connections, t is a design constant and p is the

exponent where p is generally .5 < p < 1.

T = t ∗ gp (7.4)

This chapter proposes the following modifications to the variable definitions and then

solve for the pi value for a particular alignment net i. The variable T equals the total

external pins for an alignment group which is the sum of all pins for each cell. This in-

cludes pins with a net connecting cells within an alignment group and pins connecting to

cells outside of the alignment group. The variable g equals the total number of internal

connections which are pins connected to the alignment net. As before, the variable t is a

placer specific constant. The resulting p value relates the internal connections on the align-

ment net to the external connections among the cells. As with the traditional interpretation

of p, a larger p value implies more external connections necessitating a higher skewed

weight multiplier. Conversely, a smaller p value indicates fewer external connections thus

requiring a smaller multiplier.

The second key insight for automatic target skewed ratio selection is consideration

of additional interconnect forces from alignment nets themselves, The alignment nets are

142

employed to encourage very compact placement in unpreferred directions, however, they

pull the connected cells together even in ~dk. The HPWL model naturally clumps the cells

in alignment nets together, and therefore the target skew ratio must be properly adjusted to

offset this side effect. Our key observation is that the required skew ratio should be linearly

increased as the cardinality of an alignment group gi increases. Thus, we define the second

component of the target skew multiplier as follows: α ∗ |gi|, α > 1 where α is a placer

specific constant that insures for a two-pin net, the two cells are always correctly aligned.

For example, if aligning two cells horizontally, the Y-weight must be at least α times larger

than the X-weight to guarantee the cells align horizontally.4. We set α to a value of 1.25.

This constant is then multiplied by the total number of cells in the datapath group. Finally,

taking both components into account, the skewed weight multiplier is calculated as shown

in Equation 7.5.

ξi = (1 + logg(T/t)) ∗ α ∗ |gi| (7.5)

7.4.4 Fixed-point alignment constraint

Modern force-directed global placement frameworks use fixed-points and pseudo nets

to discourage cell overlap. By gradually perturbing the unconstrained linear system solver,

global placement iterations progressively generate placements with less overlap. In SimPL

(Chapter III), at each global placement iteration, lookahead legalization (LAL) generates

fixed points that are connected to their corresponding movable cells with two-pin pseudo

nets. In the subsequent global placement iteration, these pseudo nets exert pulling forces

4This parameter is set when placing only two cells.

143

cell gk(0)

cell gk(1)

cell gk(2)

η
k

Aligned Pseudonet
(weight=α/Length)

dk = 0

Fixed Point

Figure 7.6: Example of a fixed-point alignment constraint for a horizontal bit-stack.
Lookahead legalization generates new zero-area fixed-points and the locations
of these points are modified to be in alignment with ηnk .

and reduce the amount of cell overlap. For datapath logic, LAL and subsequent pseudo

net insertion step cause misalignment within the bit-stack requiring a constraint forcing

alignment which minimizes wrong-way perturbations in the bit-stack.

The proposed fixed-point alignment constraint is applied in two steps. First, LAL

generates fixed-point locations for all cells Second, for all cells in datapath group gk,

modified fixed-points are added. We denote a location of this modified fixed-point for cell

i as ηnk,i for the nth iteration. We compute ηnk,i as follows:

ηnk,i = (xi, |gk|

√ ∏
j=1,...,|gk|

yj), if dk = 0

ηnk,i = (|gk|

√ ∏
j=1,...,|gk|

xj, yi), if dk = 90

(7.6)

An example of the modified fixed-point locations and corresponding pseudo nets for a

horizontal datapath is shown in Figure 7.6. In this example, there are three gray cells,

gk(0 : 2) are in one datapath group gk. The other cell connections are shown with the

dashed line connected to the hollow cells. For random logic cells, the fixed-points will

be determined by the LAL step alone. For the datapath cells shown, after LAL generates

144

a new fixed-point locations, those locations are modified based on the geometric mean

parallel to the datapath direction ~dk.

Modifying the fixed-point locations enables the global placer to progressively reduce

cell overlap while maintaining bit-stack alignment. Two items should be noted about

this process. First, we only modifies the fixed-point location for datapath logic, not the

weighting of the pseudo net. The pseudo net weighting, in contrast to the alignment net

weighting proposed in Section 7.4.1, acts on datapath and random logic the same. Second,

though this technique violates the overlap constraint during global placement, the cell

overlap progressively reduces with global placement iterations [86, Figure 6] and small

remaining cell overlap can be easily removed during legalization without undermining the

overall solution quality.

7.4.5 Imposing order constraints between alignment groups

In this section, we propose a method for handling the order between alignment groups

during global placement and show how to improve their global positions. Even though

imposing alignment constraints can line up alignment groups, their relative and absolute

positions can be considerably different from custom solutions, which can contribute to

the suboptimality of automated placement. Therefore, we first extract the relative order

between alignment groups if it exists, and then place them while preserving this order.

Extraction of the order between alignment groups is performed in two stages: (i) ex-

traction of logical orderings between alignment groups based on Depth-First Search (DFS)

and (ii) extraction of physical order between logically-independent supergroups based on

primary input (PI) / primary output (PO) pin locations.

145

In the first stage of extraction, we identify sets of logically-related alignment groups

per ~dk and determine a unique order within the sets. The process begins with construct-

ing a directed graph based on the netlist and traversing through each defined alignment

group. Starting from a cell in an alignment group, DFS identifies a set of logically-related

alignment groups, which we denote by a supergroup. This way, we can extract multiple

logically-independent supergroups where a unique order within each supergroup is de-

fined. Since the resulting order in a supergroup is logical, alignment groups can be either

placed from left to right or from right to left. Without loss of generality, we place them

left to right.

Unlike other random logic-oriented designs, in datapath designs, there can exist mul-

tiple supergroups that are logically independent while having the symmetry in their struc-

ture. For example, as seen from SPBA in [149, Figure 4], first m bit MUX select signals

form a supergroup, and such supergroups are repeated many times at different pipeline

stages. Even though such supergroups are logically independent, and the relevant logic

cells around each subgroup drive different PO pins, one can find that they share the same

structure. In addition, as discussed in [149], having known that some fixed PI / PO pins can

be pre-placed on top of their respective connections to reduce PI / PO routing interconnect,

we can further determine the order of supergroups despite their logical independence.

In the second stage of extraction, therefore, we seek the closest PI / PO pins that are

connected to each supergroup. Given that such PI / PO locations are ideal to interface

with other external logic, their physical locations provide clues for relative positioning of

supergroups. By taking advantage of the symmetry of logically independent supergroups,

146

we find fixed pins that are connected to each supergroup with the same smallest logical

distance and determine a unique order of supergroups by referring to these locations.

 5760 5780 5800 5820 5840 5860 5880 5900

mux[0] mux[1] mux[2] mux[3] mux[4] mux[5] mux[6] mux[7]

 0 2000 4000 6000 8000 10000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

Figure 7.7: Placement of MUX select signals within a supergroup (left) and MUX[0] sig-
nals across supergroups (right) on SPBA. Red lines indicate alignment nets
with ~dk = 0 while blue dotted lines indicate alignment nets with ~dk = 90.
Blue boxes are MUX cells. For both cases, one quarter of the horizontal nets
(i.e., alignment nets with ~dk = 0) are shown.

Imposing ordering constraints across alignment groups is achieved by post-processing

the fixed-pin locations given by pseudo net alignment constraints (Section 7.4.4). Instead

of directly using geometric means to align fixed-point locations, we (i) collect and sort

geometric means of all alignment nets by their values and (ii) assign the sorted geometric

mean values to alignment nets in order of the extracted ordering of alignment nets. Then,

we use the assigned geometric means to align fixed-point locations per alignment net. Dur-

ing early iterations of global placement, this approach may corrupt the spacing between

alignment nets if they are not initially uniform. However, once the placement and order

begin to stabilize, placement evolves locally and recovers good spaces between alignment

groups, as can be seen from Figure 7.7.

Table 7.3 summarizes supergroups and their cardinalities that are extracted via the pro-

147

posed techniques on the ISPD 2011 datapath placement benchmarks. Alignment groups

are defined based on net degrees, which represent select / data input signals. Table 7.2

empirically demonstrates the impact of the proposed techniques on solution quality. The

second column only considers the logical order within supergroups and the third column

additionally considers the physical order between supergroups. As can be seen from Fig-

ure 7.7, the order of alignment groups is preserved during placement.

CKT. ~dk = 0 ~dk = 90
Deg. # SGs ‖SG‖ Deg. # SGs ‖SG‖

SPBA 68 128 1 257 64 8
SPBB 256 257 1 261 512 1

Table 7.2: The net degrees (Deg.) used to define alignment groups, the number of su-
pergroups (#SGs) and their cardinalities (‖SG‖) on the ISPD 2011 datapath
placement benchmarks. On SPBB, ‖SG‖ were 1 for both ~dk = 0 and ~dk = 90,
which indicates no logical ordering were found between any alignment groups.

