
High-performance Placement and Routing
for the Nanometer Scale

by

Jarrod Alexander Roy

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:

Associate Professor Igor L. Markov, Chair
Professor David Blaauw
Professor John P. Hayes
Associate Professor Kevin J. Compton
Associate Professor Dennis M. Sylvester

c© Jarrod Alexander Roy 2009
All Rights Reserved

To my family and friends

ii

ACKNOWLEDGEMENTS

I am grateful to my advisor, Professor Igor Markov, for taking a chance on me when I

was a Master’s student and supporting me throughout my Ph.D. He has been an unending

source of ideas and advice in research and insightful comments when writing all of our pa-

pers. I am also thankful to my thesis committee members Professor John Hayes, Professor

Kevin Compton, Professor David Blaauw and Professor Dennis Sylvester for reminding

me to always think about solving difficult problems from both theoretical and practical

points of view. I’d also like to thank Professor Farinaz Koushanfar for her collaboration

on our work on hardware piracy and intellectual property protection.

I’d like to thank David Papa for all of our debates on subjects ranging from proper

programming practice to finance and for convincing me to get active and lose weight. I

want to thank Jin Hu for taking up and improving upon my global routing work. I would

be remiss if I did not thank my group at IBM Austin Research Lab who helped with the

work I needed to complete my thesis including Charles Alpert, Gi-Joon Nam, Natarajan

Viswanathan, Michael Moffitt, Cliff Sze, Zhuo Li and Nancy Zhou. I’m also appreciative

of the inordinate hours spent with Robert Barry, George Viamontes, Aaron Ng, Jeff Hao,

David Papa and Jin Hu playing video games (WoW, Diablo II, Guild Wars, Guitar Hero,

Rock Band, ...) which helped to preserve my sanity. I would like to thank all of the

other brilliant people at the University of Michigan that I was fortunate enough to befriend

including Kai-Hui Chang, Saurabh Adya, Smita Krishnaswamy, James Lu, Hector Garcia,

Andrew DeOrio, Ilya Wagner, Joseph Greathouse and Stephen Plaza. I’d also like to

iii

thank my friends from Carnegie Mellon University who have kept in touch over the years

including Ben Burrington, Marc Giogilo and Doug Houston.

Without my family, none of this could have been possible. I thank my sister, Jinger,

for moving to Michigan for a few months, convincing me to adopt a cat and keeping me

cultured. Lastly and far from least, I’d like to thank my parents, Julius and Diane, for

bringing me to early morning MathCounts practices before school; buying my first 80386

which introduced me to the world of computing; letting me go off to college and graduate

school 1000 miles from home; moving up to Michigan for a year; and always being there

for me.

iv

PREFACE

Modern semiconductor manufacturing facilitates single-chip electronic systems that

only five years ago required ten to twenty chips. Naturally, design complexity has grown

within this period. In contrast to this growth, it is becoming common in the industry to

limit design team size which places a heavier burden on design automation tools.

Our work identifies new objectives, constraints and concerns in the physical design of

systems-on-chip, and develops new computational techniques to address them. In addition

to faster and more relevant design optimizations, we demonstrate that traditional design

flows based on “separation of concerns” produce unnecessarily suboptimal layouts. We

develop new integrated optimizations that streamline traditional chains of loosely-linked

design tools. In particular, we bridge the gap between mixed-size placement and rout-

ing by updating the objective of global and detail placement to a more accurate estimate

of routed wirelength. To this we add sophisticated whitespace allocation, and the com-

bination provides increased routability, faster routing, shorter routed wirelength, and the

best via counts of published techniques. To further improve post-routing design metrics,

we present new global routing techniques based on Discrete Lagrange Multipliers (DLM)

which produce the best routed wirelength results on recent benchmarks. Our work culmi-

nates in the integration of our routing techniques within an incremental placement flow to

improve detailed routing solutions, shrink die sizes and reduce total chip cost.

Not only do our techniques improve the quality and cost of designs, but also simplify

design automation software implementation in many cases. Ultimately, we reduce the time

needed for design closure through improved tool fidelity and the use of our incremental

techniques for placement and routing.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

PREFACE . v

LIST OF FIGURES . x

LIST OF TABLES . xviii

PART I Background

Chapter I. VLSI Physical Design at the Nanometer Scale 1

1.1 Challenges in VLSI Physical Design 1
1.2 Our Approach . 3
1.3 Organization of the Thesis . 5

Chapter II. State of the Art in Partitioning-based VLSI Placement 6

2.1 Top-down Partitioning Framework for Placement 7
2.1.1 Terminal Propagation . 8
2.1.2 Bipartitioning versus Multi-way Partitioning 9
2.1.3 Cut-line Selection and Shifting 10
2.1.4 Whitespace Allocation . 11

2.2 Enhancements to the Min-cut Framework 13
2.2.1 Better Results Through Additional Partitioning 13
2.2.2 Fractional Cut . 15
2.2.3 Analytical Constraint Generation 16
2.2.4 Better Modeling of HPWL by Partitioning 18

2.3 Mixed-size Placement . 19
2.3.1 Floorplacement . 19
2.3.2 PATOMA and PolarBear . 25
2.3.3 Fractional Cut for Mixed-size Placement 26
2.3.4 Mixed-size Placement in Dragon2006 27
2.3.5 Solving Difficult Instances of Floorplacement 28

vi

2.4 State-of-the-art Min-cut Placers . 37
2.4.1 Dragon . 37
2.4.2 FengShui . 38
2.4.3 NTUPlace2 . 38
2.4.4 Capo . 39

Chapter III. State of the Art in Global Routing 40

3.1 Global and Detailed Routing . 40
3.2 Popular Global Routing Techniques 43

3.2.1 Maze Routing . 43
3.2.2 Pattern Routing . 43
3.2.3 Handling Multi-pin Nets . 44
3.2.4 Rip-up-and-re-route . 45
3.2.5 Congestion Amplification . 45
3.2.6 Negotiated-congestion Routing 46
3.2.7 Multi-level Routing . 47
3.2.8 Combinatorial Optimization Techniques 48

3.3 State-of-the-art Global Routers . 50
3.3.1 FastRoute . 50
3.3.2 BoxRouter . 51
3.3.3 MARS . 51

3.4 The ISPD ‘07 Routing Contest . 53

PART II VLSI Placement

Chapter IV. Fine Control of Local Whitespace 54

4.1 Traditional Whitespace Allocation 56
4.2 Top-down Whitespace Allocation . 57
4.3 Whitespace in Detailed Placement 60
4.4 Empirical Results . 67
4.5 Conclusions . 72

Chapter V. Routability Optimization in Placement 73

5.1 Previous Work on Routability-driven Placement 76
5.1.1 Routability-driven Top-down Min-cut Placement 76
5.1.2 Estimating Congestion and Routed Wirelength 79
5.1.3 Achieving Routable Placements 80

5.2 Choosing the Proper Objective . 81
5.2.1 Estimating Net Length . 82
5.2.2 Impact of Steiner-tree Evaluation 84

5.3 Minimizing Steiner-tree Length in Global Placement 86
5.4 Detailed Placement Driven by Steiner Tree Length 93

vii

5.5 Congestion-based Cut-line Shifting 96
5.6 Steiner-tree Evaluators: Runtime, Accuracy and Fidelity 98
5.7 Empirical Results . 100
5.8 Conclusions and Further Work . 106

Chapter VI. Incremental Placement and Applications to Physical Synthesis 108

6.1 Previous Work in Incremental Placement 111
6.2 Requirements of Incremental Placement 115
6.3 Top-down Legalization . 117

6.3.1 General Framework . 118
6.3.2 Fast Cut-line Selection . 119
6.3.3 Scalability . 120
6.3.4 Handling Macros and Obstacles 122
6.3.5 Controlling Overlaps, Whitespace and Congestion 123

6.4 Using ECO-system in High-level and Physical Synthesis 126
6.4.1 Additional User Controls . 127
6.4.2 Placing New Cells and Macros 128
6.4.3 An Application to Body Bias Clustering 130

6.5 Empirical Results . 132
6.5.1 Legalization of Resized Netlists 132
6.5.2 ECO-system’s Impact on Timing 136
6.5.3 Legalizing Analytical Global Placements 137

6.6 Conclusions . 139
6.6.1 Summary of Our Work . 140
6.6.2 Additional Applications . 141
6.6.3 Our Contributions to Shared Research Infrastructure 142

PART III Fundamental Techniques for Routing

Chapter VII. Our Framework for Global Routing 144

7.1 High-performance Global Routing 146
7.1.1 Basic Algorithmic Framework 146
7.1.2 Congestion Penalty . 149
7.1.3 Interactions Between Single- and Multi-Net Routing 150
7.1.4 Overcoming the “Last-gasp” Problem 154
7.1.5 Three-dimensional Routing 155
7.1.6 Via Pricing and Optimization 157

7.2 Experimental Results . 159
7.2.1 Performance on ISPD ‘98 and ‘07 Benchmarks 159
7.2.2 Using Steiner Trees versus Using MSTs 162
7.2.3 Layer Assignment versus Full Three-dimensional Routing . . 163
7.2.4 Selective Net Weighting . 164

7.3 Conclusions . 165

viii

Chapter VIII. Extensions to Our Routing Framework 166

8.1 Data Structures for Routing . 168
8.1.1 Branch-free Representation (BFR) for Individual Routed Nets 169
8.1.2 A Data Structure for Dynamic Global Routing Grid 170
8.1.3 Supporting Efficient Rip-up and Reroute 171

8.2 Analysis of Single-net Routing Techniques 172
8.2.1 Point-to-point Maze Routing 173
8.2.2 Net Splitting . 174
8.2.3 Continual Net Restructuring 175
8.2.4 Handling Multi-layer Routing 175

8.3 Key Algorithms in Sherpa . 176
8.3.1 The Sherpa Flow . 176
8.3.2 A Dual Lagrange Formulation 178
8.3.3 High-precision Lagrange Multipliers 180
8.3.4 Logarithmic Penalty Function 181
8.3.5 Cyclical Net-locking . 183
8.3.6 Multi-layer Routing . 184

8.4 Empirical Evaluation . 185
8.5 Conclusions . 187

PART IV Placement and Routing in Modern Design Flows

Chapter IX. Integration of Routing into Placement and Physical Synthesis 188

9.1 Industrial Physical Design . 189
9.2 CRISP Techniques . 192

9.2.1 Modeling Routing Congestion 193
9.2.2 Temporary Cell Inflation . 195
9.2.3 Incremental Spreading . 196
9.2.4 The CRISP Flow . 197

9.3 Experimental Results . 201
9.3.1 ISPD Contest Benchmarks 201
9.3.2 Commercial Designs . 205

9.4 Conclusions . 208

PART V Summary

Chapter X. Conclusions and Future Work 210

10.1 Summary of Contributions . 211
10.2 Directions for Future Work . 213

BIBLIOGRAPHY . 216

ix

LIST OF FIGURES

Figure

2.1 Traditional top-down partitioning-based placement. 7

2.2 (a) Top-down bisection-based placement. The placement area and netlist
are successively divided into placement bins until the bins are small
enough for end-case placement. (b) Terminal propagation is an impor-
tant enhancement to top-down bisection-based placement. The net has
five fixed terminals (four above and one below the cut-line) and movable
cells which are represented by the cell with a dashed outline. The fixed
terminals above the cut-line are propagated to the black circle at the top
of the bin; the fixed terminal below the cut-line is propagated to the black
circle below the cut-line; and movable cells remain unpropagated. Note
that the net is inessential since terminals are propagated to both sides of
the cut-line [116]. 9

2.3 Min-cut floorplacement. Steps 3-11 differ from min-cut placement [115]. 20

2.4 Progress of mixed-size floorplacement on the IBM01 benchmark from
IBM-MSwPins. The picture on the left shows how the cut lines are
chosen during the first six layers of min-cut bisection. On the right is
the same placement but with the floorplanning instances highlighted by
“rounded” rectangles. Floorplanning failures can be detected by observ-
ing nested rectangles [115]. 23

2.5 A placement of the IBM01 benchmark from IBM-MSwPins by Feng-
Shui before (left) and after (right) legalization and detailed placement. . 27

2.6 SCAMPI floorplacement flow. Steps 3-10, 12-13, and 22-23 differ from
traditional floorplacement [107]. 30

x

2.7 The plot on the left illustrates traditional floorplacement. Whenever a
floorplanning threshold is reached, all macros in the bin are designated
for floorplanning. Then, the floorplacement flow continues down until
detailed placement, where the standard cells will be placed. The plot on
the right illustrates the SCAMPI flow. Macros are selectively placed at
the appropriate levels of hierarchy [107]. 31

3.1 Pictorial representations of the global routing grid. The image on the
right shows how the layout is abstracted into a regular grid of GCells.
GCells are represented by vertices, with adjacent vertices connected by
graph edges. Capacities on edges that join GCells can be defined as the
number of routing tracks that cross GCell boundaries. The image at the
left shows horizontal, vertical and via connections on different layers. . 41

3.2 Decomposition of a 5-pin net by minimal Steiner tree (a), MST (b) and
MSTs with sharing (c)&(d). The choice of (c) or (d) depends on conges-
tion. The minimal Steiner tree (a) contains 5 flat subnets and 1 L-shaped
subnet, whereas the shared MST (d) has 2 flat subnets and 3 L-shaped
subnets which gives it greater flexibility. 45

3.3 Multi-level routing progression; image from [53]. 48

3.4 BoxRouter ILP formulation for routing nets using only L shapes. 49

3.5 Routed wirelength versus violations for all competing routers on two-
dimensional ISPD ‘07 benchmarks [71]. Note that violation counts are
shown on a log-scale where 0 cannot be plotted, so completely legal
solutions are depicted with exactly 1 violation. Relatively few solutions
submitted to the contest were legal (35%), but they are generally a cut
above the rest. Of the illegal solutions, as violations increase, routed
wirelength decreases. To emphasize the trend, a linear least-squares fit
of the data has been added for the illegal solutions. 52

4.1 Allocating whitespace in top-down placement to satisfy density con-
straints using uniform, minimum local and safe whitespace allocation. . 58

xi

4.2 Column (a) shows Capo 10.5 global placements of the ISPD 2005 place-
ment contest benchmark adaptec1 [104] with uniform whitespace allo-
cation (top) and non-uniform whitespace allocation (bottom). Fixed ob-
stacles are drawn with double lines. To indicate orientation, north-west
corners of blocks are truncated. Columns (b) and (c) depict the local
utilization of the uniform and non-uniform placements. Lighter areas of
the placement signify regions that violate the target placement density
whereas darker areas have utilization below the target. Areas with no
placeable area (such as those with fixed obstacles) are shaded as if they
exactly meet the target density. The target placement density for column
(b) is 90% and the target for column (c) is 60%. Adaptec1 has 57.34%
utilization. The HPWL for the uniform and non-uniform placements is
10.69e7 and 9.03e7 respectively. As the intensity maps show, when 60%
utilization is the target, uniform whitespace allocation is much more ap-
propriate than 12% minimum local whitespace. On the other hand, 12%
minimum local whitespace is appropriate in terms of violations when the
target is 90% utilization and has much better wirelength. 61

4.3 Greedy cell movement algorithm to reduce density violations while also
taking HPWL into account. 62

4.4 ISPD 2006 placement contest penalty for requested amounts of mini-
mum local whitespace. The penalty is calculated based on the total
amount of density-constraint violations. We test on benchmarks from
the ISPD 2006 placement contest suite [102]. These benchmarks have
29%, 38%, 74% and 54% whitespace, respectively. Usually the penalty
is very small when using our techniques (always less than 1.5%), but the
penalty grows significantly as the requested whitespace approaches the
amount of whitespace available in the design. 63

4.5 Linear programming formulation (horizontal direction) to optimize HPWL
of an existing placement. Further simplification is possible for two- and
three-pin nets. 64

4.6 ICCAD 2004 IBM-MSwPins benchmark [1] ibm01 before (left) and af-
ter (right) optimal whitespace allocation via network flows. The HPWL
improvement for this placement is 2.61% and takes only 10 CPU sec-
onds to perform. 66

xii

4.7 Controlling whitespace distribution on the ethernet benchmark from
the IWLS 2005 benchmark suite [72], which has approximately 38%
whitespace. We divide the placement area into a regular grid and re-
port whitespace distribution across grid cells when targeting (a) 25%, (b)
30% and (c) 35% minimum local whitespace. As the minimum whites-
pace requested approaches the total whitespace, the constraint becomes
more difficult to satisfy, but our techniques are successful in producing
solutions that are legal or nearly-legal for the majority of grid cells. . . . 69

5.1 HPWL (left), Steiner WL (center) and Rectilinear Minimal Spanning
Tree (MST) WL (right) for a five-pin net. 76

5.2 Comparing the accuracy of routed wirelength (rWL) estimators HPWL
(left lines), StWL (middle) and MST WL (right) for nets with 4-20 pins
in the vga lcd design from the IWLS 2005 benchmarks [72]. StWL
was calculated using FastSteiner [78]. 82

5.3 Calculating the three costs for weighted terminal propagation with StWL:
w1 (left), w2 (middle), and w12 (right). The net has five fixed termi-
nals: four above and one below the proposed cut-line. For the traditional
HPWL objective, this net would be considered inessential. Note that the
structure of the three Steiner trees may be entirely different, which is
why w1, w2 and w12 must be evaluated independently. 87

5.4 Minimizing StWL in top-down min-cut global placement. 90

5.5 Congestion maps for the ibm01h benchmark: uniform whitespace al-
location (produced with Capo -uniformWS) is illustrated on the left,
congestion-driven allocation in ROOSTER is illustrated on the right.
The peak congestion when using uniform whitespace is 50% greater than
that for our technique. When routed with Cadence WarpRoute, uniform
whitespace produces 3.95% overfull global routing cells and routes in
just over 5 hours with 120 violations. ROOSTER’s whitespace alloca-
tion produces 3.18% overfull global routing cells and routes in 22 min-
utes without violations. 98

5.6 The ICCAD’04-Faraday benchmarks placed by ROOSTER. Macros are
depicted with double outlines and are fixed. 104

5.7 Impact of individual optimizations on the rWL produced by ROOSTER.
“V” indicates violations in routing. 105

xiii

6.1 Legalization of a macro move in the ICCAD’04-Faraday design DSP1
[1]. In (a), the left-most macro is moved toward the north-west corner of
the design. This move causes overlap with standard cells and also areas
of empty space below and to the right of the macro. The remaining three
images are zoomed-in legal placements of this design. In (b), a greedy
algorithm which tries to minimize cell movement is applied. Overlap
is removed, but the empty space below and to the right of the macro
remain unutilized which can be detrimental to routability. (c) shows the
placement as legalized by our tool ECO-system. ECO-system improves
wirelength and makes use of much of the area vacated by the macro.
Lastly, (d) shows how ECO-system can distribute cells and whitespace
so as to ensure routability and/or satisfy minimum whitespace constraints. 109

6.2 Our top-down partitioning-based ECO placement algorithm. Lines 3-21
and 28 differ from traditional min-cut placement. 117

6.3 Fast legalization by ECO-system. The image on the left illustrates choos-
ing a vertical cut-line from an existing placement. Nets are illustrated
as red lines. Cells are individually numbered and take 2 or 3 sites each.
Cut-lines are evaluated by a left-to-right sweep (net cuts are shown above
each line). A cut-line that satisfies partitioning tolerances and minimizes
cut is found (thick green line). Cells are assigned to “left” and “right”
according to the center locations. On the right, placement bins are sub-
divided using derived cut-lines until (i) a bin contains no overlap and is
ignored for the remainder of the legalization process or, (ii) the place-
ment in the bin is considered too poor to be kept and is replaced from
scratch using min-cut or analytical techniques. 119

6.4 Algorithm for finding the best vertical cut-line from a placement bin.
Finding the best horizontal cut-line is largely the same process. Note
that the runtime of the algorithm is linear in the number of pins incident
to the bin, cells contained in the bin, and possible cut-lines for the bin. . 121

6.5 Shifting a cut-line chosen during ECO cut-line selection. Unlike the
WSA technique [92,93], cut-line shifting during ECO is not done on ge-
ometric cut-lines but instead on those cut-lines which are chosen during
fast cut-line selection. The image on the left shows a placement that has
been divided into bins during the course of ECO-system. In the image
on the right, the chosen cut-line of the bottom-right bin is shifted to the
right. The density of vertical lines represents the initial placement and
its scaling around the moving cut-line (shown in red). 124

xiv

6.6 Legalizing the placement of a new fixed obstacle at the center of the
ICCAD’04-Faraday design DSP1 [1]. The picture in the middle shows
the movement of standard cells to make room for the obstacle. Many
standard cells must move in order to accommodate the obstacle, but
ECO-system moves these cells on average only a short distance (1.27%
of the core half-perimeter) and is able to improve total HPWL. 126

6.7 Using ECO-system to perform body bias clustering. ECO-system refines
an initial placement and moves cells with the same bias into contigu-
ous regions to reduce the area overhead of adaptive body biasing while
preserving interconnect length. Cells are grouped into (a) 2 and (b) 3
bias clusters based on their power characteristics in an initial placement.
Cells with the same bias share the same color. 130

6.8 When applied to resized netlist, ECO-system produces a placement (right)
similar to the original placement (left). Fixed objects are outlined in dou-
ble black lines. The largest cell displacements are shown in red (center).
Only displacements larger than 1.5% of the half-perimeter of the design
are shown. Average displacement is 0.28% of the design half-perimeter.
The majority of the large displacements form around the corners of the
large, fixed obstacles. Many of these large displacements appear to be
clustered, indicating small groups of modules transported to another re-
gion of the core or spread to accommodate area increases. 138

7.1 Cost of a routing edge as a function of relative overflow. Cost is linear
while the edge is not overfilled, but grows exponentially once the edge
is overfull. 149

7.2 A comparison of the net decomposition techniques used by BoxRouter
[40], FastRoute 2.0 [110] and FGR. In Section 7.2.2, we compare the
use of RMSTs and RSMTs in FGR. 150

7.3 Re-routing a subnet and changing net topology in FGR. The shaded
boxes represent obstacles. The tree in (a) passes through a congested
segment in the middle which must be ripped up. The dashed arrows in
(b) represent several possible re-routings that a restructuring algorithm
may consider. The re-routings shown in (c) are two that FGR will con-
sider during DLM. Paths considered by FGR must start and end along
the endpoints of the segment that was removed. Both of these re-routings
reuse routing segments from the net and create new Steiner points if cho-
sen. The use of temporary zero-cost edges is required to preserve the
efficiency of A*-search. 152

7.4 Layer assignment in FGR. 153

xv

7.5 Violation count and wirelength on the two-dimensional ISPD ‘07 bench-
mark adaptec1 plotted as a function of (a) iteration number and (b)
time. Violation counts are plotted on a log-scale and decrease, while
wirelength is plotted on a linear scale and monotonically increases. Note
that the majority of DLM iterations occur when 100 or fewer violations
remain, but total wirelength noticeably increases during that phase. . . . 154

7.6 Violation count and wirelength plotted as a function of iteration num-
ber on two unroutable two-dimensional ISPD ‘07 benchmarks. In both
cases, FGR is stopped after a period of 24 hours. 155

7.7 Cumulative distributions of detouring without (above) and with (below)
net weighting on the two-dimensional newblue2 benchmark. Net de-
tours are measured as a ratio of routed net length to Steiner wirelength
as given by FLUTE [44]. When weights are applied to a subset of the
nets, the detouring on those nets goes down significantly without adverse
effects on the detouring of all nets. 165

8.1 Congestion map of the newblue1 two-dimensional benchmark as guided
by Sherpa. 168

8.2 The branch-free representation (BFR) of routed nets. Subnets are treated
separately and, when combined, form a completely routed solution with-
out duplicate edges. 169

8.3 Boxed A*-search versus monotonic and pattern routing. On the left, we
show an instance of the shortest- path problem with high bend costs.
Boxed A*-search with a Manhattan lower bound searches fewer grid
cells than monotonic routing to find the same solution. On the right,
blockages obstruct the path and cause monotonic routing to fail, but
boxed A*-search succeeds. 173

8.4 Global routing in Sherpa and the use of novel techniques such as a
branch-free representation (BFR) for routed nets, cyclical net locking
(CNL), dynamic adjustment of Lagrange steps (DALS) and a logarith-
mic penalty function (LPR). 177

8.5 Relevant multipliers in the dual Lagrange formulation. Like the original
formulation, each edge of the routing grid has a multiplier λ. In the dual
formulation, each net also has its own multiplier Λ. 180

xvi

8.6 New convex penalty function used by Sherpa. The function grows lin-
early until a routing edge uses 200% of its routing resources and loga-
rithmically thereafter. This radical departure from concave penalty func-
tions used by other routers is made possible by the strength of the under-
lying global routing algorithm and improves the handling of designs with
numerous violations. 182

9.1 (a) A placement with two congested areas. (b) CRISP inflates standard
cells in these regions, (c) and spreads them. 195

9.2 The CRISP incremental placement flow. 198

9.3 The CRISP algorithm for determining which cells to inflate per iteration. 199

9.4 (a) Placement of adaptec1 with 60% target density and (b) corre-
sponding congestion map. (c) Map of cells inflated during the first five
iterations of congestion elimination. Colors in (c) correspond to relative
inflation with red cells being the greatest followed by orange, yellow,
green, blue and violet. 200

9.5 Incrementally relieving congestion problems on a heavily congested in-
dustrial design with low whitespace. Areas colored pink and purple have
global routing resource usage over 100%. These areas are targeted by
CRISP and eliminated. 206

xvii

LIST OF TABLES

Table

2.1 Comparison of Capo’s performance at the ISPD 2006 Placement Con-
test. “Overflow” represents the HPWL penalty for not effectively en-
forcing density constraints on the benchmarks. Using the SCAMPI im-
provements, Capo’s HPWL is reduced by 7% overall. 35

4.1 Reallocation of whitespace in mPL6 [27] placements of selected ISPD
2006 contest benchmarks [102]. Local whitespace targets are the same
as from the ISPD 2006 placement contest. Density violations are mea-
sured as the percentage of total cell area that violates density constraints.
Using Capo 10.5 in ECO-system mode [117] in combination with our
whitespace allocation techniques, we are able to significantly reduce the
density violations of mPL6 placements. 59

4.2 Relevant characteristics of select benchmarks from the IWLS 2005 suite
[72]. “Grid size” is the size of the grid used for greedy cell movement. . 67

4.3 Correction of local density violations by greedy cell movement tech-
niques. Benchmarks are selected from the IWLS 2005 benchmark suite
and each have 38% total whitespace [72]. Density violations are mea-
sured as the percentage of total cell area that violates density constraints.
Greedy cell movement corrects all density violations when requested lo-
cal whitespace is 25% or less and in many cases improves HPWL as
well. 68

4.4 HPWL improvement due to flow-based whitespace redistribution on the
ICCAD 2004 IBM-MSwPins mixed-size benchmarks [1]. On average,
the flows are able to reallocate whitespace and improve HPWL by nearly
3% while scaling well with increasing quantities of movable objects. . . 71

xviii

5.1 Objectives of the Place-and-Route process and how they compare with
objectives of placement techniques. Traditional work on placement does
not optimize or even report the objectives most pertinent for Place-and-
Route. It is particularly difficult to optimize objectives that are mea-
sured relative to a given industrial router. We improve key objectives by
departing from traditional HPWL optimization. Optimizing congestion
estimates per se appears of limited use. 74

5.2 Fixed-outline floorplanning to minimize HPWL versus Steiner WL. All
StWLs were calculated using the Steiner evaluator FLUTE [44]. All
wirelength and runtimes are averaged over 50 runs. Optimizing Steiner
WL increases runtime by a minimum of 2.43x for n300 and a maximum
of 29.53x for ami33. 84

5.3 Runtime breakdown of global placement when minimizing StWL for
ibm01-easy of the IBMv2 series of benchmarks [143]. “Partitioning
problem construction” includes runtime for Steiner WL evaluators. . . . 92

5.4 Improving Steiner WL with FastSteiner [78]. Average HPWL, Steiner
WL and placement runtimes are shown for the IBMv2 benchmarks [143].
Results are the average of five independent runs. All wirelengths are in
meters. Optimizing StWL decreases StWL by 2.8%, increases runtime
by 36% and HPWL by 1.4%. 93

5.5 Statistics of the IBMv2 benchmarks [143]. 95

5.6 Detailed placement improves Steiner WL and routed WL. Average im-
provements and runtime (as a fraction of total placement time) from five
independent runs are shown for the IBMv2 benchmarks [143]. 96

5.7 Impact of Steiner evaluators during global placement (ibm01e). Total
StWL and global placement runtime are listed for all combinations of
three Steiner evaluators. In such combinations, the minimum Steiner
length estimate is used in weighted partitioning. 100

5.8 A comparison of our work to best published routing results on the IBMv2
benchmarks [143]. All routed wirelengths (rWL) are in meters. A ratio
greater than 1.0 indicates that our results are better on this benchmark
suite. For all cases, ROOSTER outperforms best published routing re-
sults in terms of routed wirelength and via count. Published routing data
for APlace 1.0 for ibm09-ibm12 is unavailable. Routing data for Capo
9.2, Dragon 3.01 and FengShui 2.6 were taken from [115] which did not
list via counts. Routing uses a 24-hour time-out. Best legal rWL and via
counts are in bold. 100

xix

5.9 A comparison of our work to the most recent version of mPL-R + WSA,
APlace 2.04 and FengShui 5.1 on the IBMv2 benchmarks [143]. All
routed wirelengths (rWL) are in meters. “Time” represents routing run-
time in minutes. Note that while APlace 2.04 achieves overall smaller
wirelength than ROOSTER, it routes with violations on 2 of the 16
benchmarks. Best legal rWL and via counts are in bold. 101

5.10 Results when applying various post-processors to our placements for the
IBMv2 benchmarks [143]. All routed wirelengths (rWL) are in meters.
“Time” represents routing runtime in minutes. WSA shows improve-
ment on some of our placements, but increases routed wirelength and
via counts on the largest benchmarks. The detailed placers of Dragon 4.0
and FengShui 5.1 decrease the routability of our placements by increas-
ing rWL and via count on all benchmarks and the addition of violations.
Best legal rWL and via counts are in bold. 102

5.11 A comparison of ROOSTER to Cadence AmoebaPlace on the IWLS
2005 Benchmarks [72]. All routed wirelengths (rWL) are in meters.
“Time” represents routing runtime in minutes. ROOSTER is outper-
forms AmoebaPlace by 12.0% in rWL and 1.1% in via counts (without
orientation constraints the improvements are 26.5% and 3.2%, respec-
tively). Best rWL and via counts are in bold. 103

5.12 Routing results on the Faraday benchmarks with movable macro blocks
fixed [1]. All routed wirelengths (rWL) are in meters. “Time” represents
routing runtime in minutes. Best rWL and via counts are highlighted. . . 104

5.13 The impact of replacing HPWL (for high degree nets) and StWL (for all
nets) with MST as the wirelength evaluator for ROOSTER on the IBMv2
benchmarks. All routed wirelengths (rWL) are in meters. “Time” repre-
sents routing runtime in minutes. The ratios are with respect to ROOSTER’s
performance described in Table 5.8. Legal improvements to ROOSTER
in rWL and via counts are highlighted in bold. 106

6.1 A comparison of several legalization and incremental placement tech-
niques. For each of the techniques, its compatibility with fixed objects
or macros as well as what general techniques it uses are listed. ECO-
system is compared with XDP [52] in Section 6.5. (†) Support of the
feature by this technique is unclear. See Section 6.1 for more details. (‡)
Recent versions of Capo, the basis of ECO-system, use linear program-
ming and network flows in detailed placement, but they are beyond the
scope of this work. 111

xx

6.2 Overlap legalization on the IBM-MSwPins [1] and ISPD’05 Contest
benchmarks [104]. “Area Ratio” represents the change in total cell area
after resizing. Overlap is measured as % of the total movable cell and
macro area. Full data for the ISPD’05 benchmarks can be found in
[117]. ECO-system requires significantly more runtime than the Capo
10 legalizer [115], and approximately 16% of the original placement
time. ECO-system increases HPWL by 0.61% on average while the
Capo 10 legalizer increases HPWL by 3.93% on the IBM-MSwPins
benchmarks. On the ISPD’05 Contest benchmarks ECO-system de-
creases HPWL by 1.00% on average while the Capo 10 legalizer in-
creases HPWL by 4.28%. 133

6.3 Overlap legalization on the IWLS 2005 Benchmarks [72]. “Area Ratio”
represents the change in total cell area after resizing. Overlap is mea-
sured as % of the total movable cell area. ECO-system decreases HPWL
by 1.81% on average while the Capo 10 legalizer increases HPWL by
1.85%. 135

6.4 Overlap legalization of APlace 2.04’s [82] global placements of the ISPD’05
Contest benchmarks [104]. Overlap is measured as % of the total mov-
able cell area. ECO-system produces legal solutions with nearly the
same or better HPWL than APlace 2.04’s legalizer. APlace’s legalizer in-
creases HPWL by 4.91% while ECO-system increases HPWL by 3.68%
and only 2.35% when using shifting. ECO-system with shifting is faster
on 7 of the 8 benchmarks and four times faster than APlace’s legalizer
overall. 136

6.5 Improving the routability of analytical placements using ECO-system.
We compare the routability of mPL6 [27] global placements when using
mPL6’s detailed placer (XDP [52]) vs. ECO-system with cut-line shift-
ing for detailed placement on the IBMv2 benchmark suite [143]. Best
legal routed wirelength (Rt WL) and via counts are highlighted in bold.
ECO-system produces routable placements in all cases, reduces routed
wirelength by 1.1% and via counts by 7.8%, and cuts routing runtime by
more than half. 139

6.6 Improving the routability of analytical placements in the presence of
fixed obstacles in the ISPD’04-Faraday benchmark suite [1]. We post-
process mPL6 [27] global placements using mPL6’s detailed placer and,
separately, our ECO-system (with cut-line shifting). The mPL6 detailed
placer XDP [52] produces largely unroutable placements. 140

xxi

7.1 Routed cost breakdown of FGR’s solutions to the ISPD ‘07 Global Rout-
ing Contest benchmarks [71]. “FLUTE Ratio” is the ratio of the length
of routing segments used to the Steiner tree length of all nets as com-
puted by FLUTE [44]. Vias account for more than 25% of total cost in
every two-dimensional benchmark and more than 50% of total cost in
each three-dimensional benchmark, highlighting the importance of via
minimization. 157

7.2 Statistics of the ISPD ‘98 IBM benchmark suite [70]. Runtimes for
BoxRouter [40] and FGR are given in seconds. FGR is faster than
BoxRouter on 7 of the 10 benchmarks and uses 35% less runtime to
solve the entire suite. 158

7.3 Comparison of FGR to FastRoute 2.0 [110] and BoxRouter [40] on the
ISPD ‘98 IBM benchmark suite [70]. FGR completes all 10 of the
benchmarks while BoxRouter and FastRoute 2.0 leave overflow on 4
and 3 of the benchmarks, respectively. In terms of routed wirelength,
FGR outperforms BoxRouter by 2.7% and FastRoute 2.0 by 3.6%. . . . 159

7.4 Statistics of the ISPD ‘07 Global Routing Contest benchmarks [71]. For
FGR we list runtime (in minutes), the number of iterations of rip-up-and-
re-route (which are very similar for two- and three-dimensional vari-
ants), and maximum memory usage, which is significantly greater for
three-dimensional than for two-dimensional variants. 160

7.5 Comparison of FGR to the other top-three routers at the ISPD ‘07 Global
Routing Contest [71]. FGR routes as many benchmarks without over-
flow as the winners of the contest with 7.0% better wirelength than
the best of BoxRouter [40] and MaizeRouter [99]. *The adaptec4
three-dimensional and newblue2 three-dimensional benchmarks were
routed using FGR’s option “-full3d”. 161

7.6 Comparing net decomposition by MST versus Steiner trees on the ISPD
‘07 benchmarks [71]. Time taken for decomposition by MST or Steiner
trees is less than 1 minute on all benchmarks. While using Steiner tree
decompositions results in a reduction in routed segment length of 0.5%,
it increases via counts by 1.8% and thus increases the total cost of routing
solutions by 0.7%. Decomposition by Steiner trees increases routing
time by 22%. 162

7.7 Comparing layer assignment with full three-dimensional routing on the
three-dimensional instances of the ISPD ‘07 benchmarks [71]. Total cost
of the better solution (compared first by overflow then total cost) for each
benchmark is highlighted. 163

xxii

8.1 Key techniques used by Sherpa. 172

8.2 Sherpa compared with published results of Archer [108], BoxRouter
2.0 [42] and FGR on the ISPD’07 benchmark suite [71]. Sherpa is run
in a default configuration for each benchmark. For Archer and FGR, we
compare against un-tuned results where runtimes were reported. (†) Re-
sults of Archer were produced on 3.6GHz Intel Xeon processors while
FGR and Sherpa were run on 2.4GHz AMD Opterons. We ran speed
tests on similar machines and them to be 1.67x faster, so Archer run-
times have been scaled up by 1.67x to facilitate comparisons. (‡) Ac-
cording to [108, Section 6], Archer did not use a default configuration
on newblue3, despite the claim in the caption of [108, Table 1]. Thus,
we do not include newblue3 in runtime comparisons with Archer. . . 186

9.1 Using ECO-system [117], the Bonn flow [16] and CRISP to improve the
routability of unroutable mPL6 [28] placements of ISPD contest bench-
marks [105, 106]. We were unable to produce unroutable placements
of bb3 or nb2 with mPL6. We exclude nb3 because it is trivially un-
routable. Detouring is measured as the ratio of global routing segments
to FLUTE [44] Steiner wirelength. † NTHU-Route crashed on three in-
stances, ending CRISP prematurely. 202

9.2 Using ECO-system [117], the Bonn flow [16] and CRISP to improve the
routability of routable mPL6 [28] placements of ISPD contest bench-
marks [105, 106]. Detouring is measured as the ratio of global routing
segments to FLUTE [44] Steiner wirelength. 203

9.3 CRISP’s global routing and timing impact on commercial designs. For
congestion we report the percentage of nets which are at least 90% and
100% congested. Fewer nets congested implies better routability. 207

9.4 Impact of pin-density CRISP on high-performance commercial designs. 208

xxiii

PART I

Background

CHAPTER I

VLSI Physical Design at the Nanometer Scale

1.1 Challenges in VLSI Physical Design

Very Large Scale Integration (VLSI) circuit design has reached unheralded scope, and

projections show a steady increase in size and complexity as the industry moves further

into the nanometer scale. State-of-the-art systems-on-chip routinely have tens of mil-

lions of standard cells and signal nets. Therefore, powerful and scalable techniques for

placement and routing are crucial to enable designs to reach design closure, i.e., satisfy-

ing all constraints and objectives such as power limits, clock-cycle times and yield targets.

Without powerful techniques, designs often require multiple iterations which include time-

consuming manual changes performed by designers.

Recently there has been much interest in estimating the amount of improvement left in

1

placement optimization [30]. The gap between optimal and practically achievable solu-

tions is usually explained by the difficulty of optimization and shortcomings of individual

algorithms. We point out another major source of sub-optimality in physical design —

minimizing wrong objective functions, whether optimally or not.

In a modern nanoscale design flow, circuit and system optimizations must interact

with physical aspects of the design. For example, improvements in timing and power

may require replacing large modules with variants that have different power/delay trade-

offs, shapes and connectivity. New logic may be added late in the design flow, subject to

interconnect optimization. To support such flexibility in design flows, a robust system for

performing Engineering Change Orders (ECOs) is necessary, but no such system has been

previously detailed in the literature. In fact, there is considerable disagreement as to what

sorts of incremental design changes must be supported by an ECO tool.

In order to accurately evaluate timing and other design characteristics, routing must

take place to connect design components with wire. VLSI routing is an active area of

research and development with a growing body of literature [7, 40, 64, 109, 110]. Current

efforts in routing are motivated primarily by challenges present at the nanometer scale.

Such challenges include an explosion in design rules which must be obeyed to promote

manufacurability and yield and satisfying density constraints to prevent both uneven chip

wear during chemical mechanical polishing (CMP) [41] and the impact of capacitance on

interconnect delay. To route designs effectively while solving these problems, powerful,

efficient (both in terms of CPU and memory resources), and flexible routing infrastructure

must be developed.

2

1.2 Our Approach

We identify new objectives, constraints and concerns in VLSI physical design, and

develop new computational techniques to address them. Our goal is to reduce the number

of iterations necessary to achieve nanometer design closure by improving the solution

quality and robustness of tools as well as making optimizations more consistent across

different “point” tools in a modern design flow. Therefore, our work spans the usually

distinct tasks of global placement, detailed placement and global routing.

Traditional VLSI placement tools minimize the half-perimeter wirelength (HPWL) of

a design rather than more relevant metrics such as timing or more accurate predictors of

routed wirelength. HPWL is easy to compute, but badly underestimates routed wirelength

for nets with more than a few pins. It is well-known that routers build Steiner trees to

produce the best results, so we examine the minimization of Steiner-tree wirelength in

global and detailed placement. Our work leverages existing research on Rectilinear Steiner

Minimal Tree (RSMT) construction, and our placer ROOSTER (Rigorous Optimization

Of Steiner Trees Eases Routing) is the first in the literature to target Steiner-tree length

in global placement. By minimizing Steiner-tree length in global and detailed placement

combined with routability-driven whitespace allocation, ROOSTER outperforms the vast

majority of published results in routed wirelength and routing time. More importantly at

the nanometer scale, ROOSTER produces best published results in via counts on a wide

variety of publicly available benchmarks.