No ordering Intra-SG +Inter-SG
CKT. constraints ordering ordering

HPWL StWL HPWL StWL HPWL StWL
SPBA 12.05 15.79 11.74 15.22 11.46 15.06
SPBB 10.58 15.78 10.58 15.78 10.47 15.71
Avg. 1.03× 1.03× 1.02× 1.01× 1.00× 1.00×

Table 7.3: Legal HPWL and StWL (×10e6) comparison varying the ordering constraints.
We employed the fixed weighting scheme for the experiments. On SPBB, results
in the first two columns are identical since no logical ordering were found.

7.5 Structure-Aware Detailed Placement

In the prior section, we presented techniques for aligning cells during global place-

ment. However, current detailed-placement techniques will disrupt the structure gener-

ated during global placement. To maintain aligned placement, we employ two detailed-

placement techniques originally proposed in our previous work [151]: (i) Bit-stack aligned

148

cell swapping and (ii) Alignment-group repartitioning.

Bit-Stack Aligned Cell Swapping looks for cells to swap between the current location

of cell j and all cells within the aligned swap region. If a swap produces improved HPWL,

the cell locations are updated. Doing this maintains the alignment generated during global

placement. Alignment-Group Repartitioning minimizes internal net cut values poten-

tially improving both HPWL and StWL metrics for all nodes in gk along sk. The impact

of these techniques is reported in Tables 7.5, 7.6, 7.8 and 7.9 in the last rows.

7.6 Experimental Results

This section empirically demonstrates the effectiveness of the proposed techniques by

presenting results on two design styles, industrial hybrid designs and the highly structured

Modified ISPD 2011 Datapath Benchmark Suite [150]. All experiments were run on a 3.2

GHZ Intel(R) Xeon(R), X5672 machine with 96 GB of memory.

The placer is built on the SimPL [86] global placement and FastPlace-DP [112] de-

tailed placement frameworks. It is compatible with the Bookshelf format and requires an

additional datapath definition file as input. This file, loaded prior to global placement, in-

cludes each cell of the alignment group and the group‘s direction. Since this work focuses

on the placement solution, each datapath was manually defined for improved experimental

control. To independently quantify the effectiveness of our global and detailed placement

techniques, we present results from two flows:

• SAPTgp + FP-DP: Our structure-aware global placement followed by the default

FastPlace-DP detailed placer.

149

• SAPTgp + SAPTdp: Our structure-aware global and detailed placement techniques.

We compare against the following state-of-the-art academic placers: Capo v10.2 [121],

mPL6 [26], NTUPlace3 v7.10.19 [36], Rooster [123], FastPlace v3.0 [140], Dragon v3.01

[137] and SimPL [86]. All placers were supplied a target density of 1.0 as defined in the

ISPD 2005 placement contest [107]. Finally, all HPWL and StWL results are reported on

legalized placements using the coalesCgrip [41] tool.

7.6.1 Benchmark circuits

Table 7.4 provides the benchmark circuit characteristics. Of note is the number of

alignment groups gk and the datapath ratio in each design, where the datapath ratio is

defined as the ratio of alignment group cells to random-logic cells. Though the hybrid

designs are on the smaller side, they are state-of-the-art industrial circuits, and pose chal-

lenges for designers as they contain regular structures intermixed with other random logic.

This makes it difficult to place the datapath logic separately from the random logic. The

ISPD 2011 Datapath Benchmark Suite contains two datapath circuits, each with eight

different utilizations to examine the ability of automatic placers to generate placement so-

lutions at different densities on highly regular structures. In this work, the benchmarks

were modified to make all the latches movable compared to the fixed latch placement in

the original work. All logical connections and I/O pin locations remain the same. We

compare against the modified datapath benchmarks as unfixed latch placement is more

challenging and often indicative of a hybrid industrial design.

150

ISPD 2011 Datapath Benchmarks Industrial Hybrid Designs
A B C D E F G H

of nodes 160416 152668 17922 55387 83802 263906 194271 62133
of pins 637984 653116 64078 94682 130000 397652 343727 21124
of nets 157849 148682 16874 14458 16422 53884 62145 101582
of gk 1425 1932 35 110 60 131 82 28
Datapath ratio 0.920 0.850 0.010 0.012 0.008 0.007 0.018 0.021

Table 7.4: Circuit statistics. Datapath ratio is calculated as the total number of datapath
cells divided by the total number of cells.

Design ISPD 2011 Datapath Benchmark A: Total HPWL ISPD 2011 Datapath Benchmark B: Total HPWL
Util. 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
Capo 1.05 1.04 1.04 1.04 1.03 1.02 1.06 1.03 1.20 1.18 1.17 1.12 1.13 1.13 1.14 1.12
mPL6 1.17 1.19 1.22 1.14 1.16 1.20 1.17 1.16 1.64 1.86 1.72 1.64 1.65 1.65 1.78 1.78
NTUPl3 1.22 1.19 1.16 1.19 1.15 1.19 1.23 1.26 1.25 1.19 1.17 1.15 1.16 1.15 1.12 1.15
Dragon 1.49 1.58 1.63 1.60 1.51 1.62 1.66 1.60 1.40 1.40 1.35 1.32 1.32 1.30 1.31 1.31
FastPl3 1.42 1.50 1.53 1.54 1.53 1.67 1.70 1.75 1.69 1.66 1.73 1.71 1.77 1.86 1.77 1.87
Rooster 1.05 1.04 1.04 1.04 1.03 1.02 1.06 1.03 1.15 1.15 1.13 1.12 1.15 1.13 1.13 1.13
SimPL 1.08 1.07 1.06 1.07 1.05 1.06 1.05 1.04 1.23 1.22 1.21 1.20 1.17 1.16 1.16 1.15
SAPTgp 1.07 1.04 1.05 1.03 1.03 1.02 1.02 1.01 1.21 1.20 1.17 1.16 1.16 1.16 1.16 1.15
SAPTdp 1.06 0.99 1.03 1.02 1.02 1.01 1.01 0.98 1.21 1.19 1.17 1.16 1.15 1.15 1.14 1.15

Table 7.5: Total HPWL ratio comparison on the modified ISPD 2011 Datapath Bench-
mark A and B variants with legalized placement. The ratios are computed with
respect to the manually placed solution.

7.6.2 Wirelength results on ISPD2011 datapath benchmarks

Tables 7.5 and 7.6 compare the total HPWL and total StWL on the ISPD2011 Datapath

Benchmark Suite. To clarify, the total wirelength calculation includes both random-logic

and datapath nets in the design. All results are the ratio of the total wirelength of the

automatically placed solution to the total wirelength of the manually designed placement

as described in [149]. From Table 7.5 we observe that even though we apply specialized

techniques to align the datapath logic, the total HPWL of our placement solution is within

a few percentage points of the best HPWL solution for each of the benchmark variants. In

fact, we obtain the best HPWL on seven out of eight variants for benchmark A.

As demonstrated in Section 7.2, HPWL is a poor indicator of the datapath placement

151

Design ISPD 2011 Datapath Benchmark A: Total StWL ISPD 2011 Datapath Benchmark B: Total StWL
Util. 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
Capo 1.94 1.94 1.91 1.93 1.90 1.90 1.80 1.90 2.40 2.40 2.38 2.35 2.36 2.36 2.35 2.32
mPL6 2.16 2.14 2.16 2.08 2.10 2.12 2.11 2.09 2.94 3.29 3.06 3.01 2.97 2.95 3.20 3.21
NTUPl3 2.23 2.18 2.15 2.15 2.11 2.16 2.19 2.09 2.66 2.48 2.47 2.44 2.44 2.44 2.32 2.44
Dragon 2.37 2.44 2.53 2.48 2.36 2.48 2.56 2.43 2.91 2.87 2.84 2.80 2.79 2.77 2.75 2.74
FastPl3 2.45 2.53 2.56 2.59 2.56 2.71 2.75 2.79 3.73 3.58 3.78 3.79 3.97 4.13 3.96 4.14
Rooster 1.94 1.93 1.91 1.91 1.92 1.91 1.82 1.95 2.40 2.39 2.35 2.33 2.38 2.34 2.34 2.32
SimPL 1.82 1.83 1.80 1.81 1.78 1.78 1.78 1.75 2.27 2.30 2.25 2.24 2.23 2.19 2.24 2.22
SAPTgp 1.40 1.35 1.36 1.33 1.33 1.32 1.31 1.31 1.59 1.56 1.54 1.50 1.51 1.50 1.50 1.48
SAPTdp 1.35 1.28 1.31 1.31 1.28 1.38 1.26 1.28 1.58 1.55 1.52 1.49 1.49 1.48 1.48 1.46