To preserve design properties across optimizations, Engineering Change Orders (ECOs)

and design iterations, a fast and robust incremental placement technique is necessary. We

3

build upon the well-known, robust and scalable min-cut placement framework to perform

incremental placement. In contrast with existing stand-alone tools that offer poor inter-

faces to the design flow and cannot handle a full range of modern VLSI layouts, our incre-

mental placer ECO-system reliably handles fixed objects and movable macros in instances

with widely varying amounts of whitespace. It detects geometric regions and sections

of the netlist that require modification and applies an adequate amount of change in each

case. Given a reasonable initial placement, it applies minimal changes, but is capable of re-

placing large regions to handle pathological cases. ECO-system can be used in the range

from high-level synthesis, to physical synthesis and detailed placement. ECO-system is

many times faster than a global placer, increases wirelength only slightly, and has minimal

impact on timing.

To tackle the wide range of issues in VLSI routing at the nanometer scale, we build

a global routing framework based on a new computational technique Discrete Lagrange

Multipliers (DLM) which has been validated for two- and three-dimensional routing of

ASICs with millions of nets. Our framework, which we call FGR (Fairly Good Router),

outperforms the best results from the ISPD 2007 Global Routing Contest, as well as pre-

vious literature, in terms of route completion, runtime and total wirelength.

Working on both placement and routing offers a unique opportunity to improve the

design closure process. Even though placement and routing are usually seen as separate

tasks with differing goals, we contend that they should be treated as a single step. Thus, we

incorporate global routing operations into placement with CRISP (Congestion Reduction

by Iterated Spreading during Placement). CRISP uses actual congestion information from

4

a global router rather than estimates from probabilistic congestion maps. CRISP closes

the gap between placement and routing in modern design flows, improving overall design

quality and reducing time for design closure.

1.3 Organization of the Thesis

The remainder of this dissertation is organized as follows. Part I outlines relevant

background in VLSI placement in Chapter II and routing in Chapter III. Part II covers

our work in VLSI placement. Chapter IV describes methods for accurately controlling

whitespace allocation during placement. Chapter V introduces the ROOSTER placer and

details our techniques for improving routability in placement without the aid of a global

router. Chapter VI presents our work on incremental placement called ECO-system. Part

III describes the framework we have developed for global routing, FGR, in Chapter VII

and proposes several extensions. Chapter VIII describes FGR’s efficient data structures,

extending FGR’s discrete Lagrange formulation, and improving FGR’s runtime and so-

lution quality. Part IV presents integration of global routing into modern design flows.

Chapter IX describes the CRISP incremental routability enhancing technique which inter-

leaves calls to a global router with placement manipulation and spreading to improve both

global and detailed routability. Part V summarizes the dissertation and discusses directions

for future work in Chapter X.

5

CHAPTER II

State of the Art in Partitioning-based VLSI Placement

Using balanced min-cut partitioning in placement was described by Breuer in 1977

[19] and was employed by both IBM and Bell Labs at least ten years earlier. Min-cut plac-

ers use a scalable and extensible divide-and-conquer algorithmic framework and tend to

produce routable placements [21]. This success has motivated much research in efficient

partitioning algorithms []. Recent work in partitioning-based placement offers extensions

to block placement and large-scale mixed-size placement [37, 50, 115], and robust incre-

mental placement [117].

Over the years, partitioning-based placement has seen many revisions and enhance-

ments, but the underlying framework (illustrated in Figure 2.1) remains much the same.

Top-down partitioning-based placement algorithms seek to decompose a given placement

instance into smaller instances by sub-dividing the placement region, assigning modules

to subregions and cutting the netlist hypergraph [19,58]. The top-down placement process

can be viewed as a sequence of passes where each pass examines all bins and divides some

of them into smaller bins. Most commonly the division step is accomplished with balanced

min-cut partitioning that minimizes the number of signal nets connecting modules in mul-

6

ALGORITHM 2.1: Partitioning-based placement
¤ Input: queue of placement bins Q , netlist to place
¤ Output: placements of all the movable objects in netlist

1 while (EMPTY(Q) = FALSE)
2 do bin ← DEQUEUE(Q)
3 if (DETERMINEBINSIZE(bin) = SMALL)
4 then CALLENDCASEPLACER(bin)
5 else direction ← CHOOSECUTLINEDIRECTION(bin)
6 cutline ← CHOOSECUTLINEPOSITION(bin, direction)
7 graph ← BUILDPARTITIONINGGRAPH(bin, cutline, netlist)
8 childBins ← CALLPARTITIONER(bin, cutline, graph)
9 ENQUEUE(Q , childBins)

Figure 2.1: Traditional top-down partitioning-based placement.

tiple regions [19]. These techniques leverage well-understood and scalable algorithms for

hypergraph partitioning and typically lead to routable placements [21].

This chapter details partitioning-based placement techniques and illustrates how they

are used in state-of-the-art min-cut placers. Section 2.1 introduces the basic framework

for min-cut partitioning-based placement. Next, Section 2.2 presents recent enhance-

ments to min-cut placement. Section 2.3 describes adapting partitioning based methods to

mixed-size placement. Lastly, Section 2.4 discusses state-of-the-art min-cut placers such

as Dragon [129, 130, 143], FengShui [6, 86], NTUPlace2 [74] and Capo [107, 115–117,

119, 120] and illustrates how they differ from the min-cut framework and each other.

2.1 Top-down Partitioning Framework for Placement

The underlying min-cut partitioning framework remains mostly the same since Breuer’s

work in 1977 [19], and is illustrated in Figures 2.1 and 2.2. The placement region is repre-

sented by a series of placement bins which represent (i) a placement region with allowed

module locations (sites), (ii) a collection of circuit modules to be placed in this region,

7

(iii) all signal nets incident to the modules in the region, and (iv) fixed cells and pins

outside the region that are adjacent to modules in the region (terminals).

Min-cut partitioning-based placers generally proceed by dividing the netlist and place-

ment area into successively smaller pieces until the pieces are small enough to be handled

efficiently by optimal end-case placers [23]. State-of-the-art placers generally use a wide

range of hypergraph partitioning techniques to best fit partitioning problem size — op-

timal (branch-and-bound [23]), middle-range (Fiduccia-Mattheyses [59]) and large-scale

(multi-level Fiduccia-Mattheyses [22, 84]). Min-cut placement is highly scalable (due in

large part to algorithmic advances in min-cut partitioning [22, 59, 84]) and typically pro-

duces routable placements.

In this section, we introduce topics relevant to top-down partitioning-based placement

that must be addressed by all modern min-cut placers. Specifically we discuss terminal

propagation, bipartitioning vs. multi-way partitioning, cut-line selection and whitespace

(or free space) allocation.

2.1.1 Terminal Propagation

Proper handling of terminals is essential to the success of top-down placement ap-

proaches [23,58,68,128]. When a particular placement bin is split into multiple sub-bins,

some of the cells inside may be tightly connected to cells outside of the bin. Ignoring

such connections can adversely affect the quality of a placement since these connections

can account for significant amounts of wirelength. On the other hand, these terminals are

irrelevant to the classic partitioning formulation as they cannot be freely assigned to par-

titions. A compromise is possible by using an extended formulation of “partitioning with

8

(a) (b)

Figure 2.2: (a) Top-down bisection-based placement. The placement area and netlist are
successively divided into placement bins until the bins are small enough for
end-case placement. (b) Terminal propagation is an important enhancement
to top-down bisection-based placement. The net has five fixed terminals (four
above and one below the cut-line) and movable cells which are represented
by the cell with a dashed outline. The fixed terminals above the cut-line are
propagated to the black circle at the top of the bin; the fixed terminal below
the cut-line is propagated to the black circle below the cut-line; and movable
cells remain unpropagated. Note that the net is inessential since terminals are
propagated to both sides of the cut-line [116].

fixed terminals”, where the terminals are considered to be fixed in (“propagated to”) one

or more partitions, and assigned zero areas (original areas are ignored) [58]. Nets which

are propagated to both partitions in bipartitioning are considered “inessential” since they

will always be cut and can be safely removed from the partitioning instance to improve

runtime [23]. Terminal propagation is typically driven by geometric proximity of termi-

nals to bins. Figure 2.2 depicts terminal propagation for a net with fixed terminals. This

net is inessential as it has terminals propagated to both sides of the cut-line.

2.1.2 Bipartitioning versus Multi-way Partitioning

In his seminal work on min-cut placement, Breuer introduced two forms of recur-

sive min-cut placement which he called slice/bisection and quadrature [19]. The style of

min-cut placement most commonly used today, which is known as bipartitioning or bisec-

tion, has grown from the quadrature technique which advocated the use of horizontal and

9

vertical cuts; the slice/bisection technique used only horizontal cuts and exhibited worse

performance than quadrature [19].

Since that time, horizontal and vertical cut-lines have been standard in all placement

techniques, but there has been debate as to whether there should be an ordering to the cuts

(i.e., horizontally bisect a bin then vertically bisect its children as in quadrature [19]) or

both cuts should be done simultaneously as in quadrisection [128]. Quadrisection has been

shown to allow for the optimization of techniques other than min-cut (such as minimal

spanning tree length [68]), but terminal propagation is more complex when splitting a

bin into four child bins instead of two. Also, bisection can simulate quadrisection with

added flexibility in cut-line selection and shifting (see Section 2.1.3) [115]. There are

currently no known methods that use greater than 4-way partitioning and the vast majority

of partitioning-based placement techniques involve min-cut bipartitioning.

2.1.3 Cut-line Selection and Shifting

Breuer studied two types of cut-line direction selection techniques and found that al-

ternating cut-line directions from layer to layer produced better half-perimeter wirelength

(HPWL) than using only horizontal cuts [19]. The authors of [131] studied this phe-

nomenon further by testing 64 cut-line direction sequences. Their experiments did not

find that the two cut-sequences that alternate at each layer were the best, but did find that

long sequences of cuts in the same direction during placement was detrimental to per-

formance [131]. The authors of [145] developed a dynamic programming technique to

choose optimal cut sequences for partitioning based placement, but also found that nearly

optimal cut sequences could be determined from the aspect ratio of the bin to be split.

10

After cut-line direction is chosen, partitioning-based placers generally choose the cut-

line that best splits a placement bin in half in the desired direction. Cut-lines are generally

aligned to placement row and site boundaries to ease the assignment of standard-cells to

rows near the end of global placement [21]. After a bin is partitioned, the initial cut-line

may be moved, or shifted, in order to satisfy other objectives such as whitespace allocation

or congestion reduction.

2.1.4 Whitespace Allocation

Management of whitespace (also known as free space) is a key issue in physical design

as it has a profound effect on design routability, bufferability, spare-cell insertion, etc.

Applications of whitespace allocation are covered in greater detail Chapters IV-VI and IX.

The amount of whitespace in a design is the difference between the total placeable area

in a design and the total movable cell area in the design. A natural scheme for managing

whitespace in top-down placement, uniform whitespace allocation, was introduced and

analyzed in [24]. Let a placement bin which is going to be partitioned have site area

S, cell area C, absolute whitespace W = max{S − C, 0} and relative whitespace w =

W/S. A bipartitioning divides the bin into two child bins with site areas S0 and S1 such

that S0 + S1 = S and cell areas C0 and C1 such that C0 + C1 = C. A partitioner is

given cell area targets T0 and T1 as well as a tolerance τ for a particular bipartitioning

instance. In many cases of bipartitioning, T0 = T1 = C
2

, but this is not always true [10].

τ defines the maximum percentage by which C0 and C1 are allowed to differ from T0 and

T1, respectively.

The work in [24] bases its whitespace allocation techniques on whitespace deteriora-

11

tion: the phenomenon that discreteness in partitioning and placement does not allow for

exact uniform whitespace distribution. The whitespace deterioration for a bipartitioning

is the largest α, such that each child bin has at least αw relative whitespace. Assum-

ing non-zero relative whitespace in the placement bin, α should be restricted such that

0 ≤ α ≤ 1 [24]. The authors note that α = 1 may be overly restrictive in practice because

it induces zero tolerance on the partitioning instance but α = 0 may not be restrictive

enough as it allows for child bins with zero whitespace, which can improve wirelength but

impair routability [24].

For a given block, the feasible ranges for partition capacities are determined by α. The

partitioning tolerance τ for splitting a block with relative whitespace w is (1−α)w
1−w

. The

challenge is to determine a proper value for α. First assume that a bin is to be partitioned

horizontally n times more during the placement process. n can be calculated as dlog2 Re

where R is the number of rows in the placement bin. Assuming end-case bins have α = 0

since they are not further partitioned, w, the relative whitespace of an end-case bin, is

determined to be τ
τ+1

where τ is the tolerance of partitioning in the end-case bin [24].

Assuming that α remains the same during all partitioning of the given bin gives a sim-

ple derivation of α = n

√
w
w

. A more practical calculation assumes instead that τ remains

the same over all partitionings. This leads to τ = n

√
1−w
1−w
− 1. w can be eliminated from

the equation for τ and a closed form for α is derived: α =
n+1√1−w−(1−w)

w(n+1√1−w)
[24].

Free Cell Addition. One method of non-uniform whitespace allocation in placement,

was presented in [5]. To achieve a non-uniform allocation of whitespace, free cells (stan-

dard cells that have no connections in the netlist) are added to the design which is then

12

placed using uniform whitespace allocation. Care must be taken not to add too many cells

to the design which can complicate the work of many placement algorithms, increasing

interconnect length or leading to overlapping circuit modules [50].

2.2 Enhancements to the Min-cut Framework

This section describes several techniques which are recent improvements to the min-

cut partitioning-based framework presented in Section 2.1. These techniques range from

fairly simple yet effective techniques such as repartitioning and placement feedback to

changes in the optimization goals of min-cut placement, as in weighted net-cut.

2.2.1 Better Results Through Additional Partitioning

Huang and Kahng introduced two techniques for improving the results of quadrisection

based placement known as cycling and overlapping [68]. Cycling is a technique whereby

results are improved by partitioning every placement bin multiple times for each layer [68].

After all bins are split for the first time in a layer of placement, a new round of partitioning

on the same bins is done using the results of the previous round for terminal propagation.

These additional rounds of partitioning are repeated until there is no further improvement

of a cost function [68]. A similar type of technique was presented for min-cut bisection

called placement feedback. In placement feedback, bins are partitioned multiple times,

without requiring steady improvement in wirelength, to achieve more consistent terminal

propagation [79].

Placement feedback serves to reduce the number of ambiguously propagated termi-

nals. Ambiguity in terminal propagation arises when a terminal is nearly equidistant from

13

the centers of the child bins of the bin being partitioned. In such cases it is unclear as to

what side of the cut-line the terminal should be propagated. Traditional choices for such

terminals are to propagate them to both sides or neither side of the cut-line in fear of mak-

ing a poor decision [79]. Ambiguously propagated terminals introduce non-determinism

into min-cut placement as they may be propagated differently based on the order in which

placement bins are processed [79].

To reduce the number of ambiguously propagated terminals, placement feedback re-

peats each layer of partitioning n times. Each successive round of partitioning uses the

resulting locations from the previous partitioning for terminal propagation. The first round

of partitioning for a particular layer may have ambiguous terminals, but the second and

later rounds will have reduced numbers of ambiguous terminals making terminal propa-

gation more robust [79]. Empirical results show that placement feedback is effective in

reducing HPWL, routed wirelength and via count [79].

The technique of overlapping also involves additional partitioning calls during place-

ment [68]. While doing cycling in quadrisection, pieces of neighboring bins can be co-

alesced into a new bin and split to improve solution quality [68]. Brenner and Rohe in-

troduced a similar technique called repartitioning which was designed to reduce conges-

tion [16]. After partitioning, congestion was estimated in the placement bins of the design.

Using this congestion data, new partitioning problems were formulated with all neighbors

of a congested area. Solving these new partitioning problems would spread congestion to

neighboring areas of the placement while possibly incurring an increase in net length [16].

Capo [107, 115–117, 119, 120] repartitions bins similarly, but for the improvement of

14

HPWL. After the initial solution of a partitioning problem is returned from a min-cut

partitioner, Capo has the option of shifting the cut-line to fulfill whatever whitespace re-

quirements may be asked of it. A shift of the cut-line, though, represents a change in the

partitioning problem formulation (as the initial partitioning problem was built assuming

a different cut-line which can have a significant effect on terminal propagation). Thus,

the partitioning problem is rebuilt with the new cut-line location and solved again to im-

prove wirelength. The repartitioning does not come with a significant runtime penalty

because the initial partitioning solution is reused and modified by flat passes of a Fiduccia-

Mattheyses [59] partitioner.

2.2.2 Fractional Cut

When a placement bin is split with a vertical cut-line, there are generally many pos-

sible cut-lines that can split the bin roughly equally since the size of sites in row-based

placement is generally small. On the other hand, row heights are generally non-trivial as

compared to the height of the core placement area. Since standard cells are ultimately

placed in rows, most min-cut placers choose to align cut-lines to row boundaries [21]. The

authors of [6] note that this causes the “narrow region” problem which leads to instability

in min-cut placement.

The “narrow region” problem becomes an issue when bins become tall and narrow. In

such cases, a narrow bin may contain enough area to fit a group of standard cells, but it

may not be possible to assign cells to legal locations within the bin; or the number of legal

solutions is so small that net-cut is artificially increased as a result [6]. Take for example a

placement bin that encompasses two adjacent rows, each four units in length. If we have

15

one cell with length five units and another with length two units, there is no way to legally

place them in the rows, yet total area constraints are satisfied.

To remedy this situation, the authors of [6] propose using a “fractional cut”: a hori-

zontal cut-line that is allowed to pass through a fraction of a row. As horizontal cut-lines

do not necessarily align with rows, cells must be assigned to rows before optimal end-case

(typically single-row) placers can be used [6]. To legalize the placement, one proceeds on

a row-by-row basis. Each cell is tentatively assigned to a preferred height in the place-

ment: the center of its placement bin. Starting with the top-most row, cells are assigned to

rows so as to minimize the cost of assigning cells. If a cell is assigned to the current row,

its cost is the squared distance from its preferred position to the current row. If a cell is

not assigned to the current row, its cost is the squared distance from its preferred position

to the next lower row [6]. After all cells are assigned to rows, they are sorted by their x

coordinates and packed in rows to remove any overlaps. The assignment of cells to rows

is achieved efficiently by a dynamic programming formulation [6]. Experimental results

show considerable improvements in terms of HPWL reduction in placement, but packing

of cells in rows does not generally produce routable placements [116].

2.2.3 Analytical Constraint Generation

The authors of [10] note that min-cut placement techniques are effective at reducing

HPWL of designs that are heavily constrained in terms of whitespace, but do not perform

nearly as well as analytical techniques when there are large amounts of whitespace. The

authors suggest that one reason for the discrepancy is that min-cut placers generally try to

divide placement bins exactly in half with a relatively small tolerance. This tends to spread

16

cell area roughly uniformly across the core area. Increasing the tolerance for partitioning

a bin can allow for less uniformity in placement and lower HPWL due to tighter packing,

but still does not reproduce the performance of analytical techniques [10].

To improve the HPWL performance of min-cut placement techniques on designs with

large amounts of whitespace (which are becoming increasingly popular in real-world de-

signs), while still retaining the good performance of min-cut techniques when there is

limited whitespace, the authors of [10] suggest integrating analytical techniques and min-

cut techniques. Before constructing a partitioning instance for a given placement bin,

an analytical technique is run on the objects in the bin to minimize their quadratic wire-

length [10]. Next, the center of mass of the placement of the objects of the bin is calculated.

This points to roughly where the objects should go to reduce their wirelength. Then one

constructs a rectangle having the same aspect ratio as the placement bin and having the

same area as the total area of movable objects in the bin. Let A be the total area of cells

in the bin, H be the height of the bin and W the width of the bin. The height and width

of such a rectangle can be calculated as follows: rectangle height RH =
√

A∗H
W

and rect-

angle width RW =
√

A∗W
H

[10]. One centers this rectangle at the center of mass of the

analytical placement and intersects the rectangle with the proposed cut-line of the bin. The

amount of area of the rectangle that falls on either side of the cut-line is used as a target

for min-cut partitioning [10]. As most min-cut partitioners chose to split cell area equally,

this is a significant departure from traditional min-cut placement.

Empirical results suggest that analytical constraint generation (ACG) is effective at im-

proving the performance of min-cut placement on designs with large amounts of whites-

17

pace while retaining the good performance of min-cut placers on constrained designs while

not impairing the routability of designs [10]. This performance comes at the cost of ap-

proximately 28% more runtime [10].

2.2.4 Better Modeling of HPWL by Partitioning

It is well-known that the min-cut objective in partitioning does not accurately represent

the wirelength objective of placement [68, 123]. Optimizing HPWL and other objectives

directly through partitioning can provide improvements over min-cut. Huang and Kahng

showed that net weighting and quadrisection can be used to minimize a wide range of ob-

jectives such as minimal spanning tree cost [68]. Their technique consists of computing

vectors of weights for each net (called net-vectors) and using these weights in quadrisec-

tion [68]. Although this technique can represent a wide range of cost functions to min-

imize, it requires the discretization of pin locations into the centers of bins and requires

that sixteen weights must be calculated per net for partitioning [68].

The authors of [123] introduce a new terminal propagation technique in their placer

THETO that allows the partitioner to better map net-cut to HPWL. The terminal propaga-

tion in THETO differs from traditional terminal propagation in that each original net may

be represented by one or two nets in the partitioned netlist, depending on the configura-

tion of the net’s terminals. Two special cases — nets with no terminals and inessential

nets — are treated the same as in traditional terminal propagation. Five other cases are

analyzed in [123], based on the configuration of terminals relative to the centers of the

child bins, and proper weight computation is described (one case requires two nets). This

way weighted net-cut better represents the “HPWL degradation” seen after partitioning.

18

Empirically, this terminal propagation and net weighting are shown to reduce HPWL.

This technique is simplified in [37] and reduced to the calculation of three wirelengths

per net per partitioning instance (w1, w2 and w12) which completely determine the connec-

tivity and costs of all nets in the derived partitioning hypergraph. While this formulation

is more compact than that in [123], it is also more general. For each net in each partition-

ing instance, one must calculate the cost of all nodes on the net being placed in partition

1 (w1), the cost of all nodes on the net being placed in partition 2 (w2), and the cost of

all nodes on the net being split between partitions 1 and 2 (w12). Up to two nets can be

created in the partitioning instance, one with weight |w1 − w2| and the other with weight

w12 − max(w1, w2). The only assumption made in [37] is that w12 ≥ max(w1, w2).

With these costs and the corresponding connectivity of the derived hypergraph, minimiz-

ing weighted net-cut directly corresponds to minimizing HPWL.

2.3 Mixed-size Placement

Mixed-size placement, the placement of large macros in addition to standard cells, has

become a relevant challenge in physical design and is poised to dominate physical de-

sign in the near future as the industry moves from traditional “sea of cells” ICs to “sea

of hard macros” SoCs [140]. To keep up with this shift in physical design, several tech-

niques for partitioning based mixed-size placement have been proposed and are described

in this section. These techniques include “floorplacement,” fast look-ahead block-packing

in PATOMA, and fractional cut.

2.3.1 Floorplacement

19

ALGORITHM 2.2: Min-cut floorplacement
¤ Input: queue of placement bins Q , netlist to place
¤ Output: placements of all the movable objects in netlist

1 while (EMPTY(Q) = FALSE)
2 do bin ← DEQUEUE(Q)
3 if (BINHASLARGEMACRO(bin) = TRUE

or GETNUMBEROFMACROS(bin) ≥ MACROTHRESHOLD

or ISBINMERGED(bin) = TRUE)
4 then CLUSTERSTDCELLSINTOSOFTMACROS(bin)
5 success ← CALLFIXEDOUTLINEFLOORPLANNER(bin)
6 if (success = TRUE)
7 then FIXMACROLOCATIONS(bin)
8 REMOVESITESBELOWMACROS(bin)
9 else newBin ← MERGEBINWITHPARTITIONINGSIBLING(bin)

10 MARKBINASMERGED(newBin)
11 ENQUEUE(Q , newBin)
12 else if (DETERMINEBINSIZE(bin) = SMALL)
13 then CALLENDCASEPLACER(bin)
14 else direction ← CHOOSECUTLINEDIRECTION(bin)
15 cutline ← CHOOSECUTLINEPOSITION(bin, direction)
16 graph ← BUILDPARTITIONINGGRAPH(bin, cutline, netlist)
17 childBins ← CALLPARTITIONER(bin, cutline, graph)
18 ENQUEUE(Q , childBins)

Figure 2.3: Min-cut floorplacement. Steps 3-11 differ from min-cut placement [115].

From an optimization point of view, floorplanning and placement are very similar prob-

lems – both seek non-overlapping placements to minimize wirelength. They are mostly

distinguished by scale and the need to account for shapes in floorplanning, which calls

for different optimization techniques. Netlist partitioning is often used in placement algo-

rithms, where geometric shapes of partitions can be adjusted. This considerably blurs the

separation between partitioning, placement and floorplanning, raising the possibility that

these three steps can be performed by one CAD tool. We develop such a tool and term the

unified layout optimization floorplacement following Steve Teig’s keynote speech at ISPD

2002 [115].

20

Min-cut placers scale well in terms of runtime and wirelength minimization, but cannot

produce non-overlapping placements of modules with a wide variety of sizes. On the

other hand, annealing-based floorplanners can handle vastly different module shapes and

sizes, but only for relatively few (100-200) modules at a time. Otherwise, either solutions

will be poor or optimization will take too long to be practical. The loose integration of

fixed-outline floorplanning and standard-cell placement proposed in [4] suffers from a

similar drawback because its single top-level floorplanning step may have to operate on

numerous modules. Bottom-up clustering can improve the scalability of annealing, but

not sufficiently to make it competitive with other approaches. The work in [115] applies

min-cut placement as much as possible and delays explicit floorplanning until it becomes

necessary. In particular, since min-cut placement generates a slicing floorplan, it is viewed

as an implicit floorplanning step, reserving explicit floorplanning for “local” non-slicing

block packing.

Placement starts with a single placement bin representing the entire layout region with

all the placeable objects initialized at the center of the bin. Using min-cut partitioning, the

bin is split into two bins of similar sizes, and during this process the cut-line is adjusted

according to actual partition sizes. Applying this technique recursively to bins (with ter-

minal propagation) produces a series of gradually refined slicing floorplans of the entire

layout region. In very small bins, all cells can be placed by a branch-and-bound end-case

placer [23]. However, this scheme breaks down on modules that are larger than their bins.

When such a module appears in a bin, recursive bisection cannot continue, or else will

likely produce a placement with overlapping modules. Indeed, the work in [86] continues

21

bisection and resolves resulting overlaps later. In this technique, one switches from recur-

sive bisection to “local” floorplanning where the fixed outline is determined by the bin.

This is done for two main reasons: (i) to preserve wirelength [20], congestion [16] and

delay [77] estimates that may have been performed early during top-down placement, and

(ii) avoid legalizing a placement with overlapping macros.

While deferring to fixed-outline floorplanning is a natural step, successful fixed-outline

floorplanners have appeared only recently [3]. Additionally, the floorplanner may fail to

pack all modules within the bin without overlaps. As with any constraint-satisfaction prob-

lem, this can be for two reasons: either (i) the instance is unsatisfiable, or (ii) the solver

is unable to find any of existing solutions. In this case, the technique undoes the previous

partitioning step and merges the failed bin with its sibling bin, whether the sibling has

been processed or not, then discards the two bins. The merged bin includes all modules

contained in the two smaller bins, and its rectangular outline is the union of the two rect-

angular outlines. This bin is floorplanned, and in case of failure can be merged with its

sibling. The process is summarized in Figure 2.3 and an example is depicted in Figure 2.4.

It is typically easier to satisfy the outline of a merged bin because circuit modules

become relatively smaller. However, Simulated Annealing takes longer on larger bins and

is less successful in minimizing wirelength. Therefore, it is important to floorplan at just

the right time, and the algorithm determines this point by backtracking. Backtracking does

incur some overhead in failed floorplan runs, but this overhead is tolerable because merged

bins take considerably longer to floorplan. Furthermore, this overhead can be moderated

somewhat by careful prediction.

22

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL=2.574e+06, #Cells=12752, #Nets=14111

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL=2.574e+06, #Cells=12752, #Nets=14111

Figure 2.4: Progress of mixed-size floorplacement on the IBM01 benchmark from
IBM-MSwPins. The picture on the left shows how the cut lines are chosen
during the first six layers of min-cut bisection. On the right is the same place-
ment but with the floorplanning instances highlighted by “rounded” rectangles.
Floorplanning failures can be detected by observing nested rectangles [115].

For a given bin, a floorplanning instance is constructed as follows. All connections

between modules in the bin and other modules are propagated to fixed terminals at the

periphery of the bin. As the bin may contain numerous standard cells, the number of mov-

able objects is reduced by conglomerating standard cells into soft placeable blocks. This

is accomplished by a simple bottom-up connectivity-based clustering [84]. The existing

large modules in the bin are usually kept out of this clustering. To further simplify floor-

planning, soft blocks consisting of standard cells are artificially downsized, as in [5]. The

clustered netlist is then passed to the fixed-outline floorplanner Parquet [3], which sizes

soft blocks and optimizes block orientations. After suitable locations are found, the lo-

cations of all large modules are returned to the top-down placer and are considered fixed.

The rows below those modules are fractured and their sites are removed, i.e., the modules

are treated as fixed obstacles. At this point, min-cut placement resumes with a bin that

has no large modules in it, but has somewhat non-uniform row structure. When min-cut

placement is finished, large modules do not overlap by construction, but small cells some-

23

times overlap (typically below 0.01% by area). Those overlaps are quickly detected and

removed with local changes.

Since the floorplacer includes a state-of-the-art floorplanner, it can natively handle

pure block-based designs. Unlike most algorithms designed for mixed-size placement, it

can pack blocks into a tight outline, optimize block orientations and tune aspect ratios of

soft blocks. When the number of blocks is very small, the algorithm applies floorplan-

ning quickly. However, when given a larger design, it may start with partitioning and

then call fixed-outline floorplanning for separate bins. As recursive bisection scales well

and is more successful at minimizing wirelength than annealing-based floorplanning, the

proposed approach is scalable and effective at minimizing wirelength.

Empirical boundary between placement and floorplanning. By identifying the

characteristics of placement bins for which the algorithm calls floorplanning, one can tab-

ulate the empirical boundary between placement and floorplanning. Formulating such ad

hoc thresholds in terms of dimensions of the largest module in the bin, etc., allows one to

avoid unnecessary backtracking and decrease the overhead of floorplanning calls that fail

to satisfy the fixed outline constraint because they are issued too late. In practice, issuing

floorplanning calls too early (i.e., on larger bins) increases final wirelength and sometimes

runtime. To improve wirelength, the ad hoc tests for large modules in bins (that trigger

floorplanning) are deliberately conservative.

These conditions were derived by closely monitoring the legality of floorplanning and

min-cut placement solutions. When a partitioned bin yields an illegal placement solution

it is clear that the bin should have been floorplanned and a condition should be derived.

24

When a call to floorplanning fails to satisfy the fixed outline constraint the placer has to

backtrack. To avoid paying this penalty, a condition should be derived to allow for floor-

planning the parent bin and prevent the failure. A sample set of floorplanning conditions

is shown in [115, Table III].

Conditions are refined to prevent floorplanning failure by visual inspection of a plot

of the resulting parent bin and formulating a condition describing its composition. An

example of such a plot is shown in Figure 2.4. Floorplanned bins are outlined with rounded

rectangles. Nested rectangles indicate a failed floorplan run, followed by backtracking and

floorplanning of the larger parent bin. In our experience, these tests are sufficient to ensure

that at most one level of backtracking is required to prevent large module overlaps.

2.3.2 PATOMA and PolarBear

PATOMA 1.0 [49] pioneered a top-down floorplanning framework that utilizes fast

block-packing algorithms (ROB or ZDS [48]) and hypergraph partitioning with hMETIS

[84]. This approach is fast and scalable, and provides good solutions for many input

configurations. Fast block-packing is used in PATOMA to guarantee that a legal pack-

ing solution exists, at which point the burden of wirelength minimization is shifted to the

hypergraph partitioner. This idea is applied recursively to each of the newly-created par-

titions. In end-cases, when a partitioning step leads to unsatisfiable block-packing, the

quality of the result is determined by the quality of its fast block-packing algorithms. In

end-cases, when partitioning cannot be used because it creates unsatisfiable instances of

block-packing, block locations are determined by fast block-packing heuristics. The placer

PolarBear [50] integrates algorithms from PATOMA to increase the robustness of a top-

25

down min-cut placement flow. The floorplanner IMF [37] utilizes top-down partitioning,

but allows overlaps in the initial top-down partitioning phase. A bottom-up merging and

refinement phase fixes overlaps and further optimizes solution quality.

2.3.3 Fractional Cut for Mixed-size Placement

The work in [86] advocates a two-stage approach to mixed-size placement. First, the

min-cut placer FengShui [6] generates an initial placement for the mixed-size netlist with-

out trying to prevent all overlaps between modules. The placer only tracks the global

distribution of area during partitioning and uses the fractional cut technique (see Section

2.2.2), which further relaxes book-keeping by not requiring placement bins to align to

cell rows. While giving min-cut partitioners more freedom, these relaxations prevent cells

from being placed in rows easily and require additional repair during detailed placement.

This may particularly complicate the optimization of module orientations, not considered

in [86] (relevant benchmarks use only square blocks with all pins placed in the centers).

The second stage consists of removing overlaps by a fast legalizer designed to handle

large modules along with standard cells. The legalizer is essentially greedy and attempts

to shift all modules towards the left edge of the chip (or to the right edge, if that produces

better results). In our experience, the implementation reported in [86] leads to horizontal

stacking of modules and sometimes yields out-of-core placements, especially when several

very large modules are present (the benchmarks used in [86] contain numerous modules

of medium size). See Figure 10 in [115] and Figure 6 in [107] for examples of this behav-

ior. Another concern about packed placements is the harmful effect of such a strategy on

routability, explicitly shown in [143]. Overall, the work in [86] demonstrates very good

26

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

ibm01 HPWL=2.376e+06, #Cells=12752, #Nets=14111

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

ibm01 HPWL=2.457e+06, #Cells=12752, #Nets=14111

Figure 2.5: A placement of the IBM01 benchmark from IBM-MSwPins by FengShui
before (left) and after (right) legalization and detailed placement.

legal placements for common benchmarks, but questions remain about the robustness and

generality of the proposed approach to mixed-size placement. Example FengShui place-

ments before and after legalization are shown in Figure 2.5.

2.3.4 Mixed-size Placement in Dragon2006

The traditional flow of the Dragon tool [144] does not take macros into consideration

during placement. To account for macros, partitioning, bin-based annealing and legal-

ization must be modified. In addition, Dragon2006 makes two passes on a design with

obstacles; the first pass finds locations for macros and the second treats macros as fixed

obstacles [130] (similar to [4]).

In the first pass, partitioning is modified to handle large movable macros. The tradi-

tional Dragon flow alternates cut directions at each layer and chooses the cut-line to split

a bin exactly in half in order to maintain a regular grid structure. In the presence of large

macros, the requirement of a regular bin structure is relaxed. The cut-line of the bin is

shifted to allow the largest macro to fit into a child bin after partitioning. If macros can

only fit in one bin, they are pre-assigned to the child bin in which they can fit and not

27

involved in partitioning [129, 130].

Bin-based Simulated Annealing after partitioning is also modified as bins may not

all have the same dimensions. Horizontal swaps between adjacent bins are only allowed

if they are of the same height. Similarly, vertical swaps between adjacent bins are only

allowed if they are of the same width. Diagonal bin swaps are only legal if the bins have the

same height and width. After all bins have a threshold of cells or fewer, partitioning stops

and macro locations are legalized. Once legal, macros are considered fixed and partitioning

begins again at the top level to place the standard cells of the design [129, 130].

2.3.5 Solving Difficult Instances of Floorplacement

Floorplacement (see Section 2.3.1) appears promising for SoC layout because of its

high capacity and the ability to pack blocks. However, as experiments in [107] demon-

strate, existing tools for floorplacement are fragile — on many instances they fail, or pro-

duce remarkably poor placements.

To improve the performance of min-cut placement on mixed-size instances, the authors

of [107] propose three synergistic techniques for floorplacement that in particular succeed

on hard instances: (i) selective floorplanning with macro clustering, (ii) improved obsta-

cle evasion for B*-tree, and (iii) ad hoc look-ahead in top-down floorplacement. Obstacle

evasion is especially important for top-down floorplacement, even for designs that initially

have no obstacles. The techniques are called SCAMPI, an acronym for SCalable Advanced

Macro Placement Improvements. Empirically, SCAMPI shows significant improvements

in floorplacement success rate (68% improvement as compared to the floorplacement tech-

nique presented in Section 2.3.1) and HPWL (3.5% reduction compared to floorplacement

28

in Section 2.3.1).

Traditional placement techniques such as top-down and analytical frameworks, bottom-

up clustering and iterative cell-spreading, scale well in terms of runtime and interconnect

optimization when all modules are small. However, handling a wide variety of module

sizes with these techniques seems considerably more difficult [107]. On the other hand,

simulated annealing has a good track record in handling heterogeneous module configu-

rations, but can only be effectively applied to small problem sizes [107]. This dichotomy

between large-scale placement techniques and annealing-based floorplanning necessitates

a rethinking of existing floorplacement flows [107].

Selective floorplanning with macro clustering. In top-down correct-by-construction

frameworks like Capo and PATOMA [49] (see Section 2.3.2), a key bottleneck is in ensur-

ing ongoing progress — partitioning, floorplanning or end-case processing must succeed

at any given step. Both frameworks experience problems when floorplanning is invoked

too early to produce reasonable solutions — PATOMA resorts to solutions with very high

wirelength, and Capo times out because it has nothing to resort to and runs the an annealer

on too many modules. In order to scale better, the annealer clusters small standard cells

into soft blocks before starting Simulated Annealing. When a solution is available, all hard

blocks are considered placed and fixed — they are treated as obstacles when the remain-

ing standard cells are placed. Compared to other multi-level frameworks, this one does

not include refinement, which makes it relatively fast. Speed is achieved at the cost of

not being able to cluster modules other than standard cells because the floorplanner does

not produce locations for clustered modules. Unfortunately, this limitation significantly

29

ALGORITHM 2.3: SCAMPI Min-cut floorplacement
¤ Input: queue of placement bins Q , netlist to place
¤ Output: placements of all the movable objects in netlist

1 while (EMPTY(Q) = FALSE)
2 do bin ← DEQUEUE(Q)
3 passedLookahead ← TRUE
4 if (ISBINMERGED(bin) = FALSE)
5 then passedLookahead ← CALLLOOKAHEADFLOORPLANNER(bin)
6 if (passedLookahead = FALSE)
7 then newBin ← MERGEBINWITHPARTITIONINGSIBLING(bin)
8 MARKBINASMERGED(newBin)
9 ENQUEUE(Q , newBin)

10 if (passedLookahead = TRUE)
11 then if (BINHASLARGEMACRO(bin) = TRUE

or GETNUMBEROFMACROS(bin) ≥ MACROTHRESHOLD
or ISBINMERGED(bin) = TRUE)

12 then MARKLARGEMACROSFORPLACEMENTAFTERFLOORPLANNING(bin)
13 CLUSTERUNMARKEDMACROSINTOSOFTMACROS(bin)
14 CLUSTERSTDCELLSINTOSOFTMACROS(bin)
15 success ← CALLFIXEDOUTLINEFLOORPLANNER(bin)
16 if (success = TRUE)
17 then FIXMACROLOCATIONS(bin)
18 REMOVESITESBELOWMACROS(bin)
19 else newBin ← MERGEBINWITHPARTITIONINGSIBLING(bin)
20 MARKBINASMERGED(newBin)
21 ENQUEUE(Q , newBin)
22 else if (DETERMINEBINSIZE(bin) = SMALL and

GETNUMBEROFMACROS(bin) ≥ MACROPERCENTTHRESHOLD ×
GETNUMBEROFMOVABLEOBJECTS(bin))

23 then CALLSTDCELLANDMACROENDCASEPLACEMENT(bin)
24 else if (DETERMINEBINSIZE(bin) = SMALL)
25 then CALLENDCASEPLACER(bin)
26 else direction ← CHOOSECUTLINEDIRECTION(bin)
27 cutline ← CHOOSECUTLINEPOSITION(bin, direction)
28 graph ← BUILDPARTITIONINGGRAPH(bin, cutline,netlist)
29 childBins ← CALLPARTITIONER(bin, cutline, graph)
30 ENQUEUE(Q , childBins)

Figure 2.6: SCAMPI floorplacement flow. Steps 3-10, 12-13, and 22-23 differ from tradi-
tional floorplacement [107].

restricts scalability of designs with many macros [107].

The proposed technique of selective floorplanning with macro clustering allows clus-

tering of blocks before annealing, and does not require additional refinement or cluster-

packing steps (which are among the obvious facilitators) — instead certain existing steps

in floorplacement are skipped. This improvement is based on two observations: (i) blocks

30

Figure 2.7: The plot on the left illustrates traditional floorplacement. Whenever a floor-
planning threshold is reached, all macros in the bin are designated for floor-
planning. Then, the floorplacement flow continues down until detailed place-
ment, where the standard cells will be placed. The plot on the right illustrates
the SCAMPI flow. Macros are selectively placed at the appropriate levels of
hierarchy [107].

that are much smaller than their bin can be treated like standard cells, (ii) the number of

blocks that are large relative to the bin size is necessarily limited, e.g., there cannot be

more than nine blocks with area in excess of 10% of a bin’s area [107].

In selective floorplanning, each block is marked as small or large based on a size

threshold. Standard cells and small blocks can be clustered, except that clusters contain-

ing hard blocks have additional restrictions on their aspect ratios. After successful anneal-

ing, only the large blocks are placed, fixed and considered obstacles. Normal top-down

partitioning resumes, and each remaining block will qualify as large at some point later.

This way, specific locations are determined when the right level of detail is considered. If

floorplanning fails during hierarchical placement, the failed bin is merged with its sibling

and the merged bin is floorplanned (see Figure 2.6). The blocks marked as large in the

merged bin include those that exceed the size threshold and also those marked as large in

the failed bin (since the failure suggests that those blocks were difficult to pack). After the

largest macros are placed, the flow resumes [107].