Table 7.6: Total StWL ratio comparison on the modified ISPD 2011 Datapath Benchmark
A and B variants with unfixed latches after legalized placement. The ratios are
computed with respect to the manually placed solution. Numbers in bold are
the best automated placement results published for these benchmarks.

quality, especially in the case of highly structured designs, and StWL is much more ac-

curate. Additionally, StWL correlates well with design routability. From Table 7.6 we

observe that our proposed techniques (SAPTgp + SAPTdp) obtained significantly better

StWL among all the automated solutions for all benchmark variants. For the benchmark

A variants, StWL of all the other placers is greater than 1.5 times the manually designed

solution. For the benchmark B variants, the results are greater than 2.0 times the manually

designed solution. Alternatively, for benchmark A, the proposed global placement tech-

niques (SAPTgp + FP-DP) are able to obtain a solution that is at 1.31 times the manually

designed solution (at 79% utilization). Additionally, the detailed placement techniques

(SAPTgp + SAPTdp) are able to further reduce the gap to 1.26 times. The proposed placer

on benchmark B also significantly outperformed prior placers, with SAPTgp + FP-DP

achieving 1.48 times and SAPTgp + SAPTdp achieving 1.46 times StWL of the manually

designed solution.

Figure 7.8a displays the datapath placement solution from SimPL. In this figure, a ran-

dom selection of cells in alignment groups are plotted with a brown or blue line connecting

152

(a) (b)

Figure 7.8: Forty structured bit-stacks are randomly chosen to show the alignment im-
pact of the proposed placer in Benchmark A. (a) is generated by SimPL [86]
whereas (b) is generated by the proposed placer. Movable cells are shown
lightly shaded while the cells in the datapath group are shown dark. Note that
cells that are not defined by alignment groups become aligned as well and form
a regular structure (right).

them. In the manually placed solution, these cells are aligned, either vertically or horizon-

tally depending on the group, yielding shorter wirelength. From Figure 7.8a, clearly the

cells are not placed aligned. The placement solution generated using the proposed placer

is shown in Figure 7.8b with the same set of alignment groups highlighted as Figure 7.8a.

Clearly there is significant improvement in the alignment of each gk.

7.6.3 Wirelength results on hybrid designs

Table 7.7 gives the normalized total HPWL and StWL results on the hybrid designs

that integrate datapaths into larger netlists. All results are normalized to the proposed

placer (SAPTgp + SAPTdp). As before, the proposed placer generates significantly better

StWL on the hybrid designs. Though the HPWL results are similar, the proposed placer

obtains an improvement in StWL between 1% and 13%. For these designs, improvement

in StWL is significant, considering the fact that the percentage of datapath logics within

153

the designs is less than 3%.

By providing alignment constraints to portions of the datapath, we observe that neigh-

boring cells also become aligned during the iterative placement process (Figure 7.8). The

alignment constraints provide hints, directing the placer in the correct gradient. These hints

help to overcome local optima, driving placement towards a more globally optimal solu-

tion. Thus, with relatively few manually pre-defined alignment groups, this work shows

that a HPWL-driven placer can generate improved solutions for the other cells, resulting

in significantly improved StWL.

7.6.4 Routing congestion results

To empirically prove our claim that StWL accurately approximates routability, we re-

port results using two congestion metrics on all benchmark circuits. It is important to note

that the proposed placer is not doing any congestion-aware placement techniques, and that

any routing gains are simply a by-product of improved placement solutions.

Table 7.8 displays the total overflow (TOF)(×1e + 5), as defined in the ISPD 2011

routability-driven placement contest [143] for the datapath benchmark circuits. All re-

Hybrid C Hybrid D Hybrid E Hybrid F Hybrid G Hybrid H
HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL HPWL StWL

Capo 1.13 1.26 1.17 1.32 1.12 1.27 1.19 1.17 1.25 1.23 1.23 1.21
mPL6 1.05 1.15 1.02 1.14 1.20 1.32 1.37 1.30 1.21 1.19 1.09 1.10
NTUPl3 0.95 1.10 0.95 1.13 0.99 1.19 1.30 1.30 1.02 1.05 1.00 1.01
Dragon 1.10 1.20 2.11 2.04 1.32 1.38 1.29 1.24 - - 1.22 1.20
Rooster 1.10 1.19 1.16 1.32 1.26 1.23 1.03 1.25 1.03 1.05 1.26 1.23
FastPl3 0.95 1.04 0.96 1.16 1.22 1.30 1.17 1.14 1.11 1.10 1.04 1.03
SimPL 1.02 1.10 0.97 1.16 1.03 1.12 1.04 1.04 1.01 1.01 1.02 1.02
SAPT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 7.7: Total HPWL and StWL ratio comparison on hybrid designs. The wirelength
ratios are compared to the proposed placer. The Dragon placer was unable to
complete for Hybrid G.

154

Design ISPD 2011 Datapath Benchmark A: Routing Overflow ISPD 2011 Datapath Benchmark B: Routing Overflow
Util. 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
Capo 2.29 2.17 1.72 1.83 1.84 1.68 1.10 2.18 9.16 7.28 7.05 6.68 7.17 7.01 7.13 6.98
mPL6 4.66 4.38 4.44 3.40 3.38 3.65 6.03 5.02 12.7 16.4 14.0 13.6 12.8 12.6 15.3 15.3
NTUPl3 5.54 5.12 4.63 5.19 4.92 5.63 6.03 5.02 10.2 8.41 8.3 8.09 8.92 9.07 8.21 9.92
Rooster 0.79 1.08 1.22 1.02 1.07 1.64 1.31 1.16 8.11 7.28 6.88 6.72 - - - -
FastPl3 7.23 8.10 8.72 9.08 8.80 10.4 11.8 12.1 20.8 19.3 21.6 21.7 23.7 25.5 23.5 25.6
SimPL 1.28 1.28 1.22 0.98 0.87 0.87 0.85 0.77 5.98 6.24 5.65 5.49 5.26 4.85 5.21 5.25
SAPTgp 0.0012 0.032 0.0 0.0 0.0 0.0 0.0 0.0 0.90 0.70 0.56 0.45 0.48 0.59 0.62 0.59
SAPTdp 0.0014 0.038 0.0 0.0 0.0 0.0 0.0 0.0 0.88 0.70 0.55 0.43 0.67 0.58 0.60 0.58

Table 7.8: Total Overflow (×10e+5) results produced with the router and evaluation script
from the ISPD 2011 routability-driven placement contest on the modified ISPD
2011 Datapath Benchmark A and B variants with unfixed latches after legalized
placement. The ”Total Overflow”, a measure of the routing congestion of the
placement solution, is reduced to zero on six of the benchmark A variants and
reduced by at least 6.7 times for all benchmark B variants.

Design ISPD 2011 Datapath Benchmark A: Average PWC ISPD 2011 Datapath Benchmark B: Average PWC
Util. 94 91 89 86 84 82 79 77 95 93 91 89 86 84 81 79
Capo 123.4 123.5 121.3 121.1 121.4 120.3 118.5 128.4 237.4 222.4 222.5 217.4 222.3 220.1 224.3 219.6
mPL6 170.2 188.2 187.3 149.1 145.3 159.9 149.6 139.9 278.2 325.2 313.2 300.0 275.0 315.9 302.9 361.4
NTUPl3 171.1 170.3 152.1 170.8 166.7 176.9 189.9 173.4 262.5 237.4 239.4 241.4 247.2 247.1 238.6 259.2
Rooster 136.6 163.0 156.5 147.4 152.8 169.4 162.7 174.2 256.2 224.1 217.3 215.1 231.5 221.8 228.7 225.2
FastPl3 211.9 236.1 237.3 234.7 222.2 224.7 240.2 284.9 341.8 316.2 331.6 334.1 397.6 347.0 341.4 341.7
SimPL 124.7 118.8 117.8 116.2 115.1 114.8 114.1 119.5 207.8 211.3 205.2 205.0 212.5 209.3 204.6 209.2
SAPTgp 100.6 100.2 100.1 100.1 100.1 100.1 100.1 100.1 152.0 150.7 149.0 148.6 148.2 148.3 149.4 150.1
SAPTdp 100.4 100.1 100.1 100.1 100.1 100.1 100.1 100.1 151.9 150.7 149.0 148.5 147.9 148.1 149.2 150.1

Table 7.9: Average Peak Weighted Congestion (PWC) in datapath benchmark.