31

The proposed technique limits the size of floorplanning instances given to the annealer

by a constant (in our case 200 modules) and does not require much extra work. However,

it introduces an unexpected complexity. The floorplacement framework does not handle

fixed obstacles in the core region, and none of the public benchmarks have them. When

Capo fixes blocks in a particular bin, it fixes all of them and never needs to floorplan

around obstacles. Another complication due to newly introduced fixed obstacles is in cut-

line selection. Reliable obstacle-evasion and intelligent cut-line selection may be required

by practical designs, even without selective floorplanning (e.g., to handle pre-diffused

memories, built-in multipliers in FPGAs, etc). Therefore they are viewed as independent

but synergistic techniques [107].

Obstacle evasion in floorplanning: B*-tree enhancement. When satisfying area

constraints is difficult, it is very important to increase the priority of area optimization

so as to achieve legality [36]. Because of this, the authors of [107] select the B*-tree

[32] floorplan representation for its amenability to packed configurations and add obstacle

evasion into B*-tree evaluation.

Ad-hoc look-ahead floorplanning. The sum of block areas may significantly under-

estimate the area required for large blocks. Better estimates are required to improve the

robustness of floorplacement and look-ahead area-driven floorplanning appears as a viable

approach [107].

SCAMPI performs look-ahead floorplanning to validate solutions produced by the hy-

pergraph partitioner, and check that a resulting partition is packable, within a certain tol-

erance for failure. Look-ahead floorplanning must be fast, so that the amortized runtime

32

overhead of the look-ahead calls is less than the total time saved from discovering bad par-

titioning solutions. Therefore look-ahead floorplanning is performed with blocks whose

area is larger than 10% of the total module area in the bin, and soft blocks containing re-

maining modules. For speed, the floorplanner is configured to perform area-only packing,

and the placer is configured to only perform look-ahead floorplanning on bins with large

blocks. Dealing with only the largest blocks is sufficient because floorplanning failures

are most often caused by such blocks [107].

Selective floorplanning for multi-million gate designs. One case that is not con-

sidered by either the original floorplacement techniques [115] or those introduced in the

original SCAMPI flow [107] is where there are an extreme number of movable modules

and an extreme ratio between the largest and smallest macro. An example of this is the

newblue1 benchmark from the ISPD’06 placement contest suite [102]. The newblue1

benchmark contains 64 macros and 330073 standard cells. As we show below, such a

configuration is problematic for floorplacement.

Recall that a floorplacer utilizes a floorplanner to place macros. As the floorplanner

uses Simulated Annealing to pack blocks, clustering is performed on the netlist to im-

prove scalability. However, a very large number of small modules may stress clustering

algorithms, which, in the absence of refinement, may undermine overall solution quality.1

In the original SCAMPI flow, the largest block in the newblue1 benchmark was des-

ignated for floorplanning by Parquet at the top level. Parquet precedes annealing with clus-

tering to reduce the size of the netlist. However, given the large number of small modules,

Parquet’s simple-minded clustering algorithm took 16% of total floorplacement runtime,

1Refinement algorithms would need to operate on very large netlists and may require long runtimes.

33

whereas annealing took only 4% of floorplacement runtime (with the remaining 80% con-

sumed in standard cell placement). Additionally, even if clustering were more scalable,

clustering such a large number of small macros into large, soft macros can lead to un-

natural or unrepresentative netlists. In the original SCAMPI flow, the clusters formed by

the standard cells in newblue1 became large enough to artificially constrain the move-

ment of the large macro during floorplanning. This is mainly a limitation of Simulated

Annealing as it becomes impractical in solution quality and runtime for over 100 modules.

To counteract this undesirable effect, the authors of [118] propose the following method.

Whenever a bin is designated for floorplanning and the largest real module is smaller in

area than the largest soft macro built from clustering (this area can be estimated without

actually performing clustering), do not use Simulated Annealing. Instead, use a simple

analytical tool to minimize quadratic wirelength to determine reasonable locations for the

large macros. It has been shown that analytical techniques are good at finding general

areas where objects should be placed [10], so this is a reasonable and efficient solution

for placing a large macro or macros in this situation. This technique may also be useful in

regions with large amounts of whitespace as block-packing often overlooks good solutions

in such situations. Objectives other than HPWL, such as routing congestion and timing,

are also important, and any analytical placer used in this context should place macros with

respect to the most relevant objective(s). The key observation is that placing such macros

early is helpful.

When there is only one large macro to be placed, the solution of the analytical tool

is used and the macro is fixed in its desired location. To place a small number of large

34

Table 2.1: Comparison of Capo’s performance at the ISPD 2006 Placement Contest.
“Overflow” represents the HPWL penalty for not effectively enforcing den-
sity constraints on the benchmarks. Using the SCAMPI improvements, Capo’s
HPWL is reduced by 7% overall.

Capo at ISPD 2006 Capo + improved SCAMPI
Benchmark HPWL Over- HPWL Over- HPWL

(e8) flow% (e8) flow% Ratio
adaptec5 4.92 0.62 4.88 0.42 0.99
newblue1 0.98 0.13 0.81 0.12 0.83
newblue2 3.09 0.29 2.67 0.21 0.86
newblue3 3.61 0.01 3.35 0.01 0.93
newblue4 3.58 1.15 3.51 0.83 0.98
newblue5 6.57 0.33 6.41 0.26 0.98
newblue6 6.68 0.05 6.53 0.05 0.98
newblue7 15.18 0.02 13.64 0.01 0.90
Average 0.93

macros with this method, we again compute macro locations with the analytical tool, but

must legalize the macro locations to maintain the correct-by-construction paradigm of

floorplacement. Overlaps can be legalized in several ways. One way is to use a greedy

macro legalization technique such as the macro legalizer described in [115, Section 3.3].

Another method for removing macro overlap is the constraint-based floorplan repair al-

gorithm FLOORIST [100]. Following legalization, one can shift the macros, making sure

they remain in the core area, so that their center of mass coincides with their center of mass

before legalization in keeping with the spirit of the analytical placement. This technique

contributed to HPWL improvement over the ISPD 2006 Placement Contest results of Capo

by 17% on newblue1 as shown in Table 2.1, with an overall improvement in the contest

score on the ISPD 2006 benchmark suite by 10%, moving Capo three positions higher.

Temporary macro deflation. Low-whitespace conditions in block-packing instances

formed during floorplacement can worsen solution quality significantly. In such cases, the

35

block-packing engine focuses mainly on finding legal solutions rather than those that have

good wirelength. In addition, a legal solution may not be found, which leads to back-

tracking and increased runtime as well. To improve the solution quality of block-packing

instances created during floorplacement, we prevent these low-whitespace conditions.

To account for standard cells in the floorplacement framework, they are clustered into

soft blocks for instances of block-packing [115]. To improve the likelihood of finding a

legal fixed-outline solution, these soft blocks representing standard cells are reduced in

size [115]. We propose extending this deflation to include hard blocks in addition to soft

blocks. When a block-packing instance is formed, we adjust the sizes of hard blocks to

maintain a minimum amount of whitespace. All blocks in the instance are sized in the

same way and aspect ratios are maintained. The resized instance, made easier by the

addition of whitespace, is placed using Simulated Annealing as normal.

Resizing the hard blocks in this way has the positive effect of making fixed-outline

block-packing easier, which allows the block-packing engine to focus on HPWL min-

imization rather than mere legality in cases where whitespace is limited, but removes

the correct-by-construction property upon which floorplacement is built. To alleviate this

problem, we apply legalization to macros after packing using the fast and robust constraint-

based floorplan repair algorithm FLOORIST [100] after each layer of placement where

block-packing took place. FLOORIST moves macros minimally when repairing overlaps,

so reduced HPWL found in easier block-packing instances is preserved.

Empirically we find that the overhead of running FLOORIST for legalization is mit-

igated by the fact that block-packing is easier and therefore faster. In terms of solution

36

quality, we find that temporary macro deflation reduces HPWL by 2-3%.

2.4 State-of-the-art Min-cut Placers

In this section, we outline partitioning-based placement techniques used by cutting-

edge placers. For each placer, we describe its overall flow, how this differs from the basic

min-cut flow (Figure 2.1), and how it handles challenges in placement such as fixed ob-

stacles and mixed-size instances. In particular we describe the techniques used by Dragon

[129, 130, 143], FengShui [6, 86], NTUPlace2 [74] and Capo [107, 115–117, 119, 120].

2.4.1 Dragon

Dragon combines min-cut bisection with Simulated Annealing for placement [130].

In its most basic flow, Dragon2006, the most recent version of Dragon, utilizes recursive

bisection with the hMETIS partitioner [84]. Each bin is partitioned multiple times with a

feedback mechanism to allow for more accurate terminal propagation (see Section 2.2.1

for more details on placement feedback). Partitioning is followed by Simulated Annealing

on the placement bins where whole bins are swapped with one another to improve HPWL

[129, 130]. After a number of layers of interleaved partitioning and Simulated Annealing,

each bin contains only a few cells and the partitioning phase terminates. Next, bins are

aligned to row structures and cell-based Simulated Annealing is performed wherein cells

are swapped between bins to improve HPWL [129,130]. Lastly, cell overlaps are removed

and local detailed placement improvements are made. Mixed-size placement is supported

as described in Section 2.3.4.

37

2.4.2 FengShui

FengShui [6, 86] is a recursive bisection min-cut placer that uses the hMETIS par-

titioner [84]. FengShui implements the fractional cut technique (see Section 2.2.2) and

packs its placements to either side of the placement region which has a serious affect on

the routability of its placements [116]. FengShui also supports mixed-size placement (see

Section 2.3.3).

2.4.3 NTUPlace2

NTUPlace2 [74] is a hybrid placer that uses both min-cut partitioning and analytical

techniques for standard-cell and mixed-size designs. NTUPlace2 uses repartitioning (see

Section 2.2.1), cut-line shifting (see Section 2.1.3) and weighted net-cut (see Section 2.2.4)

[74].

NTUPlace2 uses analytical techniques to aid partitioning which are different from

those in ACG (see Section 2.2.3). Before partitioning calls to the hMETIS partitioner [84],

objects in a placement bin are first placed by an analytical technique to reduce quadratic

wirelength [74]. Those objects which are placed far from the proposed cut-line are con-

sidered fixed in their current locations for the partitioning process. This technique helps

to make terminal propagation more exact and with the weighted net-cut technique has

resulted in very good solution quality [74].

To handle mixed-size placement, macro locations are legalized at each layer. Macros

become fixed at different layers of placement according to their size relative to placement

bin size. Thus larger macros are placed earlier in placement [74]. Macros are legalized

using a linear programming technique that attempts to minimize the movement of macros

38

during legalization [74].

2.4.4 Capo

Capo [107, 115–117, 119, 120] is a min-cut floorplacer. Capo implements the floor-

placement flow (Section 2.3.1) and further improved by SCAMPI (Section 2.3.5) rather

than the traditional min-cut flow. As a result, Capo implicitly handles mixed-size place-

ment and fixed obstacles in the placement area. Capo can use either MLPart [22] or

hMETIS [84] for hypergraph partitioning. Whitespace allocation in Capo is done per

placement bin: either uniform (see Section 2.1.4), minimum local or safe whitespace al-

location is chosen based on the bin’s whitespace and user-configurable options. These

whitespace allocation options are described in more detail in Chapter IV. To improve

the quality of results, Capo also implements repartitioning (see Section 2.2.1), placement

feedback (see Section 2.2.1), weighted net-cut (see Section 2.2.4) and routability-driven

whitespace allocation (Chapter V). Capo has also been extended to perform incremental

placement (Chapter VI) and to integrate global routing techniques (Chapter IX).

39

CHAPTER III

State of the Art in Global Routing

VLSI routing is an active area of research and development, as evidenced by a grow-

ing body of literature [7,40,64,109,110], recent collaboration between Cadence and IBM

on routing technology [97], as well as the ISPD 2007 and 2008 Global Routing Con-

tests organized by IBM Austin Research Laboratory [71]. Current efforts in routing are

motivated by challenges present at the nanometer scale including: (i) very large wiring

databases that require lean data structures and extremely efficient algorithms, (ii) sophis-

ticated design rules that must be abstracted away during initial routing passes, (iii) rela-

tively unreliable vias whose resistance may vary by up to 30 times [121], which requires

via doubling [91, 94] and motivates additional effort to minimize via counts, (iv) signal

integrity constraints and the dramatic impact of lateral capacitance on interconnect de-

lay, which lead to wire-density constraints, and (v) considerations of chemical mechanical

polishing (CMP) that also lead to density constraints [41].

3.1 Global and Detailed Routing

Routing plays a key role in VLSI physical design as it determines the specific shape

and layout of interconnect, impacting performance, power and manufacturability. Routing

40

ViaViaH EdgeH Edge V EdgeV Edge

T

S

GCell

S

T

Route

H EdgeH Edge V EdgeV Edge

Edge Cap.

Figure 3.1: Pictorial representations of the global routing grid. The image on the right
shows how the layout is abstracted into a regular grid of GCells. GCells are
represented by vertices, with adjacent vertices connected by graph edges. Ca-
pacities on edges that join GCells can be defined as the number of routing
tracks that cross GCell boundaries. The image at the left shows horizontal,
vertical and via connections on different layers.

is traditionally divided into the two steps of global and detailed routing.

At the beginning of global routing, the design is abstracted into a regular three-dimensional

routing grid with one layer for each layer of metal in the design. Grid cells, or GCells, on

the same layer are connected with routing edges. An example routing grid with one layer

is shown in Figure 3.1. Each GCell is connected to at most four neighbors on the same

layer in the four cardinal directions. GCells on different layers are connected through via

edges. A GCell may be connected to at most two neighbors, one layer above and one layer

below, by vias. Each routing edge is assigned a capacity which represents the amount of

metal, be it from wires or routing blockages, which is allowed to be routed from one GCell

to its neighbor. Since different metal layers may use distinct wire pitches, routing capaci-

ties at each layer may differ to reflect this. We define the congestion of a routing edge as

the ratio of the metal assigned to it by the router and blockages to its capacity. Typically

one says that a routing edge is congested if more metal is assigned to it than its capacity

allows. Typically the global router chooses the dimensions of GCells based on the size of

the design then induces routing edge capacities. A global routing solution is legal if all

41

nets are connected and all capacity constraints are satisfied.

During global routing, the pins of each net are binned into GCells, and the global router

is tasked with connecting all nets with metal through routing edges and via edges while

simultaneously respecting routing edge capacity constraints. Nets which are wholly sub-

sumed in a GCell are ignored by a global router in the academic literature and ISPD routing

contests, but are generally accounted for by industrial tools. Detailed routing begins with

a global routing solution, which may not necessarily satisfy all capacity constraints, and

assigns wires for all nets to actual routing tracks, using the global routing solution as a

guide. An industrial detailed router can handle a small number of global routing capacity

constraint violations and produce a routing solution with all wires electrically connected

(having no opens) and no metal from different nets electrically connected (no shorts).

Traditional algorithms for detailed routing often assume a specific, small number of

metal layers and operate in isolated layout regions — channels or switch-boxes. However,

over-the-cell routing with six or more metal layers made many such algorithms obsolete

and lead to the adoption of similar graph-theoretical techniques in global and detailed

routing, perhaps with different layout, resource and delay models.

In our experience with Cadence WarpRoute, three quarters of total runtime are spent in

detailed routing, but the quality of global routes profoundly affects the runtime and success

of detailed routing. A recent proposal [109] suggests invoking a fast global router during

global and detailed placement, so as to mitigate wiring congestion early. This application

is particularly attractive for sub-130nm technology nodes where lateral capacitance of

wires is a major contributor to interconnect delay. In this context, accurate timing analysis

42

requires information about regions through which a given net passes as well as wire density

in these regions [127].

3.2 Popular Global Routing Techniques

In this section we outline several popular techniques in the literature for global routing.

These techniques include the routing of two-pin connections with shortest path search and

patterns, various methods for handling nets with three or more pins, rip-up-and-re-route,

congestion amplification, negotiated-congestion routing and multi-level algorithms.

3.2.1 Maze Routing

Maze routing connects pairs of terminals on the routing grid using standard search

techniques such BFS and Dijkstra’s algorithm [54]. More than 50% of nets in modern

designs connect only two pins. BFS can find the shortest path between a source location

and a target location, if one exists, but cannot handle routing segments with non-trivial

weights. Dijkstra’s algorithm can handle non-negative costs of routing segments, but is

at least several times slower than BFS. A*-search is a minor modification to Dijkstra’s

algorithm that significantly improves speed during two-dimensional and three-dimensional

routing [67]. In A*-search, a lower bound of the distance to the target is added to node

priority in Dijkstra’s algorithm. Straight-line distance is commonly used as a lower bound.

3.2.2 Pattern Routing

Pattern routing [85] simplifies the routing process by restricting the path that a net can

take to one of a handful of pre-determined shapes. For example, L-shape routing seeks to

implement each two-pin net with at most one bend. This technique is surprisingly useful

43

in ASIC routing and justified by via minimization. Empirical studies [141] show that in

a fully-routed design a majority of all two-pin nets take on L-shapes. In global routing,

where minor detours are abstracted away, L-shapes are even more prevalent. Two-bend

routes are often called Z-shapes, but generic pattern-based routing can consider any fi-

nite number of routing topologies for each net, and selects one of them. It is particularly

amenable to integer linear programming formulations [40], as described later in the sec-

tion.

3.2.3 Handling Multi-pin Nets

Most global routing algorithms decompose nets with three or more pins into two-pin

subnets at the beginning of global routing to ease maze routing. This decomposition has

traditionally been done using Minimal Spanning Tree (MST) algorithms, but fast and ex-

tremely accurate Rectilinear Steiner Minimal Tree (RSMT) construction algorithms have

become increasingly popular in the literature [40, 109, 110]. Four decompositions of a

5-pin net by Steiner trees and MSTs are shown in Figure 3.2.

The RSMT tool FLUTE [44] is used in both BoxRouter [40] and FastRoute [109,

110]. FLUTE uses look-up tables for nets with nine or fewer pins and quickly builds

optimal trees for such nets [44]. For larger nets, a divide-and-conquer method is employed

[44]. FastSteiner [78] is another RSMT algorithm that is more scalable than most RSMT

algorithms. FastSteiner does not guarantee optimality, but frequently produces solutions

with smaller total wirelength than FLUTE for nets with more than nine pins.

44

Figure 3.2: Decomposition of a 5-pin net by minimal Steiner tree (a), MST (b) and MSTs
with sharing (c)&(d). The choice of (c) or (d) depends on congestion. The
minimal Steiner tree (a) contains 5 flat subnets and 1 L-shaped subnet, whereas
the shared MST (d) has 2 flat subnets and 3 L-shaped subnets which gives it
greater flexibility.

3.2.4 Rip-up-and-re-route

Rip-up-and-re-route (RRR) takes an initial, usually illegal, routing solution and iter-

ates greedy one-net-at-a-time routing passes for nets that compete for routing resources,

but may change the ordering each time in hope to better reconcile these nets. In each itera-

tion, nets that pass through congested regions are “ripped up” (all resources for the net are

removed from the routing grid) and are rerouted with a maze router to use lesser congested

regions. Major differences between various implementations [40, 55, 64, 98, 109, 110] in-

clude which nets are ripped up and rerouted at each iteration, the order in which to rip

up nets and reroute them, if nets are allowed to be rerouted through areas that are already

congested, and the costs associated with routing through a particular routing edge given

its current congestion.

3.2.5 Congestion Amplification

Congestion amplification [64] was recently introduced as an improvement to pricing

of routing resources during RRR. Many routers that employ RRR do not penalize nets for

45

going through uncongested regions, and then drastically increase cost once a routing edge

is full. The authors of [64] propose to use a more gradual linear cost function for edges

before they become full in order to spread wires from areas that are likely to become con-

gested. In addition, when congestion estimates are calculated after each iteration of RRR,

regions with high congestion have their estimates artificially increased (amplified) and re-

gions with low congestion have their estimates decreased. This provides more incentive

for maze routers to avoid highly congested regions at the cost of longer wirelength.

3.2.6 Negotiated-congestion Routing

Negotiated-congestion routing (NCR) [98] was introduced in the mid-1990s for global

routing in FPGAs and is used in VPR (the dominant place-and-route tool for FPGAs) [14],

but has not seen much use in the ASIC literature. NCR builds upon RRR by gradually

making routing edges that are consistently congested more expensive, encouraging the

maze router to choose alternative routes. The cost ce of routing edge e

ce = (be + he) · pe(3.1)

is a function of the base cost (be), added cost reflecting congestion history (he), and penalty

for current congestion (pe) [98]. NCR seeks to minimize
∑

e ce.

To begin negotiated-congestion routing, each net is routed using the smallest possi-

ble wirelength regardless of edge capacities. At the beginning of an RRR iteration, the

historical cost he of all over-capacity routing edges is increased:

hk+1
e =

hk
e + hinc if e is overfull

hk
e otherwise

(3.2)

46

where hinc is a constant. The choice of hinc affects convergence time and solution quality:

higher values lead to faster convergence but higher routed wirelength. After cost adjust-

ment, each net of the design is individually ripped up and rerouted by a maze router. The

authors suggest that only nets passing through congested regions need to be rerouted. The

ordering of nets during rip-up-and-re-route is the same for each iteration, but can be chosen

arbitrarily, according to the authors of [98], because the gradual cost increase in congested

areas removes ties that require sophisticated net ordering techniques in traditional RRR.

Reported implementations of NCR do not handle multi-layer routing and via min-

imization — key aspects of nanoscale ASIC layout. Additionally, NCR has not been

validated in the literature at the scale of large ASIC netlists.

3.2.7 Multi-level Routing

Multi-level techniques for routing work similarly to those in partitioning [84] and

placement [26]. The original routing problem is effectively made simpler through a se-

ries of coarsening stages where routing grid cells are combined and many nets become

subsumed within a single cell. This adds a hierarchy to the routing formulation. This pro-

cess is depicted in Figure 3.3. At the top of the hierarchy is the coarsest form of the routing

problem which is small enough to be solved with sophisticated techniques that may not

scale to large routing instances such as multi-commodity flow based techniques [7, 67],

described in Section 3.2.8 below. Essential to the coarsening stage is the proper aggrega-

tion of routing resources so that routing solutions at higher levels closely resemble valid

routing solutions at lower levels.

After the coarsest level of the hierarchy has been routed, iterative refinement of the

47

Figure 3.3: Multi-level routing progression; image from [53].

current routing solution begins. The problem is un-coarsened by one level and the current

solution is adapted to the finer routing grid. This stage is nontrivial as nets can gain addi-

tional pins as the routing grid is refined and new nets that were previously subsumed by

routing cells will become visible and need to be routed from scratch. This refinement pro-

cess proceeds iteratively until the finest level of the hierarchy, the original routing problem,

has been successfully routed. Multi-level routers in the literature generally have smaller

runtimes than flat techniques and show higher completion rates [46, 53].

3.2.8 Combinatorial Optimization Techniques

Other sophisticated techniques for routing have been proposed, such as the use of

multi-commodity flows (MCF) [7, 67] and integer linear programming (ILP) [40]. Both

of these techniques attempt to route nets simultaneously in order to avoid the problems

associated with net ordering.

ILP formulations for routing vary widely. Many require that multi-pin nets have been

48

maximize:
∑

(xi1 + xi2) ∀ net i
such that: xi1, xi2 ∈ {0, 1} ∀ net i

xi1 + xi2 ≤ 1 ∀ net i(∑
pattern j of net i uses edge e xij

)
≤ cap(e) ∀ routing edge e

Figure 3.4: BoxRouter ILP formulation for routing nets using only L shapes.

divided into a small number of two-pin topologies, but even more general encodings are

possible. For each two-pin net, one must set up several constraints. One constraint is

necessary per terminal asserting at least one routing segment be connected to the terminal

for the net. A different type of constraint is used for each non-terminal GCell that makes

sure exactly 0 or 2 routing segments attach to this GCell for the net. Constraints are also

added per routing segment to maintain routing resource limits. The optimization objective

of the ILP is to minimize the number of used routing segments. Solving this formulation

will optimally solve the given routing problem if possible, but has its drawbacks including

difficulty expressing non-linear delay models.

Another serious drawback is that the general ILP formulation requires a considerable

number of variables and constraints, and does not scale well to large instances which are

difficult to route. To make the technique more scalable, one must severely limit the num-

ber of ways that a two-pin net can be routed. This can be done by defining a small number

of patterns per net and allowing the ILP solver to choose from among them. Indeed,

BoxRouter restricts nets to only L shapes, which speeds ILP solving considerably, making

it more practical [40]. As L shapes are optimal in wirelength, the BoxRouter formula-

tion instead chooses to maximize the number of routed nets rather than minimize routing

segment use. The BoxRouter ILP formulation is given in Figure 3.4.

Multi-commodity flow (MCF) techniques take a different approach to solving routing.

49

They begin with an ILP routing formulation and relax it into a linear programming (LP)

formulation by changing the Boolean variables representing routing edge use into non-

negative real-valued variables. An approximation algorithm which successively adjusts

routing edge weights and builds new weighted Steiner trees per net at each iteration is

used to solve the LP. BoxRouter has been compared to a recent MCF-based router [40]

and found to be superior in speed and solution quality. Additionally, MCF techniques

offer less flexibility in terms of objective functions and constraints than the RRR and NCR

frameworks.

3.3 State-of-the-art Global Routers

In this section, we present the techniques used by leading global routers. For each

router, we describe its overall flow and how it combines routing described in Section

3.2 above. In particular we describe the methods employed by FastRoute [109, 110],

BoxRouter [40] and the multi-level router MARS [53].

3.3.1 FastRoute

FastRoute [109, 110] uses a simplified, more greedy form of RRR and finishes orders

of magnitude faster than other routers. However, it was able to legally route only 6 of 16

benchmarks at the ISPD ‘07 contest [71], while other routers completed up to 12 bench-

marks without violations.

FastRoute 1.0 [109] first uses FLUTE to decompose nets and estimate congestion in the

design, then attempts to restructure Steiner trees to avoid congestion. FastRoute 2.0 [110]

features the following modification of RRR. When a single subnet is ripped up, the net to

50

which the subnet belongs will be separated into two connected components. It becomes the

maze router’s job to connect the two components of the net in the least costly way. While

this optimization allows the router to move Steiner points away from congested regions,

it invalidates the point-to-point lower bound on which A*-search relies. Therefore, the

slower Dijkstra’s algorithm must be used instead.

3.3.2 BoxRouter

BoxRouter [40] avoids fine-grain net ordering in congested regions through the use

integer linear programming (ILP) formulations. BoxRouter decomposes nets using Steiner

trees produced with FLUTE but never re-examines their decomposition. Next it performs

a pass of pattern routing that identifies the most congested rectangular region, where it

formulates an ILP to route as many nets using L-shapes as possible. Remaining nets are

routed by the maze router, using as few resources outside the region as possible. Next, the

region is expanded, and an incremental ILP formulation is used. This cycle repeats until

the entire layout is covered by the expanding region.

3.3.3 MARS

The Multilevel Advanced Routing System (MARS) [53] is a multi-level router (see

Section 3.2.7) based on the techniques first presented in [46] with several important en-

hancements. The first is that MARS performs accurate resource reservation during the

coarsening phase of multi-level routing. This takes into account those nets which are

subsumed into the coarsened routing grid and removes resources for them. This results

in more accurate resource counts at higher levels of the routing hierarchy which better

represent the original routing problem. The second enhancement is that MARS divides

51

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000 10000 100000 1e+06

R
el

at
iv

e
W

ire
le

ng
th

Violations

Routed Wirelength vs. Violation Count

Benchmarks
adaptec1
adaptec2

adaptec3
adaptec4

adaptec5

Figure 3.5: Routed wirelength versus violations for all competing routers on two-
dimensional ISPD ‘07 benchmarks [71]. Note that violation counts are shown
on a log-scale where 0 cannot be plotted, so completely legal solutions are
depicted with exactly 1 violation. Relatively few solutions submitted to the
contest were legal (35%), but they are generally a cut above the rest. Of the
illegal solutions, as violations increase, routed wirelength decreases. To em-
phasize the trend, a linear least-squares fit of the data has been added for the
illegal solutions.

multi-pin nets using congestion-driven Steiner trees. At each level of the routing hierar-

chy, each net is examined and new Steiner trees are built to divide multi-pin nets. First

MSTs are built for each net using the routing grid and not purely based on HPWL. Next,

the edges of the MST for a particular net are sorted based on length and maze search is

performed to join the edge to any other part of the existing tree. The new attachment points

become Steiner points, and the Steiner tree for the net is formed from all of the paths found

during maze search. Lastly, MARS uses historical costs based on congestion, similar to

those described in Section 3.2.6, to price routing edges during maze routing.

52

3.4 The ISPD ‘07 Routing Contest

The ISPD ‘07 routing contest challenged the research community by distributing 16

very large routing benchmarks derived from recent chip layouts. The contest had separate

two-dimensional and three-dimensional divisions and a total of 9 academic teams com-

peted. The top teams in the two-dimensional contest were 1) our router FGR which is

detailed in Chapter VII, 2) MaizeRouter, 3) BoxRouter and 4) FastRoute. In the three-

dimensional division the standings were as follows: 1) MaizeRouter, 2) BoxRouter, 3)

FGR and 4) FastRoute.

Thanks to the wide participation in the contest and the public availability of the results,

we observed an important trend which is illustrated in Figure 3.5 — routers that achieve

low wirelength often suffer high violation counts, and routers that minimize violations

often produce high wirelengths. Therefore, a key focus of our work is on adequate pricing

of routing resources to balance interconnect length and congestion in multi-million gate

designs, in a way that also allows to trade-off other nanoscale objectives and constraints.

The effective handling of vias, multiple metal layers and other aspects of nanoscale routing

pose a series of algorithmic, implementation, benchmarking and integration challenges.

53

PART II

VLSI Placement

CHAPTER IV

Fine Control of Local Whitespace

At the 65nm technology node and below, many systematic manufacturing problems

arise that can only be effectively mitigated in the physical design portion of the computer

aided design (CAD) flow [13,66]. Issues such as parasitics variability induced by chemical

mechanical polishing (CMP), yield loss due to increased shorts, via failures, forbidden

pitches and forbidden polygonal shapes greatly affect yield. Techniques to handle these

problems are known collectively as design for manufacturing (DFM), and are important to

routing tools targeting 65nm designs [41].

An important factor in many DFM issues is design density, determined by local whites-

pace (also known as free space). Wire density is critical as too much wiring congestion

has notable performance impact due to (i) longer wires resulting from routing detours (ii)

54

increased crosstalk which reduces reliability and degrades timing and (iii) increased via

counts which lengthen signal propagation time and can decrease yield [134]. Conversely,

too little wiring density will increase the likelihood that CMP will erode parts of wires,

greatly increasing their resistance or leaving their connection open entirely [41]. While

metal fill can mitigate harmful CMP effects, it does so at the cost of negative performance

impact of additional crosstalk. Achieving the right balance of wire density through whites-

pace management avoids the performance impact of too much congestion while reducing

the need for metal fill.

In addition to wire-density concerns, poor whitespace allocation during physical syn-

thesis can increase total cell area due to buffer insertion and gate sizing [12]. One must

reserve space locally to accommodate these operations to meet timing constraints, but re-

serving too much is wasteful [10]. In particular, a design that is placed too densely may

have increased wirelength due to routing detours, and may be unable to close timing by

inserting buffers into full regions of the chip. However, a design that is placed too sparsely

will also have increased wirelength, and suffers both timing degradation and increased

power consumption from more buffers. Therefore, accurate modeling of whitespace and

precise cell density control are important concerns during the global and detailed place-

ment phases of a physical synthesis flow.

In this chapter we propose several methods for top-down whitespace allocation to sat-

isfy whitespace constraints. Our key contributions are:

• We introduce three user-controlled whitespace allocation techniques which are used

to satisfy arbitrary density constraints in top-down global placement.

55

• We outline several detailed placement techniques which enforce density constraints

while simultaneously improving interconnect length.

• We quantify the difficulty in satisfying density constraints and show why so many of

the best solutions to the ISPD 2006 contest benchmarks [102] did not satisfy these

constraints.

This chapter is organized as follows. Section 4.1 reviews traditional methods of whites-

pace allocation. Section 4.2 describes top-down whitespace allocation techniques and

illustrates using them to satisfy density constraints in global placement. Whitespace allo-

cation in detailed placement is discussed in Section 4.3. Section 4.4 provides empirical

evaluation of our whitespace allocation techniques and we conclude in Section 4.5.

4.1 Traditional Whitespace Allocation

The literature includes several techniques to optimize whitespace distributions [5, 10,

24, 132]. A natural scheme for managing whitespace in top-down placement, uniform

whitespace allocation, was introduced and analyzed in [24]. The authors derived expres-

sions for the tolerance to be given to a min-cut partitioner such that whitespace would be

allocated as uniformly as possible given the discrete nature of the problem.

A technique for non-uniform whitespace allocation presented in [5] adds disconnected

standard cells to the design before placement using uniform whitespace allocation, and

removes them immediately after. Care must be taken not to add too many cells to the

design which complicates the work of many placement algorithms, increasing intercon-

nect length or leading to overlapping circuit modules [49]. In [10], analytical methods

56

are used to allocate whitespace in sparse designs for min-cut placement. Before calls to

partitioning, the design is placed quickly with an analytical algorithm. Cell area that is

placed on either side of a proposed cut-line is used as an area target for min-cut partition-

ing. After floorplanning, [132] provides min-cost network-flow formulations to optimally

redistribute whitespace in floorplans to reduce interconnect length.

There are relatively few techniques in the literature for respecting whitespace con-

straints imposed by a designer while still optimizing interconnect. Such constraints are

helpful as they are typically imposed to improve routability, allow for effective buffer

insertion, etc. In many cases, these constraints come in the form of cell density restric-

tions. One trivial way to ensure sparser cell densities in a placement is by artificially

increasing cell sizes before placement (bloating) and shrinking them back to normal size

afterward [124]. For the bloating to be effective, the majority of the original whitespace

of the design must be consumed. This reduces the amount of whitespace available to the

placer which is undesirable for reasons stated above. Bloating also makes density control

in detailed placement more difficult as standard cells can only be bloated in discrete steps.

Widening a standard cell by a single cell site often increases cell width by 20% or more

whereas density control requires much finer precision, as seen in Table 4.1.

4.2 Top-down Whitespace Allocation

Top-down min-cut placement proceeds by successively dividing placement bins, the

first of which contains the entire core area and all movable objects, until the bins are small

enough to be optimally placed. Whitespace allocation is done per placement bin and in

this section we describe three techniques: uniform, minimum local and safe whitespace

57

ALGORITHM 4.1: Per-bin whitespace allocation to satisfy density constraints
¤ Input: placement bin B , whitespace target targetWS
¤ Output: partitioned child bins

1 SETTENTATIVECUTLINE(B)
2 if (BINWHITESPACE(B) > targetWS and targetWS ≥ SAFEWS)
3 then SETPARTTOLERANCESAFE(B , targetWS)
4 CALLPARTITIONER(B)
5 SHIFTCUTLINETOMAINTAINTARGETWS(B , targetWS)
6 else if (BINWHITESPACE(B) > targetWS and targetWS ≥ MINLOCALWS)
7 then SETPARTTOLERANCEMINLOCAL(B , targetWS)
8 CALLPARTITIONER(B)
9 SHIFTCUTLINETOMAINTAINTARGETWS(B , targetWS)

10 else SETPARTTOLERANCEUNIFORM(B)
11 CALLPARTITIONER(B)
12 SHIFTCUTLINETOEQUALIZEWS(B)
13 FINALIZECUTLINE(B)
14 CREATECHILDBINS(B)

Figure 4.1: Allocating whitespace in top-down placement to satisfy density constraints
using uniform, minimum local and safe whitespace allocation.

allocation. Any one of these options can be chosen per bin based on the bin’s whitespace

and user-configurable options. Pseudocode in Figure 4.1 shows how these three techniques

are used together to satisfy whitespace constraints.

Uniform Whitespace. If a bin has a user-defined “small” amount of whitespace or

less, partitioning attempts to divide the cell area approximately in half, within a given

tolerance. The appropriate partitioning tolerance is chosen based on whitespace deterio-

ration and is calculated as described in Section 2.1.4. After a partitionment1 is computed,

the geometric cut-line for the bin is positioned so that each side of the cut-line has an

equal percentage of whitespace. As tolerance is calculated assuming a fixed cut-line, the

cut-line is shifted to make whitespace more uniform. Such whitespace allocation generally

1In this work, we use the word partitionment to refer to the solution of a partitioning instance, and
partitioning as the act of finding such a solution. Other publications use the word partitioning to also refer
to the solution; we use partitionment to disambiguate the concepts.

58

Table 4.1: Reallocation of whitespace in mPL6 [27] placements of selected ISPD 2006
contest benchmarks [102]. Local whitespace targets are the same as from the
ISPD 2006 placement contest. Density violations are measured as the percent-
age of total cell area that violates density constraints. Using Capo 10.5 in ECO-
system mode [117] in combination with our whitespace allocation techniques,
we are able to significantly reduce the density violations of mPL6 placements.

Local WS HPWL (e6) Density ViolationBenchmark
Target Before After Before After

newblue1 20% 66.61 74.37 1.039% 0.065%
newblue2 10% 199.05 223.87 3.701% 0.964%
newblue3 20% 283.40 297.97 2.813% 0.126%
newblue4 50% 293.22 304.99 7.238% 4.105%

produces routable placements, at the cost of increased wirelength.

Minimum Local Whitespace. If a bin has more than a user-defined minimum local

whitespace (minLocalWS), partitioning will define a tentative cut-line that divides the

bin’s placement area in half. Partitioning targets an equal division of cell area, but is given

more freedom to deviate from its target. Tolerance is computed so that with whitespace

deterioration, each descendant bin of the current bin will have at least minLocalWS.

The assumption that the whitespace deterioration α in end-case bins is 0 made in [24]

no longer applies, so the calculation of α must change. Since we want all child bins of the

current bin to have minLocalWS relative whitespace, in particular end case bins must

have at least minLocalWS and thus we may set the relative whitespace of an end-case

bin w to be minLocalWS instead of a function of the partitioning tolerance τ . Using

the assumption that α remains constant during partitioning, α is calculated as α = n

√
w
w

[24]. With the more realistic assumption that τ remains constant, τ is calculated as τ =

n

√
1−w
1−w
− 1 [24]. Knowing τ , α = (τ + 1)− τ

w
.

After a partitionment is calculated, the cut-line is shifted to ensure that minLocalWS

59

is preserved on both sides of the cut-line. If the minimum local whitespace chosen is small,

the placer can produce tightly packed placements which improves wirelength.

Safe Whitespace. The last whitespace allocation mode is designed for bins with

“large” quantities of whitespace. In safe whitespace allocation, as with minimum local

whitespace allocation, a tentative geometric cut-line of the bin is chosen, and the target

of partitioning is an equal bisection of the cell area. The difference in safe whitespace

allocation mode is that the partitioning tolerance is much higher. Essentially, any parti-

tioning solution that leaves at least safeWS on either side of the cut-line is considered

legal. This allows for very tight packing and reduces wirelength, but is not recommended

for congestion-driven placement.

4.3 Whitespace in Detailed Placement

Placement tools use several techniques to further reduce HPWL after global placement

such as the sliding window optimizer RowIroning [23], but these techniques usually do not

respect density constraints. To have finer control of whitespace than the sliding-window

scheme, we present two detailed placement techniques that focus on whitespace alloca-

tion in addition to improvement of HPWL: a greedy cell-movement scheme and optimal

whitespace allocation that preserves relative cell ordering by solving min-cost network-

flow problems [17, 132].

Greedy Cell Movement. A gridded greedy movement technique can improve both

wirelength and whitespace distribution. Pseudocode for our technique is shown in Figure

4.3. An arbitrary grid is imposed on the placement region to analyze local placement

density. Density targets are set for each of the grid regions individually and can be non-

60

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(a) (b) (c)

Figure 4.2: Column (a) shows Capo 10.5 global placements of the ISPD 2005 placement
contest benchmark adaptec1 [104] with uniform whitespace allocation (top)
and non-uniform whitespace allocation (bottom). Fixed obstacles are drawn
with double lines. To indicate orientation, north-west corners of blocks are
truncated. Columns (b) and (c) depict the local utilization of the uniform and
non-uniform placements. Lighter areas of the placement signify regions that
violate the target placement density whereas darker areas have utilization be-
low the target. Areas with no placeable area (such as those with fixed obsta-
cles) are shaded as if they exactly meet the target density. The target placement
density for column (b) is 90% and the target for column (c) is 60%. Adaptec1
has 57.34% utilization. The HPWL for the uniform and non-uniform place-
ments is 10.69e7 and 9.03e7 respectively. As the intensity maps show, when
60% utilization is the target, uniform whitespace allocation is much more ap-
propriate than 12% minimum local whitespace. On the other hand, 12% min-
imum local whitespace is appropriate in terms of violations when the target is
90% utilization and has much better wirelength.

uniform. For standard cells that are in regions with density violations, location candidates

are found in areas of lower density violation. Candidate moves are ranked by how well they

alleviate violations as well as how they affect wirelength. We allow moves that increase

HPWL, but only a fixed amount per move. Moves are made until a threshold of density

improvement or a limit on increased HPWL is reached.