Routing Hybrid C Hybrid D Hybrid E Hybrid F Hybrid G Hybrid H
Metrics TOF PWC TOF PWC TOF PWC TOF PWC TOF PWC TOF PWC
Capo 1458 107.34 3024 110.46 26504 117.29 41520 114.73 131543 155.56 1186 115.52
mPL6 1360 106.90 940 101.88 23838 117.02 17801 111.17 45904 122.08 490 106.51
NTUPl3 626 103.66 558 95.92 32545 133.99 114843 141.76 42917 121.33 98 101.36
Rooster 48 100.38 1419 105.22 32157 122.32 61731 118.80 134434 149.26 918 111.49
FastPl3 372 102.25 722 99.52 77774 165.88 34189 118.21 33723 115.24 30 100.40
SimPL 650 103.31 475 94.60 19713 118.73 29524 113.67 37884 120.33 100 101.11
SAPT 534 103.49 322 93.21 11276 114.82 28736 113.66 40275 119.12 28 100.34

Table 7.10: Total Overflow (TOF) and ACE routing metrics for hybrid designs.

ported overflow values are from the official contest evaluation script. As seen in Table

7.8, SAPT produces the smallest overflow across all testcases. For benchmark A, SAPT

produced a routable placement solution with zero (0) overflow for all but two of the vari-

155

ations. For benchmark B, SAPT improves total overflow by 6.7 times, 23.54 times, 14.44

times, 11.56 times, 14.3 times, and 10.36 times versus SimPL, FastPlace3.0, Dragon,

NTUPlace3, mPL6, and Capo respectively. The second congestion metric is the Peak

Weighted Congestion (PWC) as used in the DAC 2012 routability-driven placement con-

test [144]. This metric calculates the weighted average ACE(x) congestion [153], of the

the top x% congested g-edges. The smaller the PWC value, the more routable the design.

As with the overflow metric, in designs with significant structure, the SAPT techniques

produce significantly more routable designs than the compared placers.

Table 7.10 displays the TOF using the ISPD 2011 contest router (coalesCgrip [41])

and the PWC using the DAC 2012 contest router (BFG-R [67]) for the hybrid designs.

SAPT generated the best PWC results for Hybrids D, E, and G, and was comparable to

the best results on the remaining designs. Additionally, SAPT generated the best TOF

solution for three Hybrid designs D, E, and H. Though SAPT is not a congestion-aware

placer, the significant improvement in routing congestion indicates the strong correlation

between alignment and congestion.

7.6.5 Runtime results

Runtime results on the Hybrid designs are shown in Table 7.11. Both SimPL and

FastPlace3.0 were similar with FastPlace3.0 quicker on larger designs. Our SAPT placer

performed very competitively compared to the other state-of-the-art placement flows with

the largest design, Hybrid F, taking under 71 seconds to place.

156

Hybrid C D E F G H
Capo 94.6 74.0 83.4 480.3 482.7 65.9
mPL6 48.5 32.4 36.2 161.7 148.5 35.9
NTUPl3 13.0 30.0 70.0 278.0 269.0 54.0
Dragon 425.9 193.0 283.9 927.4 - 154.9
Rooster 98.8 84.1 101.1 560.7 455.1 80.9
FastPl3 13.0 10.7 17.4 55.3 32.93 7.2
SimPL 9.2 12.6 27.1 59.2 40.4 9.2
SAPT 15.9 16.7 38.2 70.9 43.1 10.8

Table 7.11: Comparison of runtime on the hybrid designs.

7.7 Summary and Conclusions

This chapter presents a unified framework to enhance current random-logic placers to

better handle designs containing datapath logic. A set of new global placement techniques,

including skewed weighting with step size scheduling, fixed-point and pseudo net align-

ment constraint, bit-stack aligned cell-swapping and group recursive repartitioning, were

presented that seamlessly integrate alignment constraints into a state-of-the-art placement

engine to overcome the shortcomings of the HPWL model for datapaths. Experimental

results show at least a 28% improvement in total StWL compared with six state-of-the-

art academic placers for the ISPD 2011 Datapath Benchmark Suite and a 5.8% average

improvement in total StWL over six state-of-the-art placers for industrial hybrid designs.

Though comparisons do not report the timing impact because the current implementation

is limited to reading the Bookshelf format, significant improvements in wirelength are

generally attributed to improved timing. An open challenge is to quantify this effect in

addition to automatically extracting the datapath.

157

CHAPTER VIII

Conclusions

This chapter summarizes the results of our research and outlines open challenges.

8.1 Our Results in Perspective

In addition to improving quality and speed of core circuit optimization algorithms, the

research presented in this dissertation pursues several recurring themes in physical de-

sign and physical synthesis. One is the comparisons and tradeoffs between linear and

quadratic wirelength functions. Since the 1960s, it was known that quadratic optimiza-

tion was computationally efficient, but did not adequately track the demand for routing

resources, which is much closer to the HPWL objective and its weighted variants [22].

Seminal work by Doll and Johannes in the early 1990s developed a linearization tech-

nique that represents the linear wirelength objective on graphs by a dynamically-weighted

quadratic objective [132]. However, the modeling of multi-pin nets remained inaccurate,

and the research community has largely replaced quadratic optimization by much more

cumbersome and slow nonlinear optimization techniques ten years later [26, 36, 79]. In

the mid-2000s, Spindler and Johannes developed the Bound2Bound model [134], which

considerably improved the modeling accuracy for multi-pin nets in quadratic placement

158

by employing a dynamic (placement-dependent) graph topology. With additional im-

provements to flat quadratic placement, this technique has recently outperformed prior

art in both runtime and quality of results, both in terms of HPWL and in routability-driven

placement [57, 85, 86]. This development raised several key research questions:

• Is there a gap between the Bound2Bound model and the HPWL in practice?

• Can global quadratic optimization with the Bound2Bound model be effectively im-

proved on multi-million gate netlists (with respect to HPWL)?

• Is multilevel placement optimization compatible with Bound2Bound and competi-

tive in performance?

Our work answers these three questions in the affirmative. The gap between Bound2Bound

and HPWL is illustrated by the SimPL line in Figure 5.3 — note the return to smaller

HPWL when detailed placement is invoked. Global quadratic placement of multi-million

gate netlists can be improved by using the ProLR technique proposed in Section 5.5.

MAPLE (Chapter V) demonstrates that multilevel placement techniques are compatible

with the Bound2Bound model and is competitive with state of the art, as long as abrupt

changes to placement are avoided before/after clustering. However, Section 5.7.3 shows

that only two levels of clustering are useful for current benchmarks. Larger netlists may

justify deeper clustering.

The second theme addressed in this dissertation is relatively new to physical design,

but no less fundamental — methodology for module spreading and handling of whitespace.

These considerations are essential not only to global placement, but also buffer insertion,

gate sizing and other physical synthesis transformations, as well as to congestion-driven

159

placement. Until the late 1990s, whitespace was rare in IC layouts, but now can reach over

60% by area [107]. We develop efficient techniques for spreading modules during place-

ment, while satisfying density constraints and optimizing HPWL beyond the accuracy of

the Bound2Bound model (Chapters IV, V and VI).

The third fundamental theme explored in this dissertation has not received as much

recognition, but may deserve it — we study the composition of multiple optimizations

into a high-precision, reliable multiobjective optimization process. Our key discovery is

that transitions between multiple objective functions and optimization techniques in place-

ment often lead to major disruptions. In particular, adding netlist clustering or Iterative

Local Refinement (ILR) [140] to the SimPL algorithm for quadratic placement with the

Bound2Bound model does not directly improve quality of results because the disruptions

overshadow the benefits of such integration. To this end, we develop new techniques, such

as two-tier Progressive Local Refinement (ProLR) described in Chapter V, to facilitate

graceful transitions between multiple optimizations. In placement, these techniques are

applied before and after unclustering, during the transition from a quadratic objective to

HPWL, and before detailed placement. Other applications exist in physical synthesis.

The fourth theme is early consideration of routability. Routability has not been a

critical issue until recently. However, with ever-increasing chip complexity and growing

amount of global wiring, even ten metal routing layers are often insufficient to accommo-

date demand for routing resources. A great amount of effort is employed in physical design

to resolve routing congestion, and traditional wirelength-driven optimization are being ex-

tended to consider routability. IBM Research organized two routability-driven placement

160

contests in the past two years. To this end, our SIMultaneous PLace-and-Route algorithm

SimPLR (Chapter IV) integrates a layer-aware global routing into SimPL (Chapter III),

giving the placer early access to actual routing congestion maps. Compared to the state of

the art in wirelength-driven placement, this new technique reduces routing congestion by

4.5 times.