61

ALGORITHM 4.2: Greedy cell movement
¤ Input: initial placement P , grid of density targets G
¤ Output: optimized placement P

1 bestImprovement ← 0, cellToMove ← −1
2 foreach cell C
3 do Search G for a legal location of C that best

improves density violations and does not increase HPWL
by more than HPWLLIMIT% (break ties using HPWL)

4 Store the best location of C
5 if (density improvement of C > bestImprovement)
6 then bestImprovement ← density improvement of C
7 cellToMove ← C
8 while (cellToMove 6= -1)
9 do Move cellToMove to its best location

10 Fix cellToMove
11 bestImprovement ← 0, newCellToMove ← −1
12 foreach cell C 6= cellToMove
13 do if (best location of C overlaps with cellToMove)
14 then Search G for the best location of C
15 else if (C is connected to cellToMove)
16 then Recalculate the density improvement of moving C to its best location
17 if (density improvement of C ≤ 0)
18 then Search G for the best location of C
19 if (density improvement of C > bestImprovement)
20 then bestImprovement ← density improvement of C
21 newCellToMove ← C
22 cellToMove ← newCellToMove
23 if (density improvement of cellToMove < IMPROVEMENTCUTOFF)
24 then cellToMove ← −1
25 if (moving cellToMove to its best location increases HPWL beyond HPWLCAP)
26 then cellToMove ← −1

Figure 4.3: Greedy cell movement algorithm to reduce density violations while also taking
HPWL into account.

A similar greedy movement technique can reclaim HPWL while leaving whitespace

distribution unchanged. In this technique, pairs and triples of cells of approximately the

same size are examined. The number of pairs and triples of cells in any modern design

is intractable, so to keep runtime feasible our technique only considers pairs and triples

of cells that are directly connected to each other by two-pin nets. After pairs and triples

are collected, the HPWL gain is evaluated for swapping pairs of cells and the five non-

trivial permutations of triples of cells. As the cells are of approximately the same size,

62

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70

H
P

W
L

P
en

al
ty

 P
er

ce
nt

ag
e

Percent Minimum Local Whitespace

ISPD 2006 Contest Penalty vs. Minimum Local Whitespace Target

newblue1
newblue2
newblue3
newblue4

Figure 4.4: ISPD 2006 placement contest penalty for requested amounts of minimum lo-
cal whitespace. The penalty is calculated based on the total amount of density-
constraint violations. We test on benchmarks from the ISPD 2006 placement
contest suite [102]. These benchmarks have 29%, 38%, 74% and 54% whites-
pace, respectively. Usually the penalty is very small when using our techniques
(always less than 1.5%), but the penalty grows significantly as the requested
whitespace approaches the amount of whitespace available in the design.

no overlap is produced by these swapping moves and whitespace distribution is largely

unaffected. These cell-swapping moves are applied until a HPWL improvement threshold

is reached.

Optimal Whitespace Redistribution. Optimal whitespace allocation in row-based

placement [17] and floorplanning [132] given a fixed cell-ordering has previously been

described in the literature. Unfortunately [17] only considered optimal whitespace alloca-

tion for the x-direction of a single row of a placement at a time while [132] was limited

to relatively small floorplanning solutions generated using sequence-pairs. We extract the

best of these techniques, and generate min-cost network-flow problems for generic floor-

placement instances whose solutions optimally redistribute whitespace and snap cells to

63

Let the set of cells and macros be denoted:

C = c1, c2, . . . , ci

and the set of nets be denoted:

N = n1, n2, . . . , nj

Using the variables:

xk for 1 ≤ k ≤ i

Lx
k, Ux

k for 1 ≤ k ≤ j

and constants:

left boundary, right boundary

placement(k).x for 1 ≤ k ≤ i

width(k) for 1 ≤ k ≤ i

we minimize:
j∑

k=1

(Ux
k − Lx

k)

subject to constraints:

Lx
l ≤ xk ≤ Ux

l where cell k is on net l

left boundary ≤ xk for 1 ≤ k ≤ i

xk + width(k) ≤ right boundary for 1 ≤ k ≤ i

xk = placement(k).x where cell k is fixed

xk + width(k) ≤ xl where cell k is directly to the left of cell l

Figure 4.5: Linear programming formulation (horizontal direction) to optimize HPWL of
an existing placement. Further simplification is possible for two- and three-pin
nets.

row/site boundaries.

Our technique builds upon the well-known linear programming formulations used, e.g.,

in [132] and [112] in that we impose linear constraints for movable objects based on their

relative positions with respect to core boundaries and other movable objects. We include

additional linear inequalities to account for fixed obstacles and region constraints. One

major difference from previous work is that we guarantee that the x and y locations found

align to legal sites and rows, as explained below.

64

We handle reallocation of whitespace separately for the horizontal and vertical direc-

tions, and preserve local relative ordering of movables in each direction. In other words,

movable objects may not jump over each other or any fixed obstacles when whitespace

is being reallocated. Unlike in global placement [112], we start with legal or nearly-legal

locations. This simplifies our selection of relative constraints to include into the LP formu-

lation as follows. In the horizontal case, we examine each row individually. For each cell

or macro that intersects the row, we determine its immediate neighbors to the left and to the

right (those objects with which the current object could feasibly overlap if it would slide

to the left or right). These neighbors include movable objects, row or region boundaries as

well as fixed obstacles. After the neighborhood relations are determined, we constrain an

object to lie between its left- and right-hand neighbors. Construction of constraints for the

vertical case is analogous where rows are replaced with columns and site width is replaced

by row height. Lastly, to preserve global whitespace allocation characteristics, we add

constraints to limit the amount of movement of any individual cell from its initial position.

Unlike the formulation from [112], ours guarantees an overlap-free placement and needs

to be solved only once. In contrast with [132], we include only several constraints per

movable object rather than a quadratic number of constraints read from a sequence-pair.

This significantly improves scalability and allows one to pack more tightly.

In addition to the constraints above, we minimize HPWL. This is done by adding

Lx, Ux, Ly, U y variables for each net, and the terms (Ux − Lx) and (Uy − Ly) to the

objective function. The LP formulation for the horizontal case is enumerated in Figure

4.5. To solve the entire LP efficiently, we dualize it as in [132] and cast the dual as a min-

65

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

ibm01 HPWL=2.736e+06, #Cells=12752, #Nets=14111

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

ibm01 HPWL=2.665e+06, #Cells=12752, #Nets=14111

Figure 4.6: ICCAD 2004 IBM-MSwPins benchmark [1] ibm01 before (left) and after
(right) optimal whitespace allocation via network flows. The HPWL improve-
ment for this placement is 2.61% and takes only 10 CPU seconds to perform.

cost max-flow instance. The latter is solved using the scaling push-relabeling algorithm

of Goldberg [63]. Nets from the original LP formulation become directed edges with

unit capacity and zero cost in the dualized flow instance and distance constraints become

directed edges with costs and unlimited capacity. Goldberg’s implementation of push-

relabeling in C uses integer variables for both costs and capacities. Thus the algorithm

naturally produces integer solutions when the input is encoded in integers. We use this

integrality to produce solutions that are row- and site-aligned — we scale coordinates so

that integer x values correspond to legal sites and integer y values correspond to standard-

cell rows. Thus our solutions need no further legalization.

Empirically this technique is extremely fast and provides non-trivial interconnect length

improvement. Entire placements of up to 50000 cells can have their whitespace reallocated

in 60 seconds or less. We have found that 50000 cells is a good trade-off between quality

and runtime, so we break the placement area into a regular grid with a target of 50000

cells per grid cell and allocates whitespace in each region separately. We generally see

interconnect length improvement of 2-3% with a runtime cost less than 10% of placement

66

Table 4.2: Relevant characteristics of select benchmarks from the IWLS 2005 suite [72].
“Grid size” is the size of the grid used for greedy cell movement.

Benchmark # Movables Grid size
aes core 20795 14×14
ethernet 46771 30×30
mem ctrl 11440 12×12

pci bridge32 16816 17×17
usb funct 12808 14×14
vga lcd 124031 41×41

runtime (see Section 4.4 for more detailed results). Figure 4.6 depicts a placement of the

mixed-size design ibm01 (from the ICCAD 2004 IBM-MSwPins benchmarks [1]) before

(left) and after (right) whitespace optimization with flows.

4.4 Empirical Results

We have implemented proposed whitespace allocation techniques in the open-source

placer Capo 10.52 [115]. In this section we evaluate our techniques in the contexts of

satisfying density constraints and optimizing HPWL on a wide variety of publicly available

benchmarks.

Whitespace Reallocation. We combine our whitespace allocation techniques with

the ECO-system [117] mode of Capo 10.5 to reallocate whitespace in ISPD 2006 con-

test solutions from the mPL6 placer [27]. mPL6 uses a multilevel analytical technique for

global placement with cell bloating to help meet target densities [47] and the XDP detailed

placer [52] which legalizes and applies sliding window techniques to recover wirelength.

At the ISPD 2006 placement contest, mPL6 produced the best solutions when not consid-

2Our use of Capo as an implementation platform is justified by Capo’s competitive results on difficult
mixed-size instances [107] and all routability-driven placement benchmarks reported in the literature. Capo’s
routed solutions have best published via counts [116], which is very important for DFM and yield. Vias also
significantly impact timing, and may complicate routing by blocking routing tracks [134].

67

Table 4.3: Correction of local density violations by greedy cell movement techniques.
Benchmarks are selected from the IWLS 2005 benchmark suite and each have
38% total whitespace [72]. Density violations are measured as the percentage
of total cell area that violates density constraints. Greedy cell movement cor-
rects all density violations when requested local whitespace is 25% or less and
in many cases improves HPWL as well.

Local WS Density Violation HPWL RuntimeBenchmark
Target Before After Impact (s)

aes core 25% 0.042% 0% -1.699% 43
aes core 30% 0.208% 0.017% +0.513% 4
aes core 35% 0.572% 0.246% +0.530% 8
ethernet 20% 0.002% 0% -0.534% 163
ethernet 25% 0.036% 0% +0.501% 174
ethernet 30% 0.113% 0.015% +0.503% 111
ethernet 35% 0.892% 0.459% +0.522% 128
mem ctrl 30% 0.008% 0% -0.023% 3
mem ctrl 35% 0.586% 0.110% +0.518% 4

pci bridge32 20% 0.002% 0% -1.167% 25
pci bridge32 25% 0.061% 0% -1.182% 31
pci bridge32 30% 0.010% 0.003% +0.530% 11
pci bridge32 35% 0.823% 0.331% +0.506% 17

usb funct 30% 0.030% 0% -0.547% 16
usb funct 35% 0.356% 0.068% +0.578% 6
vga lcd 20% 0.0002% 0% -0.440% 622
vga lcd 25% 0.045% 0% +0.132% 743
vga lcd 30% 0.264% 0.101% +0.500% 585
vga lcd 35% 1.288% 0.758% +0.500% 740

ering runtime, but as shown in Table 4.1 the solutions did not satisfy the density constraints

imposed by the competition. These density violations can be significantly improved using

our technique, but only at the cost of significantly increased wirelength.3 In the smaller

benchmarks, newblue1 and newblue2, the cost in HPWL is approximately 12%. On

newblue3 and newblue4 the increase in HPWL is much lower at 5% and 4%, re-

spectively. This shows, especially on the larger benchmarks, that density violations can

3It is important to note that the coefficients in the ISPD 2006 penalty formula were chosen rather arbi-
trarily, while the effective cost of violations greatly depends on the types of problems caused by violations,
such as increased crosstalk noise and need for DFM fix-ups.

68

 0

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60 70

P
er

ce
nt

 o
f G

rid
 C

el
ls

Grid Cell Percent Whitespace

25 Percent Target Whitespace, HPWL = 98.44e8

 0

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60 70

P
er

ce
nt

 o
f G

rid
 C

el
ls

Grid Cell Percent Whitespace

30 Percent Target Whitespace, HPWL = 99.37e8

 0

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60 70

P
er

ce
nt

 o
f G

rid
 C

el
ls

Grid Cell Percent Whitespace

35 Percent Target Whitespace, HPWL = 100.07e8

(a) (b) (c)

Figure 4.7: Controlling whitespace distribution on the ethernet benchmark from the
IWLS 2005 benchmark suite [72], which has approximately 38% whitespace.
We divide the placement area into a regular grid and report whitespace distri-
bution across grid cells when targeting (a) 25%, (b) 30% and (c) 35% mini-
mum local whitespace. As the minimum whitespace requested approaches the
total whitespace, the constraint becomes more difficult to satisfy, but our tech-
niques are successful in producing solutions that are legal or nearly-legal for
the majority of grid cells.

be improved dramatically with a reasonable increase to HPWL. These reallocated place-

ments outperform all but one placer on one benchmark from the ISPD 2006 contest (only

Dragon’s placement of newblue4 has a lower density penalty) and have extremely com-

petitive HPWL.

Density Constraint Satisfaction. We implemented all of our proposed whitespace al-

location techniques in the Capo 10.5 framework and test uniform and non-uniform whites-

pace allocation on the ISPD 2005 contest benchmark adaptec1 (57.34% utilization) with

60% and 90% target whitespace densities. The HPWL for the uniform and non-uniform

placements is 10.69e7 and 9.03e7, respectively. Uniform whitespace produces almost no

violations when the target is 90% and relatively few when the target is 60%. The non-

uniform placement has more violations when compared to the uniform placement, espe-

cially when the target is 60%, but remains largely legal with a 90% target density. Hence,

uniform whitespace allocation is appropriate when target density is near the total amount

69

of whitespace in a design, otherwise non-uniform allocation can be used to improve wire-

length.

In Figure 4.7, we show histograms of grid cell densities across the ethernet bench-

mark [72] when given local whitespace constraints of (a) 25%, (b) 30% and (c) 35%. The

ethernet design has 38% total whitespace and our techniques are able to achieve com-

pletely legal solutions when 25% local whitespace is requested, but the constraints become

more difficult to satisfy at 30% and 35%. Despite the difficulty, our techniques produce

solutions that are legal or nearly-legal for the vast majority of grid cells.

The inherent difficulty in satisfying minimum whitespace constraints as the requested

whitespace approaches the total amount of whitespace in the design is also apparent from

Figure 4.4. Here we place selected benchmarks from the ISPD 2006 placement contest

with a wide range of requested local whitespace values. We use our whitespace allocation

methods to match the requested amount of local whitespace for each of the instances and

evaluate the legality of our solutions with the ISPD 2006 placement contest density penalty

function [102]. The penalty is calculated based on the total amount of density-constraint

violations in the placement. Our solutions generally have very small penalties (always less

than 1.5%) suggesting that our techniques satisfy density constraints well. Note how the

density penalty grows more quickly as the amount of requested whitespace approaches the

total amount of whitespace in the design.

Greedy Cell Movement. Table 4.3 shows the effectiveness of greedy movement tech-

niques in removing density violations. Benchmarks are selected from the IWLS 2005

benchmark suite and each have 38% total whitespace [72]. Size characteristics of these

70

Table 4.4: HPWL improvement due to flow-based whitespace redistribution on the IC-
CAD 2004 IBM-MSwPins mixed-size benchmarks [1]. On average, the flows
are able to reallocate whitespace and improve HPWL by nearly 3% while scal-
ing well with increasing quantities of movable objects.

Benchmark # Movables Runtime (s) Improvement
ibm01 12506 11 2.41%
ibm02 19342 23 2.60%
ibm03 22853 27 3.81%
ibm04 27220 38 2.96%
ibm05 28146 46 2.27%
ibm06 32332 44 2.87%
ibm07 45639 69 3.17%
ibm08 51023 64 2.82%
ibm09 53110 69 4.23%
ibm10 68685 129 1.91%
ibm11 70152 102 4.42%
ibm12 70439 135 1.87%
ibm13 83709 127 3.83%
ibm14 147088 262 2.64%
ibm15 161187 342 3.67%
ibm16 182980 404 2.62%
ibm17 184752 446 2.54%
ibm18 210341 338 2.47%

Average 2.86%

benchmarks are shown in Table 4.2. Density violations are reported as the percentage of

total cell area that violates density constraints. Greedy cell movement corrects all density

violations when requested local whitespace is 25% or less and in many cases improves

HPWL as well. As the requested local whitespace approaches the total whitespace, greedy

movement is not able to remove all of the density violations without making HPWL in-

crease more than 0.5%. With a higher limit on HPWL increase, greedy movement can

apply more moves and further reduce density violations.

Flow-based Whitespace Redistribution. We test optimal whitespace redistribution

based on min-cost network flows on the ICCAD 2004 IBM-MSwPins benchmark suite

[1]. Table 4.4 gives detailed runtime and HPWL improvement results for each of the

71

IBM-MSwPins benchmarks. We do not provide overflow statistics on these designs since

our flow-based whitespace redistribution maintains global whitespace characteristics. On

average, HPWL on these benchmarks is improved by 2.86% and runtimes scale nearly

linearly with benchmark size. Figure 4.6 depicts a placement of the ibm01 mixed-size

design before (left) and after (right) whitespace optimization with flows.

4.5 Conclusions

In this chapter we have introduced methods for satisfying whitespace constraints in

top-down placement while also optimizing interconnect. These constraints take the form

of cell density limits on a placement. A follow-up to the ROOSTER work on routability-

driven placement [116] has found that cell density limits can be extremely useful for pro-

moting routability, decreasing metal fill, improving yield, etc. [35]. Our techniques con-

sistently improve the quality of whitespace allocation of top-down as well as analytical

placement methods and achieve low penalties on designs from the ISPD 2006 placement

contest with minimal interconnect increase.

72

CHAPTER V

Routability Optimization in Placement

We observe that one major source of sub-optimality in modern standard-cell placement

is the optimization of half-perimeter wirelength (HPWL) rather than objectives which

more closely model concerns seen in routing. Our main contribution is a series of op-

timization techniques for Steiner-tree wirelength (StWL) in global and detailed place-

ment without a significant runtime penalty, making the use of half-perimeter wirelength

(HPWL) unnecessary. We draw on recent results in min-cut placement, particularly im-

provements [37] of the terminal propagation technique [123], which better correlate mini-

mizing net-cut with minimizing HPWL. We generalize this technique and show that with

adequate data structures it reduces StWL in global placement efficiently. We leverage

recent research on fast and accurate construction of Steiner trees to make StWL minimiza-

tion in placement practical.

To our knowledge, minimization of StWL in min-cut bisection has not been attempted

before, particularly the net-vector technique [68] cannot capture Steiner-tree lengths in

bisection or quadrisection (for more details see Section 5.1.1). There has also been work

in weighting the HPWL of individual nets based on their pin counts [39]. Later work im-

73

Table 5.1: Objectives of the Place-and-Route process and how they compare with objec-
tives of placement techniques. Traditional work on placement does not optimize
or even report the objectives most pertinent for Place-and-Route. It is particu-
larly difficult to optimize objectives that are measured relative to a given indus-
trial router. We improve key objectives by departing from traditional HPWL
optimization. Optimizing congestion estimates per se appears of limited use.

Objectives/constraints Use in placement Our empirical
in Place-and-Route Pertinent Popular Ours improvements

Routability * +
Routed WL * +

R
el

at
iv

e Via count * limited +
Timing * ∼ potential

Dynamic power * potential
Router runtime * +

Congestion estimates ? * * +
Placer runtime * * limited -

Steiner-tree WL * +

A
bs

ol
ut

e

HPWL * -

proved on these weighting techniques [20]. The authors of [21] find that these weighted

wirelength techniques are reasonable predictors of routed wirelength, but that smaller

weighted wirelength can translate into larger routed wirelength making the use of weighted

wirelength as an optimization “questionable.”

Our Steiner-tree driven detailed placer leverages the speed of the recent FLUTE pack-

age [44]. The closest work in detailed placement [73] models single-trunk Steiner trees to

reduce congestion in FPGAs. While effective, this technique requires exorbitant amounts

of runtime. Instead, our detailed placer considers optimal Steiner trees and is quite fast.

We also build upon recent work in congestion-driven placement that uses congestion

maps. In [143], congestion maps are built after global placement, and annealing moves

are applied to minimize a congestion metric. Another technique, known as WSA [93],

is applied after detailed placement. It identifies areas with high congestion and injects

whitespace into these areas in a top-down fashion. Our work uses congestion maps from

74

[141] to allocate whitespace in a manner similar to WSA but proactively, during global

placement. As a result, our placer ROOSTER (Rigorous Optimization Of Steiner-Trees

Eases Routing) produces the best known routed wirelengths on the IBMv2 benchmarks

[143].

At the 90nm technology node and below, increased via resistance, manufacturing vari-

ability and manufacturing defects require unprecedented attention to vias. In particular,

via resistance may vary by more than other important circuit parameters — in some tech-

nologies a difference of 30 times has been observed between neighboring vias. Therefore,

manufacturers prefer and sometimes require vias to be doubled, since this averages out

the variation. To this end, we point out that a range of easy-to-implement detailed place-

ment algorithms (those of the cell-shifting variety) tend to increase via counts, even when

they improve routability. ROOSTER avoids them and exhibits the smallest via counts on

standard benchmarks among all published results and our runs of recent placement tools.

In the remainder of this chapter, Section 5.1 describes previous work on routing-driven

VLSI placement. Section 5.2 discusses choosing the right objective to optimize in place-

ment and outlines a first implementation in floorplanning. Sections 5.3 and 5.4 intro-

duce the realization of Steiner-tree modeling in min-cut placers and Steiner-driven detailed

placement, respectively. Section 5.5 outlines whitespace allocation to improve routability.

Experimental results are given in Section 5.7, and Section 5.8 concludes and motivates

further applications of our techniques.

75

Figure 5.1: HPWL (left), Steiner WL (center) and Rectilinear Minimal Spanning Tree
(MST) WL (right) for a five-pin net.

5.1 Previous Work on Routability-driven Placement

Traditionally, placement and routing are treated as two independent optimization prob-

lems. Standard-cell placement is generally seen as the problem of finding non-overlapping

row- and site-aligned positions for cells while minimizing the wirelength of the design.

Currently, HPWL is the estimate of choice for wirelength minimization in placement be-

cause it is computationally easy and exactly calculates Rectilinear Steiner Minimal Tree

(RSMT) length for two- and three-pin nets. Unfortunately, routers construct routed wires

using Steiner trees whose length is under-approximated by HPWL. Figure 5.1 shows how

HPWL, RSMT, and Minimal Spanning Tree (MST) length differ for a given five-pin net.

Note that the shortest vertical segment in the RSMT is not included in the HPWL of the

net. Since RSMT construction is an NP-complete problem [60], it has been generally re-

garded as too computationally demanding for use in placement [68]. To illustrate how a

placer optimizes its chosen objective, we describe a specific technique – top-down min-cut

placement.

5.1.1 Routability-driven Top-down Min-cut Placement

Top-down placement algorithms seek to decompose a given placement instance into

smaller instances by subdividing the placement region, assigning modules to subregions

76

and cutting the netlist hypergraph [21]. Min-cut placers generally use either bisection

or quadrisection to divide the placement area and netlist. Netlist division is commonly

implemented with the Fiduccia-Mattheyses heuristic and derivatives [22,59], or alternately

with quadratic placement and geometric partitioning [16].

Placement bins. Each hypergraph partitioning instance is induced from a rectangular

region, or bin, in the layout. In this context a placement bin represents (i) a placement re-

gion with allowed module locations (sites), (ii) a collection of circuit modules to be placed

in this region, (iii) all signal nets incident to the modules in the region, and (iv) fixed cells

and pins outside the region that are adjacent to modules in the region (terminals). Top-

down placement can be viewed as a sequence of passes where each pass examines all bins

and divides some of them into smaller bins. These smaller bins collectively contain the en-

tire layout area and cells of the original instance. When placement bins are divided, careful

choice of vertical or horizontal cut direction influences wirelength and routing congestion

in resulting solutions [131].

Using multi-way partitioning. In an attempt to improve basic recursive bisection,

many researchers have noted that it eventually produces multi-way partitions which could

be alternatively achieved by direct methods using wirelength-like multi-way objectives. In

[68], the authors make use of quadrisection and show how several different cost functions

other than cut can be optimized efficiently, although with overhead greater than that of

bisection. One such cost function is the Minimum Spanning Tree (MST) length which

they note is a far more accurate predictor of routed wirelength than net-cut. The authors

note that in order for a wirelength evaluator to be feasible for placement optimization,

77

it must have evaluation complexity equal to or less than MST. On the other hand, the

authors claim that their techniques can apply to “arbitrarily complicated per-net placement

objectives” [68].

The net-vector technique includes the computation of 2p integer costs per optimization

objective defined for p partitions (p = 4 in [68] because quadrisection is used). It then

looks up these costs during partitioning. Unfortunately, such look-ups require the dis-

cretization of pin locations and cannot account for the location of fixed terminals with as

much precision as our work. Furthermore, the Steiner-tree objective on a discretized 2x2-

grid does not differ from the discretized MST objective, hence it appears that optimizing

StWL would require at least 16-way partitioning with large net-vector tables. However,

no 16-way geometric partitioners can be found in the literature that are competitive with

recursive bisection. In our work, Steiner trees are built on the fly for each configuration,

but the overall runtime remains reasonable.

Cell bloating. BonnPlace [16] presented temporary standard cell bloating for use

during partitioning-based placement. Each cell is expanded based on the magnitude of

the congestion estimated for the region where the cell is currently located, the number of

pins on the cell and a user-specified constant. After each call to partitioning, BonnPlace

estimates congestion, inflates cells in all over-congested regions, and then re-partitions

the design [16]. BonnPlace techniques can only be applied during top-down placement

rather than after; it is unclear how to apply them during global placement other than by

partitioning.

78

5.1.2 Estimating Congestion and Routed Wirelength

Congestion Maps. There have been many recent advances in estimating routing

congestion. Most have come in the form of more accurate and faster congestion maps

[83, 141]. A congestion map is a two-dimensional representation of one or more layers of

the routing grid. In previous work, the routing edges from all layers are collapsed into a

single layer to facilitate estimation of congested areas. For each two-pin net in a proba-

bilistic congestion map, all shortest length routings of the net are assigned equal weight

and fractions of a net are added to routing edges through which they could pass. Nets with

3 or more pins are typically divided into pairs of pins by constructing minimum spanning

trees or Steiner trees [141].

In this work, we make use of the congestion mapping techniques presented in [141]

which assumes that routers attempt to route nets with the fewest bends possible. The

technique models two-pin nets in only L and Z shapes, unlike other methods that consider

all possible shortest paths between two pins equally. Empirically, the authors of [141]

have found that some routers are able to find routes with one bend 60% of the time and

two bend routes for the majority of other nets. Thus, one-bend and two-bend routes are

weighted this way in their maps. Empirical results show that such estimates correlate well

with actual routing usage in the Magma Place-and-Route flow [141].

Rectilinear Steiner Minimal tree evaluators. The problem of constructing Rectilin-

ear Steiner Minimal trees is known to be NP-hard [60]. Specifically, it is the problem of

connecting a given set of points in the Manhattan plane by a minimum-length tree, which

can use additional branching (Steiner) points. This problem admits polynomial-time ap-

79

proximations and practical heuristics. Three such algorithms with available source code

are Batched Iterated 1-Steiner (BI1ST) [81], FastSteiner [78], and FLUTE [44]. BI1ST,

albeit the oldest and slowest of these algorithms, generally produces the best solutions

overall. FLUTE, the most recent and fastest algorithm, is provably optimal for instances

with 9 or fewer points. FastSteiner falls in the middle in terms of speed and solution

quality.

5.1.3 Achieving Routable Placements

It is well-known that a placement with small HPWL may be unroutable due to uneven

routing demand and ensuing wiring congestion. For this reason, modern placers must

explicitly account for routing congestion in order to produce routable placements. In [143],

congestion maps are built after global placement, and annealing moves are applied to

minimize a congestion metric. Another technique known as WSA [93] is applied after

detailed placement. WSA uses congestion maps to identify areas with high congestion

and injects whitespace into these areas in a top-down fashion. After whitespace allocation,

cells typically overlap each other and legalization is required. After legalization, window

based detailed placement techniques are applied to reduce wirelength that was increased

during whitespace allocation and legalization. Cell bloating [16, 124] and cell spreading

[93] are used to tie whitespace to specific cells, rather than regions as in techniques based

on congestion maps.1

Congestion-driven analytical placement. It is well-known that improving the half-

perimeter wirelength (HPWL) targeted by most placers sometimes complicates the work
1Cell bloating artificially increases the width of cells because their heights are determined by rows.

However, the peak demand for horizontal tracks does not decrease because cells are not spread vertically. To
the contrary, by spreading cells horizontally cell bloating increases the overall demand for horizontal tracks.

80

of routers and results in unroutable placements [16, 93, 144]. To this end, the placers

that performed best at the ISPD 2006 contest — NTUplace and KraftWerk2 — have re-

cently been enhanced to mitigate congestion [75,126] blending quick congestion estimates

into the objective function. The unnamed technique presented in [135] estimates wiring

density without using a router (and thus does not estimate the impact of detouring) and

incorporates minimization of these estimates within an analytical placement engine. A

related extension to FastPlace [45] goes further and embeds a fast global router into the

placement loop. It demonstrates that the same router produces shorter routes starting from

enhanced FastPlace placements.

These approaches are quite different, and the use of congestion estimates is much eas-

ier to implement. Also, the evidence in [16, 75, 126, 135] is more convincing because

it involves complete commercial routers and confirms violation-free completion. How-

ever, our experience with large industry ICs suggests that congestion estimates around

obstacles and blockages are often very inaccurate. This observation does not conflict with

results in [16, 75, 126, 135] because the benchmarks used there do not contain significant

blockages and, in any case, the routing information in those benchmarks was generated

artificially. While routing congestion is known to impact circuit timing, these effects were

not discussed in previous academic publications.

5.2 Choosing the Proper Objective

In this section we seek a wirelength estimator that adequately captures routed wire-

length and is suitable for efficient optimization. While the former appears within reach,

the latter turns out more difficult.

81

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4 6 8 10 12 14 16 18 20

R
ou

te
d

N
et

 L
en

gt
h

R
at

io

Pin Count

Accuracy of rWL Prediction for 4-20 Pin Nets

HPWL
StWL

MSTWL

Figure 5.2: Comparing the accuracy of routed wirelength (rWL) estimators HPWL (left
lines), StWL (middle) and MST WL (right) for nets with 4-20 pins in the
vga lcd design from the IWLS 2005 benchmarks [72]. StWL was calculated
using FastSteiner [78].

5.2.1 Estimating Net Length

A priori wirelength estimation is the subject of extensive literature [20]. In this work

we are mainly interested in evaluating and using simple per-net estimators, such as weighted

HPWL, identified previously as a reasonable compromise between HPWL and Rectilinear

Steiner Minimal Tree (RSMT) evaluators [20]. However, experiments described in [21]

reveal poor correlation between total weighted HPWL and total routed WL in placement.

Therefore, we do not consider weighted HPWL as a potential objective in our work.

On the positive side, recent progress on fast RSMT evaluators [44, 78] opens the pos-

sibility of using them in optimization. HPWL and RSMT WL (aka Steiner WL) share the

same drawback — they both underestimate routed wirelength (rWL), due to detours, pin

access problems, etc. A common response to this issue is to use the Minimal Spanning

Tree length (MSTWL) [68]; this is relatively easy to compute and does not exceed Steiner

82

WL by more than 50%. Therefore, we also include MSTWL in our experiments.

To test our intuition, we perform the following experiment. We analyze a placement

of the vga lcd design from the IWLS 2005 series of benchmarks [72] which was routed

without violation by Cadence WarpRoute. The vga lcd design has 124,031 standard

cells and 124,098 nets. For each net with 4-20 pins, we plot the ratios of HPWL, StWL

and MSTWL (length of the MST of the net) to routed net length vs. the pin count of the

net. See Figure 5.1 for a comparison of HPWL, StWL and MSTWL for a five-pin net.

StWL was calculated using FastSteiner [78]. Statistics for two- and three-pin nets are not

shown as HPWL and StWL produce identical numbers. For each net, three values are

plotted in Figure 5.2: HPWL
rWL

(left), StWL
rWL

(middle) and MSTWL
rWL

(right). Nets are separated

by their pin counts. In some cases, HPWL and StWL have ratios greater than 1.0. This

is due to routers making use of internal wiring within cells that does not count toward

reported wirelength. The discrepancy is exacerbated by wide pins present in many cell

libraries, as well as by logically and electrically equivalent pins.

Figure 5.2 shows that HPWL is a poor estimator of routed net length — it can signif-

icantly under-estimate rWL and includes a great amount of noise since the range of ratios

to rWL is large. As one might expect, StWL typically underestimates routed net length as

well, but its range of ratios in the figure is significantly smaller than for MST. This means

that with a proper correction, StWL may be a more accurate estimate than MST. 2 More

importantly, given two nets, StWL estimates can predict more reliably which net will have

longer routed length, i.e., StWL has higher fidelity. Further experiments described in Sec-

2Figure 5.2 suggests that MST is the most accurate estimator of routed net length on average for the
router used on this design because the ranges of ratios for MST are centered at 1.0.

83

Table 5.2: Fixed-outline floorplanning to minimize HPWL versus Steiner WL. All StWLs
were calculated using the Steiner evaluator FLUTE [44]. All wirelength and
runtimes are averaged over 50 runs. Optimizing Steiner WL increases runtime
by a minimum of 2.43x for n300 and a maximum of 29.53x for ami33.

Bench- Max Edge Avg Edge #Nets with
mark #Macros #Nets Degree Degree Degree > 3
ami33 33 123 34 3.4797 8
ami49 49 408 24 2.2892 19
n10 10 118 4 2.1017 2
n30 30 349 3 2.0716 0
n50 50 485 4 2.1650 1
n100 100 885 4 2.1164 5
n300 300 1893 6 2.3022 47

Bench- Minimizing HPWL Minimizing Steiner WL
mark HPWL StWL Time (s) HPWL StWL Time (s)
ami33 83267 105857 1.20 83434 103566 35.44
ami49 913680 934291 2.90 932408 951646 13.67
n10 56767 56841 0.12 57169 57277 0.45
n30 172614 172614 1.07 170527 170527 3.78
n50 204061 204100 3.16 207151 207193 9.70

n100 339423 339545 12.76 340396 340502 37.05
n300 764859 766389 122.98 760575 761968 299.32
Ratio 1.000 1.000 1.000 1.004 1.001 4.590

tion 5.6 have shown that the fidelity of net length estimates, rather than their accuracy is

key in placement. Indeed we have independently verified using MSTWL as an optimiza-

tion objective is worse than StWL for routability and may be less effective than HPWL in

certain situations (see Table 5.13 and discussion in Section 5.7).

5.2.2 Impact of Steiner-tree Evaluation

As a first attempt at optimizing Steiner WL, we replaced the HPWL subroutine of the

fixed-outline annealing-based floorplanner Parquet with FLUTE [44], a very fast Steiner-

tree evaluator. The choice of floorplanning for this experiment is explained by its relative

simplicity. It also clearly illustrates the impact of optimizing Steiner length on runtime

84

and solution quality in circuit layout.

Table 5.2 shows the netlist statistics for some common floorplanning benchmarks as

well as runtimes and wirelengths with and without the use of FLUTE. All runtimes and

wirelengths are averages over 50 runs. As is evident from the table, blindly replacing

an HPWL evaluator with a Steiner-tree evaluator, even one as fast as FLUTE, can result

in a huge increase in runtime when nets have nontrivial pin count. Trivial pin count for

any Steiner evaluator is three or fewer since Steiner length is the same as HPWL in such

instances. All the nets in the n30 benchmark have trivial pin count, but we observe a

3.53x increase in runtime. The reason for this runtime increase is that calling a Steiner-

tree evaluator requires nontrivial overhead (most notably the removal of duplicate points

which requires sorting) as compared to Parquet’s HPWL evaluator which is hand-tuned

for speed [25].

The data in the table is also quite striking in that it shows that optimizing for Steiner

length was not particularly effective, as Steiner wirelength and HPWL were both increased

across all of the benchmarks. This shows that what one may think is an obvious method

to reduce Steiner wirelength may not be all that useful. One possible explanation of this

strange result is that Steiner WL is not a convex objective. Thus, it may require a longer

annealing schedule than a convex objective like HPWL, whereas in our experiments the

annealing schedule was fixed.

Our empirical results suggest that Simulated Annealing is not compatible with Steiner

WL evaluation as Simulated Annealing relies on frequent net length computation, making

Steiner WL calculation the bottleneck. Furthermore, Simulated Annealing appears to be

85

ineffective in optimizing Steiner WL as Steiner WL increased on average in our experi-

ments. We pursue a different approach and, surprisingly, manage to optimize Steiner WL

with only a modest runtime penalty.

5.3 Minimizing Steiner-tree Length in Global Placement

In this section, we describe new techniques to minimize Steiner wirelength in min-cut

placement. In addition to the overall methods that make minimizing Steiner wirelength

possible, we present data structures new to min-cut placement that keep runtimes practical.

These global placement techniques alone can reduce routed wirelength by up to 7%, as

demonstrated in Figure 5.7.

A framework for minimizing StWL. To minimize total StWL during min-cut place-

ment, we capture it using the weighted net-cut objective used in partitioning. In the case

of HPWL minimization, this has been accomplished in [123] with a 7-case analysis. A

different group reduced this technique to the calculation of three wirelengths per net when

building a partitioning instance and verified resulting empirical improvements [37]. To be

clear, the three wirelengths that must be calculated per net (w1, w2 and w12) completely

determine the connectivity and costs of all nets in the derived partitioning hypergraph [37].

While the formulation from [37] is more compact than the one from [123], we also

note that it is far more general. For each net in a partitioning instance, one must calculate

the cost of all nodes on the net being placed at the center of partition 1 (w1), the cost

of all nodes on the net being placed at the center of partition 2 (w2) and the cost of all

nodes on the net being split between the centers of partitions 1 and 2 (w12). For each net

of the netlist hypergraph relevant to the partitioning instance, two nets are created in the

86

Figure 5.3: Calculating the three costs for weighted terminal propagation with StWL: w1

(left), w2 (middle), and w12 (right). The net has five fixed terminals: four above
and one below the proposed cut-line. For the traditional HPWL objective, this
net would be considered inessential. Note that the structure of the three Steiner
trees may be entirely different, which is why w1, w2 and w12 must be evaluated
independently.

partitioning hypergraph: one with weight w12 − max(w1, w2) and the other with weight

|w1 − w2| [37]. The new net with weight w12 −max(w1, w2) connects all of the movable

objects (non-terminals) of the original net. The new net with weight |w1−w2| connects all

of the movable objects of the original net to one of the fixed terminals in either partition

1 or 2. This new net connects to the terminal in partition 2 when w1 > w2 and to the

terminal in partition 1 when w1 < w2. If either net has weight 0, it is discarded from the

problem. The authors of [37] show, assuming w12 ≥ max(w1, w2), that this net weighting

scheme makes minimizing HPWL equivalent to minimizing the weighted net-cut of the

partitioning hypergraph.

The points required to calculate w1 for a net are the positions of the terminals on the

net plus the center of partition 1. Similarly, the points required to calculate w2 are the

positions of the terminals plus the center of partition 2. Lastly, the points to calculate w12

are the positions of the terminals on the net plus the centers of both partitions. See Figure

5.3 for an example of cost calculation. Clearly, the StWL of the set of points necessary to

calculate w12 is at least as large as that of w1 and w2 since it contains an additional point.

87

Since StWL satisfies the assumptions made by the authors of [37], weighted partitioning

can be used to minimize StWL. To our knowledge, such a framework has not been known

in min-cut placement until now.

The simplicity of this framework for minimizing StWL is deceiving. In particular, the

propagation of terminal locations to the current placement bin and the removal of inessen-

tial nets [23] — standard techniques for HPWL minimization — cannot be used when

minimizing StWL. Moving terminal locations drastically impacts Steiner-tree topology

and can make StWL estimates poor. Nets that are considered inessential in HPWL min-

imization are not necessarily inessential when considering StWL because there are many

Steiner trees of different lengths that have the same bounding box. Figure 5.3 illustrates a

net that is inessential for HPWL minimization but essential for StWL minimization.

Pointsets with multiplicities. Building Steiner trees for each net during partitioning

is a computationally expensive task. Table 5.2 in Section 5.2.2 shows how expensive a

naive replacement of HPWL with Steiner-tree evaluation can be in floorplanning. Even

traversing nets to collect all relevant point locations when building Steiner trees can be

very time-consuming. Therefore, the main challenge in supporting StWL minimization is

to develop efficient data structures and limit additional runtime during placement.

To keep runtime reasonable when building Steiner trees for partitioning, we propose a

simple yet highly effective data structure — pointsets with multiplicities. For each net in

the hypergraph, we maintain two lists. The first list contains all the unique pin locations

on the net that are fixed. A fixed pin can represent terminals, and fixed and placed objects

in the core area. The second list contains all the unique pin locations on the net that are

88

movable, i.e., all other pins that are not on the fixed list. We maintain a unique list of points

so that we don’t pass any redundant points to Steiner evaluators which may increase their

runtime. To do so efficiently, we keep the lists sorted. For both lists, in addition to the

location of the pin, we keep the number of pins that corresponds to a given point. Before

legalization in detailed placement, cell overlap can cause pins to have the same location.

Maintaining the number of real pins that corresponds to a point in a pointset (i.e., the

multiplicity of that point) is necessary for efficient update of pin locations during place-

ment. If a pin changes position during placement, the pointsets for the net connected to

the pin must be updated. First, the original position of the pin must be removed from the

movable point set. To remove the pin, one performs a binary search on the pointset. As

multiple pins can have the same position, especially early in placement, without pointset

the entire net would need to be traversed to see if any other pins share the same position as

the pin that is moving. However, multiplicities make this information available in constant

time. After the pin’s location is found in the pointset, its multiplicity is reduced by 1. If this

results in the position having a multiplicity of 0, the position is removed entirely. Insertion

of the pin’s new position is similar: first, a binary search is performed on the pointset. If

the position is present, it’s multiplicity is increased by 1. Otherwise, the position is added

in sorted order with multiplicity 1.