The fifth theme studied in this dissertation — datapath layout — is a long-lasting

challenge in physical design. Many attempts have been made in the last 40 years to close

the quality gap between manual and automated placement of datapaths and other regu-

lar structures. Nevertheless, a common assumption still prevails among IC designers that

circuits with high regularity require manual placement. Our key observation is that the

primary optimization objective of modern state-of-the-art placement algorithms – HPWL

can mislead placers on datapath-oriented designs. In particular, compressing placement of

high-fanout nets to lower the overall HPWL can disrupt the regularity of placement and un-

dermine its Steiner wirelength, which is known to better correlate with routed wirelength.

Based on this observation, we develop a suite of structure-aware placement techniques,

SAPT (Chapter VII) that can guide existing HPWL-driven placers to carefully handle

these nets, enhancing layout regularity and Steiner wirelength.

8.2 The Impact of Our Research

Our research has been reported at top conferences in Electronic Design Automation

and Physical Design — DAC, ICCAD, and ISPD — and published in IEEE Transactions

on Computer-Aided Design of Integrated Circuits. Since its first publication at ICCAD

2010, the SimPL algorithm saw rapid adoption in both academia and industry, as sum-

161

Figure 8.1: The SimPL family of placement algorithms. The baseline algorithm has been
re-implemented by four research groups, facilitating further extensions.

marized in Figure 8.1. Our approach consistently outperforms previous state of the art in

speed and solution quality, is amenable to thread-level and instruction-level parallelism,

requires only a modest amount of code, and was successfully re-implemented by indepen-

dent researchers [14, 57]. Our approach also supports a variety of discrete and continuous

constraints. It is now extended to power-aware placement with integrated clock-network

synthesis (Lopper) [94,95] and thermal-aware placement [14], as well as routability-driven

placement (Ripple and SimPLR). Ripple [57] and our software SimPLR (Chapter IV)

finished in top three at the ISPD 2011 and DAC 2012 routability-driven placement con-

test. In joint work with IBM Research, the SimPL algorithm has been extended to mul-

tilevel optimization (MAPLE) and structure-aware placement (SAPT). Further extensions

of SAPT combined it with datapath extraction techniques (PADE) [152]. As of August

2012, MAPLE is the default placement algorithm in IBM’s Placement-Driven-Synthesis

flow for both ASICs and CPUs.

162

8.3 Open Challenges

Several open challenges are suggested by our results. One challenge is combining

quadratic force-directed placement algorithms with placement algorithms based on non-

convex optimization. Empirical results in Tables 5.3, 5.4, 6.1, and 6.2 indicate a trend —

quadratic placers RQL, SimPL and MAPLE produce comparable solutions than placers

APlace3, NTUPlace3 and mPL6 based on nonconvex optimization, but significantly re-

duce runtimes. This trend is confirmed in the results of the ISPD 2011 routability-driven

placement contests and subsequent work [57,85] — quadratic placers Ripple and SimPLR

outperformed nonconvex placers mPL6 and NTUPlace3. This is due, in part, to the greater

amount of recent research on quadratic placement, including the development of success-

ful industry tools [18,141]. Yet, many of our contributions, such as lookahead legalization

(LAL) and ProLR, can be adapted for use in nonconvex placers. Conceivably, the two

types of placers can be combined to leverage the best qualities of each.

Tighter integration of timing optimizations into placement algorithms is also a possi-

bility. In Chapter VI, our ComPLx work demonstrated that net weights can be used to

effectively reduce the length of specific nets without undermining overall solution quality.

However, given that timing-critical nets are typically identified by sign-off quality timing

engines after placement, significant placement modification can be required in presence of

a large number of near-timing critical nets. This placement modification can undermine

placement quality, generate new critical nets, and hamper timing closure. New fast and ac-

curate timing evaluators and their integration with placement can reduce effort for timing

closure in modern design flows.

163

In response to technology and business trends, the number of macros included in mod-

ern chips is growing [154]. Handling these macros during physical design will require

an increasing amount of effort in the near future. While research on floorplanning has a

long history (dating back to the 1980s), this research has intensified in the early 2000s

when Andrew Kahng formulated the concept of fixed-outline floorplanning in [75]. Start-

ing at about the same time [2,50], macro placement has been combined with standard-cell

placement. Numerous analytical and combinatorial techniques for such mixed-size place-

ment have been developed. However, the problems of determining locations of macros and

standard cells are essentially the same from the optimization point of view, distinguished

only by (i) the scale relative to the size of layout regions, and (ii) shaping and rotations

of macros in floorplanning. In principle, a single EDA tool that simultaneously places

macros and standard cells can better optimize the overall placement. Given strong perfor-

mance of analytical placement algorithms and poor scalability of combinatorial floorplan-

ning, we expect that a unified analytical approach to mixed-size placement will eventually

dominate. In Chapter VI, we demonstrated our one-stage approach to handle macros in

a unified analytical placement framework without support from combinatorial floorplan-

ning. Further extensions of this approach are currently impeded by the algorithmic chal-

lenge of quickly removing overlaps between macros without significant interconnect over-

head [26, 36, 79, 105, 140], especially in the presence of large macros and/or high design

utilization. In particular, analytical placement algorithms for global placement temporarily

allow overlaps during their iterations (in order to focus on interconnect optimization), but

are unable to clear the resulting overlaps entirely. These algorithms also approximate or

164

disregard the shapes of movable objects. To ensure that post-global placement is close to

legal, it is important to control overlap during iterations and also to account for the shapes

and rotations of movable cells.

Another direction where we foresee further studies is the automatic generation of dat-

apath layout. In Chapter VII, our work SAPT identified the pitfalls of modern HPWL-

driven current placement algorithms and demonstrated the significant improvement in

Steiner wirelength over the prior state of the art. However, we also pointed out that a

non-trivial quality gap still remains compared to the manual placement. This subopti-

mality of automatic placement requires accurate extraction of datapath logic and optimal

spacing between alignment groups, as well as structure-aware legalization algorithms.

165

BIBLIOGRAPHY

166

BIBLIOGRAPHY

[1] S. N. Adya and I. L. Markov, “Executable Placement Utilities”, http://
vlsicad.eecs.umich.edu/BK/PlaceUtils/

[2] S. N. Adya and I. L. Markov, “Consistent Placement of Macro-blocks using Floor-
planning and Standard-cell Placement”, ISPD, pp. 12-17, 2002.

[3] S. N. Adya and I. L. Markov, “Combinatorial techniques for Mixed-size Placement”,
ACM Trans. Design Autom. Electr. Syst. 10(1), 2005, pp. 58-90.

[4] S. N. Adya, I. L. Markov and P. G. Villarrubia, “On Whitespace and Stability in
Physical Synthesis”, Integration 39(4), pp. 340-362, 2006.

[5] A. Agnihotri et al, “Mixed Block Placement via Fractional Cut Recursive Bisection”,
IEEE TCAD 24(5), pp. 748-761, 2003.

[6] R. K. Ahuja, T. L. Magnati, J. B. Orlin, “Network Flows: Theory, Algorithms, and
Applications,” Prentice Hall 1993.

[7] C. J. Alpert, T. F. Chan, A. B. Kahng, I. L. Markov and P. Mulet, “Faster Minimiza-
tion of Linear Wirelength for Global Placement”, IEEE TCAD 17(1) 1998, pp. 3-13,
1998.

[8] C. J. Alpert, G.-J. Nam and P. G. Villarrubia, “Effective Free Space management for
Cut-based Placement via Analytical Constraint Generation”, IEEE TCAD 22(10), pp.
1343-1353, 2003.

[9] C. J. Alpert et al., “A Semi-persistent Clustering Technique for VLSI Circuit Place-
ment”, Proc. ISPD, pp. 200-207, 2005.

[10] C. J. Alpert et al., “Techniques for Fast Physical Synthesis”, Proc. IEEE 95(3), 2007,
pp. 573-599.

[11] C. J. Alpert, D. P. Mehta and S. S. Sapatnekar (eds.), Handbook of Algorithms for
VLSI Physical Design Automation, CRC Press, 2008.

[12] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A. Roy and G. Tellez, “What Makes
a Design Difficult to Route”, Proc. ISPD, pp. 7-12, 2010.

167

[13] G. Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities”, Proc. AFIPS (30), pp. 483-485, 1967.

[14] S. Aroonsatidecha et al, “A Fast Thermal Aware Placement with Accurate Thermal
Analysis Based on Green Function”, Prof. ASP-DAC 2012, pp. 425-430.

[15] D. P. Bertsekas, “Nonlinear Programming”, 2nd ed., Athena Scientific 1999.

[16] S. Boyd, L. Xiao and A. Mutapcic, “Subgradient Methods”, Notes for EE392o,
Stanford University 2003. http://www.stanford.edu/class/ee392o/
subgrad_method.pdf

[17] S. Boyd and L. Vandenberghe, “Convex Optimization”, Cambridge University Press,
2004. http://www.stanford.edu/˜boyd/cvxbook/bv_cvxbook.pdf

[18] U. Brenner, M. Struzyna and J. Vygen, “BonnPlace: Placement of Leading-Edge
Chips by Advanced Combinatorial Algorithms”, IEEE TCAD 27(9) 2008, pp.1607-
20.

[19] M. Breuer, “Min-cut Placement”, Journal of Design Automation and Fault Tolerant
Computing, 1(4) 1977, pp.343-362.

[20] U. Brenner and A. Rohe, “An Effective Congestion Driven Placement Framework”,
Proc. ISPD, pp. 6-11, 2002.

[21] N. Buchbinder and J. Naor, The Design of Competitive Online Algorithms via a
Primal-Dual Approach, NOW Publishers, 2009.

[22] A. E. Caldwell et al., “On Wirelength Estimations for Row-based Placement”, IEEE
TCAD 18(9), 1999, pp. 1265-1278.

[23] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone
Produce Routable Placements?” Proc. DAC 2000.

[24] T. F. Chan, J. Cong and E. Radke, “A Rigorous Framework for Convergent Net-
weighting Schemes in Timing-driven Placement”, Proc. ICCAD, pp. 288-294, 2009.

[25] T. F. Chan, J. Cong and K. Sze, “Multilevel Generalized Force-directed Method for
Circuit Placement”, Proc. ISPD, pp. 185-192, 2005.

[26] T. F. Chan et al., “mPL6: Enhanced Multilevel Mixed-Size Placement”, Proc. ISPD,
pp. 212-214, 2006.

[27] C. C. Chang et al., “A Practical All-Path Timing-driven Place and Route Sytem”,
Proc. ASP-DAC, pp. 560-563, 1994.

[28] Y.-J. Chang, Y.-T. Lee and T.-C. Wang, “NTHU-Route 2.0: A Fast and Stable Global
Router”, Proc. ICCAD, pp. 338-343, 2008.

168

[29] Y.-J. Chang, T.-H. Lee and T.-C. Wang, “GLADE: A Modern Global Router Consid-
ering Layer Objectives”, Proc. ICCAD, pp. 319-323, 2010.

[30] D. Chai and A. Kuehlmann, “Efficient Symmtry-baed Circuit Rewiring for Place-
ment Optimization”, IWLS, 2008.

[31] H. Chen et al., “An Algebraic Multigrid Solver for Analytical Placement with Layout
Based Clustering”, Proc. DAC, pp. 794-799, 2003.

[32] H.-C. Chen et al., “Constraint Graph-based Macro Placement for Modern Mixed-size
Circuit Designs”, Proc. ICCAD, pp. 218-223, 2008.

[33] T.-C. Chen et al.,“MP-trees: A Packing-based Macro Placement Algorithm for
Mixed-size Designs”, IEEE TCAD 27(9) 2008.

[34] T.-C. Chen, M. Cho, D. Z. Pan and Y.-W. Chang, “Metal-Density-Drivn Placement
for CMP Variation and Routability”, IEEE TCAD 27(12) 2008.

[35] T.-C. Chen, A. Chakraborty and D. Z. Pan, “An Integrated Nonlinear Placement
Framework with Congestion and Porosity Aware Buffer Planning”, Proc. DAC 2008.

[36] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang, “NTUPlace3: An
Analytical Placer for Large-Scale Mixed-Size Designs With Preplaced Blocks and
Density Constraints”, IEEE TCAD 27(7) 2008, pp.1228-1240.

[37] C. E. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling”, Proc.
ICCAD, pp. 650-695, 1994.

[38] A. Chowdhary et al. “Extraction of Functional Regularity in Datapath Circuits”,
IEEE TCAD 18(9), pp. 1279-1296, 1999.

[39] C. Chu and M. Pan, “IPR: An Integrated Placement and Routing Algorithm”, Proc.
DAC, pp. 59-62, 2007.

[40] Y.-L. Chuang et al., “Design-hierarchy Aware Mixed-size Placement for Routability
Optimization”, Proc. ICCAD, pp.663-668, 2010.

[41] coalesCgrip: A Tool for Routing Congestion Analysis.
homepages.cae.wisc.edu/∼adavoodi/gr/cgrip.htm.

[42] J. Cong, M. Romesis and J. Shinnerl, “Robust Mixed-Size Placement Under Tight
White-Space Constraints,” ICCAD 2005, pp. 165-172.

[43] J. Cong, M. Romesis and J. R. Shinnerl, “Fast Floorplanning by Look-ahead Enabled
Recursive Bipartitioning”, IEEE TCAD 25(9), pp. 1719-1732, 2006.

[44] J. Cong et al., “Thermal-Aware 3D IC Placement Via Transformation”, Proc. ASP-
DAC pp. 780-785, 2007.

169

[45] J. Cong, M. Xie, “A Robust Mixed-Size Legalization and Detailed Placement Algo-
rithm”, IEEE TCAD 27(8), pp. 1349-1362, 2008.

[46] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for Shared-memory
Programming”, IEEE Computational Science and Enginnering, 1998, pp. 46-55.

[47] J. A. Davis, V. K. De and J. D. Meindl, “A Stochastic Wire-length Distribution for
Gigascale Integration (GSI). I. Derivation and Validation”, Trans. on Electronic De-
vices 45(3), pp. 580-589, 1998.

[48] K. Doll, F. M. Johannes and K. J. Antreich, “Iterative Placement Improvement By
Network Flow Methods”, IEEE TCAD 13(10), pp. 1189-1200, 1994.

[49] D. E. Donath, “Placement and Average Interconnection Lengths of Computer Logic”,
Trans. on Circuits and Systems 26, pp. 271-277, 1979.

[50] H. Eisenmann, F. M. Johannes, “Generic Global Placement and Floorplanning”,
DAC, pp. 269-274, 1998.

[51] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for Improving Net-
work Partitions”, DAC, pp. 175-181, 1982.

[52] M. Garland, “Sparse Matrix Computations on Manycore GPU’s”, Proc. DAC, pp.
2-6, 2010.

[53] P. E. Gill and D. P. Robinson, “A Primal-Dual Augmented Lagrangian”, Computa-
tional Optimization and Applications 2010, DOI: 10.1007/s10589-010-9339-1.

[54] S. Goto, “An Efficient Algorithm for the Two-Dimensional Placement Problem in
Electrical Circuit Layout”, Trans. on Circuits and Systems 28(1), pp. 12-18, 1981.

[55] G. Goumas et al., “Understanding the Performance of Sparse Matrix-Vector Multi-
plication”, Euromicro Int’l Conf. on PDP, pp. 283-292, 2008.

[56] L. K. Grover, “A New Simulated Annelaing Algorithm for Standard Cell Placement”,
Proc. ICCAD, pp. 646-650, 1984.

[57] X. He, T. Huang, L. Xiao, H. Tian, G. Cui and E. F. Y Young, “Ripple: An Effective
Routability-Driven Placer by Iterative Cell Movement”, Proc. ICCAD 2011.

[58] R. Ho, K. W. Mai and M. A. Horowitz, “The Future of Wires”, Proceedings of the
IEEE 89(4), pp. 490-504, 2001.

[59] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu and W. H. Kao, “A New Congestion-
driven Placement Algorithm Based on Cell Inflation”, Proc. ASP-DAC, pp. 723-728,
2001.

[60] L. Hsu et al., “Exploring the Cache Design Space for Large Scale CMPs”, ACM
SIGARCH Computer Architecture News, pp. 24-33, 2005.

170

[61] C.-H. Hsu, H.-Y. Chen and Y.-W. Chang, “Multi-layer Global Routing Considering
Via and Wire Capacities”, Proc. ICCAD, pp. 350-355, 2008.

[62] M.-K. Hsu and Y.-W. Chang, “Unified Analytical Global Placement for Large-scale
Mixed-size Circuit Designs”, Proc. ICCAD, pp. 657-662, 2010.

[63] M.-K. Hsu, Y.-W. Chang and V. Balabanov, “TSV-aware Analytical Placement for
3D IC Designs”, Proc. DAC, pp. 664-669, 2011.

[64] M.-K. Hsu et al., “Routability-Driven Analytical Placement for Mixed-Size Circuit
Designs”, Proc. ICCAD, pp. 80-84, 2001.

[65] B. Hu and M. Marck-Sadowska, “Congestion Minimization During Placement with-
out Estimation”, Proc. ICCAD, pp. 739-745, 2002.

[66] B. Hu and M. Marek-Sadowska, “mFAR: Fixed-Points-Addition-based VLSI Place-
ment Algorithm”, Proc. ISPD, pp. 239-241, 2005.

[67] J. Hu, J. A. Roy and I. L. Markov, “Completing High-quality Routes”, Proc. ISPD,
pp. 35-41, 2010.