Steiner weighted min-cut step by step. Pseudocode for minimizing Steiner wire-

length in global placement is illustrated in Figure 5.4. At the beginning of min-cut place-

ment, all movable cells are placed at the center of the first placement bin which encom-

passes the core area. Next, all the fixed and movable pointsets are initialized. To initialize

89

ALGORITHM 5.1: Minimizing Steiner wirelength in partitioning-based placement

¤ Input: queue of placement bins Q , netlist to place
¤ Output: placements of all the movable objects in netlist

1 PLACEALLMOVABLESATTHECENTEROFTHETOPLEVELBIN()
2 INITIALIZEMOVABLEPOINTSETS()
3 INITIALIZEFIXEDPOINTSETS()
4 while (EMPTY(Q) = FALSE)
5 do bin ← DEQUEUE(Q)
6 if (DETERMINEBINSIZE(bin) = SMALL)
7 then CALLENDCASEPLACER(bin)
8 REMOVENEWLYFIXEDPINSFROMMOVABLEPOINTSETS(bin)
9 ADDNEWLYFIXEDPINSTOFIXEDPOINTSETS(bin)

10 else direction ← CHOOSECUTLINEDIRECTION(bin)
11 cutline ← CHOOSECUTLINEPOSITION(bin, direction)
12 (c1, c2)← CALCULATECENTERSOFCHILDBINS(bin, cutline)
13 graph ← BUILDPARTITIONINGGRAPHWITHOUTNETS(bin,netlist)
14 foreach(net in netlist attached to a cell in bin)
15 do terminals ← a list of terminal pin locations on net

by combining all points from net’s fixed pointset
and points from net’s movable pointset not contained within bin

16 Calculate w1 using terminals , c1 and a Steiner evaluator
17 Calculate w2 using terminals , c2 and a Steiner evaluator
18 Calculate w12 using terminals , c1, c2 and a Steiner evaluator
19 Adjust w1,w2,and w12 for consistency
20 Add 0, 1 or 2 nets to graph whose weights and connectivity

are determined by w1,w2, and w12

21 childBins ← CALLPARTITIONER(bin, cutline, graph)
22 MOVECELLSTOCENTERSOFCHILDBINS(bin , childBins)
23 UPDATEPOINTSETSFORMOVEDCELLS(bin)
24 ENQUEUE(Q , childBins)

Figure 5.4: Minimizing StWL in top-down min-cut global placement.

a pointset, we sort it and change duplicates to multiplicities in a linear-time pass.

Before a partitioning instance is built for a bin, all nets that are incident to the bin must

be examined in any min-cut placer. Usually any cell that is outside of the bin would be

propagated to the border of the bin. We skip this step as this reduces the accuracy of the

Steiner measurements. Instead we collect all the locations of terminals on this net. This

includes all the fixed pins in addition to any movable pins that are outside of this bin. At

90

this step, other placers would check to see if the bounding box of terminals would con-

tain the centers of the potential child bins (or would be checking for this condition while

gathering the terminals on this net) and stop without adding this net to the partitioning

problem. If this condition holds, the net is inessential to partitioning when optimizing for

HPWL, but may not be inessential when optimizing for Steiner WL. Thus we cannot skip

this net before calculating its three costs.

We calculate the three costs for each net by making calls to a particular Steiner evalua-

tor. If the number of unique points that needs to be passed to the Steiner evaluator is larger

than a certain threshold, we use HPWL evaluation instead purely for speed concerns. MST

WL can be used for these large nets, but we have found routed wirelength degradation as

compared to using HPWL (see Table 5.13). After making calls to the Steiner evaluator,

we make checks to ensure consistency of the costs since the evaluators we are using are

approximation algorithms for building RSMTs. For example we ensure that w1 ≤ w12 by

setting w1 = min(w1, w12) and similarly for w2. Also, we make sure that w12 is no larger

than min(w1, w2)+ the rectilinear distance between the centers of the child bins. This is

necessarily true because one has a tree that connects to all the terminals on the net and the

center of partition 1, one can easily connect to the center of partition 2 with a single edge.

After constructing the partitioning instance with properly weighted nets, the partitioner

runs and produces a solution. A cut-line is selected based on the partitioning (see Section

5.5 for more details), and new bins are constructed for the next cycle of min-cut placement

to continue. When a new bin is constructed, cells that belong to that bin are placed at its

center and all pointsets for nets incident to the bin must be updated. Since the pointset

91

Table 5.3: Runtime breakdown of global placement when minimizing StWL for ibm01-
easy of the IBMv2 series of benchmarks [143]. “Partitioning problem con-
struction” includes runtime for Steiner WL evaluators.

Global Placement Task Runtime
Partitioning 53.56%
Partitioning problem construction 29.50%
End-case Placement 7.77%
Congestion Maps 6.44%
Pointset Maintenance 0.86%
Miscellaneous 1.87%

structures are sorted and have multiplicities, moving a pin to a new location takes time

logarithmic in the number of pins on a net. Without multiplicities, the entire pointset would

need to be rebuilt from scratch due to the removal of duplicates. Empirically, building

and maintaining the pointset data structures takes less than 1% of the runtime of global

placement, shown in Table 5.3. Pointsets must also be updated when bin is placed —

movable pins get reassigned to the fixed-pin pointset. Note that partitioning only causes a

movable pin to change position, and fixed pointsets are unaffected.

Performance. After implementing net-weighting based on pointsets, we compared

three different Steiner evaluators to see their impact on runtime and solution quality. Based

on the results discussed in the Section 5.6, we have chosen FastSteiner [78] for global

placement, due to its reasonable runtime and consistent performance on large nets. Table

5.4 shows that the use of FastSteiner with our techniques lead to a reduction of StWL on

IBMv2 benchmarks [143] by nearly 3% on average while using 36% additional runtime.

Since min-cut placers are fast and extremely scalable, this is a very encouraging result.

The largest and smallest benchmarks (ibm01e and ibm12e) differ by 5x in size, but

HPWL minimization consistently takes 75% of runtime for StWL minimization, suggest-

92

Table 5.4: Improving Steiner WL with FastSteiner [78]. Average HPWL, Steiner WL and
placement runtimes are shown for the IBMv2 benchmarks [143]. Results are
the average of five independent runs. All wirelengths are in meters. Optimizing
StWL decreases StWL by 2.8%, increases runtime by 36% and HPWL by 1.4%.

Bench- Minimizing HPWL Minimizing Steiner WL
mark HPWL StWL Time (s) HPWL StWL Time (s)

ibm01e 0.523 0.602 205 0.526 0.590 271
ibm01h 0.514 0.592 204 0.523 0.587 266
ibm02e 1.487 1.745 483 1.526 1.716 738
ibm02h 1.441 1.694 470 1.471 1.654 725
ibm07e 3.482 3.854 1134 3.484 3.747 1480
ibm07h 3.322 3.682 1092 3.401 3.659 1444
ibm08e 3.630 4.300 1484 3.757 4.241 2304
ibm08h 3.608 4.258 1446 3.646 4.131 2268
ibm09e 3.065 3.465 1207 3.130 3.408 1599
ibm09h 2.991 3.390 1179 3.037 3.313 1565
ibm10e 6.016 6.736 1918 6.088 6.619 2541
ibm10h 5.826 6.542 1885 5.830 6.356 2519
ibm11e 4.591 5.003 1740 4.608 4.888 2109
ibm11h 4.430 4.843 1679 4.478 4.757 2064
ibm12e 8.193 9.109 2235 8.321 8.990 3016
ibm12h 7.983 8.907 2215 7.966 8.621 2957
Ratio 1.000 1.000 1.000 1.014 0.972 1.364

ing that the ratio remains approximately constant regardless of the scale.

5.4 Detailed Placement Driven by Steiner Tree Length

Sliding-window optimizations for HPWL during detailed placement are quite com-

mon in modern placers. A recent technique of that variety models single-trunk Steiner

trees and has had success in improving routability of FPGAs [73]. Unfortunately, it ap-

pears very slow. We have implemented two types of sliding-window optimizers directed at

minimizing StWL using the FLUTE Steiner evaluator [44]. The first optimizer checks all

possible linear orderings of small groups of cells and pieces of whitespace exhaustively.

For the sake of efficiency, orderings of cells that are the same except for permutations of

93

whitespace pieces are only evaluated once. Other than this simple optimization, every cell

ordering is generated and its StWL is calculated using FLUTE. The ordering with the least

StWL is returned at the end of the procedure. Because of the exponential rate of growth of

the number of permutations of n cells, namely n!, this exhaustive enumeration technique

only scales to 4-5 cells.

The second optimizer also does linear placement, but uses a dynamic programming

algorithm for an interleaving optimization similar in spirit to that presented by Jariwala

and Lillis [73]. Given k cells, the algorithm splits the cells into groups A and B of sizes

n = k/2 and m = k−n, respectively. The order of the cells in groups A and B is important

and is the same as the initial configuration to the optimizer. The configurations that the

algorithm examines are only those where cells in groups A and B are interleaved, but the

relative order of cells from A and cells from B remain unchanged. For example, say we

have the cells 1234abcd in this order. The ordering “1ab2cd34” is a legal ordering for

the algorithm to consider, but the ordering “12a3bdc4” is not because c came before d in

group B previously, but c is now behind d. The exact number of configurations that satisfy

this interleaved ordering is (n+m)!
n!m!

which is much less than the (n + m)! = k! possible

configurations of the input.

First, the algorithm builds an n-by-m sized table of partial solutions. Entry (i, j) of

the table contains the ordering with the best (smallest) StWL when interleaving the first i

elements of group A and the first j elements of group B. The final answer is thus stored in

position (n,m) of the table after the algorithm finishes. Table entries (i, 0) and (0, j) are

trivial to calculate. The dynamic programming step of the algorithm computes entry (i, j)

94

Table 5.5: Statistics of the IBMv2 benchmarks [143].

Bench- Whitespace Metal
mark # Cells # Nets easy hard layers

ibm01 12028 11753 14.88% 12.00% 4
ibm02 19062 18688 9.58% 4.72% 5
ibm07 44811 44681 10.05% 4.70% 5
ibm08 50672 48230 9.97% 4.84% 5
ibm09 51382 50678 9.76% 4.88% 5
ibm10 66762 64971 9.78% 4.92% 5
ibm11 68046 67422 9.89% 4.67% 5
ibm12 68735 68376 14.78% 9.94% 5

from entries (i − 1, j) and (i, j − 1). Element i of group A is added to the solution from

entry (i − 1, j) and the StWL of the resulting placement is calculated from scratch with

FLUTE. Similarly, element j of group B is added to the solution from entry (i, j − 1) and

the StWL of this placement is calculated from scratch with FLUTE. The best of these two

solutions in terms of StWL is taken to be the solution for entry (i, j). Calculating entries

in row-major (or column-major) order will guarantee that all dependencies are satisfied.

Since the algorithm proceeds by filling in the table, the runtime of the algorithm is

proportional to n ∗ m multiplied by the time to evaluate wirelength, while considering

(n+m)!
n!m!

configurations. To speed up the process of evaluating wirelength, pointsets with

multiplicities (see Section 5.3) are used in interleaving as well as exhaustive search. This

dynamic programming approach has been shown to produce the optimal interleaving when

HPWL is used for evaluation [73], but we have found that it does not necessarily produce

min-StWL interleavings. On the other hand, it allows for windows of size 8-9 which is

nearly twice that of exhaustive search.

Table 5.6 evaluates detailed placement on the IBMv2 benchmarks (statistics for which

are presented in Table 5.5), with 4 cells per window during exhaustive enumeration and 8

95

Table 5.6: Detailed placement improves Steiner WL and routed WL. Average improve-
ments and runtime (as a fraction of total placement time) from five independent
runs are shown for the IBMv2 benchmarks [143].

Bench- Steiner WL Routed WL % Total
mark improvement improvement runtime

ibm01e 1.047% 1.668% 11.66%
ibm01h 0.950% 4.046% 11.99%
ibm02e 0.735% 1.332% 10.89%
ibm02h 0.644% 0.363% 11.14%
ibm07e 0.647% 1.377% 11.51%
ibm07h 0.622% 3.288% 11.92%
ibm08e 0.553% 0.680% 11.27%
ibm08h 0.540% 1.620% 11.77%
ibm09e 0.716% 2.846% 13.00%
ibm09h 0.698% 3.041% 13.26%
ibm10e 0.662% 1.327% 12.42%
ibm10h 0.642% 0.225% 12.70%
ibm11e 0.639% 0.313% 11.65%
ibm11h 0.607% 0.273% 11.82%
ibm12e 0.682% -0.789% 11.11%
ibm12h 0.619% 0.423% 11.50%
Average 0.688% 1.387% 11.83%

cells per window during interleaving. Such detailed placement alone reduces Steiner WL

by 0.69% and routed WL by 1.4% while consuming 11.8% of total placement runtime.

5.5 Congestion-based Cut-line Shifting

In this section we introduce whitespace allocation based on congestion estimates dur-

ing min-cut placement. This technique is essential to achieving routability, but in some

cases increases routed wirelength, as seen in Figure 5.7.

One of the most important reasons that we use bisection instead of quadrisection is the

flexibility that it allows in choosing the cut-line of a partitioned bin. Before partitioning,

we first choose a direction for the cut-line, usually based upon the geometry of the bin.

We then choose a tentative cut-line in that direction to split the bin roughly in half.

96

After the partitioner returns a solution, we have the flexibility to keep the cut-line as

it was chosen before partitioning or to change it to optimize an objective. The WSA [93]

technique, applied after placement, geometrically divides the placement area in half and

estimates the congestion in both halves of the layout. It then allocates more area to the

side with greater routing demand, i.e., shifts the cut-line, and proceeds recursively on the

two halves of the design. In WSA, cells must be re-placed after the whitespace allocation.

However, we can avoid this re-placement because our cells have not yet been placed and

will be taken care of naturally during the min-cut process.

Cut-line shifting used to handle congestion necessitates a slicing floorplan. The only

work in the literature that describes top-down congestion estimates and uses them in place-

ment assumes a grid structure [16]. Therefore we develop the following technique: before

each round of partitioning, we overlay the entire placement region on a grid. We choose

the grid such that each placement bin is covered by 2-4 grid cells. We then build a conges-

tion map using the last updated locations of all pins. We choose the mapping technique

from [141] as it shows good correlation with routed congestion.

When cells are partitioned and their positions are changed, the congestion values for

their nets are updated. Before cut-line shifting, the routing demands and supplies for either

side of the cut-line are estimated with the congestion map. Given the bounding box of a

region, we estimate its demand and supply by intersecting the bounding box with the grid

cells of the congestion map. Grid cells that partially overlap with the given bounding box

contribute only a portion of their demand and supply based on the ratio of the area of the

overlap to the area of the grid cell. Using these, we shift the cut-line to equalize the ratio

97

Figure 5.5: Congestion maps for the ibm01h benchmark: uniform whitespace allocation
(produced with Capo -uniformWS) is illustrated on the left, congestion-driven
allocation in ROOSTER is illustrated on the right. The peak congestion when
using uniform whitespace is 50% greater than that for our technique. When
routed with Cadence WarpRoute, uniform whitespace produces 3.95% over-
full global routing cells and routes in just over 5 hours with 120 violations.
ROOSTER’s whitespace allocation produces 3.18% overfull global routing
cells and routes in 22 minutes without violations.

of demand to supply on either side of the cut-line.

To show the effectiveness of this dynamic version of WSA, we plot congestion maps of

placements of ibm01h produced with and without our technique in Figure 5.5. The left plot

illustrates uniform whitespace allocation and the right plot congestion-driven whitespace

allocation. Our whitespace allocation technique reduces maximum congestion by 50%

and the number of overfull global routing cells from 3.95% to 3.18% (as reported by

an industry router). We also post-process our placements with WSA and observe mixed

results, as discussed below (see Table 5.10).

5.6 Steiner-tree Evaluators: Runtime, Accuracy and Fidelity

After implementing our technique to reduce StWL during global placement, we tested

three different Steiner-tree evaluators to see how they would affect the runtime and solution

quality of placement. The three evaluators used were Batched Iterated 1 Steiner (BI1ST)

98

[81], FastSteiner [78] and FLUTE [44]. We used each evaluator individually as well as

combinations of all three. When using more than one evaluator at a time, we choose

the smallest wirelength among all estimates since RSMT estimators overestimate actual

RSMT length. Recall that FLUTE is known to be optimal for nets with nine or fewer pins

and also much faster than other evaluators. Therefore, in mixed evaluators for nets with

four to nine pins we use FLUTE exclusively.

Table 5.7 shows a runtime and solution quality comparison for all eight possible com-

binations of Steiner evaluator for the benchmark ibm01e. Runtimes and wirelengths are

averages of five independent runs. The trends present for ibm01e are very similar for the

other IBMv2 benchmarks. It is clear from the table that BI1ST gives the best solutions but

uses the most runtime for a single evaluator. FastSteiner is very close to BI1ST in terms

of solution quality, but uses much less runtime. Of the three pure evaluators, FLUTE is

the least successful in terms of placement quality but is the fastest. We decided to use

FastSteiner in global placement because it provided the best trade-off in terms of solution

quality and runtime across all benchmarks.

Surprisingly, the mixed Steiner evaluators were outperformed by individual evaluators

and hurt solution quality rather than improved it. This trend was even stronger on larger

benchmarks. In particular, FastSteiner performed better than FastSteiner + FLUTE on

ibm07. Certainly using the best of three Steiner evaluators makes estimates more accu-

rate, but our global placement relies on differences between Steiner lengths rather than

the lengths themselves. This suggests that the accuracy, measured by maximum error, of

Steiner-tree estimation is not as important as its fidelity, which is defined as preserving

99

Table 5.7: Impact of Steiner evaluators during global placement (ibm01e). Total StWL
and global placement runtime are listed for all combinations of three Steiner
evaluators. In such combinations, the minimum Steiner length estimate is used
in weighted partitioning.

Steiner Place Steiner Steiner
evaluator(s) time (s) WL WL Ratio

HPWL (no Steiner eval) 141 0.5955 1.0000
BI1ST + FastSteiner + FLUTE 202 0.5918 0.9937

BI1ST + FLUTE 186 0.5900 0.9907
BI1ST + FastSteiner 248 0.5893 0.9895

FLUTE 148 0.5886 0.9884
FLUTE + FastSteiner 158 0.5875 0.9866

FastSteiner 180 0.5875 0.9866
BI1ST 208 0.5861 0.9843

Table 5.8: A comparison of our work to best published routing results on the IBMv2
benchmarks [143]. All routed wirelengths (rWL) are in meters. A ratio greater
than 1.0 indicates that our results are better on this benchmark suite. For all
cases, ROOSTER outperforms best published routing results in terms of routed
wirelength and via count. Published routing data for APlace 1.0 for ibm09-
ibm12 is unavailable. Routing data for Capo 9.2, Dragon 3.01 and FengShui
2.6 were taken from [115] which did not list via counts. Routing uses a 24-hour
time-out. Best legal rWL and via counts are in bold.

ROOSTER mPL-R + WSA [93] APlace 1.0 /w cong [82] Capo 9.2 [115] Dragon 3.01 [143] FengShui 2.6 [6]
rWL #Vias #Vio. rWL #Vias #Vio. rWL #Vias #Vio. rWL #Vio. rWL #Vio. rWL #Vio.

ibm01e 0.733 122286 0 0.77 127969 0 0.80 152489 0 0.779 0 0.843 0 time-out 932
ibm01h 0.746 124307 0 0.75 129648 0 0.75 150947 0 0.773 23 0.917 84 time-out 2698
ibm02e 2.059 259188 0 1.89 284396 0 2.05 299306 0 2.183 0 2.085 0 2.201 0
ibm02h 2.004 262900 0 1.94 296290 0 2.14 315786 0 2.080 0 2.216 0 2.277 0
ibm07e 4.075 476814 0 4.29 548765 0 4.18 559354 0 4.534 0 4.495 0 4.756 77
ibm07h 4.329 489603 0 4.43 579157 0 4.29 586129 1 4.591 0 4.523 0 4.707 251
ibm08e 4.242 559636 0 4.58 661733 0 4.58 681884 0 4.553 0 4.601 0 4.458 0
ibm08h 4.262 574593 0 4.49 684910 0 4.63 699411 0 4.768 0 4.961 0 5.056 52
ibm09e 3.165 466283 0 3.50 549568 0 - - - 3.357 0 3.705 0 3.520 0
ibm09h 3.187 475791 0 3.65 570032 0 - - - 3.336 0 3.494 0 3.395 0
ibm10e 6.412 749731 0 6.84 873311 0 - - - 6.591 0 6.948 0 6.809 0
ibm10h 6.602 775018 0 6.76 902026 0 - - - 6.484 0 6.982 0 6.716 0
ibm11e 4.698 605807 0 5.16 714824 0 - - - 5.039 0 5.371 0 5.301 0
ibm11h 4.697 618173 0 5.15 745015 0 - - - 4.941 0 5.400 0 5.260 0
ibm12e 9.289 918363 0 10.5 1127925 0 - - - 9.895 0 10.459 0 10.147 33
ibm12h 9.289 938971 0 10.1 1107551 0 - - - 10.145 0 9.904 0 time-out 3418

Ratio 1.000 1.000 1.055 1.156 1.042 1.119 1.056 1.107 1.093

relative magnitudes between estimates.

5.7 Empirical Results

To test the quality of placements produced by ROOSTER, we ran it on the IBMv2

suite of benchmarks [143] and routed them using Cadence WarpRoute 2.4.41. All runs of

100

Table 5.9: A comparison of our work to the most recent version of mPL-R + WSA, APlace
2.04 and FengShui 5.1 on the IBMv2 benchmarks [143]. All routed wirelengths
(rWL) are in meters. “Time” represents routing runtime in minutes. Note
that while APlace 2.04 achieves overall smaller wirelength than ROOSTER,
it routes with violations on 2 of the 16 benchmarks. Best legal rWL and via
counts are in bold.

ROOSTER Latest mPL-R + WSA APlace 2.04 -R 0.5 FengShui 5.1
rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio. Time

ibm01e 0.733 122286 0 42 0.718 123064 0 11 0.790 158646 85 132 0.804 166459 1630 1337
ibm01h 0.746 124307 0 32 0.691 213162 0 11 0.732 161717 2 121 0.807 166578 1451 1310
ibm02e 2.059 259188 0 13 1.821 250527 0 11 1.846 254713 0 9 2.324 383169 726 474
ibm02h 2.004 262900 0 14 1.897 260455 0 13 1.973 268259 0 14 2.284 343198 148 184
ibm07e 4.075 476814 0 17 4.130 492947 0 21 3.975 500574 0 17 4.387 591002 137 84
ibm07h 4.329 489603 0 19 4.240 516929 0 26 4.141 518089 0 23 4.632 617327 486 244
ibm08e 4.242 559636 0 17 4.372 579926 0 23 3.956 588331 0 18 5.050 740719 19 112
ibm08h 4.262 574593 0 20 4.280 599467 0 26 3.960 595528 0 18 4.759 725147 16 59
ibm09e 3.165 466283 0 11 3.319 488697 0 17 3.095 502455 0 11 3.462 517701 0 13
ibm09h 3.187 475791 0 11 3.454 502742 0 19 3.102 512764 0 12 3.348 510144 0 13
ibm10e 6.412 749731 0 22 6.553 777389 0 30 6.178 782942 0 23 6.599 807032 0 24
ibm10h 6.602 775018 0 27 6.474 799544 0 33 6.169 801605 0 28 6.661 812593 0 27
ibm11e 4.698 605807 0 15 4.917 633640 0 22 4.755 648044 0 18 5.419 671225 0 22
ibm11h 4.697 618173 0 16 4.912 660985 0 25 4.818 677455 0 24 5.452 679690 0 22
ibm12e 9.289 918363 0 36 10.185 995921 0 57 8.599 921454 0 32 9.829 1172981 6 73
ibm12h 9.289 938971 0 43 9.724 976993 0 50 8.814 961296 0 50 10.333 1344067 466 448

Ratio 1.000 1.000 1.007 1.069 0.968 1.073 1.097 1.230

placement and routing were performed on 3.2GHz Intel Pentium 4 processors with 1GB of

RAM. All runs of randomized placers, including ROOSTER, are the average results for the

best of three independent placements (only the best of the three independent placements

is routed and the results of three such sets of placements are averaged). Statistics for the

IBMv2 benchmarks are shown in Table 5.5. The effectiveness of each of the approaches

that make up ROOSTER is depicted in Figure 5.7. A comparison of ROOSTER against

the best published results for several competitive placers is shown in Table 5.8. A ratio

greater than 1.0 indicates that our results are better for this benchmark suite, which is true

for all the routed wirelengths and via counts of previously published results.

Most of the placers whose best published results are shown in Table 5.8 have more

recent binaries which we evaluate in Table 5.9. We ran Dragon 4.0 in fixed-die mode,

but it consistently crashed and we are unable to show results for it. Table 5.9 shows that

the latest version of mPL-R + WSA has slightly worse rWL (0.7%) when compared to

ROOSTER and 6.9% higher via count. Congestion-driven APlace 2.04 (using congestion

101

Table 5.10: Results when applying various post-processors to our placements for the
IBMv2 benchmarks [143]. All routed wirelengths (rWL) are in meters.
“Time” represents routing runtime in minutes. WSA shows improvement on
some of our placements, but increases routed wirelength and via counts on the
largest benchmarks. The detailed placers of Dragon 4.0 and FengShui 5.1 de-
crease the routability of our placements by increasing rWL and via count on
all benchmarks and the addition of violations. Best legal rWL and via counts
are in bold.

ROOSTER ROOSTER + WSA ROOSTER + Dragon 4.0 DP ROOSTER + FengShui 5.1 DP
rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio. Time

ibm01e 0.733 122286 0 42 0.718 122873 0 7 0.790 133498 0 92 0.850 162248 155 152
ibm01h 0.746 124307 0 32 0.725 124063 0 10 0.800 176562 36 166 0.858 176585 257 265
ibm02e 2.059 259188 0 13 2.000 256155 0 10 2.164 278854 0 19 2.215 347022 129 77
ibm02h 2.004 262900 0 14 1.978 262022 0 11 2.004 271237 0 33 2.234 345638 285 171
ibm07e 4.075 476814 0 17 3.953 470104 0 13 4.175 502808 0 19 4.498 581269 563 44
ibm07h 4.329 489603 0 19 4.091 489067 0 19 4.721 593629 76 21 4.885 617061 870 86
ibm08e 4.242 559636 0 17 4.231 559010 0 16 4.443 598266 0 18 4.662 684313 276 27
ibm08h 4.262 574593 0 20 4.240 577879 0 19 4.491 619733 0 36 4.794 714798 768 207
ibm09e 3.165 466283 0 11 3.200 473605 0 11 3.392 502967 0 11 3.718 573996 583 22
ibm09h 3.187 475791 0 11 3.205 480961 0 11 3.328 511174 0 12 3.688 587486 630 19
ibm10e 6.412 749731 0 22 6.420 755673 0 21 6.759 798405 0 23 7.214 905508 229 18
ibm10h 6.602 775018 0 27 6.544 781897 0 26 6.523 804478 0 29 6.943 911878 296 34
ibm11e 4.698 605807 0 15 4.746 613437 0 15 4.879 644060 0 15 5.308 735762 492 59
ibm11h 4.697 618173 0 16 4.716 625654 0 16 4.830 654948 0 16 5.288 755418 591 77
ibm12e 9.289 918363 0 36 9.333 930397 0 30 9.427 953405 0 39 9.888 1087932 10 44
ibm12h 9.289 938971 0 43 9.282 942551 0 39 9.260 966280 0 47 9.786 1102197 312 66

Ratio 1.000 1.000 0.990 1.004 1.041 1.089 1.114 1.248

parameter 0.5) has rWL 3.24% smaller than ours, but 7.32% more vias and violations on

2 of the 16 benchmarks.

Since our cut-line shifting for congestion can be viewed as a dynamic version of the

WSA post-processing technique, we were interested in seeing how WSA or other detailed

placement techniques would affect the routability of our placements. Table 5.10 shows

that WSA is able to improve our wirelength by 1.0% with a 0.4% increase in via count.

Direct comparisons show that the most improvement is obtained on the ibm01 and ibm02

benchmarks. In contrast, the detailed placers of Dragon 4.0 and FengShui 5.1 degrade the

routability of our placements, increasing routed wirelength, via counts and violations.

The Faraday series of five mixed-size benchmarks with routing information is derived

from circuits released by the Faraday Corporation [1]. To see if ROOSTER techniques are

applicable when fixed obstacles are present, we fixed the movable macros in the design (as

shown in Figure 5.6) and used the resulting benchmarks with ROOSTER. All benchmarks

102

Table 5.11: A comparison of ROOSTER to Cadence AmoebaPlace on the IWLS 2005
Benchmarks [72]. All routed wirelengths (rWL) are in meters. “Time” rep-
resents routing runtime in minutes. ROOSTER is outperforms AmoebaPlace
by 12.0% in rWL and 1.1% in via counts (without orientation constraints the
improvements are 26.5% and 3.2%, respectively). Best rWL and via counts
are in bold.

ROOSTER + NanoRoute ROOSTER (w/o row orient) + NanoRoute AmoebaPlace + NanoRoute
Benchmark rWL #Vias #Vio. Time rWL #Vias #Vio. Time rWL #Vias #Vio. Time

aes core 1.339 125939 2 32 1.271 126645 1 50 1.657 131049 1 28
ethernet 7.287 467777 1 27 6.145 413323 2 257 7.745 471800 1 28
mem ctrl 1.061 87276 0 22 0.890 89153 0 33 1.224 90067 0 21

pci bridge32 1.336 114880 0 35 1.176 115675 0 59 1.598 117326 2 35
usb funct 0.995 84717 0 19 0.860 85329 0 33 1.106 85739 0 19
vga lcd 25.906 1131591 2 57 24.447 1083504 1 173 25.405 1076178 2 90

Ratio 1.000 1.000 0.885 0.979 1.120 1.011

were routed using Cadence WarpRoute 2.4.41. A comparison of ROOSTER placements to

the original placements of the benchmarks produced by Silicon Ensemble Ultra v5.4.126

(details on the construction of the benchmarks can be found in [1, Appendix A]) are shown

in Table 5.12. Results for APlace 2.04 and mPL-R are not shown as they crashed on all

but the DMA benchmark (the only Faraday benchmark without macros). Compared to the

SEUltra placements, ROOSTER improves routed WL by 11.2% and via counts by 4.8%.

Previous work has compared mPL-R/WSA and APlace with Cadence QPlace and

found mPL-R/WSA to have the best results on IBMv2 benchmarks [93]. Since we show

better results than mPL-R/WSA, ROOSTER should also compare favorably with QPlace

on the IBMv2 benchmarks. Capo has demonstrated comparable performance to QPlace on

another set of industry benchmarks [21]. Since ROOSTER considerably improves upon

Capo, we expect similar improvements over QPlace.

We also performed placement experiments on the IWLS 2005 benchmarks [72]. Un-

like the IBMv2 benchmarks which use a 0.25 µm cell library, the IWLS 2005 benchmarks

use a Cadence 0.18 µm library. Table 5.11 compares ROOSTER with Cadence Amoe-

baPlace from SOC Encounter 4.1 on a few of the IWLS 2005 designs. All of the bench-

103

 dma HPWL= 4.445e+08, #Cells= 12682, #Nets= 12613 dsp1 HPWL= 9.756e+08, #Cells= 27145, #Nets= 28400 dsp2 HPWL= 9.404e+08, #Cells= 27125, #Nets= 28384 risc1 HPWL= 1.49e+09, #Cells= 33249, #Nets= 33762 risc2 HPWL= 1.43e+09, #Cells= 33249, #Nets= 33762

(a) DMA (b) DSP1 (c) DSP2 (d) RISC1 (e) RISC2

Figure 5.6: The ICCAD’04-Faraday benchmarks placed by ROOSTER. Macros are de-
picted with double outlines and are fixed.

Table 5.12: Routing results on the Faraday benchmarks with movable macro blocks fixed
[1]. All routed wirelengths (rWL) are in meters. “Time” represents routing
runtime in minutes. Best rWL and via counts are highlighted.

Bench- ROOSTER Silicon Ensemble Ultra v5.4.126
mark rWL #Vias #Vio.Time rWL #Vias #Vio Time
DMA 0.554 116414 0 3 0.644 125328 0 3
DSP1 1.110 209274 0 5 1.224 204863 0 6
DSP2 1.067 194971 0 6 1.230 207521 0 6
RISC1 1.868 328699 5 9 1.957 345615 4 6
RISC2 1.786 324278 5 7 1.959 347515 2 5
Ratio 1.000 1.000 1.112 1.048

marks were routed with Cadence NanoRoute. The two sets of results for ROOSTER differ

in how they handle cell orientations in rows that have nontrivial orientations. A full dis-

cussion on the orientations of standard cells and pin access is beyond the scope of this

work, but the version of ROOSTER that does not respect nontrivial row orientations takes

much longer to route than the version that does but can achieve significantly smaller routed

wirelengths. ROOSTER improves upon AmoebaPlace in rWL by 12.0% and 1.1% in via

count. This empirical comparison to a placement tool from Cadence also suggests that

our techniques are superior to those published by Cadence in 1994 [39]. We did not have

success using APlace 2.04 and mPL-R on these designs. APlace 2.04 completed global

placement on all but the largest benchmark, but terminated with an error message during

legalization. mPL-R crashed on all of the benchmarks that were tried.

104

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

ibm12eibm11eibm10eibm09eibm08eibm07eibm02eibm01e

In
cr

ea
se

 in
 R

ou
te

d
W

ire
le

ng
th

 (
rW

L) V

V

V

V

V

V

Capo with uniform whitespace
optimizing StWL in global placement + above

congestion-driven whitespace allocation + above
optimizing StWL in detailed placement (ROOSTER) + above
ROOSTER without congestion-driven whitespace allocation

 0.95

 1

 1.05

 1.1

ibm12hibm11hibm10hibm09hibm08hibm07hibm02hibm01h

In
cr

ea
se

 in
 R

ou
te

d
W

ire
le

ng
th

 (
rW

L)

V

V
V

V

VV

V

V

Capo with uniform whitespace
optimizing StWL in global placement + above

congestion-driven whitespace allocation + above
optimizing StWL in detailed placement + above (ROOSTER)
ROOSTER without congestion-driven whitespace allocation

Figure 5.7: Impact of individual optimizations on the rWL produced by ROOSTER. “V”
indicates violations in routing.

To see if the routed wirelength of ROOSTER placements could be improved without

dramatically increasing its runtime, we attempted to add Minimal Spanning Tree (MST)

wirelength into the ROOSTER framework. Recall that if a net has more than a certain

threshold of pins, 20 for our experiments, ROOSTER uses HPWL to evaluate the net in-

stead of a Steiner evaluator for reasons of speed. As MST wirelength is a more accurate es-

timator of routed wirelength than HPWL and is faster to calculate than StWL, we replaced

HPWL with MST wirelength for large nets when calculating weights for partitioning.

Results of adding MST into ROOSTER are shown in Table 5.13. As we can see, using

MST in place of HPWL in ROOSTER increases rWL by 0.7% and via count by 5.1% while

reducing routability as 6 benchmarks have violations. Since the fidelity of wirelength

evaluator is crucial, we performed an additional experiment where all net weights were

calculated using MST WL. Table 5.13 that this increases rWL by 1.5% and via count by

5.0% and reduces routability on 7 benchmarks. These results reinforce our hypothesis that

Steiner WL is a better placement optimization objective than MST wirelength.

105

Table 5.13: The impact of replacing HPWL (for high degree nets) and StWL (for all nets)
with MST as the wirelength evaluator for ROOSTER on the IBMv2 bench-
marks. All routed wirelengths (rWL) are in meters. “Time” represents routing
runtime in minutes. The ratios are with respect to ROOSTER’s performance
described in Table 5.8. Legal improvements to ROOSTER in rWL and via
counts are highlighted in bold.

Bench- HPWL replaced by MST StWL replaced by MST
mark rWL #Vias #Vio. Time rWL #Vias #Vio. Time

ibm01e 0.768 149073 40 188 0.754 136724 2 54
ibm01h 0.768 161339 121 231 0.764 157896 32 184
ibm02e 2.017 281313 2 18 2.012 254610 0 16
ibm02h 2.010 288491 9 48 2.185 312547 119 89
ibm07e 4.105 481189 0 26 4.102 475751 0 26
ibm07h 4.410 528926 18 44 4.214 527378 20 63
ibm08e 4.327 564834 0 28 4.301 559318 0 27
ibm08h 4.328 580717 0 33 4.395 618671 4 34
ibm09e 3.192 470294 0 17 3.267 470715 0 18
ibm09h 3.150 475043 0 18 3.230 478005 0 19
ibm10e 6.283 746000 0 32 6.538 794192 1 36
ibm10h 6.577 766170 0 38 6.559 765255 0 37
ibm11e 4.784 608935 0 25 4.798 608887 0 24
ibm11h 4.719 620048 0 24 4.750 619988 0 25
ibm12e 9.277 926201 0 64 9.347 916887 0 55
ibm12h 9.267 991382 1 57 9.301 980202 1 52
Ratio 1.007 1.051 1.015 1.050

5.8 Conclusions and Further Work

We have presented techniques which leverage recent advances in RSMT construc-

tion [44, 78] to optimize Steiner wirelength in global and detailed placement with only

a modest increase in runtime, which are currently usable only in our placement algo-

rithm ROOSTER which is freely available as part of the UMpack (http://vlsicad.

eecs.umich.edu/BK/PDtools/). As the results of Figure 5.7 show, the optimiza-

tion of Steiner tree lengths in global placement is the main source of improved wirelength.

However, whitespace distribution is critical to prevent routing violations, even at the cost

of increased wirelength. ROOSTER outperforms best published routed wirelength results

106

for Dragon, Capo, FengShui, mPL-R/WSA and APlace by 10.7%, 5.6%, 9.3%, 5.5% and

4.2% respectively. Via counts, especially important at 90nm and below, are improved by

15.6% over mPL-R/WSA and 11.9% over APlace. Further improvements by others in

Steiner-tree construction and congestion maps can make our results better. In particular,

if FLUTE becomes faster and can process large nets with high fidelity, detailed placement

windows can increase.

Properly accounting for obstacles in placement is an area that could benefit signif-

icantly from our StWL minimization techniques. An obstacle-aware Steiner evaluator

could be used directly in our implementation for nontrivial improvement. In addition to

handling blockages, both Steiner-tree evaluators used in ROOSTER (FLUTE [44] and

FastSteiner [78]) can handle arbitrary per unit-costs of horizontal and vertical wires. This

may provide a safer means of balancing the demand for horizontal and vertical routing

resources (similarly motivated cut-line selection did not improve results in our tests).

Our technique may conceivably be extended to improve circuit timing — this requires

the ability to estimate the per-net timing differential based on Steiner trees which we al-

ready compute. Extensions to optimize timing may require block-based static timing anal-

ysis. Even more accessible would be a similar extension to optimize dynamic power. In

particular, in designs with multiple clock domains, we could optimize clock trees during

global placement by estimating the lengths of bounded-skew clock trees using algorithms

such as BST-DME.

107

CHAPTER VI

Incremental Placement and Applications to Physical
Synthesis

In his keynote talk at ISPD 2006, Cadence CTO Ted Vucurevich expressed the need

for “re-entrant, heterogeneous, incremental, and hierarchical” tools for EDA to handle

the challenges of next-generation designs [61]. However, the importance of this problem

has been realized much earlier, as Cong and Sarrafzadeh surveyed the state-of-the-art in

incremental physical design techniques in 2000 and found these techniques to be largely

“unfocused and incomplete” [51]. Kahng and Mantik also found disconnects between

the relative strengths of incremental optimizers and perturbation techniques [76]. They

conclude that CAD tools of the time “may not be correctly designed for ECO-dominated

design processes” [76]. Recent work by Kahng and Reda suggests that certain types of

netlist transformations are not handled well by re-placement from scratch, which also

motivates incremental tools [80]. Considerable progress has been made since 2000, e.g., in

incremental placement [2,5,18,52,65,69,92,93,95,96,100,113], but there is no consensus

on the main tasks solved by incremental tools and how these tasks should be solved. While

incremental physical design is not new, it remains a difficult, high-value goal.

108

Macro move, HPWL = 10.08e8 Greedy legalization, HPWL = 10.55e8 ECO-system, HPWL = 9.85e8 ECO-system with routable whitespace, HPWL = 9.92e8

(a) (b) (c) (d)

Figure 6.1: Legalization of a macro move in the ICCAD’04-Faraday design DSP1 [1].
In (a), the left-most macro is moved toward the north-west corner of the de-
sign. This move causes overlap with standard cells and also areas of empty
space below and to the right of the macro. The remaining three images are
zoomed-in legal placements of this design. In (b), a greedy algorithm which
tries to minimize cell movement is applied. Overlap is removed, but the empty
space below and to the right of the macro remain unutilized which can be
detrimental to routability. (c) shows the placement as legalized by our tool
ECO-system. ECO-system improves wirelength and makes use of much of
the area vacated by the macro. Lastly, (d) shows how ECO-system can dis-
tribute cells and whitespace so as to ensure routability and/or satisfy minimum
whitespace constraints.

We focus on incremental placement legalization and improvement in large-scale lay-

out. The need for such legalization typically arises in two contexts. The first is the sepa-

ration of placement into global and detail, where rough placements are produced first and

incrementally improved to avoid overlaps and fit into cell sites. This is common for analyt-

ical placers (APlace [82], mPL [29]) that approximate site constraints, while partitioning-

driven tools (Capo [115], PolarBear [50]) and annealing-based tools (mPG [31], Par-

quet [3]) adopt correct-by-construction frameworks requiring little post-processing.

However, the second context for legalization appears entirely unavoidable. During

physical synthesis, timing-critical gates may be powered up and other gates may be pow-

ered down. These changes affect gate size and typically create overlaps [92]. Buffer

insertion often leads to similar area violations, which must be resolved by legalization.

109

The success of such legalization depends on how much the areas have changed, in what

patterns, and the strength of a given legalizer. In particular, the legalization of mixed-size

and block-based designs with obstacles remains very challenging [107].