[68] P. Ienne and A. Griebing, “Practical Experiences with Standard-Cell Based Datapath
Design Tools”, Proc. DAC, pp. 396-401, 1998.

[69] ISPD 2007 Global Routing Contest. http://www.sigda.org/ispd2007/
contest.html.

[70] M. Jackson and E. S. Kuh, “Performance-Driven Placement of Cell Based IC’s”,
Proc. DAC, pp. 370-385, 1989.

[71] D. A. Jamsek, “Designing and Optimizing Compute Kernels on NVIDIV GPUs”,
Proc. ASP-DAC, pp. 224-229, 2009.

[72] Devang Jariwala and John Lillis, “RBI: Simultaneous Placement and Routing Opti-
mization Technique”, IEEE TCAD 26(1), pp. 127-141, 2007.

[73] Z.-W. Jiang, B.-Y. Su and Y.-W. Chang, “Routability-driven Analytical Placement
by Net Overlapping Removal for Large-scale Mixed-size Designs”, Proc. DAC, pp.
167-172, 2008.

[74] M. Jones and P. Banerjee, “An Improved Simulated Annelaing Algorithm for Stan-
dard Cell Placement”, Proc. ICCAD, pp. 83-86, 1987.

[75] A. B. Kahng, “Classical Floorplanning Harmful?”, Proc. ISPD, pp. 207-213, 2000.

[76] A. B. Kahng and X. Xu, “Accurate Pseudo-constructive Wirelength and Congestion
Estimation”, SLIP, pp. 61-68, 2003.

[77] A. B. Kahng and Q. Wang, “An Analytic Placer for Mixed-size Placement and
Timing-driven Placement”, Proc. ICCAD, pp. 565-572, 2004.

171

[78] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic Placer”,
IEEE TCAD, pp. 734-747, 2005.

[79] A. B. Kahng and Q. Wang, “A Faster Implementation of APlace”, Proc. ISPD, pp.
218-220, 2006.

[80] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, “VLSI Physical Design: from Graph
Partitioning to Timing Closure”, Springer 2011, 312 pages.

[81] A. A. Kennings and I. L. Markov, “Smoothening Max-terms and Analytical Mini-
mization of Half-Perimeter Wirelength”, VLSI Design 14(3), pp. 229-237, 2002

[82] A. A. Kennings and K. Vorwerk, “Force-Directed Methods for Generic Placement”,
IEEE TCAD 25(10), 2006, pp. 2076-2087.

[83] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”, Bell Systems Technical Journal 49, pp. 291-307, 1970.

[84] M.-C. Kim, D.-J. Lee and I. L. Markov, “SimPL: An Effective Placement Algo-
rithm”, Proc. ICCAD, pp. 649-656, 2010.

[85] M.-C. Kim, J. Hu, D.-J. Lee and I. L. Markov, “A SimPLR method for Routability-
driven Placement”, Proc. ICCAD, pp. 67-73, 2011.

[86] M.-C. Kim, D.-J. Lee and I. L. Markov, “SimPL: An Effective Placement Algo-
rithm”, IEEE TCAD 31(1), pp. 50-60, 2012.

[87] M.-C. Kim et al, “MAPLE: Multilevel Adaptive PLacEment for Mixed-Size De-
signs”, Proc. ISPD 2012.

[88] M.-C. Kim and I. L. Markov, “ComPLx: A Competitive Primal-dual Lagrange Opti-
mization”, Proc. DAC 2012.

[89] K. C. Kiwiel, T. Larsson and P. O. Lindberg,“Lagrangian Relaxation via Ballstep
Subgradient Methods”,Mathematics of Operations Research 32(3), 2007, pp. 669-
686. http://mor.journal.informs.org/content/32/3/669

[90] T. Kong, “A Novel Net Weighting Algorithm for Timing-driven Placement”, Proc.
ICCAD, pp. 172-176, 2002.

[91] T. Kutzschebauch and L. Stok, “Regularity Driven Logic Synthesis”, Proc. ICCAD,
pp. 439-446, 2000.

[92] J. J. Kleinhans et al., “GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization”, IEEE TCAD 10(3), 1991, pp. 356-365.

[93] D.-J. Lee, M.-C. Kim and I. L. Markov, “Low-Power Clock Trees for CPUs”, Proc.
ICCAD, pp. 444-451, 2010.

172

[94] D.-J. Lee and I. L. Markov, “Obstacle-Aware Clock-tree Shaping During Placement”,
Proc. ISPD, pp. 123-130, 2011.

[95] D.-J. Lee and I. L. Markov, “Obstacle-aware Clock-tree Shaping during Placement”,
IEEE TCAD 31(2), 2012.

[96] T.-H. Lee, Y.-J. Chang and T.-C. Wang, “An Enhanced Global Router with Consid-
eration of General Layer Directives”, Proc. ISPD pp. 53-60, 2011.

[97] W.-P. Lee, H.-Y. Liu and Y.-W. Chang, “An ILP Algorithm for Post-floorplanning
Voltage-Island Generation Considering Power-network Planning”, Proc. ICCAD, pp.
650-665, 2007.

[98] C. Li, M. Xie, C.-K. Koh, J. Cong and P. H. Madden, “Routability-driven Placement
and White Space Allocation”, Proc. ICCAD, pp. 394-401, 2004.

[99] C. Li and C.-K. Koh, “Recursive Function Smoothing of Half-Perimeter Wirelength
for Analytical Placement”, ISQED, pp. 829-834, 2007.

[100] Z. Li, W. Wu and X. Hong, “Congestion Driven Incremental Placement Algorithm
for Standard Cell Layout”, Proc. ASP-DAC, pp. 723-728, 2003.

[101] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “Multi-threaded Collision-aware
Global Routing with Bounded-length Maze Routing”, Proc. DAC, pp. 200-205, 2010.

[102] T. Luo, D. Newmark and D. Z. Pan, “A New LP Based Incremental Timing Driven
placement for High Performance Designs”, Proc. DAC, pp. 1115-1120, 2006.

[103] K. Madduri et al., “Parallel Shortest Path Algorithms for Solving Large-Scale In-
stances”, The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
pp. 249-290, DIMACS, 2009.

[104] H. Van Marck, D. Stroobandt and J. Van Campenhout, “Towards an Extension of
Rent’s Rule for Describing Local Variations in Interconnect Complexity”, Interna-
tional Conf. for Young Computer Scientists, pp. 136-141, 1994.

[105] M. D. Moffitt, J. A. Roy, I. L. Markov, M. E. Pollack, “Constraint-driven Floorplan
Repair”, ACM Trans. Design Autom. Electr. Syst. 13(4), 2008.

[106] G.-J. Nam et al., “A Fast Hierarchical Quadratic Placement Algorithm”, IEEE
TCAD 25(4), 2006, pp.678-691.

[107] G.-J. Nam and J. Cong, “Modern Circuit Placement: Best Practices and Results”,
Springer 2007.

[108] G.-J. Nam, C. C. N. Sze and M. C. Yildiz, ”The ISPD Global Routing Benchmark
Suite”, Proc. ISPD, pp. 156-159, 2008.

[109] R. X. T. Nijssen and J. A. G. Jess, ”Two-Dimensional Datapath Regularity Extrac-
tion”, IFIP Workshop on Logic and Architecture Synthesis 1996, pp. 110-117.

173

[110] A. N. Ng et al., “Solving Hard Instances of Floorplacement”, Proc. ISPD, pp. 170-
177, 2006.

[111] M. Pan and C. Chu, “FastRoute: A Step to Integrate Global Routing into Place-
ment”, Proc. ICCAD, pp. 59-62, 2006.

[112] M. Pan, N. Viswanathan and C. Chu, “An Efficient & Effective Detailed Placement
Algorithm”, Proc. ICCAD, pp. 48-55, 2005.

[113] D. A. Papa, S. N. Adya and I. L. Markov, “Constructive Benchmarking for Place-
ment”, ACM GVLSI, pp. 113-118, 2004.

[114] P. N. Parakh, R. B. Brown and K. A. Sakallah, “Congestion Driven Quadratic Place-
ment”, Proc. DAC, pp. 275-278, 1998.

[115] S. K. Raman, V. Pentkovski and J. Keshava, “Implementing Streaming SIMD Ex-
tensions on the Pentium III Processor” IEEE Micro 20(4), pp. 47-57, 2000.

[116] S. Reda and A. Chowdhary, “Effective Linear Programming Based Placement
Methods”, Proc. ISPD, pp. 186-191, 2006.

[117] H. Ren, D. Z. Pan and D. Kung, “Sensitivity Guided Net Weighting for Placement
Driven Synthesis”, IEEE TCAD, pp. 711-721, 2005.

[118] A. P. E. Rosiello, F. Ferrandi, D. Pandini and D. Sciuto, “A Hash-based Approach
for Functional Regularity Extraction During Logic Synthesis”, Proc. ISVLSI, pp. 92-
97, 2007.

[119] J. A. Roy and I. L. Markov, “ECO-System: Embracing the Change in Placement”,
IEEE TCAD 26(12), pp. 2173-2185, 2007.

[120] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert and I. L. Markov, “CRISP:
Congestion Reduction by Iterated Spreading during Placement”, Proc. ICCAD, pp.
357-362, 2009.

[121] J. A. Roy et al., “Capo: Robust and Scalable Open-source Min-cut Floorplacer”,
Proc. ISPD, pp. 224-226, 2005.

[122] J. A. Roy, S. N. Adya, D. A. Papa and I. L. Markov, “Min-cut Floorplacement”,
IEEE TCAD 25(7), pp. 1313-1326, 2006.

[123] J. A. Roy and I. L. Markov, “Seeing the Forest and the Trees: Steiner Wirelength
Optimization in Placement”, IEEE TCAD 26(4), pp. 632-644, 2007.

[124] J. A. Roy, J. F. Lu and I. L. Markov, “Seeing the Forest and the Trees: Steiner
Wirelength Optimization in Placement”, IEEE TCAD 23(4), pp. 632-644, 2007.

[125] J. A. Roy et al., “Solving Modern Mixed-size Placement Instances”, Integration
42(2), pp.262-275, 2009.

174

[126] A. E. Ruehli, P. K. Wolff and G. Goertzel, “Analytical Power/Timing Optimization
Technique for Digital Systems”, Proc. DAC, pp. 142-146, 1997.

[127] Y. Saad, “Iterative Methods for Sparse Linear Systems”, SIAM 2003.

[128] P. Saxena and B. Hapin, “Modeling Repeaters Explicitly within Analytical Place-
ment”, Proc. DAC, pp. 699-704, 2004.

[129] C. Sechen and A. Sangiovanni-Vincentelli, “TimerWolf3.2: A New Standard Cell
placement and Global Routing Package”, DAC, pp. 432-439, 1986.

[130] N. Selvakkumaran, P. N. Parakh and G. Karypis, “Perimeter-Degree: A Priori Met-
ric for Directly Measuring and Homogenizing Interconnection Complexity in Multi-
level Placement”, SLIP, pp. 53-59, 2003.

[131] T. Serdar and C. Sechen, “Automatic Datapth Tile Placement and Routing”, DATE,
pp. 552-559, 2001.

[132] G. Sigl, K. Doll and F. Johannes,“Analytical Placement:A Linear or a Quadratic
Objective Function?” Proc. DAC, pp. 427-432, 1991.

[133] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand Estimation for
Efficient Routability-driven Placement”, DATE, pp. 1226-1231, 2007.

[134] P. Spindler, U. Schlichtmann and F. M. Johannes, “Kraftwerk2 - A Fast Force-
Directed Quadratic Placement Approach Using an Accurate Net Model”, IEEE
TCAD 27(8) 2008, pp. 1398-1411.

[135] W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell Cir-
cuits”, Proc. DAC, pp. 211-215, 1995.

[136] T. Taghavi et al., “Dragon2005: Large-scale Mixed-size Placement Tool”, Proc.
ISPD, pp. 245-247, 2005.

[137] T. Taghavi et al., “Dragon2006: Blockage-aware Congestion-controlling Mixed-
size Placer”, Proc. ISPD, pp. 209-211, 2006.

[138] L. N. Trefethen and D. Bau “Numerical Linear Algebra”, SIAM 1997, pp. 296-298.

[139] N. Viswanathan, M. Pan and C. Chu, “FastPlace2.0: An Efficient Analytical Placer
for Fixed-mode Designs”, Proc. ASP-DAC, pp. 195-200, 2006.

[140] N. Viswanathan, M. Pan and C. Chu, “FastPlace 3.0: A Fast Multilevel Quadratic
Placement Algorithm with Placement Congestion Control”, Proc. ASP-DAC, pp.
135-140, 2007.

[141] N. Viswanathan et al., “RQL: Global Placement via Relaxed Quadratic Spreading
and Linearization”, Proc. DAC, pp. 453-458, 2007.

175

[142] N. Viswanathan et al., “ITOP: Integrating Timing Optimization within Placement”,
Proc. ISPD, pp. 83-90, 2010

[143] N. Viswanathan, C. J. Alpert, Z. Li, G.-J. Nam and J. A. Roy, “The ISPD-2011
Routability-Driven Placement Contest and Benchmark Suite”, Proc. ISPD, pp. 141-
146, 2011.

[144] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li, Y. Wei, “The DAC 2012
routability-driven placement contest and benchmark suite”, Proc. DAC, pp. 774-782,
2012.

[145] M. Wang and M. Sarrafzadeh, “On the Behaviour of Congestion Minimization dur-
ing Placement”, Proc. ISPD, pp. 145-150, 1999.

[146] M. Wang and M. Sarrafzadeh, “Model and Minimization of Routing Congestion”,
Proc. ASP-DAC, pp. 185-190, 2000.

[147] M. Wang X. Yang and M. Sarrafzadeh, “Congestion Minimization during Place-
ment”, IEEE TCAD 19(10), pp. 1140-1148, 2000.

[148] M. Wang, X. Yang, K. Eguro and M. Sarrafzadeh, “Multicenter Congestion Esti-
mation and Minimization During Placement”, Proc. ISPD, pp. 147-152, 2000.

[149] S. I. Ward et al., “Quantifying Academic Placer Performance on Custom Designs”,
Proc. ISPD, pp. 91-98, 2011.

[150] S. I. Ward, D. Z. Pan and E. Swartzlander, “ISPD 2011 Datapath Benchmark Suite”,
http://www.cerc.utexas.edu/utda/download/DP/

[151] S. I. Ward, M.-C. Kim, N. Viswanathan, Z. Li, C. J. Alpert, E. E. Swartzlander Jr.
and D. Z. Pan, “Keep it Straight: Teaching Placement how to Better Handle Designs
with Datapaths”, Proc. ISPD 2012.

[152] S. I. Ward, D. Ding and D. Z. Pan, “A High Performance Placer with Automatic
Datapath Extraction and Evaluation through High Dimensional Data Learning,” DAC
pp. 756-761, 2012.

[153] Y. Wei et al, “GLARE: Global and Local Wiring Aware Routability Evaluation,”
DAC, pp.768-773, 2012.

[154] E. Wein and J. Benkoski, “Hard Macros Will Revolutionize SoC Design”, EE
Times Online, August 20, 2004. http://www.eetimes.com/news/design/
showArtical.jhtml?articalID=26807055

[155] J. Westra, C. Bartels and P. Groeneveld, “Probabilistic Congestion Prediction”,
Proc. ISPD, pp. 204-209, 2004.

[156] J. Westra and P. Groeneveld, “Is Probabilistic Congestion Estimation Worthwhile?”,
SLIP, pp. 99-106, 2005.

176

[157] S. J. Wright, “Primal-Dual Interior-Point Methods”, SIAM 1987, 309 pages.

[158] T.-H. Wu, A. Davoodi and J. T. Linderoth, “A Parallel Integer Programming Ap-
proach to Global Routing”, Proc. DAC, pp. 194-199, 2010.

[159] Y. Xu, Y. Zhang and C. Chu, “FastRoute 4.0: Global Router with Efficient Via
Minimization”, Proc. ASP-DAC, pp. 576-581, 2009.

[160] J. Z. Yan et al., “Handling Complexities in Modern Large-scale Mixed-size Circuit
Designs”, Proc. DAC, pp. 436-441, 2009.

[161] C Yang et al., “Physical Synthesis for ASIC Datapath Circuits”, Proc. ICASIC 2003,
pp. 97-100, 2003.

[162] X. Yang, B.-K. Choi and M. Sarrafzadeh, “Routability-driven White Space Alloca-
tion for Fixed-die Standard-cell Placement”, IEEE TCAD 22(4), pp. 410-419, 2003.

[163] X. Yang, R. Kastner and M. Sarrafzadeh, “Congestion Estimation During Top-down
Placement”, IEEE TCAD 21(1), pp. 72-80, 2002.

[164] T. T. Ye et al., “Physical Synthesis for ASIC Datapath Circuits”, Proc. ISCAS, pp.
365-368, 2002.

[165] Y. Zhang and C. Chu, “CROP: Fast and Effective Congestion Refinement of Place-
ment”, Proc. ICCAD, pp. 344-350, 2009.

[166] K. Zhong and S. Dutt, “Algorithms for Simultaneous Satisfaction of Multiple Con-
straints and Objective Optimization in a Placement Flow with Application to Con-
gestion Control”, Proc. DAC, pp. 854-859, 2002.

177