Our work is focused on the design of a powerful and robust ECO tool that applies

adequate amounts of replacement, in the right locations, to accommodate necessary design

changes. To be useful in high-level and physical synthesis, such a tool must be able to

entirely replace sections of the netlist, e.g., logic added to the design.

While practical considerations call for an interaction between global placers and le-

galizers, traditional work on ECO and detailed placement focuses on stand-alone tools

incapable of global placement. An attractive, but yet unexplored solution would be to

extend an existing global placer to an incremental mode where it would automatically

identify layout regions and sections of the netlist that need repair, but preserve satisfactory

regions. In this work, we propose such an extension, identify and develop new compo-

nents that allow a global placer to act like a powerful ECO tool, and develop a competitive

implementation based on the open-source Capo tool.

As this tool can always resort to calling global placement on the entire design, it ro-

bustly handles a full range of modern designs, including those with obstacles and movable

macros. Time-consuming global placement is not used when the initial placement is good.

We formulate the basic requirements for ECO placement and offer relevant algorithms.

Our tool, ECO-system, is many times faster than a global placer and increases wirelength

only slightly. ECO-system outperforms APlace’s native legalizer on APlace global place-

ments by over 1% in HPWL while running four times faster. ECO-system supports ex-

110

Table 6.1: A comparison of several legalization and incremental placement techniques.
For each of the techniques, its compatibility with fixed objects or macros as
well as what general techniques it uses are listed. ECO-system is compared
with XDP [52] in Section 6.5. (†) Support of the feature by this technique is
unclear. See Section 6.1 for more details. (‡) Recent versions of Capo, the
basis of ECO-system, use linear programming and network flows in detailed
placement, but they are beyond the scope of this work.

Capo Diffusion DOMINO WSA XDP ECO-
[115] [96, 113] [56] [92, 93] [52] system

Fixed-object
support

X X † X

Macro support X † † X X
Whitespace

Fe
at

ur
es

redistribution
X X

Cell swapping X X
Greedy

legalization
X X X X X

Linear
programming

X ‡
Network flows X X ‡

Sliding-windowTe
ch

ni
qu

es
us

ed

optimization
X X X

tensive cell resizing producing legal results that mirror the original with virtually the same

HPWL while having minimal impact on timing. Unlike WSA [92,93], we handle obstacles

and displace cells an order of magnitude less.

The rest of this chapter is structured as follows. In Section 6.1 we review previous

work. Key requirements and a likely interface are discussed in Section 6.2. We present

ECO-system in Section 6.3. Support for high-level and physical synthesis is discussed in

Section 6.4. In Section 6.5 we show empirical results and conclude in Section 6.6.

6.1 Previous Work in Incremental Placement

Previous work on legalization, incremental placement and detailed placement can be

broken into three fairly distinct stages: (i) cell spreading, (ii) legalization through sim-

111

ple end-case techniques, and (iii) refinement of the legalized placement. For the first

stage, several algorithmic paradigms have been applied in the literature such as network

flows [18,52,56,95], linear programming [52], top-down whitespace injection [92,93] and

diffusion gradients [113]. For end-case legalization, generally placers use greedy move-

ment of cells such as in Capo [115], the Tetris legalizer [65] in FengShui [6], and greedy

packing in DOMINO [56]. After legalization, placement refinement is done in sliding win-

dows of one or more rows using optimal end-case placers based on branch-and-bound [23]

or dynamic programming [69], as well as cell swapping [111].

One major theme in much of the literature is minimizing the total movement of cells

in the design during legalization [18]. While our legalizer achieves remarkably small to-

tal/average movement, we point out that in general this does not always lead to minimal

increase in interconnect parameters as shown in [11]. A legalization with minimal total

cell displacement may cause a few cells to move a great distance. Better timing may be

achieved by legalization with greater average movement, and even if the average move-

ment is the same, there can be many alternative replacements.

Cell spreading. The term “cell spreading” has been used by several authors in differ-

ent contexts. In particular, several papers describe algorithms that do not take interconnect

into account, while ECO-system includes interconnect optimization. Some of these pub-

lications do not describe the handling of movable and especially fixed obstacles, while

ECO-system handles both, as confirmed by our experiments.

DOMINO [56] legalizes by splitting cells into pieces of identical sizes, solving a flow

formulation to minimize movement, and finally reassembling the cell pieces. This lim-

112

its the effectiveness of DOMINO to cells of similar sizes. Existing implementations of

DOMINO do not account for obstacles and shift all cells to the left, limiting their appli-

cability to modern placement instances, such as those from the ISPD’05 contest [104].

Flow-based legalization methods such as those used in [18, 95] divide the core area into

regions and redistribute cells between neighboring regions until no region has more cell

area than available site area. These techniques can handle movable macros by fixing them

early in the legalization process.

In [92, 93] cells are incrementally placed by injecting whitespace in a top-down fash-

ion. The placement region is divided into a regular grid with geometric bisection steps

(based only on the size and shape of the region, not taking into account the cells, macros

or fixed obstacles therein), and whitespace is injected based on some particular objec-

tive (routing congestion in [93], gate sizing and buffer insertion in [92]). Whitespace

injection is done by shifting the geometric cut-lines to change the whitespace balance in

regions. When cut-lines are shifted, the positions of the cells in the affected regions are

scaled. Whitespace injection can cause significant overlap due to scaling, especially in

the presence of fixed obstacles or movable macros as in the ISPD 2005 Contest bench-

marks [104]. To remove these overlaps, a standard legalization step must be applied fol-

lowed by window-based detailed placement to recover HPWL. It is unclear how well this

technique may work on difficult block-packing instances [107]. In addition, the most cur-

rent implementation of this technique, WSA, does not support macros. The technique

may also fail in cases of extreme overlap, such as global placement by analytical placers,

as large areas of the placement will be essentially random. The authors of [92] report an

113

average displacement of 2.1% of the core half-perimeter per cell, whereas the displace-

ments observed with our technique are an order of magnitude smaller.

The diffusion technique of [113] legalizes by dividing the core area into a regular

grid. Cells move from areas of high congestion to lower congestion (moving around fixed

obstacles) and their directions and speeds are determined by solving equations similar to

those in the process of chemical diffusion [113]. New placements are generated at each

time step of the diffusion and the first solution which satisfies area constraints is taken

to minimize runtime and cell movement [113]. End-case legalizers work within the grid

regions to produce a final legal placement, but this may be impaired by difficult block-

packing instances [107]. The work in [96] improves that in [113], but does not measure its

impact on wirelength, congestion or timing.

The XDP technique [52] uses a combination of constraint graphs, network flows, linear

programming and greedy cell movement for legalization of mixed-size designs. Overlaps

between macros are legalized first by building constraint graphs until all macros can legally

fit into the core. After the constraint graph is finalized, a linear programming instance is

built and solved to remove macro overlap and move macros minimally. It is unclear if

this technique supports fixed macros. Standard cells are legalized with a greedy heuristic

similar to that of FengShui [6], with the addition of flow-based methods [18,95] as neces-

sary. After legalization, window-based detailed placement techniques are used to improve

HPWL. We evaluate XDP in our experiments.

Greedy legalization. FengShui [6] uses a simple packing algorithm by Hill [65] that

is reminiscent of the Tetris game. Such legalization fares poorly in designs with large

114

amounts of whitespace, as shown by the results of the ISPD 2005 Placement Contest.

Capo uses two greedy legalizers for its global placements: one for macros and another

for standard cells [115]. The macro overlap legalizer tries to move macros as little as

possible so as not to affect neighboring standard cells. If space is available, standard cells

are legalized via shifting. Otherwise cells are swapped between rows greedily until no row

is overfull. Fixed obstacles are handled implicitly as they fracture rows [115].

Macro legalization. It was shown that a fixed-outline floorplanner based on Simulated

Annealing with sequence pairs could be used to remove overlap [2]. Techniques in [136]

improve on [2] and show how to legalize with minimal perturbation. Removal of overlap

between macros can be especially difficult given hard instances of block-packing [107].

To handle such instances, the authors of [107] modify B*-trees to account for obstacles.

The recent FLOORIST tool [100] uses constraint satisfaction to remove macro overlap.

6.2 Requirements of Incremental Placement

Design optimizations that require incremental placement can alter a design in many

ways [57] such as (see also Section 6.4):

• Changing cell dimensions or net weights/criticalities

• Adding/Removing various constraints, such as density (to promote routability), re-

gions (to address timing), etc.

• Inserting/Removing cells (with or w/o initial locations), nets or macros

• Adding/Moving obstacles (memories, IP blocks, RTL macros, etc.)

Generally these transformations create illegality in localized regions of a design and/or

create opportunities for improving an existing placement. All of these transformations can

115

be dealt with by performing placement from scratch, but this is undesirable: (i) replace-

ment can be slow, (ii) the transformations may assume that they are applied to the cur-

rent layout, and placement from scratch may invalidate them, and (iii) the current layout

may include intangibles such as designer intent, or be optimized for novel objectives not

accounted for by the placement tool. Cong and Sarrafzadeh point out that incremental

placers need to be able to trade off potentially several design objectives when operating on

a placement [51].

In addition to preserving the original placement, a legalizer must also be able to com-

pletely replace sections of the placement that are deemed too suboptimal after design al-

terations. For example, if all of the cells are moved on top of one another at the center

of the placement area, the legalizer should have the ability to replace all of the cells as

the initial placement gives little useful information about a legal placement of the design.

While this example is not typical of legalization as a whole, it is quite possibly the case for

small sections of an illegal placement. This pathological case is not considered by most

legalization techniques (such as those described in Section 6.1).

Take for example the case when new cells are added to a design. If the new cells

are added to isolated regions of the design, such as during buffer insertion, traditional

techniques that perturb the design only slightly are most likely appropriate. Yet, timing

optimization may call for pipelining of a multiplier or changing an adder to a different

type. Adding a significant amount of new logic to an already placed and optimized design

will require the functionality of a full-blown placer rather than just cell spreading to avoid

degrading the design’s wirelength and timing characteristics.

116

ALGORITHM 6.1: Top-down ECO placement
¤ Input: queue of placement bins Q , netlist to place
¤ Output: placements of all the movable objects in netlist

1 while (EMPTY(Q) = FALSE)
2 do bin ← DEQUEUE(Q)
3 if (BINMARKEDTOPLACEFROMSCRATCH(bin) = FALSE)
4 then if (BINOVERFULL(bin) = TRUE)
5 then MARKBINTOPLACEFROMSCRATCH(bin)
6 break
7 direction ← CHOOSECUTLINEDIRECTION(bin)
8 cutline ← cut-line which has the smallest net-cut

considering cell area balance constraints
9 if (cutline causes overfull child bin)

10 then MARKBINTOPLACEFROMSCRATCH(bin)
11 break
12 partitioning ← INDUCEPARTITIONING(bin, cutline)
13 netcut ← EVALUATENETCUT(partitioning)
14 newPartitioning ← RUNFLATFIDDUCIAMATTHEYSES(partitioning)
15 newNetcut ← EVALUATENETCUT(newPartitioning)
16 if (newNetcut/netcut < IMPROVEMENTTHRESHOLD)
17 then MARKBINTOPLACEFROMSCRATCH(bin)
18 break
19 childBins ← CREATECHILDBINS(bin, partitioning , cutline)
20 ENQUEUE(Q , childBins)
21 if (BINMARKEDTOPLACEFROMSCRATCH(bin) = TRUE)
22 then if (DETERMINEBINSIZE(bin) = SMALL)
23 then CALLENDCASEPLACER(bin)
24 else direction ← CHOOSECUTLINEDIRECTION(bin)
25 cutline ← CHOOSECUTLINEPOSITION(bin, direction)
26 graph ← BUILDPARTITIONINGGRAPH(bin, cutline,netlist)
27 childBins ← CALLPARTITIONER(bin, cutline, graph)
28 MARKBINSTOPLACEFROMSCRATCH(childBins)
29 ENQUEUE(Q , childBins)

Figure 6.2: Our top-down partitioning-based ECO placement algorithm. Lines 3-21 and
28 differ from traditional min-cut placement.

6.3 Top-down Legalization

To develop a strong ECO tool, we build upon an existing global placement frame-

work and must choose between analytical and top-down. The main considerations include

robustness, the handling of movable macros and fixed obstacles, as well as consistent

routability of placements and the handling of density constraints. Based on recent empir-

ical evidence [107, 116, 120], the top-down framework appears a somewhat better choice.

117

Indeed the 2 out of 9 contestants in the ISPD 2006 Competition that satisfied density con-

straints were top-down placers. However, analytical algorithms can also be integrated into

our ECO-system when particularly extensive changes are required. We base ECO-system

on the open-source min-cut placer Capo [115].

6.3.1 General Framework

The goal of ECO-system is to reconstruct the internal state of a min-cut placer that

could have produced a given placement without the expense of global placement. Given

this state, we can choose to accept or reject previous decisions based on our own criteria

and build a new placement for the design. If many of the decisions of the placer were good,

we can achieve a considerable runtime savings. If many of the decisions are determined to

be bad, we can do no worse in terms of solution quality than placement from scratch. After

this modified global placement, we use a subset of Capo’s detailed placement to guarantee

legality. An overview of the application of ECO-system to an illegal placement is depicted

in Figure 6.3. See the algorithm in Figure 6.2.

To rebuild the state of a min-cut placer, we must reconstruct a series of cut-lines and

partitioning solutions efficiently. To extract a cut-line and partitioning solution from a

given placement bin, we examine all possible cut-lines as well as the partitions they induce.

We start at one edge of the placement bin (left edge for a vertical cut and bottom edge

for a horizontal cut) and move towards the opposite edge. For each potential cut-line

encountered, we maintain the cell area on either side of the cut-line, the partition induced

by the cut-line and the net cut.

118

Figure 6.3: Fast legalization by ECO-system. The image on the left illustrates choosing a
vertical cut-line from an existing placement. Nets are illustrated as red lines.
Cells are individually numbered and take 2 or 3 sites each. Cut-lines are eval-
uated by a left-to-right sweep (net cuts are shown above each line). A cut-line
that satisfies partitioning tolerances and minimizes cut is found (thick green
line). Cells are assigned to “left” and “right” according to the center locations.
On the right, placement bins are subdivided using derived cut-lines until (i)
a bin contains no overlap and is ignored for the remainder of the legalization
process or, (ii) the placement in the bin is considered too poor to be kept and
is replaced from scratch using min-cut or analytical techniques.

6.3.2 Fast Cut-line Selection

For simplicity, assume that we are making a vertical cut and are moving the cut-line

from the left to the right edge of the placement bin (the techniques necessary for a hori-

zontal cut are analogous). Pseudocode for choosing the cut-line is shown in Figure 6.4.

To find the net cut for each possible cut-line efficiently, we first calculate the bounding

box of each net contained in the placement bin from the original placement. We create

two lists with the left and right x-coordinates of the bounding boxes of the nets and sort

them in increasing x-order. While sliding the cut-line from left to right (in the direction of

increasing x-coordinates), we incrementally update the net-cut and amortize the amount

of time used to a constant number of operations per net over the entire bin. We do the

same with the centers of the cells in the bin to incrementally update the cell areas on either

119

side of the cut-line as well as the induced partitioning. While processing each cut-line, we

save the cut-line with smallest cut that is legal given partitioning tolerances. An example

of finding the cut-line for a partitioning bin is shown in Figure 6.3.

Once a partitioning has been chosen, we accept or reject it based on how much it can be

improved by a single pass of a Fiduccia-Mattheyses partitioner with early termination

(which takes only several seconds even on the largest ISPD’05 circuit).1 The intuition is

that if the constructed partitioning is not worthy of reuse, a single Fiduccia-Mattheyses

pass could improve its cut non-trivially. If the Fiduccia-Mattheyses pass improves the cut

beyond a certain threshold, we discard the solution and bisect the entire bin from scratch.

If this test passes, we check legality: if a child bin is overfull, we discard the cut-line and

bisect from scratch.

6.3.3 Scalability

Pseudocode for the cut-line location process used by ECO-system is shown in Figure

6.4. The runtime of the algorithm is linear in the number of pins incident to the bin, cells

incident contained in the bin, and possible cut-lines for the bin. Since a single Fiduccia-

Mattheyses pass takes also takes linear time [59], the asymptotic complexity of our algo-

rithm is linear. If we let P represent the number of pins incident to the bin, C represent

the number of cells in the bin and L represent the number of potential cut-lines in the bin,

the cut-line selection process runs in O(P + C + L) time. In the vast majority of cases,

P > C and P > L, so the runtime estimate simplifies to O(P).

The number of bins may double at each hierarchy layer, until bins are small enough

1We do not assume that the initial placement was produced by a min-cut algorithm.

120

ALGORITHM 6.2: Linear-time vertical cut-line selection
¤ Input: placement bin , balance constraints
¤ Output: x-coord of best cut-line, BESTX

1 numCutlines ← 1 + b(rightBinEdgeX − leftBinEdgeX)/ cellSpacingc
2 Create three arrays of size numCutlines: LEFT , RIGHT , AREA
3 Set all the elements of LEFT , RIGHT and AREA to 0
4 foreach(net incident to bin)
5 do Calculate x-coord of left- and right-most pins on net : leftPinX and rightPinX
6 leftCutlineIndex ← MAX(0, d(leftPinX −idleftBinEdgeX)/ cellSpacinge)
7 rightCutlineIndex ← MAX(0, d(rightPinX −idleftBinEdgeX)/ cellSpacinge)
8 if (leftCutlineIndex < numCutlines)
9 then LEFT [leftCutlineIndex]++

10 if (rightCutlineIndex < numCutlines)
11 then RIGHT [rightCutlineIndex]++
12 foreach(cell on net)
13 do centerX ← x-coord of the center of cell
14 cutlineIndex ← MAX(0, d(centerX − leftBinEdgeX)/ cellSpacinge)
15 if (cutlineIndex < numCutlines)
16 then AREA[cutlineIndex] + = GETCELLAREA(cell)
17 X ← leftBinEdge, CURCUT ← 0, BESTCUT ←∞,
18 BESTX ←∞, LEFTPARTAREA← 0
19 for (I ← 0; I < numCutLines; I++, X + = cellSpacing)
20 do CURCUT + = LEFT [I]
21 CURCUT − = RIGHT [I]
22 LEFTPARTAREA + = AREA[I]
23 if (CURCUT < BESTCUT and LEFTPARTAREA satisfies constraints)
24 then BESTCUT ← CURCUT
25 BESTX ← X
26 return BESTX

Figure 6.4: Algorithm for finding the best vertical cut-line from a placement bin. Finding
the best horizontal cut-line is largely the same process. Note that the runtime of
the algorithm is linear in the number of pins incident to the bin, cells contained
in the bin, and possible cut-lines for the bin.

for end-case placement. End-case placement is generally a constant amount of runtime

for each bin, so it does not affect asymptotic calculations. Assume that ECO-system is

able to reuse all of the original placement. Since ECO-system performs bisection, it will

have O(log C) layers of bisection before end-case placement. At layer i, there will be

O(2i) bins, each taking O
(

P
2i

)
time. This gives a total time per layer of O(P). Combining

all layers gives O(P log C). Empirically, the runtime of the cut-line selection procedure

(which includes a single pass of a Fiduccia-Mattheyses partitioner) is much smaller than

121

partitioning from scratch. On large benchmarks, cut-line selection requires 5% of ECO-

system runtime time whereas min-cut partitioning generally requires 50% or more of ECO-

system runtime.

6.3.4 Handling Macros and Obstacles

With the addition of macros, the flow of top-down placement becomes more complex.

We adopt the technique of “floorplacement” which proceeds as traditional placement un-

til a bin satisfies criteria for block-packing [107, 115]. If the criteria suggest that the bin

should be packed rather than partitioned, a fixed-outline floorplanning instance is induced

from the bin where macros are treated as hard blocks and standard cells are clustered into

soft blocks. The floorplanning instance is given to a Simulated Annealing-based floor-

planner to be solved. If macros are placed legally and without overlap, they are considered

fixed. Otherwise, the placement bin is merged with its sibling bin in the top-down hierar-

chy and the merged bin is floorplanned. Merging and re-floorplanning continues until the

solution is legal.

We add a new floorplanning criterion for our legalization technique. If no macros in

a placement bin overlap each other, we generate a placement solution for the macros of

the bin to be exactly their placements in the initial solution. If some of the macros overlap

each other, we let other criteria for floorplanning decide. If block-packing is invoked, we

must discard the placement of all cells and macros in the bin and proceed as described

in [115].

During the cut-line selection process, some cut-line locations are considered invalid

— namely those that are too close to obstacle boundaries but do not cross the obstacles.

122

This is done to prevent long and narrow slivers of space between cut-lines and obstacle

boundaries. Ties for cut-lines are broken based on the number of macros they intersect.

This reduces overfullness in child bins allowing deeper partitioning, reducing runtime.

6.3.5 Controlling Overlaps, Whitespace and Congestion

We introduce techniques and user controls for ECO-system and show how they can be

used for reallocation of whitespace and congestion improvement in the original placement.

Relaxing overfullness constraints. One of the primary objectives of ECO-system is

to reuse as much relevant placement information as possible from a given placement. As

described above, it is possible to find a cut-line which has a good cut but is not legal due

to space constraints. In these cases, ECO-system must discard these good solutions and

partition from scratch. In order to make better use of the given placement, we propose the

following addition to ECO-system. We allow ECO-system to shift the cut-line to legalize

the derived partition with respect to area. Cut-line shifting is a technique commonly used

in the top-down min-cut placement for allocation of whitespace [5, 92, 93, 116, 120]. The

cut-line is shifted as little as possible to make the derived partitioning legal with respect

to area. If it is impossible to find an area-legal cut-line, the derived partitioning must be

discarded and ECO-system proceeds normally.

If cut-line shifting is successful in correcting the illegality, the original placement must

be modified for purposes of consistency. To do so, cells are scaled proportionately within

the placement bin based on their original positions, the position of the originally chosen

cut-line and the position of the shifted cut-line in a manner similar to that in the WSA

technique [92, 93]. As the centers of cells are used to determine in what partitions cells

123

Figure 6.5: Shifting a cut-line chosen during ECO cut-line selection. Unlike the WSA
technique [92, 93], cut-line shifting during ECO is not done on geometric cut-
lines but instead on those cut-lines which are chosen during fast cut-line se-
lection. The image on the left shows a placement that has been divided into
bins during the course of ECO-system. In the image on the right, the chosen
cut-line of the bottom-right bin is shifted to the right. The density of vertical
lines represents the initial placement and its scaling around the moving cut-line
(shown in red).

belong during fast cut-line selection, we shift cell locations based on center locations as

well to ensure that cut-line shifting will not change derived partitions. We seek to shift

cell locations and maintain the following property: the relative position between cells

before and after shifting is maintained. Also, if a cell were in the middle of a partition

before shifting, it should remain in the middle of a partition after shifting. Let xL and

xR represent the x-coordinates of the left and right sides of the placement bin, xcut
orig and

xcut
new the x-coordinates of the original and new cuts, and, lastly, xcell

orig and xcell
new the x-

coordinates of the center of a particular cell before and after shifting. We wish to maintain

the following ratios (for vertical partitioning):

xcell
orig − xL

xcut
orig − xL

=
xcell

new − xL

xcut
new − xL

, xcell
orig ≤ xcut

orig

xR − xcell
orig

xR − xcut
orig

=
xR − xcell

new

xR − xcut
new

, xcell
orig > xcut

orig

124

Solving for xcell
new :

xcell
new =

xL +
(
xcell

orig − xL

)
xcut

new−xL

xcut
orig−xL

, xcell
orig ≤ xcut

orig

xR −
(
xR − xcell

orig

) xR−xcut
new

xR−xcut
orig

, xcell
orig > xcut

orig

Y-coordinates of cells shifted during horizontal partitioning are calculated analogously.

Figure 6.5 illustrates the scaling involved when a cut-line is shifted. In the figure, the

cut-line of the bottom-right bin is shifted to the right. All objects to the left and right of

the cut-line are scaled appropriately. Objects that were to the left of the original cut-line

remain to the left and are spread out and objects on the right are packed closer together.

Shifting proportionately in this way maintains the relative ordering of all the cells

within the current placement bin. Also the partitioning induced by the cut-line remains

unchanged so ECO-system can proceed as normal. Shifting the cut-line in this manner

can allow deeper ECO partitioning which can reduce both runtime and cell displacement.

Satisfying density constraints. A common method for increasing the routability of a

design is to inject whitespace into regions that are congested [5, 93]. One can also require

a minimum amount of whitespace (equivalent to a maximum cell density) in local regions

of the design to achieve a similar effect [120]. As one of ECO-system’s legality checks is

essentially a density constraint (checking to see if a child bin has more cell area assigned

to it than it can physically fit), this legality check is easy to generalize. The new criterion

for switching from using the initial placement and partitioning from scratch is based on a

child bin having less than a threshold percent of relative whitespace, which is controlled

by the user.

The cut-line shifting feature of ECO-system can also be used to satisfy density con-

straints. As ECO-system proceeds, cut-lines can be shifted as described above to imple-

125

New macro at center, HPWL = 10.08e8 Cell Displacements >2.5% of Core Semi-perimeter Post-processed by ECO-system, HPWL = 9.73e8

Figure 6.6: Legalizing the placement of a new fixed obstacle at the center of the
ICCAD’04-Faraday design DSP1 [1]. The picture in the middle shows the
movement of standard cells to make room for the obstacle. Many standard
cells must move in order to accommodate the obstacle, but ECO-system moves
these cells on average only a short distance (1.27% of the core half-perimeter)
and is able to improve total HPWL.

ment a variety of whitespace allocation schemes [92, 93, 116, 120]. Specifically, ECO-

system can implement the hierarchical whitespace injection of WSA [92, 93]. WSA

chooses cut-lines based only on the geometry of a placement bin and shifts these cut-lines

from the top down. ECO-system chooses cut-lines that are more natural to the original

placement, shifts cut-lines top-down, and also supports fixed objects and movable macros.

Figure 6.1 shows the power of the cut-line shifting technique in redistributing whitespace

for routability after making a change to a placement that causes significant overlap.

6.4 Using ECO-system in High-level and Physical Synthesis

We extend the proposed framework to offer users efficient access to the features of

incremental placement described in Sections 6.2 and 6.3 as well as provide greater user

control and flexibility.

126

6.4.1 Additional User Controls

We present further controls over ECO-system to vary how much it is allowed to modify

a given placement as well as what regions of a placement are allowed to be changed, which

can both be beneficial to a designer. We also illustrate how ECO-system can be used to

re-optimize placements based on changes to net weights. This control can be extremely

useful when critical nets in a design change, for example.

Tunable aggressiveness. ECO-system accepts or rejects derived partitioning solutions

based on how much a single pass of a Fiduccia-Mattheyses partitioner can improve them.

If the partitioner improves the net cut by more than a threshold percentage, the partitioning

solution is rejected. This threshold can be adjusted by the user so as to prevent ECO-

system from performing large changes. If a designer wants ECO-system to change the

placement as little as possible, the improvement threshold can be given as 100%. Tunable

aggressiveness also allows one to adjust the strength of ECO-system legalization to better

correlate with the magnitude of design modifications [76].

User-defined locality. ECO-system operates automatically on the given placement and

quickly focuses on sections of overlap. It may be the case that a designer has performed

optimization on only a small portion of the design. Having our algorithm run over the

entire design to find this small area is potentially wasteful. Thus we allow the user or

a physical synthesis tool to specify one or more regions of the placement area to apply

legalization. Combined with whitespace control techniques described above, this allows a

designer to re-tune whitespace allocation to reduce congestion in localized regions.

While this control can be useful to designers to ensure that certain regions of a design

127

remain untouched, it is not a replacement for the automatic techniques of ECO-system.

Changes made to one region of a design can affect the quality of the placement in a sepa-

rate area of the design. Patch-based replacement of a design does not handle this situation

well because the patches must be supplied but may not be well-defined. Also, the pro-

cessing of given patches in a particular order can make the legalization within the first

patch inconsistent with that in subsequent patches. However, ECO-system can automati-

cally narrow down the regions that require extra work, partition them, and simultaneously

perform top-down legalization in all regions to ensure consistency. Cut-line shifting in

ECO-system is truly hierarchical and allows ECO-system to subsume other hierarchical

techniques such as WSA [92,93] while also supporting fixed objects and movable macros.

Changing net weights. Having a legal placement facilitates more precise static timing

analysis and finding timing-critical nets. To improve timing, weights can be increased

for nets with worst slack, and decreased for non-critical nets. As ECO-system checks if

the cut of an induced partitioning solution can be improved significantly, net weights are

naturally integrated into this test. With weighted cut, ECO-system recognizes instances

when the initial placement can be improved.

6.4.2 Placing New Cells and Macros

The addition of macros, IP blocks and embedded memories to an already placed netlist

can introduce significant overlap as can be seen in Figure 6.6. Large modules may need

to be fixed due to alignment constraints and will appear as obstacles. Buffer insertion

is also a concern as numerous buffers may need to be inserted. There are typically few

legal locations for buffer insertion, and, compounding the problem, buffers must be placed

128

precisely to be effective.

Our current technique can accommodate newly added modules for which tentative ini-

tial placements are given. All a designer would need to do is place new modules roughly

where they should go in the core, and ECO-system will find legal positions for them auto-

matically. If new module locations are not known, they can be found with simple analytical

techniques. Specifically, if an unplaced module is connected to several placed modules,

an initial location for the module could be the average location of its neighbors. This does

not work well, however, when a cluster of new logic is added to a design, especially in

the presence of macros and obstacles. For this reason, we develop a technique to place

unplaced modules within ECO-system.

To handle new modules separately, one must be able to detect them easily in a design.

Some input formats allow the user to specify modules which are new with the keyword

UNPLACED. For other input formats without such a keyword, ECO-system checks for

modules that are placed outside of the core and marks them as being unplaced. ECO-

system also tests to see if several modules are placed at exactly the same location which

could indicate a cluster of new logic. Modules placed in exactly the same location, such

as a default location like (0,0), are also treated as unplaced.

In each bin, if a cut-line and partitioning are derived, unplaced modules are partitioned

with a separate partitioning call to assign them to child bins. If the derived partitioning is

not accepted, unplaced modules are combined with the old modules, and placement con-

tinues from scratch. In this way, unplaced modules will migrate to good legal locations

automatically. As the locations for unplaced modules are chosen based on current loca-

129

(a) (b)

Figure 6.7: Using ECO-system to perform body bias clustering. ECO-system refines an
initial placement and moves cells with the same bias into contiguous regions
to reduce the area overhead of adaptive body biasing while preserving inter-
connect length. Cells are grouped into (a) 2 and (b) 3 bias clusters based on
their power characteristics in an initial placement. Cells with the same bias
share the same color.

tions of all the modules in the design, the final locations of unplaced modules will likely

be better than ones that were chosen based on the initial placement.

If new modules are introduced into a design and a user defines a region of the place-

ment to work in, there is some ambiguity in what ECO-system should do with unplaced

modules. All unplaced modules could be placed inside the user-specified region, or ECO-

system could determine which of the unplaced modules would best be placed in the region.

Determining which of the unplaced modules belong in a user-specified rectangular region

requires at most four calls to a partitioner (since the region can be carved out with four

geometric cut-lines), so this will still be efficient. To avoid uncertainty, the user is allowed

to specify which behavior is desired.

6.4.3 An Application to Body Bias Clustering

Adaptive body biasing (ABB) is a technique that allows one to tune individual manu-

factured dies to optimally meet delay and power constraints. ABB compensates for within-

130

die parameter variations by allowing one to apply optimal body bias voltages to groups of

cells on a die [133]. One can forward bias device bodies to decrease Vt leading to higher

drive currents and smaller delay or reverse bias device bodies leading to higher Vt and

lower leakage power.

One especially important matter to consider when applying ABB is the area overhead

associated with adjacent cells of different bias. Adjacent cells with different bias must ob-

serve strict spacing rules. Thus if several cells with different biases are placed next to each

other, they will need to be spaced out incurring a significant area overhead. Recently, a

technique was proposed to group standard cells into a small number of clusters each having

the same bias [88]. These clusters are determined by examining the power characteristics

in a given initial placement. By moving cells which belong to the same cluster toward

each other, area overhead can be saved while still achieving power and delay constraints.

ECO-system has been adapted to reduce the area overhead for such body bias clus-

tered placements in the following way. ECO-system proceeds until a user-controllable

size threshold on the number of cells in a placement bin is reached. When the number of

cells in the bin is less than the threshold, ECO-system finds which clusters are represented

in the bin. If all of the cells in the bin belong to the same cluster, ECO-system proceeds

as described in Section 6.3. If this is not the case, ECO-system evaluates several partition-

ments for the given bin and chooses the one with best balanced-cut. The partitionments

evaluated are the ones where each unique cluster is partitioned away from the remainder

of the cells. For example, if we are partitioning vertically, each cluster can go either on

the left or right of the cut-line. In the special case of n = 2, only 2 partitionments need

131

to be evaluated; when n > 2 ECO-system evaluates 2n partitionments. After the best

partitionment is chosen, child bins are created and marked to be placed from scratch.

Figure 6.7 depicts two placements that have been modified by ECO-system to spatially

cluster cells with the same bias. Cells with the same bias have the same color. In these

placements, only 4% of cells are moved and HPWL is increased by 2.3% and 3.1%. The

area overhead ranges from 5.2-7.8% which is outweighed by the improvements to power

and delay afforded by the biasing [88].

6.5 Empirical Results

We implemented ECO-system in C++ and ran it on 3.2GHz Pentium Xeon machines.

In this section we present results dealing with the legalization of benchmarks altered due

to cell resizing, the effect of ECO-system on the timing of resized benchmarks, and using

ECO-system to legalize various analytically-generated global placements.

6.5.1 Legalization of Resized Netlists

For testing we use three suites of benchmarks. The first suite of benchmarks are the IC-

CAD 2004 IBM-MSwPins benchmarks: mixed-size netlists with non-trivial macro sizes,

aspect ratios and pin offsets [1]. We placed all of the benchmarks with Capo 10 [120] and

chose the best of 2 runs. Next we randomly resized the standard cells of the benchmark to

simulate cell sizing such that the total area of cells would remain relatively constant. Each

standard cell of the design was randomly increased or decreased in size, but no cell was

decreased below the minimum cell size or increased beyond the largest cell size.

The change in cell area and amount of overlap introduced by the resizing is shown in

132

Table 6.2: Overlap legalization on the IBM-MSwPins [1] and ISPD’05 Contest bench-
marks [104]. “Area Ratio” represents the change in total cell area after resizing.
Overlap is measured as % of the total movable cell and macro area. Full data
for the ISPD’05 benchmarks can be found in [117]. ECO-system requires sig-
nificantly more runtime than the Capo 10 legalizer [115], and approximately
16% of the original placement time. ECO-system increases HPWL by 0.61%
on average while the Capo 10 legalizer increases HPWL by 3.93% on the IBM-
MSwPins benchmarks. On the ISPD’05 Contest benchmarks ECO-system de-
creases HPWL by 1.00% on average while the Capo 10 legalizer increases
HPWL by 4.28%.

IBM-MSwPins Area Orig. Orig. Capo 10 Legalizer [115] ECO-system ECO-system /w shifting
Benchmarks Ratio Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time (s) HPWL Ratio Time (s) HPWL Ratio

ibm01 0.9982 248 2.48 7.35% 1.27 2.57 1.0371 44.4 2.48 0.9995 45.2 2.47 0.9957
ibm02 1.0008 463 5.12 5.56% 2.15 5.28 1.0328 77.3 5.13 1.0024 81.0 5.11 0.9980
ibm03 1.0011 661 7.58 5.83% 15.9 7.99 1.0543 128 7.54 0.9951 127 7.53 0.9934
ibm04 0.9990 728 8.61 8.13% 11.3 9.03 1.0482 149 8.67 1.0070 147 8.66 1.0055
ibm05 1.0017 593 10.14 13.54% 0.13 10.25 1.0114 141 10.32 1.0177 149 10.28 1.0139
ibm06 1.0018 846 6.78 7.36% 10.5 7.10 1.0469 152 6.82 1.0054 155 6.79 1.0019
ibm07 0.9997 1213 11.63 9.61% 16.4 12.16 1.0455 201 11.72 1.0081 210 11.69 1.0052
ibm08 1.0029 1492 13.42 8.50% 7.36 13.73 1.0232 211 13.54 1.0090 223 13.49 1.0054
ibm09 1.0025 1492 14.96 8.14% 14.8 16.06 1.0732 288 14.89 0.9954 296 14.82 0.9907
ibm10 0.9997 2476 31.79 4.53% 119 32.62 1.0260 387 31.54 0.9922 390 31.48 0.9903
ibm11 0.9993 2067 21.43 8.48% 26.3 22.56 1.0529 384 21.63 1.0092 411 21.44 1.0005
ibm12 0.9996 2903 38.52 5.91% 50.6 39.20 1.0175 379 37.95 0.9851 393 37.82 0.9819
ibm13 1.0014 2667 27.30 7.94% 55.3 28.61 1.0478 586 27.57 1.0101 587 27.31 1.0004
ibm14 1.0002 4954 40.00 13.49% 38.3 41.67 1.0417 734 40.70 1.0174 744 40.58 1.0144
ibm15 1.0016 6241 53.72 10.85% 63.1 56.48 1.0514 1127 54.68 1.0178 996 54.68 1.0178
ibm16 0.9997 7232 61.12 9.19% 36.2 62.74 1.0264 890 61.42 1.0050 907 61.20 1.0014
ibm17 0.9987 7558 70.52 14.09% 36.0 73.09 1.0365 983 71.65 1.0160 1009 71.45 1.0132
ibm18 1.0017 6897 46.46 15.91% 13.7 48.11 1.0354 1006 47.30 1.0182 1032 47.13 1.0145

Average 1.0005 1.0000 0.0102 1.0393 0.1551 1.0061 0.1558 1.0024

ISPD’05 Area Orig. Orig. Capo 10 Legalizer [115] ECO-system ECO-system /w shifting
Benchmarks Ratio Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time(s) HPWL Ratio Time (s) HPWL Ratio

adaptec1 1.0004 9403 83.87 18.17% 1020 88.81 1.0589 1686 83.96 1.0011 1454 83.58 0.9965
adaptec2 1.0012 9978 87.31 16.83% 1246 91.48 1.0477 2138 88.82 1.0173 1608 88.31 1.0114
adaptec3 1.0004 26937 231.17 17.37% 3090 240.44 1.0401 4283 224.75 0.9722 3762 225.23 0.9743
adaptec4 1.0005 29266 187.65 16.81% 1775 194.89 1.0386 3759 189.73 1.0111 3474 189.86 1.0119
bigblue1 1.0005 10752 101.96 15.62% 1.6 104.77 1.0276 1535 101.41 0.9946 1501 101.30 0.9936
bigblue2 0.9994 27902 159.08 16.15% 1238 164.21 1.0322 4456 158.07 0.9937 4271 157.91 0.9926
bigblue3 0.9999 69498 414.29 15.69% 4169 445.95 1.0764 8402 391.05 0.9439 7547 401.10 0.9682
bigblue4 1.0006 118741 884.39 15.58% 953 903.81 1.0220 11072 873.48 0.9877 10795 874.10 0.9884
Average 1.0004 1.0000 0.0415 1.0428 0.1234 0.9899 0.1138 0.9920

Table 6.2. The resized benchmarks should have legal placements with HPWL near that

of the original benchmarks since total cell area does not change appreciably. Discussions

with colleagues in the industry point out that cell resizing is affected by a variety of factors,

which are not as random as in our experiments. The IBM-MSwPins benchmarks do not

contain enough information to perform more intelligent resizing, so this experiment is

used primarily to evaluate ECO-system in the presence of many movable macros.

133

We compare ECO-system to the legalizer of Capo 10, and the results are summarized in

Table 6.2. The Capo legalizer runs quickly and produces legal placements, but it increases

HPWL by 3.93% on average. ECO-system takes less than 16% of the original placement

time, and only increases HPWL by 0.61% on average. By adding cut-line shifting to ECO-

system runtime is largely unaffected but the HPWL increase is further reduced to 0.24%.

We have also varied the amount of overlap introduced into these benchmarks by reducing

the number of cells affected by our sizing. We find that HPWL is relatively unaffected

(HPWL generally changes by less than 0.5%) by increasing amounts of overlap for these

designs.

The second set of benchmarks are from the ISPD 2005 Placement Contest [104]. They

are a standard cell benchmark suite with non-trivial fixed obstacles throughout the place-

ment area [104]. We placed all of the benchmarks with APlace 2.04 [82] (the winning

placer of the contest) and randomly resized the standard cells of the benchmark in the

same way as the IBM-MSwPins benchmarks as the ISPD 2005 benchmarks do not con-

tain necessary information for more intelligent resizing. As a result, the focus of this

experiment is to see how ECO-system performs on very large-scale placement instances

in the presence fixed obstacles.

The change in cell area and amount of overlap introduced by the resizing is shown

in Table 6.2. A comparison of ECO-system to the legalizer of Capo 10 is summarized

in Table 6.2. Full data for the ISPD’05 benchmarks can be found in [117]. The Capo

legalizer runs 40% faster than ECO-system, but increases HPWL by 4.28% on average.

ECO-system takes 14% of the original placement time, and decreases HPWL by 1.00%.

134

Table 6.3: Overlap legalization on the IWLS 2005 Benchmarks [72]. “Area Ratio” repre-
sents the change in total cell area after resizing. Overlap is measured as % of
the total movable cell area. ECO-system decreases HPWL by 1.81% on average
while the Capo 10 legalizer increases HPWL by 1.85%.

IWLS Area Orig. Orig. Capo 10 Legalizer [115] ECO-system
Benchmarks Ratio Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time (s) HPWL Ratio

aes core 1.0278 519 23.70 14.30% 0.2 23.91 1.0089 64.4 22.94 0.9679
ethernet 1.1122 3666 105.71 13.34% 0.5 108.73 1.0286 284 104.78 0.9912
mem ctrl 1.0508 404 16.29 13.24% 0.1 16.63 1.0209 32.6 15.95 0.9791

pci bridge32 0.9724 550 19.61 11.27% 0.2 20.09 1.0245 55.8 19.21 0.9796
usb funct 1.0901 346 15.93 13.82% 0.1 16.34 1.0257 39.3 15.72 0.9868
vga lcd 0.9841 15686 370.79 9.06% 1.1 371.76 1.0026 819 365.87 0.9867
Average 1.0383 1.0000 0.0001 1.0185 0.0612 0.9819

Figure 6.8 depicts the benchmark adaptec3 before cell resizing and after legalization with

ECO-system. ECO-system’s placement is similar to the original APlace 2.04 placement

and does not move the majority of cells far from their original locations. The average

displacement per cell is 0.28% of the half-perimeter of the design which is an order of

magnitude less than WSA’s displacements [92, 93] and those reported in [5]. Only 1.98%

of the cells have non-trivial displacements.

The third set of benchmarks on which we perform experiments with resizing is the

IWLS 2005 suite of benchmarks [72]. These benchmarks contain information such as the

signal directions of pins, so we were able to resize cells in a more realistic way based on

wire load. The benchmarks were first placed using Capo 10 in ROOSTER mode [116] for

routability. Next, for each cell we calculated the Steiner length of wires the cell drives.

According to the theory of logic effort, longer wires should be driven by larger cells [127],

so we increased the sizes of cells whose driven lengths were longer than the median driven

length and decreased the size of cells whose driven lengths were shorter than the median.

The amount of overlap introduced by this resizing method is shown in Table 6.3. We

compare ECO-system to the Capo 10 legalizer and find again that the Capo 10 legalizer

135

Table 6.4: Overlap legalization of APlace 2.04’s [82] global placements of the ISPD’05
Contest benchmarks [104]. Overlap is measured as % of the total movable
cell area. ECO-system produces legal solutions with nearly the same or better
HPWL than APlace 2.04’s legalizer. APlace’s legalizer increases HPWL by
4.91% while ECO-system increases HPWL by 3.68% and only 2.35% when
using shifting. ECO-system with shifting is faster on 7 of the 8 benchmarks
and four times faster than APlace’s legalizer overall.

Orig. Illegal APlace 2.04 Legalizer [82] ECO-system ECO-system /w shiftingBenchmark
Time (s) HPWL

Overlap
Time (s) HPWL Ratio Time (s) HPWL Ratio Time (s) HPWL Ratio

adaptec1 7569 81.05 34.74% 1346 83.87 1.0348 1656 85.17 1.0508 1386 82.23 1.0146
adaptec2 6062 94.22 47.25% 2543 101.64 1.0788 2037 101.10 1.0730 1684 97.85 1.0385
adaptec3 15849 211.13 47.12% 11495 231.17 1.0949 4245 227.25 1.0763 3672 222.24 1.0526
adaptec4 15404 197.24 36.78% 15271 206.23 1.0456 3805 202.26 1.0255 3505 200.80 1.0180
bigblue1 8265 100.51 28.53% 2486 101.96 1.0144 1607 104.22 1.0369 1262 102.50 1.0198
bigblue2 13650 154.51 30.15% 14252 159.08 1.0296 3882 156.35 1.0119 3840 155.83 1.0086
bigblue3 30624 385.40 41.06% 38873 414.29 1.0750 12546 386.99 1.0041 10080 395.11 1.0252
bigblue4 61932 865.03 32.01% 56809 884.39 1.0224 11552 880.58 1.0180 10451 874.90 1.0114
Average 1.0000 0.8978 1.0491 0.2594 1.0368 0.2252 1.0235

is extremely fast, but increases HPWL significantly (1.85%) while ECO-system is able to

reduce HPWL by 1.81% on average. For this experiment we did not use ECO-system’s

cut-line shifting feature in order to preserve Capo’s routability-driven whitespace alloca-

tion.

6.5.2 ECO-system’s Impact on Timing

One of the most important goals of an incremental placer is to preserve the timing

characteristics of a design after timing optimizations have been performed on the design.

Recall that cell sizing and buffer insertion decisions are based on circuit timing. If an

incremental placer moves cells too drastically, popular timing optimizations can be less

effective and eventually degrade timing rather than improve it. Therefore, we evaluate the

impact of ECO-system on circuit timing. For these experiments we resized the 20 of the

OpenCores designs that were part of the IWLS 2005 benchmark suite [72] in a realistic

manner (as described above) and evaluate timing characteristics of the resized netlists

before and after legalization by ECO-system.

136

Circuit timing was evaluated using a Static Timing Analysis engine which uses the

D2M net delay model (more accurate then Elmore) [8] for each net based on Steiner trees

produced by the FLUTE package [44]. The worst change in circuit delay for these designs

was an increase of 8.07%. The average change was 1.00% while the best was a decrease

of 7.37% of maximum delay. Thus ECO-system is effective in preserving the timing of

a netlist by minimally impacting maximum delay during legalization and in some cases

can further improve it. In this experiment ECO-system is completely independent of the

timing analyzer used and therefore our results are likely to hold for other STA engines.

6.5.3 Legalizing Analytical Global Placements

Analytical placements generally contain a significant amount of overlap after global

placement, especially so on the ISPD’05 Contest benchmarks given their numerous fixed

obstacles in the core region. Therefore, we compare ECO-system to the APlace 2.04 le-

galizer on APlace 2.04 global placements on the ISPD’05 Contest benchmarks. Table 6.4

shows that APlace 2.04 global placements have overlap of approximately 30% or more.

APlace 2.04’s legalizer generally increases HPWL by 4.91% while ECO-system increases

HPWL only 3.68% on average. ECO-system is also three times faster than APlace’s legal-

izer. Adding cut-line shifting improves ECO-system’s results, increasing HPWL by only

2.35% while running four times faster than APlace’s legalizer.

To illustrate the effectiveness of ECO-system in redistributing whitespace to improve

routability, we placed the IBMv2 benchmark suite [143] with the analytical placer mPL6

[27]. mPL6 global placements were refined by ECO-system and then routed using Ca-

dence WarpRoute. In Table 6.5 we compare the placements refined by ECO-system to

137

Before Resizing HPWL = 231.2e6 Displacements >1.5% of Core Semi-perimeter Legalized by ECO-system HPWL = 226.6e6

Figure 6.8: When applied to resized netlist, ECO-system produces a placement (right)
similar to the original placement (left). Fixed objects are outlined in double
black lines. The largest cell displacements are shown in red (center). Only
displacements larger than 1.5% of the half-perimeter of the design are shown.
Average displacement is 0.28% of the design half-perimeter. The majority of
the large displacements form around the corners of the large, fixed obstacles.
Many of these large displacements appear to be clustered, indicating small
groups of modules transported to another region of the core or spread to ac-
commodate area increases.

those produced by the detailed placer of mPL6 (XDP [52]) in terms of routed wirelength

(Rt WL), via counts, violations, and routing time (Rt Time). ECO-system improves mPL6

global placements to the point where the router completes in all cases, reducing routed

wirelength by 1.1%, via counts by 7.8% and routing time by more than half on average.

To test the ECO-system’s routability improvements in the presence of fixed obstacles,

we use the ICCAD’04-Faraday benchmarks [1]. The Faraday benchmarks are a suite of

mixed-size benchmarks with routing information based on netlists released by the Faraday

Corporation [1]. For our experiments, we fix macros to their original locations as deter-

mined by Silicon Ensemble Ultra v5.4.126 (details on the construction of the benchmarks

can be found in Appendix A of [1]). We run mPL6 on the four benchmarks with macros

and produce global and detailed placements of each. As in the previous experiment, we

compare mPL6 detailed placements to mPL6 global placements refined by ECO-system.

138

Table 6.5: Improving the routability of analytical placements using ECO-system. We com-
pare the routability of mPL6 [27] global placements when using mPL6’s de-
tailed placer (XDP [52]) vs. ECO-system with cut-line shifting for detailed
placement on the IBMv2 benchmark suite [143]. Best legal routed wirelength
(Rt WL) and via counts are highlighted in bold. ECO-system produces routable
placements in all cases, reduces routed wirelength by 1.1% and via counts by
7.8%, and cuts routing runtime by more than half.

XDP [52] ECO-systemBenchmark
Rt WL Vias Viols. Rt Time (m) Rt WL Vias Viols. Rt Time (m)

ibm01e 723961 150166 806 1052 745660 125177 0 22
ibm01h 735409 156414 348 654 701959 122995 0 70
ibm02e 1937102 261495 0 27 1822638 247396 0 13
ibm02h 2004969 324609 108 133 1933310 255647 0 18
ibm07e 3817994 497500 0 54 3555210 468105 0 22
ibm07h 3814735 569897 49 91 3658097 479911 0 25
ibm08e 3999658 587627 0 31 3970074 561636 0 24
ibm08h 3948739 591744 0 35 3914580 574135 0 28
ibm09e 2891305 483046 0 17 2956856 472863 0 17
ibm09h 2935006 490682 0 19 2965823 480363 0 18
ibm10e 5753519 773695 0 36 5888185 750270 0 30
ibm10h 5742241 778756 0 35 5762900 759962 0 31
ibm11e 4399838 637627 0 26 4438438 615691 0 23
ibm11h 4670094 645872 0 31 4634023 630791 0 25
ibm12e 8640070 972714 0 66 8697654 908164 0 42
ibm12h 8695922 977498 0 69 8726583 926119 0 53
Ratio 1.000 1.000 1.000 0.989 0.922 0.446

Results for this experiment are shown in Table 6.6. ECO-system placements are mostly

routable with a few violations, but the mPL6 placements are completely unroutable. We

were unable to run the WSA technique on the mPL6 placements as WSA does not support

fixed obstacles, which we have confirmed with the authors of WSA.

6.6 Conclusions

Below we summarize our work, outline several additional applications and articulate

our contributions to shared infrastructure for research in placement.

139

Table 6.6: Improving the routability of analytical placements in the presence of fixed ob-
stacles in the ISPD’04-Faraday benchmark suite [1]. We postprocess mPL6 [27]
global placements using mPL6’s detailed placer and, separately, our ECO-
system (with cut-line shifting). The mPL6 detailed placer XDP [52] produces
largely unroutable placements.

Bench- XDP [52] ECO-system
mark Rt WL Vias Viols. Rt Time (m) Rt WL Vias Viols. Rt Time (m)
dsp1 1041556 233408 112883 12 1162096 202700 0 6
dsp2 - - - >24 hrs. 1117349 201598 0 6
risc1 2042695 342856 373088 71 2066426 344258 10 10
risc2 - - - >24 hrs. 1906434 337809 11 11

6.6.1 Summary of Our Work

We have presented ECO-system — an algorithmic framework designed to interface

a wide variety of circuit optimizations with their physical environment. This framework

offers, for the first time in the literature, a strong and robust legalizer that can handle a

broad range of modern placement instances with movable macros, fixed obstacles, etc.

ECO-system automatically focuses on regions of the layout and sections of the netlist

that require changes, and performs optimization of adequate strength in each case. ECO-

system can be combined with an external global placer invoked when particularly large

changes are required. It can also be used in incremental resynthesis, in high-level and

physical synthesis optimizations, and several other contexts.

ECO-system includes all detailed placement methods implemented in Capo [107,115,

116, 120], and can similarly be grafted onto other top-down placers, such as BonnPlace

[138], PolarBear [50] or NTUPlace [74], by performing a one-pass Fiduccia-Mattheyses

test. ECO-system can act like the WSA technique [93], and can invoke any black-box

global placement algorithm when it decides that a particular bin must be replaced from

scratch.

140

The definitive success of ECO-system in legalizing APlace and mPL6 global place-

ments (Tables 6.2, 6.4, 6.5 and 6.6) allows one to answer a long-standing question in place-

ment — whether the slicing structure of min-cut placements costs them HPWL. Given that

the placements produced by ECO-system are slicing, the answer is negative for standard-

cell placement, but is likely to be positive when large macros are involved, as suggested

by results in [107].

We have analyzed requirements for an ECO placement tool and implemented an inter-

face based on ECO-system applicable to high-level and physical synthesis, allowing the

designer to add and remove nets and cells from a design, reallocate whitespace and large

macros (Figure 6.1), resize cells and re-weight nets while retaining control of the amount

of change performed by ECO-system.

6.6.2 Additional Applications

As ECO-system subsumes and generalizes the WSA technique [92, 93] and outper-

forms the technique from [5], ECO-system can also be used for the applications studied

in previous publications. In addition to our experiments that demonstrate improvement in

routability and support for gate sizing, ECO-system can be used to support buffer insertion

in physical synthesis and floorplan resizing during chip planning [92].

Another relevant application of ECO-system lies in fault-tolerant reconfigurable com-

puting. In this paradigm, the digital system periodically invokes built-in self-test and may

identify components that recently failed. To avoid using faulty components, the system

can be reconfigured to use only those resources that remain operational.

ECO-system could be used to quickly reprogram faulty chips in the following way.

141

Obstacles are placed in those areas of a circuit that have been determined to have errors.

ECO-system can be run on this modified design to remove all overlaps between the old

placement and the new fixed objects. The legalized placement would then be free of errors

as none of the faulty parts would be used in the replacement. ECO-system uses as much

of the original placement as possible so timing and other relevant circuit properties would

likely be preserved.

Algorithms used in ECO-system can also be used to geometrically partition a layout

so as to minimize interconnect between partitions, as shown in Figure 6.3. With minimal

communication between partitions, physical design algorithms that are generally run after

placement (such as cell sizing, routing or buffer insertion) can be parallelized, improving

runtime on multi-processor systems. In particular, it has been shown that post-placement

optimizations for timing can be parallelized [87]. Empirical results show that runtime can

be decreased by up to 5x when running on a parallel machine with eight processors [87].

6.6.3 Our Contributions to Shared Research Infrastructure

All algorithms reported in this work are now available to the research community in

source code form, integrated into the Capo placer — an established open-source software

distribution. The availability of ECO-system in this work significantly lowers barriers

for entry in two research directions: (a) global placement and (b) physical synthesis. In-

deed, work in global placement has always been complicated by the need to produce legal,

routable placements, but with the availability of a fast and reliable legalizer it becomes

easy to evaluate new global placement techniques without a significant infrastructure in-

vestment. Similarly, our software allows one to experiment with physical synthesis opti-

142

mizations (e.g., sizing, buffering) and placement-driven logic transformations (e.g., fanout

optimization) while delegating legalization to ECO-system.

143

PART III

Fundamental Techniques for Routing

CHAPTER VII

Our Framework for Global Routing

In this chapter we develop a high-performance routing technique based on Discrete

Lagrange Multipliers (DLM). In addition to its strong empirical performance, DLM of-

fers a natural way to handle net weights and timing optimization in routing, and explains

several empirical effects observed in negotiated-congestion routing techniques such as the

last-gasp problem and the relative simplicity of two-dimensional formulations compared

to multi-layer (three-dimensional) formulations. Proposed algorithms are implemented in

FGR1, a high-performance global router for nanometer scale designs.

Our key contributions are as follows:

• A routing technique based on Discrete Lagrange Multipliers (DLM) which provides

a natural way to handle net weights and timing optimization in global routing. FGR
1“A Fairly Good Router”

144

handles two- and three-dimensional routing of ASICs with millions of nets. This is

almost an order of magnitude greater than what has been reported in the literature

for most ASIC and FPGA routers. In the 32-bit address space, FGR scales up to

1,000,000 nets.

• Extensions of A*-search to restructure net topologies so as to avoid congestion and

circumvent obstacles.

• Improved wirelength on the ISPD ‘07 Global Routing Contest suite [71]. FGR pro-

duces smaller wirelengths than the winners of the contest on every benchmark, and

is able to route without overflows every benchmark that the winners routed without

overflows. In terms of wirelength, FGR outperforms BoxRouter [40] by 9.5% and

MaizeRouter [99] by 8.0%.

• Violation-free routing of all ISPD ‘98 IBM benchmarks [70], unlike routers in pre-

vious literature. FGR uses 35% less runtime than BoxRouter and produces solutions

with 2.7% smaller wirelength.

• Thorough empirical evaluation of several routing strategies and algorithms includ-

ing net decomposition by MST vs. Steiner trees and layer assignment for three-

dimensional routing problems vs. direct three-dimensional maze routing. We iden-

tify previously unreported bottlenecks, such as the last-gasp problem in negotiated-

congestion routing, and propose solutions.

This chapter is organized as follows. In Section 7.1 we describe the architecture of the

FGR router, the mathematical basis for its key algorithms, and important insights into the

integration of major components. We benchmark FGR against state of the art in Section

7.2 and conclude in Section 7.3.

145

7.1 High-performance Global Routing

In this section we describe the architecture of FGR, the mathematical basis for its key

algorithms, and important implementation insights.

7.1.1 Basic Algorithmic Framework

Routing algorithms must carefully balance wirelength minimization and congestion.

Some detours may be necessary to avoid routing violations and overcapacity GCells, but

excessive detouring leads to over consumption of routing resources, aggravating conges-

tion. In particular, the results of the ISPD ‘07 routing contest [71] show that some routers

are good at finding violation-free solutions, some are good at minimizing wirelength, but

few are good at both. This trend is illustrated in Figure 3.5 which shows routed wirelength

vs. violation count for two-dimensional solutions submitted to the contest. A likely source

of this inflexibility is the common use of uniform, predetermined rules in all regions of the

chip as in FastRoute [109, 110] and the Chi dispersion router [64].

In continuous optimization, dynamic pricing of constraint satisfaction can be modeled

by Lagrange multipliers — a mathematical method for optimizing a multivariate function

subject to a number of constraints [89]:

minx∈X W (x)

subject to Ce(x) = 0, 1 ≤ e ≤ n

(7.1)

The constrained optimization is reduced to the unconstrained optimization of the La-

grangian function F

F (x, λ) = W (x) +
n∑

e=1

λeCe(x)(7.2)

146

where λ = (λ1, . . . , λn) are real-valued Lagrange multipliers. In the case of routing, Ce(x)

represents the overflow penalty of routing edge e. W (x) represents the total wirelength of

routing solution x and is usually defined as a sum over nets or routing edges

W (x) =
m∑

i=1

Ri(x) =
n∑

e=1

Be(x) =
n∑

e=1

(∑
net i uses e

be

)
(7.3)

where Ri(x) is the number of segments used by net i and Be(x) is the number of nets

using edge e. Thus (7.2) can be rewritten

F (x, λ) =
n∑

e=1

(Be(x) + λeCe(x))(7.4)

Here both original unknowns x and the Lagrange multipliers {λe} are considered vari-

ables subject to optimization. For large sparse convex problems iterative techniques are

used, such as steepest descent, Newton’s method, etc. In particular, Lagrange multipliers

are updated additively as follows

λk+1 = λk + αC(xk)(7.5)

where α > 0 is a line-search parameter. Note the similarity in the update of the Lagrange

multipliers and how he is updated in Formula 3.2. While we are also dealing with large

sparse problems, they are discrete and non-convex. This calls for a different iterative opti-

mization procedure, such as greedy search, hill-climbing or rip-up-and-re-route. However,

since Lagrange multipliers remain continuous, the same update rule can be adopted.2

Interpreting Formula 7.4 for a given net i in terms of NCR yields

ce = be + he · pe(7.6)
2To this end, the use of Lagrange multipliers can be viewed as a way to leverage continuous optimization

in a discrete domain, such as nanoscale routing.

147

which is different than Formula 3.1 [98], but also makes more sense since it preserves

the base cost. Therefore FGR uses this Discrete Lagrange Multiplier (DLM) formulation

instead of NCR which was used in FGR’s ISPD ‘07 contest submission. To compute

pe, we use a new penalty function introduced in Section 7.1.2 below. Furthermore, the

justification of dynamic cost updates through DLMs explains the results we see in Sections

7.1.4, 7.1.5 and 7.2.

In addition to being a rigorous mathematical technique, the use of Lagrange multi-

pliers often admits application-specific interpretation. For example, it is used in macro-

economics to mathematically describe market pricing — in a market economy, adequate

resource pricing encourages consumers to look for competitive alternatives, leaving the

most expensive resources to the consumers that gain most. A very similar interpretation

holds in the case of routing, and the “fairness” of this pricing system is confirmed by good

convergence properties in practice, as illustrated in Figures 7.5 and 7.6.

In the initial routing formulation (Equation 7.1) all nets are treated equally when opti-

mizing total wirelength, but in many cases certain nets are more important than others for

optimization, as in timing-driven routing. Each net is assigned a weight, and the goal is to

optimize total weighted wirelength. Weighted wirelength is written as

W ′(x) =
m∑

i=1

wiRi(x) =
n∑

e=1

B′
e(x)(7.7)

where wi is the weight of net i and B′
e(x) is the total weight of nets using edge e

B′
e(x) =

∑
net i uses e

wi · be(7.8)

148

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2 2.5

R
ou

tin
g

E
dg

e
C

os
t

Relative Overflow

Edge Cost vs. Relative Overflow

Figure 7.1: Cost of a routing edge as a function of relative overflow. Cost is linear while
the edge is not overfilled, but grows exponentially once the edge is overfull.

By replacing Be in Formula 7.4 with B′
e, we get

F (x, λ) =
n∑

e=1

((∑
net i uses e

wi · be

)
+ λeCe(x)

)
(7.9)

As a result, the cost ce of edge e during maze routing is different for different nets that

may be routed through it and must be rewritten as ce(i)

ce(i) = wi · be + he · pe(7.10)

Note that the original NCR formulation does not separate be and makes it difficult to ac-

count for net weights.

7.1.2 Congestion Penalty

Let re and ue represent the resources and current usage of a routing edge e and define

the relative overflow ωe = ue/re. We compute the congestion penalty term pe for edge e

as a function of ωe.

pe =

exp (k(ωe − 1)) if ωe > 1

ωe otherwise
(7.11)

149

Figure 7.2: A comparison of the net decomposition techniques used by BoxRouter [40],
FastRoute 2.0 [110] and FGR. In Section 7.2.2, we compare the use of RMSTs
and RSMTs in FGR.

The exponential nature of our cost function for overfull routing edges serves to amplify

congestion and gives the maze router incentive to avoid overfull edges when re-routing nets

(see Figure 7.1, where k = ln 5). We have studied 0 < k ≤ ln 10 and found that higher

values of k reduce runtime, but increase detouring and routed length. FGR uses k = ln 5

by default. Instead of using uniform weights of 1 for routing edges to create an initial

routing solution, which is common in NCR, FGR uses be + pe as the weight for edges to

create an initial solution, where pe is calculated according to Equation 7.11.

7.1.3 Interactions Between Single- and Multi-Net Routing

FGR initially decomposes nets using an RSMT or RMST topology. However, given

that congestion-driven Steiner trees are not easy to construct and that precise congestion

in every GCell is not known beforehand, we found it important to modify net topology

during multi-net routing.

Figure 7.2 compares the net decomposition and restructuring techniques used by FGR

to those in prior work. During DLM, the most congested subnets are ripped up and

rerouted by A*-search. When ripping up a subnet with endpoints P1 and P2, FastRoute

2.0 tries to reconnect the two components of the net, not necessarily using P1 or P2, which

invalidates the point-to-point lower bound used in A*-search. When re-routing a subnet,

150

FGR requires the replacement segments to pass between P1 and P2, based on the following

result.

Theorem 1 Consider shortest paths between two trees embedded into the routing grid.

Let P1 and P2 be nodes arbitrarily selected in the trees T1 and T2, respectively. If the

costs of routing edges taken by tree segments are set to zero, then there is a one-to-one

correspondence between (i) shortest paths between T1 and T2 and (ii) shortest paths

between P1 and P2.

Proof: Assume there is a shortest path A → B joining T1 and T2 such that A ∈ T1 and

B ∈ T2. As T1 and T2 are trees, there exist unique non-self-intersecting paths P1 → A

and B → P2 using only edges contained in T1 and T2, respectively. As the costs of tree

segments are zero, cost(P1 → A) = cost(B → P2) = 0. Thus cost(P1 → A → B →

P2) = cost(A → B). For the sake of contradiction, assume that P1 → A → B → P2 is

not a shortest path; there exists3 path P1 ; P2 with cost(P1 ; P2) < cost(A→ B). But

P1 ; P2 connects T1 and T2, so cost(P1 ; P2) ≥ cost(A→ B). Contradiction.

Conversely, let P1 → P2 be a shortest path. Let C be the last vertex along P1 → P2 such

that C ∈ T1 and let D be the first vertex along P1 → P2 such that D ∈ T2. As T1 and

T2 are trees, there exist unique non-self-intersecting paths P1 → C and D → P2 using

only edges contained in T1 and T2, respectively. cost(P1 → C) = cost(D → P2) =

0 ⇒ cost(P1 → P2) = cost(C → D). Assume for the sake of contradiction C → D

is not a shortest path for T1 and T2; there exists path A ; B, A ∈ T1, B ∈ T2, with

cost(A ; B) < cost(C → D) = cost(P1 → P2). There exist P1 ; A and B ; P2 such

3In this proof, ; denotes paths assumed to exist for the sake of contradiction.

151

Figure 7.3: Re-routing a subnet and changing net topology in FGR. The shaded boxes
represent obstacles. The tree in (a) passes through a congested segment in the
middle which must be ripped up. The dashed arrows in (b) represent sev-
eral possible re-routings that a restructuring algorithm may consider. The
re-routings shown in (c) are two that FGR will consider during DLM. Paths
considered by FGR must start and end along the endpoints of the segment that
was removed. Both of these re-routings reuse routing segments from the net
and create new Steiner points if chosen. The use of temporary zero-cost edges
is required to preserve the efficiency of A*-search.

that cost(P1 ; A) = cost(B ; P2) = 0 ⇒ cost(P1 ; A ; B ; P2) = cost(A ;

B) < cost(P1 → P2). Contradiction. ¤

Temporary change of edge costs to 0 is easy to implement during A*-search because

we route one net at a time and can undo any cost adjustments before considering other

nets. However, in order to use A*-search, we must supply a correct lower bound. We

normally use the three-dimensional Manhattan distance multiplied by the minimum cost

of any routing segment. The naive solution — to ignore the 0-cost edges — may produce

estimates that are greater than the true cost, which would invalidate A*-search. However,

if we literally set an edge’s cost to zero, the lower bound will automatically become zero.

Therefore, in our implementation we set the cost of previously used edges to ε > 0, a

very small value. This technique is illustrated in Figure 7.3, where FGR modifies the net

topology to avoid congestion.

While prior state-of-the-art routers (BoxRouter, FastRoute and MaizeRouter) consis-

tently start by decomposing multi-pin nets with minimal Steiner trees, we believe that our

152

ALGORITHM 7.1: Layer assignment
¤ Input: two-dimensional routing solution, 2dsol
¤ Output: three-dimensional routing solution, 3dsol

1 foreach(net n in 2dsol)
2 do foreach(subnet s of n)
3 do route ← GETROUTE(s)
4 currPoint ← GETSTARTTERMINAL(s)
5 currLayer ← GETLAYER(currPoint)
6 while (currPoint 6= GETENDTERMINAL(s))
7 do nextPoint ← GETNEXTPOINT(route, currPoint)
8 nextLayer ← the layer closest to currLayer where adding an

edge connecting currPoint and nextPoint causes least overflow
9 Add a segment from currPoint to nextPoint on layer nextLayer to 3dsol

10 Add vias connecting (currPoint .x,currPoint .y,currLayer) and
(currPoint .x,currPoint .y,nextLayer) to 3dsol

11 currPoint ← nextPoint
12 currLayer ← nextLayer
13 Add vias connecting (currPoint .x,currPoint .y,currLayer) and

(currPoint .x,currPoint .y,GETLAYER(GETENDTERMINAL(s))) to 3dsol

Figure 7.4: Layer assignment in FGR.

integration of topology restructuring into a powerful DLM framework facilitates additional

opportunities. As illustrated in Figure 3.2, Steiner trees tend to generate net decomposi-

tions with many flat subnets which offer no flexibility in routing. MSTs tend to have

fewer edges but with more flexibility, which can be exploited by DLM to avoid conges-

tion. Moreover, the gradual addition of sharing to MSTs during DLM-based topology

restructuring can generate high-quality congestion-driven Steiner trees without the need to

estimate congestion before routing. Starting with minimal Steiner trees seems to require

heavier restructuring to achieve similar effects, and could not only slow down maze rout-

ing, but also make RRR or DLM less successful. Using RSMTs vs. RMSTs is covered in

Section 7.2.2.

153

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000
 5.42e+06

 5.44e+06

 5.46e+06

 5.48e+06

 5.5e+06

 5.52e+06

 5.54e+06

 5.56e+06

V
io

la
tio

ns

Iteration number

Wirelength
Violations

 1

 10

 100

 1000

 10000

 100000

 0 5000 10000 15000 20000 25000
 5.42e+06

 5.44e+06

 5.46e+06

 5.48e+06

 5.5e+06

 5.52e+06

 5.54e+06

 5.56e+06

W
ire

le
ng

th

CPU time (seconds)

Wirelength
Violations

(a) (b)

Figure 7.5: Violation count and wirelength on the two-dimensional ISPD ‘07 benchmark
adaptec1 plotted as a function of (a) iteration number and (b) time. Viola-
tion counts are plotted on a log-scale and decrease, while wirelength is plotted
on a linear scale and monotonically increases. Note that the majority of DLM
iterations occur when 100 or fewer violations remain, but total wirelength no-
ticeably increases during that phase.

7.1.4 Overcoming the “Last-gasp” Problem

Discrete Lagrange multipliers work well at the large scale because the statistical behav-

ior of numerous discrete variables is not very different from the continuous case. However,

when only several violations remain, the routing task becomes much more discrete. In our

experiments with almost every benchmark we have observed unusual behavior where FGR

spends many DLM iterations when its solution is nearly legal before it is able to termi-

nate with a completely legal solution. Indeed, more than 75% of DLM’s iterations for the

adaptec2 benchmark [71] take place when less than 0.01% of routing segments have

overflow (see also Table 7.4). We term this undesirable behavior the last-gasp problem

and illustrate it on the adaptec1 two-dimensional benchmark in Figure 7.5. To rectify

this situation, we propose the following improvement. When the percentage of routing

edges with overflow becomes small, we restrict the maze router to using only edges that

have available space and weigh routing edges only by their base cost be. Thus if there is

154

 100

 1000

 10000

 100000

 0 200 400 600 800 1000
 4.67e+06

 4.69e+06

 4.71e+06

 4.73e+06

 4.75e+06

V
io

la
tio

ns

Iteration number

Wirelength
Violations

 100000

 0 5 10 15 20 25
 1.087e+07

 1.088e+07

 1.089e+07

 1.09e+07

 1.091e+07

 1.092e+07

 1.093e+07

W
ire

le
ng

th

Iteration number

40000

50000

60000

70000

80000

90000

Wirelength
Violations

(a) newblue1 (331663 nets) (b) newblue3 (551667 nets)

Figure 7.6: Violation count and wirelength plotted as a function of iteration number on
two unroutable two-dimensional ISPD ‘07 benchmarks. In both cases, FGR is
stopped after a period of 24 hours.

any way to route the net without causing overflow, we will take it to avoid further rip-up

iterations. Otherwise, default DLM is used. In many cases this last phase of DLM reduces

iterations without impacting total routed wirelength.

7.1.5 Three-dimensional Routing

The difficulties experienced by DLM due to discreteness also suggest that traditional

two-dimensional routing may be considerably easier than proper three-dimensional rout-

ing where smaller edge capacities are spread through multiple routing layers. In other

words, aggregating edge capacities in one layer would encourage continuous-like resource

pricing, making it easier to satisfy all constraints. This is consistent with observations from

experiments shown in Section 7.2.3.

FGR performs three-dimensional routing by first projecting the routing instance onto a

two-dimensional grid and aggregating the capacities of edges that project onto each other.

This grid contains a single layer of horizontal wires and a single layer of vertical wires

connected by a layer of vias, such as grid depicted at the right of Figure 3.1. Capacities

155

on higher layers may be smaller due to increased pitch, but for each routing grid edge we

calculate the number of wires that are allowed to pass through it, which takes wire widths

and pitches into account. FGR routes this two-dimensional problem instance as normal

until a legal solution is found or a runtime/iteration limit is reached. Next FGR performs

layer assignment for each routing segment used in the two-dimensional solution.

Theorem 2 If the projected two-dimensional instance has a legal solution and via counts

are unconstrained, then the original three-dimensional instance must have a legal solution.

Proof: Three-dimensional routes can be constructed by the algorithm in Figure 7.4. ¤

FGR’s method will produce a three-dimensional solution that uses exactly the same

number of routing segments as the two-dimensional solution, but differs in via counts.

Unfortunately the difference in via counts is usually large and proportional to the number

of layers in the three-dimensional instance. To counteract this phenomenon, we perform

a single round of RRR for every subnet to reduce vias. In this round of optimization,

the cost of each routing segment is much simpler than in DLM: each routing segment is

assigned a cost of 1 and vias are priced as in Section 7.1.6. It is easy to lower-bound the

cost of a path with these edge costs by the three-dimensional Manhattan distance, so it is

particularly amenable to A*-search. Each subnet is ripped up and rerouted by the maze

router individually, and edges with no spare capacity are not allowed. While Theorem 2 is

not a surprising result, the fact that direct three-dimensional routing is less successful than

two-dimensional routing with three-dimensional post-processing was unexpected and, in

fact, undermined FGR’s performance in the ISPD ‘07 routing contest.

156

Table 7.1: Routed cost breakdown of FGR’s solutions to the ISPD ‘07 Global Routing
Contest benchmarks [71]. “FLUTE Ratio” is the ratio of the length of routing
segments used to the Steiner tree length of all nets as computed by FLUTE [44].
Vias account for more than 25% of total cost in every two-dimensional bench-
mark and more than 50% of total cost in each three-dimensional benchmark,
highlighting the importance of via minimization.

Segment FLUTE Vias Total Via
Benchmark WL (e5) ratio (e5) cost (e5) cost %

adaptec1 2-d 35.88 1.0594 6.19 54.44 34.09%
adaptec1 3-d 36.37 1.0739 17.36 88.45 58.88%
adaptec2 2-d 33.21 1.0371 6.36 52.30 36.50%
adaptec2 3-d 33.74 1.0536 18.72 89.89 62.47%
adaptec3 2-d 96.09 1.0295 11.60 130.89 26.59%
adaptec3 3-d 97.02 1.0395 34.21 199.66 51.41%
adaptec4 2-d 90.02 1.0143 11.66 125.00 27.98%
adaptec4 3-d 91.28 1.0285 30.56 182.96 50.11%
adaptec5 2-d 102.79 1.0499 16.45 152.13 32.43%
adaptec5 3-d 103.89 1.0612 52.03 259.98 60.04%
newblue1 2-d 24.15 1.0400 7.76 47.42 49.07%
newblue1 3-d 24.15 1.0400 23.37 94.26 74.38%
newblue2 2-d 46.81 1.0179 9.90 76.51 38.82%
newblue2 3-d 47.91 1.0418 28.08 132.16 63.75%
newblue3 2-d 75.63 1.0253 11.20 109.23 30.76%
newblue3 3-d 75.63 1.0253 32.69 173.71 56.46%

7.1.6 Via Pricing and Optimization

Given that the resistivity of tungsten (the material of vias) is much higher than that

of copper and aluminum, vias are critical in timing-driven routing. The high variability

in via parasitics [121] and the common practice of post-route via doubling to improve

yield [91, 94] suggest that via minimization is a key issue in routing at the nanometer

scale. Furthermore, an unnecessarily large number of vias can hamper routability because

each via obstructs a section of its track. Table 7.1 illustrates just how significant vias are

in the ISPD ‘07 contest benchmarks. Vias represent from 26% to 49% of the total cost of

FGR’s solutions to the two-dimensional benchmarks. Comparing two-layer routing with

6-layer routing, via counts approximately triple and account for 50% to 74% of total cost.

157

Table 7.2: Statistics of the ISPD ‘98 IBM benchmark suite [70]. Runtimes for BoxRouter
[40] and FGR are given in seconds. FGR is faster than BoxRouter on 7 of the
10 benchmarks and uses 35% less runtime to solve the entire suite.

Bench- Router runtime (s)
mark # nets Grid BoxRouter FGR
ibm01 11507 64×64 6 10
ibm02 18429 80×64 25 13
ibm03 21621 80×64 13 5
ibm04 26163 96×64 18 29
ibm05 27777 128×64 37 6
ibm06 33354 128×64 25 18
ibm07 44394 192×64 39 20
ibm08 47944 192×64 68 18
ibm09 50393 256×64 50 20
ibm10 64227 256×64 73 92
Total 354 231

The routing framework closest to ours — Negotiated-Congestion Routing — does not

consider via minimization because its focus is FPGA routing. To model the cost of vias,

FGR treats them as segments in the routing graph. These segments connect adjacent rout-

ing layers as shown in Figure 3.1 and have unlimited capacity. Via routing segments have

a different base cost, usually higher than that for regular segments. This flexibility allows

FGR to price vias in specific applications. For example, in the ISPD ‘07 contest one via is

equivalent to three routing grid segments, so the cost of vias in FGR is set to 3be.

Assigning non-zero costs to via segments in the routing grid allows A*-search to nat-

urally optimize via counts when finding shortest paths. However, to use A*-search, an

accurate lower bound for path cost is also needed. One could ignore vias completely in the

lower bound calculation, but we use the layer difference of the source and target which is

more accurate.

158

Table 7.3: Comparison of FGR to FastRoute 2.0 [110] and BoxRouter [40] on the ISPD
‘98 IBM benchmark suite [70]. FGR completes all 10 of the benchmarks while
BoxRouter and FastRoute 2.0 leave overflow on 4 and 3 of the benchmarks,
respectively. In terms of routed wirelength, FGR outperforms BoxRouter by
2.7% and FastRoute 2.0 by 3.6%.

Bench- BoxRouter FastRoute 2.0 FGR vs. Box- vs. Fast-
mark ovfl WL ovfl WL ovfl WL Router Route 2.0

ibm01 102 65588 31 68489 0 63332 -3.44% -7.53%
ibm02 33 178759 0 178868 0 168918 -5.51% -5.56%
ibm03 0 151299 0 150393 0 146412 -3.23% -2.65%
ibm04 309 173289 64 175037 0 167101 -3.57% -4.53%
ibm05 0 409747 – – 0 409739 -0.00% –
ibm06 0 282325 0 284935 0 277608 -1.67% -2.57%
ibm07 53 378876 0 375185 0 366180 -3.35% -2.40%
ibm08 0 415025 0 411703 0 404714 -2.48% -1.70%
ibm09 0 418615 3 424949 0 413053 -1.33% -2.80%
ibm10 0 593186 0 595622 0 578795 -2.43% -2.83%

Average -2.71% -3.64%

7.2 Experimental Results

We have implemented FGR in C++ without external libraries (compiled with GCC

3.4.5), but added optional interface to the Steiner-tree packages FLUTE [44] and Fast-

Steiner [78] to compare them with MST decompositions. The core algorithms and data

structures of FGR were implemented in one month. All runs were performed on 2.4 GHz

Opteron workstations running Linux. FGR was compiled in 32-bit mode and was therefore

limited to less than 4GB of RAM.

7.2.1 Performance on ISPD ‘98 and ‘07 Benchmarks

Table 7.2 describes the ISPD ‘98 IBM benchmarks and compares FGR to BoxRouter

[40] in terms of runtime. Table 7.3 compares FGR to BoxRouter and FastRoute 2.0 [110]

in terms of solution quality. Unlike all previous routers in the literature, FGR is able to

route all of the IBM designs without overflow. Both BoxRouter and FastRoute 2.0, which

report the best results on this suite so far, produce solutions with overflow on 4 and 3 of the

159

Table 7.4: Statistics of the ISPD ‘07 Global Routing Contest benchmarks [71]. For FGR
we list runtime (in minutes), the number of iterations of rip-up-and-re-route
(which are very similar for two- and three-dimensional variants), and maximum
memory usage, which is significantly greater for three-dimensional than for
two-dimensional variants.

Bench- FGR on 2-d variants FGR on 3-d variants
mark # nets Grid time (m) rip-ups time (m) memory

adaptec1 219794 324×324 451 557 430 869 MB
adaptec2 260159 424×424 56 2930 64 960 MB
adaptec3 466295 774×779 179 284 243 2393 MB
adaptec4 515304 774×779 19 47 55 2377 MB
adaptec5 867441 465×468 713 790 740 2309 MB
newblue1 331663 399×399 1441 983 1442 1154 MB
newblue2 463213 557×463 4 20 10 1621 MB
newblue3 551667 973×1256 1555 23 1501 3676 MB

benchmarks, respectively. Overall, FGR produces solutions with 2.72% less wirelength

than BoxRouter and 3.62% less wirelength than FastRoute 2.0. In addition, FGR is faster

than BoxRouter on 7 of the 10 benchmarks and uses 35% less runtime to complete the

entire suite. Unlike the ISPD ‘07 contest benchmarks, the ISPD ‘98 benchmarks feature

only a single metal layer, making via minimization unnecessary.

Table 7.4 shows statistics of the benchmarks used at the ISPD ‘07 Global Routing

Contest [71]. These benchmarks are considerably larger than the ISPD ‘98 benchmarks

and include both two- and three-dimensional variants. These benchmarks also feature

non-trivial routing obstacles, and, consequently, routing resources are not spread evenly

throughout the layout as in the ISPD ‘98 suite. Table 7.4 also shows runtimes and memory

requirements for FGR on these benchmarks. In all cases FGR stays within the 32-bit

memory space and finishes well under a given 24-hour timeout on all but the newblue1

and newblue3 benchmarks on which no router at the ISPD ‘07 contest was able to find

a legal solution.4

4FGR can be stopped much earlier, with only a slight increase in overflows.

160

Table 7.5: Comparison of FGR to the other top-three routers at the ISPD ‘07 Global Rout-
ing Contest [71]. FGR routes as many benchmarks without overflow as the win-
ners of the contest with 7.0% better wirelength than the best of BoxRouter [40]
and MaizeRouter [99]. *The adaptec4 three-dimensional and newblue2
three-dimensional benchmarks were routed using FGR’s option “-full3d”.

Best of BoxRouter and MaizeRouter FGR
Bench- Overflow Cost Overflow Cost vs.
mark total max (e5) Router total max (e5) Best

#1 2-d 0 0 58.84 Box 0 0 54.44 -7.48%
#1 3-d 0 0 99.61 Maize 0 0 88.45 -11.20%
#2 2-d 0 0 55.69 Box 0 0 52.30 -6.09%
#2 3-d 0 0 98.12 Maize 0 0 89.89 -8.39%
#3 2-d 0 0 137.75 Maize 0 0 130.89 -4.98%

ad
ap

te
c

#3 3-d 0 0 214.08 Maize 0 0 199.66 -6.74%
#4 2-d 0 0 128.45 Maize 0 0 125.00 -2.69%
#4 3-d 0 0 194.38 Maize 0 0 179.36* -7.73%
#5 2-d 0 0 164.32 Box 0 0 152.13 -7.42%
#5 3-d 0 0 298.08 Box 0 0 259.98 -12.78%
#1 2-d 400 2 51.13 Box 526 4 47.42 -7.26%
#1 3-d 400 2 101.83 Box 514 2 94.26 -7.43%
#2 2-d 0 0 79.64 Maize 0 0 76.51 -3.93%

ne
w

bl
ue

#2 3-d 0 0 139.66 Maize 0 0 129.40* -7.35%
#3 2-d 32588 1236 114.63 Maize 39908 1120 109.23 -4.71%
#3 3-d 32840 1058 184.40 Maize 39828 374 173.71 -5.80%

Average -7.03%

Next, we compare FGR to the routers that scored best at the ISPD ‘07 contest. Since

an earlier version of FGR placed 1st in the two-dimensional category, we exclude it from

comparison (however, the version we report improves upon FGR’s results in the contest

on every benchmark). We compare FGR to MaizeRouter [99] which placed 1st in three-

dimensions and 2nd in two-dimensions, and to BoxRouter which placed 2nd in three-

dimensions and 3rd in two-dimensions. FGR produces smallest wirelengths on every

benchmark and is able to route without overflow every benchmark that was legally routed

at the contest. In particular, FGR outperforms BoxRouter in wirelength by 9.5% and

MaizeRouter by 8.0%.

161

Table 7.6: Comparing net decomposition by MST versus Steiner trees on the ISPD ‘07
benchmarks [71]. Time taken for decomposition by MST or Steiner trees is
less than 1 minute on all benchmarks. While using Steiner tree decomposi-
tions results in a reduction in routed segment length of 0.5%, it increases via
counts by 1.8% and thus increases the total cost of routing solutions by 0.7%.
Decomposition by Steiner trees increases routing time by 22%.

Decomposition by MST Decomposition by Steiner trees
Benchmark Segment Vias Total Time Segment Vias Total Time

WL (e5) (e5) cost (m) WL (e5) (e5) cost (m)
adaptec1 2-d 35.88 6.19 54.44 451 35.78 6.24 54.49 403
adaptec1 3-d 36.37 17.36 88.45 430 36.26 18.04 90.37 395
adaptec2 2-d 33.21 6.36 52.30 56 33.10 6.43 52.38 170
adaptec2 3-d 33.74 18.72 89.89 64 33.62 19.37 91.72 168
adaptec3 2-d 96.09 11.60 130.89 179 95.55 11.67 130.57 222
adaptec3 3-d 97.02 34.21 199.66 243 96.42 35.49 202.90 281
adaptec4 2-d 90.02 11.66 125.00 19 89.37 11.72 124.53 18
adaptec4 3-d 91.28 30.56 182.96 55 90.59 31.59 185.35 58
adaptec5 2-d 102.79 16.45 152.13 713 102.56 16.63 152.45 771
adaptec5 3-d 103.89 52.03 259.98 740 103.62 53.78 264.97 796
newblue1 2-d 24.15 7.76 47.42 1441 24.00 7.74 47.22 1441
newblue1 3-d 24.15 23.37 94.26 1442 24.00 24.00 96.01 1442
newblue2 2-d 46.81 9.90 76.51 4 46.41 9.95 76.27 4
newblue2 3-d 47.91 28.08 132.16 10 47.51 29.08 134.75 10
newblue3 2-d 75.63 11.20 109.23 1555 75.24 11.15 108.71 1460
newblue3 3-d 75.63 32.69 173.71 1501 75.24 33.04 174.35 1462

Ratio -0.52% +1.81% +0.74% +22.0%

7.2.2 Using Steiner Trees versus Using MSTs

Traditionally net decomposition has been done using Minimal Spanning Tree (MST)

algorithms, but fast and extremely accurate Rectilinear Steiner Minimal Tree (RSMT) con-

struction algorithms have become increasingly popular in the literature [40,109,110]. FGR

can use any well-formed net decomposition, so we study how the choice of net decompo-

sition affects FGR’s overall results—we compare MST to a combination of FLUTE [44]

and FastSteiner [78] that returns the better Steiner tree every time. FGR merges segments

of decomposed nets, as described in Section 7.1.3 and produces non-trivial Steiner trees

even when given decompositions by MSTs. The results on the ISPD ‘07 benchmarks are

shown in Table 7.6. Time taken for decomposition by MSTs or Steiner trees is less than 1

162

Table 7.7: Comparing layer assignment with full three-dimensional routing on the three-
dimensional instances of the ISPD ‘07 benchmarks [71]. Total cost of the bet-
ter solution (compared first by overflow then total cost) for each benchmark is
highlighted.

Layer Assignment Full 3-d Routing
Bench- Total Segment Vias Total Time Total Segment Vias Total Time
mark ovfl WL (e5) (e5) cost (m) ovfl WL (e5) (e5) cost (m)

#1 0 36.37 17.36 88.45 430 1456 36.02 17.55 88.70 1453
#2 0 33.74 18.71 89.89 64 2 33.36 19.06 90.54 1444

ad
ap

te
c

#3 0 97.02 34.21 199.66 243 2 96.69 34.77 201.01 1487
#4 0 91.28 30.56 182.96 55 0 91.39 29.32 179.36 83
#5 0 103.89 52.03 259.98 740 5512 102.78 52.27 259.61 1462

ne
w

bl
ue

#1 514 24.15 23.37 94.26 1442 1012 24.21 22.33 91.19 1447
#2 0 47.91 28.08 132.16 10 0 47.93 27.15 129.40 18
#3 39828 75.63 32.69 173.71 1501 51098 75.73 29.30 163.63 1827

minute on all benchmarks and does not significantly impact runtimes. As expected, routed

segment length is smaller when Steiner tree algorithms are used. On the other hand, using

Steiner tree algorithms actually increases via counts by 1.8% and causes total cost to in-

crease by 0.7%. All evidence we have seen suggests that MST decompositions leave more

flexibility than minimum Steiner trees, allowing one to avoid some amount of detouring.

Prior work has shown that optimal Steiner trees for a given set of points can vary widely,

but specialized techniques can increase flexibility [15]. However, FLUTE and FastSteiner

do not currently optimize tree flexibility. In addition, Steiner points may inadvertently be

placed in congested areas by the Steiner tree constructor, causing increased congestion and

detouring. Congestion-driven Steiner trees could be helpful in this context, but apparently

MSTs already provide a good solution and can also be biased to avoid congestion.

7.2.3 Layer Assignment versus Full Three-dimensional Routing

In section 7.1.5 above we described that FGR performs three-dimensional routing by

first flattening the routing instance onto a two-dimensional grid, routing the new two-

163

dimensional problem instance, and then converting the two-dimensional solution into a

three-dimensional solution by assigning layers to routed segments, adding vias as neces-

sary. FGR is also capable of solving three-dimensional problems directly by using full

three-dimensional maze routing, and in Table 7.7 we compare both methods. It is readily

apparent that full three-dimensional routing takes far longer than two-dimensional routing

with layer assignment, most likely because three-dimensional routing is more complex.

On the easiest benchmarks, adaptec4 and newblue2, full three-dimensional routing

takes at least 50% longer, but is able to decrease via counts significantly and in turn im-

prove total cost by 2.0% and 2.1%, respectively. On the other hand, on the benchmarks

where FGR with layer assignment cannot find a legal solution within 24 hours, newblue1

and newblue3, full three-dimensional routing produces solutions with significantly more

overflow.

7.2.4 Selective Net Weighting

To avoid detouring critical nets, identified outside of the router by their timing critical-

ity, FGR can route them preferentially by assigning net weights and minimizing weighted

wirelength. To validate this method, we route the newblue2 benchmark from the ISPD

‘07 contest. We choose a random subset of 10% of the nets of the design, double their

weight, and route from scratch. Distributions of detours on the nets are shown in Figure

7.7. Detouring on the nets with higher weight is reduced as is the overall detouring on the

design. Runtime and total wirelength are affected negligibly. Thus using net weights is an

effective method for controlling detouring and timing on selected nets.

164

All nets Only weighted nets

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 1.5 2 2.5 3 3.5

P
er

ce
nt

 o
f n

et
s

(c
um

ul
at

iv
e)

Detoured net length (relative to min Steiner)

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 1.5 2 2.5 3

P
er

ce
nt

 o
f n

et
s

(c
um

ul
at

iv
e)

Detoured net length (relative to min Steiner)

W
ithoutnetw

eighting

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 1.5 2 2.5 3 3.5

P
er

ce
nt

 o
f n

et
s

(c
um

ul
at

iv
e)

Detoured net length (relative to min Steiner)

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 1.5 2 2.5 3

P
er

ce
nt

 o
f n

et
s

(c
um

ul
at

iv
e)

Detoured net length (relative to min Steiner)

W
ith

netw
eighting

Figure 7.7: Cumulative distributions of detouring without (above) and with (below) net
weighting on the two-dimensional newblue2 benchmark. Net detours are
measured as a ratio of routed net length to Steiner wirelength as given by
FLUTE [44]. When weights are applied to a subset of the nets, the detouring
on those nets goes down significantly without adverse effects on the detouring
of all nets.

7.3 Conclusions

In this chapter we have presented FGR, a high-performance global router for nanome-

ter scale designs. FGR’s implementation is very compact—core algorithms and data struc-

tures require only 1200 lines of C++ code. FGR outperforms the best results from the ISPD

‘07 Global Routing Contest, as well as previous literature, in terms of route completion,

runtime and total wirelength. In particular, FGR improves upon wirelengths produced by

BoxRouter and MaizeRouter in March 2007 by 9.5% and 8.0%, respectively.

165

CHAPTER VIII

Extensions to Our Routing Framework

The ISPD 2007 Global Routing Contest organized by IBM Austin Research Labora-

tory changed the landscape of global routing research by introducing sixteen new bench-

marks that are orders of magnitude more challenging than previously available layout in-

stances [71]. These design examples stimulated the development of new algorithms and

software, leading to improved performance and robustness of state-of-the-art tools. For ex-

ample, before the contest no academic global router had been able to completely route the

ISPD’98 suite of benchmarks. Yet, three routers presented at ICCAD’07 – Archer [108],

BoxRouter 2.0 [42] and FGR – legally route these benchmarks in a matter of seconds. Two

of them successfully competed in the ISPD’07 contest.

According to a recent survey by Lou Scheffer [122, Chapter 8], industrial routers most

often rely on fairly basic techniques, such as maze routing and rip-up and reroute, rather

than methods that make use of “higher mathematics.” At each iteration of rip-up and

reroute, routes that pass through congested regions are first removed, and then greedily

routed one by one, such that the order is different every time. The iterations stop when a

completely legal solution is found or a timeout is reached. In contrast to this simple but

166

effective technique, most of pre-ISPD’07 academic research had been focused on highly

sophisticated combinatorial techniques such as multi-commodity flows (MCF) and integer

linear programming (ILP) to route nets simultaneously. Somewhat in agreement with [122,

Chapter 8], the ISPD’07 contest was won by two routers (FGR and MaizeRouter) that did

not use these paradigms. Moreover, a recent publication [42] describing the third best-

performing router from the contest, BoxRouter 2.0, showed that it performs much of its

work using rip-up and reroute.1 This is a significant change from BoxRouter 1.0 that relied

heavily on ILP. Archer [108], presented at ICCAD’07 reports low runtime and competitive

results for two-dimensional routing. However, it does not achieve best wirelength on any

of the benchmarks, and lags behind FGR and BoxRouter 2.0 dramatically in multi-layer

routing. Academic research has clearly shifted in 2007 as all three global routers presented

at ICCAD’07 use modifications of Negotiated Congestion Routing (NCR), a rip-up and

reroute technique introduced in the PathFinder FPGA router [98] but not used before in

ASIC routing.

Recent publications [42,108,110] describe a variety of techniques, some new and some

old, used in competitive routers. However, as we demonstrate in Sections 8.1-8.3, some

of these techniques are superseded by others, and some appear unnecessary. To this end,

a major challenge addressed by our work is to identify a minimal set of high-performance

routing techniques that is sufficient to achieve best results in the “wirelength × runtime ×

violations” space.

In this chapter we introduce improvements to FGR which we collectively call Sherpa.

1The BoxRouter 2.0 work also does not list runtimes, indicating that they may be significant. Indeed,
the authors of BoxRouter acknowledged at ICCAD’07 that BoxRouter 2.0 requires two days to route the
adaptec5 benchmark.

167

Figure 8.1: Congestion map of the newblue1 two-dimensional benchmark as guided by
Sherpa.

The contributions of this chapter are summarized as follows:

• An account of efficient data structures for global routing, including a new branch-

free data structure for single nets.

• A comparative analysis of single-net routing techniques that identifies several meth-

ods that are powerful, comprehensive and easy to implement.

• An explanation of high violation counts produced by FGR on the newblue3 bench-

mark, and a more effective, logarithmic penalty function (LPF).

• Several new ideas in global routing that improve speed and solutions. These include

dynamic adjustment of Lagrange steps (DALS), and a cyclical net-locking (CNL)

technique.

• Unparalleled performance on the ISPD’07 routing benchmarks. In particular, Sherpa

outperforms Archer and FGR in speed, while matching the wirelengths achieved by

FGR and improving upon those by Archer and BoxRouter 2.0.

8.1 Data Structures for Routing

High performance, especially on large routing instances, demands transparent, memory-

efficient data structures. What to store and how is equally important compared to what not

168

Actual Route of Net nSubnet (n,1)

Subnet (n,2) Branching Point

Figure 8.2: The branch-free representation (BFR) of routed nets. Subnets are treated sep-
arately and, when combined, form a completely routed solution without dupli-
cate edges.

to store because excessive sophistication of data structures often leads to poor actual per-

formance. Here we describe our basic data structures for individual routed nets and the

dynamic global routing grid.

8.1.1 Branch-free Representation (BFR) for Individual Routed Nets

All global routers need to represent routes, and for nets with three or more pins there

are several structural alternatives. The straightforward approach to this problem is to di-

vide each net into a group of disjoint line segments, possibly with bends. In the case of

3-pin net n shown in Figure 8.2, this technique would add a branching point (Steiner point)

to the middle of the net, creating three segments. This representation supports proper cal-

culation of routing resources and is used in global routers such as FastRoute [110]. An

additional recent requirement for routed net representations is flexibility—all competitive

routers do some form of net restructuring whether it be during explicit steps such as in

Archer [108] and BoxRouter [42], or continually through maze routing as in FastRoute

and FGR. However, net restructuring steps cause branching points to move, appear, and

disappear, which is difficult to support with this representation.

We take a different approach where branching points are represented implicitly. For

169

each subnet, a pair of real pins on a net, we store a list of the routing edges occupied

by the subnet in addition to the coordinates of the endpoints of the subnet. These pairs

must collectively form a spanning tree, e.g., a minimum spanning tree (MST). Each net

lists the indices of routing edges it uses and allows one to find out how many subnets

belonging to the net use a particular routing edge. Such a mapping can be implemented

with an STL hash-map or balanced binary tree, but in practice they both require too much

memory. Instead, our more memory-efficient data structure is an array of pairs of (1)

routing edge indices and (2) the total number of subnets of the net that pass through the

edge. Although this offers logarithmic look-up by routing edge and worst-case linear

insertion and removal, in practice this consumes a trivial amount of runtime.

As each net stores the indices of used edges, routing resource usage can be calculated

exactly and efficiently. These data structures also allow Sherpa to maintain Steiner-tree

routings for nets without explicit representation of branching points. We call this a Branch-

free Representation (BFR) for routed nets, and find that BFR can ease the implementation

of a router as branching points are processed implicitly during maze routing rather than

being created and destroyed explicitly. In practice, overlap between subnets is typically

small, and coalescing subnets automatically with BFR takes little time.

8.1.2 A Data Structure for Dynamic Global Routing Grid

The main challenges when designing a data structure for a routing grid are that the

structure (i) is slim so as to improve cache locality (thereby reducing runtime) as well

as fit large instances into the 32-bit address space, and (ii) provides constant-time access

to grid cells and routing edges. Our routing grid consists of an array of routing tiles

170

connected by routing edges. Each routing tile contains six indices which represent the six

routing edges (two each in x, y and z directions) to which it can be connected. Tiles are

stored such that the index of the tile in the array is calculated in constant time from the x,

y and z coordinates of the tile and vice-versa. Thus memory is saved by not requiring that

tiles store their coordinates.

For each routing edge, we store: its type (VIA, HORIZONTAL or VERTICAL), the

layer to which it belongs, the Lagrange multiplier associated with it (described in more

detail in Section 8.3 below), routing resource capacity, current resource usage, and a list

of the subnets that pass through it. Note that routing edges do not store additional infor-

mation such as edge costs. There are two reasons for this. First, the functions we employ

for determining edge costs can be computed quickly and on the fly with the information

currently stored on the edge. Thus we save memory with minimal impact on runtime.

Second, since we allow for the use of different cost functions, on-the-fly computation is

more flexible.

8.1.3 Supporting Efficient Rip-up and Reroute

To facilitate efficient rip-up and reroute, fast identification of which subnets should

be ripped-up at each iteration is crucial. Furthermore, the process of ripping-up a subnet

must take negligible time in comparison to maze routing. In Section 8.1.2 above, recall

that a routing edge maintains a list of the subnets that pass through it. Thus, to quickly

determine which connections need to be adjusted during an iteration of rip-up and reroute,

one iterates over all routing edges, determines which edges are over-capacity, and adds the

subnets using the edge to a list.

171

Table 8.1: Key techniques used by Sherpa.
TECHNIQUE ORIGIN

3DC Three-dimensional clean-up FGR + New
BAS Boxed A*-search Well-known

Branch-free representation
BFR for routed nets New

CNL Cyclical net locking New
CNR Continual net restructuring FastRoute [110]

Dynamic adjustment
DALS of Lagrange steps New

ESH ε-sharing FGR
Edge-centric

ELM Lagrange multipliers FGR

FLA Fast layer assignment FGR
LPR Logarithmic penalty function New
MST Net decomposition by MST Well-known

During the rip-up process for a subnet, each routing edge used by the subnet is exam-

ined (in an arbitrary order). For each such edge, first, the subnet is removed from the list

maintained by the routing edge. Next, the map maintained by the parent of the subnet (the

net to which the subnet belongs) is adjusted to reflect that one of its subnets no longer uses

the edge. If no other subnets of the parent use the edge, it is removed from the mapping

and resources are returned to the edge. Lastly, the routing edge is removed from the list

maintained by the subnet. When adding a new route to a subnet, a similar sequence of

steps is performed in reverse.

8.2 Analysis of Single-net Routing Techniques

In this section we analyze previously published techniques for single-net routing so

as to select for Sherpa those methods which are both powerful and admit straightforward

implementations.

172

Outer GCells Expanded by A* and Monotonic Routing

Inner GCells Expanded
only by Monotonic Routing

Blockages

(a) (b)

Figure 8.3: Boxed A*-search versus monotonic and pattern routing. On the left, we show
an instance of the shortest- path problem with high bend costs. Boxed A*-
search with a Manhattan lower bound searches fewer grid cells than monotonic
routing to find the same solution. On the right, blockages obstruct the path and
cause monotonic routing to fail, but boxed A*-search succeeds.

8.2.1 Point-to-point Maze Routing

Several options are available in the published literature for connecting pin pairs along

the routing grid. Common methods include pattern routing (used by BoxRouter 1.0 &

2.0 [42] and Archer [108]) and monotonic maze routing (used by FastRoute 2.0 [110] and

Archer [108]). In pattern routing, only certain route shapes are examined to connect points

on the routing grid. Typically these shapes are chosen to have shortest wirelength and few

bends such as “L” and “Z” patterns. Archer also uses slightly detoured “U” patterns [108].

In monotonic maze routing, the search space of maze routing is limited to the bounding

box of the pins being routed. As an added restriction, only those edges that move closer

to the target in terms of Manhattan distance are traversed. This can greatly speed up maze

routing, but has several drawbacks. Some of these drawbacks are illustrated in Figure

8.3 where we compare monotonic maze routing with boxed A*-search (BAS). A*-search

combines Dijkstra’s shortest path algorithm with a lower bound function to improve search

173

speed.2 During BAS, search is also restricted to the bounding box of the pins, but all edges

are allowed to be traversed. As Figure 8.3(b) illustrates, routing blockages can cause

monotonic routing to terminate without finding a solution, whereas BAS finds a path with

minimal detouring. Indeed, routing solutions found by monotonic routing are a subset of

those found by BAS.

Even though boxed A*-search has a higher asymptotic complexity than monotonic

routing (adding a logarithmic term due to the use of priority queues implemented with

binary heaps), BAS with an admissible function can be faster than monotonic routing, as

shown in Figure 8.3(a). When minimizing total wirelength and bends without blockages,

BAS with a Manhattan-distance lower bound searches fewer grid cells to find the same

solution as monotonic routing. Comparing monotonic routing to BAS, for most nets BAS

appears almost as fast, is never inferior in solution quality and covers more cases, espe-

cially when congestion and blockages make monotonic routing undesirable. Compared to

pattern routing, BAS can be much slower on very large nets, and we address this problem

by developing a novel Cyclical Net-Locking (CNL) technique in Section 8.3.5 below.

8.2.2 Net Splitting

Most competitive routers decompose nets using Steiner tree construction algorithms.

Given our use of the branch-free representation (BFR) for routed nets, it is natural for

Sherpa to initially decompose nets into MSTs. Decomposition into MSTs can make rout-

ing more difficult as MSTs can have up to 150% of the wirelength of Steiner trees. Thus

the maze router must work harder initially to reduce wirelength while also combating

2Bends are modeled as graph edges and priced independently.

174

congestion. To produce high quality routes with low wirelength, we restructure nets as

described in Section 8.2.3 below. According to experiments in Chapter VII, initial decom-

position by MSTs is a highly competitive strategy in terms of runtime and interconnect

optimization. It increases flexibility in routing by avoiding the numerous flat nets present

in Steiner minimal trees. Additionally, it facilitates a stand-alone implementation without

relying on external Steiner-tree packages.

8.2.3 Continual Net Restructuring

Published competitive routers (Archer [108], BoxRouter 2.0 [42], FastRoute [110] and

FGR) employ net restructuring, but in vastly different ways. Archer uses a sophisticated

algorithm, based on net-length limits and Lagrange relaxation, that is restricted to the

Hanan grid. This technique is expensive in runtime and therefore applied only once every

k = 50 iterations. In contrast, FastRoute and FGR restructure nets continually during maze

routing. We found that restrictions to the Hanan grid undermine interconnect optimization

and unnecessarily decrease routing options. Therefore, we do not impose any restrictions

on routes, restructure nets continually similar to FastRoute and FGR, while using the ε-

sharing technique from FGR given its synergy with BFR. We recognize that similar design

decisions were apparently responsible for somewhat higher runtimes in FGR results than

in Archer results, and therefore address this problem in a fundamentally new way using

our Cyclical Net-Locking (CNL) technique described in Section 8.3.5 below.

8.2.4 Handling Multi-layer Routing

When routing on a grid with multiple layers, there are two basic approaches. The first

approach is to employ maze routing on the entire three-dimensional routing grid. The

175

second approach starts by projecting the three-dimensional routing grid onto a simpler

two-dimensional grid and aggregating routing resources. After the two-dimensional rout-

ing grid is built and routing edges have proper edge capacities assigned, maze routing is

performed. When maze routing completes, three-dimensional routing solutions for each

net are reconstructed from solutions obtained on the two-dimensional grid.

In Section 7.1.3 we proved that if edge capacities are aggregated properly, a three-

dimensional solution exists that has the same number of violations as the two-dimensional

solution, and present a fast and greedy layer assignment algorithm that finds solutions for

each net individually. This step is followed by a round of full three-dimensional clean-up

when solutions are completely legal. In contrast, BoxRouter 2.0 builds a sophisticated

ILP instance to solve the same problem. Given the simplicity of FGR’s solution and rela-

tive solution quality difference between FGR and BoxRouter 2.0, we chose to implement

FGR’s solution. We supplement this technique with improvements to FGR’s clean-up pass

as described in Section 8.3.6 below.

8.3 Key Algorithms in Sherpa

Here we outline core algorithms used by Sherpa and highlight several aspects that we

found critical to achieving improved runtime and solution quality.

8.3.1 The Sherpa Flow

A major challenge in large-scale routing is balancing wirelength against violations as

competing objective functions. To this end, published routers include separate modules to

balance wirelength and congestion [101, Section 3.4] by tuning weights in linear combi-

176

Global Routing
Instance

Initial Routing

Legally
Routed?

Rip-up and
Reroute Nets

Post-routing
Optimization

Global
Time-out?

Layer
Assignment

Routed
Solution

No

No

Yes

YesUpdate
Lagrange
Multipliers

DALS

CNLLPR

BFR

BFR

Figure 8.4: Global routing in Sherpa and the use of novel techniques such as a branch-free
representation (BFR) for routed nets, cyclical net locking (CNL), dynamic ad-
justment of Lagrange steps (DALS) and a logarithmic penalty function (LPR).

nations. However, as articulated in [42], ad hoc trade-offs may lead to violent divergence

of routing iterations. Therefore, several routers use dampening factors to ensure conver-

gence [42, 108], intuitively similar to the cooling of temperature in simulated annealing.

The approach used in Sherpa is quite different in that the entire framework is structured

around balancing wirelength and violations. This iterative framework, depicted in Figure

8.4, is based on Lagrange multipliers and achieves such an accurate equilibrium in practice

that no dampening factors or separate guardian modules are required.

The key technique we use is edge-centric Lagrange multipliers, introduced first in

FGR. While Lagrangian relaxation has been suggested for global routing before, all uses

we are aware of are either (1) specific to timing-driven routing and maintain net-centric

Lagrange multipliers [90] or (2) focus on a single net at a time [108]. These algorithms

use conventional history-based rip-up and reroute for the router’s main loop. In contrast,

the Lagrangian formulation we use directly handles the global routing problem from the

ISPD 2007 contest. In our formulation, the cost of a routing edge e is a function of a base

177

cost for the edge be, a Lagrange multiplier he and a penalty for local congestion pe

ce = be + he · pe(8.1)

Lagrange multipliers are updated at the beginning of rip-up and reroute iteration k:

hk
e =

hk−1
e + hstep if e is overfull

hk−1
e otherwise

(8.2)

Our techniques differ from FGR in that we use a very different penalty function pe for

local congestion, as described in Section 8.3.4, and we do not use a constant hstep, which

is examined in Section 8.3.3 below. Additionally, Equation 8.1 is different from that used

by NCR in PathFinder [98].

The stopping criterion for rip-up and reroute iterations gauges the amount of effort

applied on hard-to-route instances. To this end, the default version of Sherpa stops when

a legal solution is found, after 50 rip-up and reroute iterations show no improvement, or

upon running for 24 hours.

8.3.2 A Dual Lagrange Formulation

One flaw in both the NCR and DLM routing flows, presented in Chapters III and

VII, respectively, is the following: once a net has become successfully routed through

uncongested regions of the routing grid, it will not be re-examined for the remainder of

the RRR iterations. After a legal solution has been found, we add a single round of greedy

optimization described in Section 7.1.5 for each net, but this optimization could be too

late. In other words, DLM and NCR target only those nets which pass through highly

congested regions and not nets which may be detoured more than necessary.

178

To be certain that DLM pays more attention to those nets which are detoured, we

must modify the routing formulation. First we reproduce our initial routing formulation,

Equations 7.1, 7.3, and 7.4:

minx∈X W (x)

subject to Ce(x) = 0, 1 ≤ e ≤ n

W (x) =
m∑

i=1

Ri(x) =
n∑

e=1

Be(x) =
n∑

e=1

(∑
net i uses e

be

)

F (x, λ) =
n∑

e=1

(Be(x) + λeCe(x))

where Ce(x) is the amount of overflow on edge e, W (x) represents the total wirelength

of routing solution x, Ri(x) is the number of segments used by net i and Be(x) is the

number of nets passing through edge e and be is the base cost of a routing edge. To focus

the attention of DLM more on detoured nets, we can set up soft length constraints per net3

Ri(x) ≤ αisi(8.3)

where si is the optimal Steiner length of net i and αi is a multiplier that is set to a reason-

able value such as 1.5 or can be user specified. These additional soft constraints call for

additional Lagrange multipliers in the relaxation of the problem

F (x, λ, Λ) =
n∑

e=1

(Be(x) + λeCe(x)) +
m∑

i=1

ΛiLi(x)(8.4)

where Li(x) represents by how much net i violates its soft length constraint.

This introduces a new weight for each net (illustrated in Figure 8.5), much like user-

defined weights which were introduced in Section 7.1.1. We propose to treat the new Λ

3We call them soft constraints as we will not be strictly enforcing them, which is explained later in this
section.

179

Figure 8.5: Relevant multipliers in the dual Lagrange formulation. Like the original for-
mulation, each edge of the routing grid has a multiplier λ. In the dual formu-
lation, each net also has its own multiplier Λ.

multipliers in the same way as net weights.4 The rip-up-and-re-route iterations of DLM

are modified in the following way: when historical congestion costs are updated for each

routing edge, nets which violate their soft length constraints will have their net weights

increased. Also, nets which violate their soft constraints will be ripped-up during RRR it-

erations in the same way that congested nets are ripped-up. We do not change the stopping

criteria for all of the RRR iterations. As the soft length constraints that were added may

not be strictly realizable depending on the choice of α, it is acceptable if they are violated

as long as all edge capacity constraints are satisfied.

8.3.3 High-precision Lagrange Multipliers

Lagrange multipliers are critical to the success of the NCR [98] and DLM (Section

7.1.1) routing frameworks and are a dominant factor in determining solution quality as

well as routing runtime. Thus it is critical to precisely determine Lagrange multipliers

during rip-up and reroute to achieve a good runtime and solution quality trade-off.

Previous work [98] increases Lagrange multipliers of congested edges by a constant

4If a non-trivial weight is specified for a net, the total weight for that net will be the product of the
Lagrange weight and the user-supplied weight.

180

hstep according to Equation 8.2. In our experiments, we find that, in general, large steps

lead to increased speed but also increased detouring. Conversely, small steps lead to lower

final wirelength but much increased runtime. Further complicating the issue is that differ-

ent benchmarks have drastically different optimal ranges of steps.

To find better Lagrange steps for arbitrary benchmarks, we adjust them dynamically

between iterations of rip-up and reroute. We allow for a generous range of Lagrange steps,

which includes the optimal range of all available benchmarks, and adapt the step within

[hmin
step, h

max
step] over time. Our initial step is chosen to be hmax

step +hmin
step

2
, and we choose a delta

for Lagrange steps ∆step =
hmax

step−hmin
step

200
. We route in the framework of Section 8.3.1 and

Figure 8.4, while Lagrange steps are modified between iterations as follows

hk+1
step =

hk
step + ∆step if violk ≥ violk−1

hk
step −∆step if violk < violk−1 and WLk > WLk−1

hk
step if violk < violk−1 and WLk ≤ WLk−1

(8.5)

Empirically, Lagrange steps change significantly during the early iterations of rip-up

and reroute, settle to within a small range of steps during the middle iterations, and finally

increase when nearing a legal solution. As reported in Table 8.2, DALS preserves the

solution quality of FGR while contributing to significant runtime speedups and reduced

violation counts.

8.3.4 Logarithmic Penalty Function

The penalty function used by FGR grows linearly while an edge is legal with respect

to capacity constraints and grows exponentially with relative overflow afterward. Relative

overflow is defined as the fraction of routing resources used by an edge. For example, a

completely unused edge has a relative overflow of 0, while an edge with 50% more usage

181

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
ou

tin
g

E
dg

e
C

os
t

Relative Overflow

Edge Cost vs. Relative Overflow

Figure 8.6: New convex penalty function used by Sherpa. The function grows linearly until
a routing edge uses 200% of its routing resources and logarithmically there-
after. This radical departure from concave penalty functions used by other
routers is made possible by the strength of the underlying global routing algo-
rithm and improves the handling of designs with numerous violations.

than capacity has a relative overflow of 1.5. This function is effective at reducing total and

maximum overflow when solutions are nearly legal, but it hampers the performance of

A*-search when a solution is highly illegal, e.g., for the newblue3 benchmark. We have

found the penalty function effectively nullifies the Manhattan lower bound given to A*.

This makes A*-search much slower, resulting in very few iterations of rip-up and reroute

during the 24-hour timeout period.

To counteract this problem, we introduce a new penalty function p of a routing edge e

based on the relative overflow ω of e

p(e) =

ln(ω − 1) + 2 if ω > 2

ω otherwise
(8.6)

Our penalty function grows linearly until a routing edge uses 200% of its routing resources

and then logarithmically, i.e., more slowly, thereafter, which is shown in Figure 8.6. This

function is fundamentally different from others presented in the literature in that it is con-

vex.5 In contrast, concave penalty functions, especially exponential functions, emphasize
5Since a convex penalty function puts less pressure on maximum violations, it may not work well with a

182

the minimization of maximum overflow rather than total overflow. We believe this is a key

reason that FGR produces poor violation counts on the newblue3 benchmark, which can

only be routed with a large number of violations. Use of a convex penalty function leads

to dramatically reduced violations on difficult instances compared to FGR.

8.3.5 Cyclical Net-locking

We observed through profiling that the vast majority of runtime in the unmodified

Sherpa flow is spent routing nets with long wirelength. The ISPD 2007 netlists follow

the standard Rentian wirelength statistics, whereas the number of nets with given length

decreases geometrically with length. Therefore, we refocus the framework of Section 8.3.1

to short nets and reroute long nets less frequently.

We classify subnets by the area of their bounding box measured in whole routing grid

cells, or GCells, so that long flat subnets do not have zero area.

Area(BBoxn) = (|BBoxn.x1− BBoxn.x2|+ 1)×

(|BBoxn.y1− BBoxn.y2|+ 1)

(8.7)

This effectively estimates the search space for boxed A*-search on a subnet, and draws

upon our observations that (1) almost all nets route within 2x of their HPWL and (2) very

few nets route with significant detours.

We propose to lock larger subnets after the first few iterations of rip-up and reroute,

but unlock them periodically after. How often a subnet is unlocked is determined based on

the size of its bounding box in comparison with the average bounding box size:

AvgArea =

(
1

N

) N∑
n=1

Area(BBoxn)(8.8)

weaker baseline router.

183

A subnet n is allowed to be rerouted every Period(n) iterations:

Period(n) = min

{⌈
Area(BBoxn)

AvgArea

⌉
, 10

}
(8.9)

Thus large subnets are unlocked less frequently than small subnets (but at least every 10

iterations) and subnets with average or smaller area are never locked. We chose not to

unlock many nets at once, but instead use a dispersive strategy that aims to unlock similar

numbers of nets at each iteration. To do so, subnet n is allowed to be unlocked during

iteration i if the following condition is satisfied

(i < 2) or ((i + n) mod Period(n) = 0)(8.10)

This condition effectively staggers unlocking of large nets and also allows them to be

unlocked with the proper period. We find that this method improves the framework of

Section 8.3.1 dramatically with very little impact on solution quality.6 The success of CNL

shows there is significant flexibility in choosing which nets to reroute to avoid congested

regions, and that focusing on shorter nets is more efficient.

8.3.6 Multi-layer Routing

The three-dimensional clean-up pass after layer assignment described in Chapter VII

is only applicable to legally routed instances; if a net had an illegal solution at the end of

the rip-up and reroute phase, there is no guarantee that a solution is possible that only uses

uncongested routing edges during the clean-up stage. We note that restricting nets to pass

through only legal routing edges is overly limiting and modify the technique to improve

both legal and illegal solutions.
6It is not difficult to ensure that approximately equal numbers of nets are routed per iteration using

randomization, but our method is straightforward and works well in practice.

184

After layer assignment and before traditional three-dimensional clean-up, we iterate

over all routing edges and temporarily increase the capacities of edges with violations so

that they become 100% utilized. This makes the solution temporarily legal. Next, we

apply the clean-up pass as normal and find a solution that uses less wirelength. Note

that the total and maximum overflow values of the original solution cannot increase since

no illegal routing edge is allowed to increase in illegality and no legal routing edge can

become illegal. After clean-up, we reinstate the correct capacities for all routing edges and

recalculate the total and maximum overflow statistics for the solution. We observe that this

clean-up method is as effective in reducing total wirelength usage in illegal solutions as it

is in legal solutions, and usually decreases total overflow by a small amount as well.

8.4 Empirical Evaluation

We implemented Sherpa in C++, and used g++ 4.2.2 to produce 64-bit binaries for our

experiments.7 All experiments were run on 2.4GHz AMD Opterons with 4GB of RAM.

We point out that many publications in placement and routing report results produced

by tuning software to individual benchmarks. For example, results of Archer were tuned

to reduce runtime [108, Section 6] on the newblue3 benchmarks, even when presenting

results of a “default” configuration [108, Table 1]. In other publications, such tuning is

not stated explicitly. Our Sherpa router is able to achieve very strong results in default

configuration.

Table 8.2 compares Sherpa with Archer [108], BoxRouter 2.0 [42] and FGR on the

ISPD 2007 Global Routing Contest benchmarks [71]. Where possible, we compare against

7We confirmed with our main competitors, Archer and FGR, that they also used g++.

185

Table 8.2: Sherpa compared with published results of Archer [108], BoxRouter 2.0 [42]
and FGR on the ISPD’07 benchmark suite [71]. Sherpa is run in a default
configuration for each benchmark. For Archer and FGR, we compare against
un-tuned results where runtimes were reported. (†) Results of Archer were
produced on 3.6GHz Intel Xeon processors while FGR and Sherpa were run on
2.4GHz AMD Opterons. We ran speed tests on similar machines and them to
be 1.67x faster, so Archer runtimes have been scaled up by 1.67x to facilitate
comparisons. (‡) According to [108, Section 6], Archer did not use a default
configuration on newblue3, despite the claim in the caption of [108, Table 1].
Thus, we do not include newblue3 in runtime comparisons with Archer.

Archer [108] BoxRouter 2.0 [42] FGR Sherpa
Benchmark Overflow Cost Time† Overflow Cost Overflow Cost Time Overflow Cost Time

total (e5) (m) total max (e5) total max (e5) (m) total max (e5) (m)
adaptec1 2-d 0 58.27 143 0 0 58.37 0 0 54.44 451 0 0 54.86 57
adaptec1 3-d 0 113.80 145 0 0 92.04 0 0 88.45 430 0 0 88.64 62
adaptec2 2-d 0 54.60 37 0 0 55.69 0 0 52.30 56 0 0 52.36 18
adaptec2 3-d 0 112.56 38 0 0 94.28 0 0 89.89 64 0 0 89.88 23
adaptec3 2-d 0 135.42 82 0 0 137.96 0 0 130.89 179 0 0 131.26 52
adaptec3 3-d 0 244.08 85 0 0 207.41 0 0 199.66 243 0 0 199.71 70
adaptec4 2-d 0 126.26 18 0 0 127.79 0 0 125.00 19 0 0 124.84 8
adaptec4 3-d 0 221.57 20 0 0 186.42 0 0 182.96 55 0 0 183.07 18
adaptec5 2-d 0 162.49 410 0 0 162.11 0 0 152.13 713 0 0 152.93 224
adaptec5 3-d 0 334.09 413 0 0 270.41 0 0 259.98 740 0 0 260.24 229
newblue1 2-d 682 48.40 82 400 2 51.13 452 4 47.43 1441 374 4 46.29 323
newblue1 3-d 682 116.08 83 394 2 92.94 452 2 94.27 1442 374 2 90.42 348
newblue2 2-d 0 77.91 10 0 0 78.68 0 0 76.51 4 0 0 76.37 2
newblue2 3-d 0 166.50 12 0 0 134.64 0 0 132.16 10 0 0 132.19 4
newblue3 2-d 33394 109.25 (270)‡ 38958 1088 111.61 38580 1120 109.34 1555 35044 1192 107.24 1457
newblue3 3-d 33394 198.77 (272)‡ 38958 364 172.44 38580 374 173.82 1501 35042 398 163.36 1474

Average 2-d +3.7% 1.71x +5.4% +0.4% 2.97x
Average 3-d +25.1% 1.31x +3.6% +1.3% 3.02x

Overall Average +13.9% 1.50x +4.5% +0.8% 3.00x

default results of each of the other tools. Sherpa’s solutions improve on FGR’s solu-

tions overall by 0.8% and are never more than 1% worse on any benchmark. Sherpa

also produces the best published violation counts on the newblue1 benchmarks. Over-

all, Sherpa outperforms BoxRouter 2.0 by 4.5% and Archer by 13.9% in wirelength. Note

that Archer is very competitive on two-dimensional benchmarks, but on three-dimensional

benchmarks it is 25% worse than Sherpa. This is due to our improved three-dimensional

clean-up phase after layer assignment. FGR lags behind Sherpa significantly in runtime

and in violation counts on the newblue3 benchmarks. This is because of our CNL and

LPF techniques, respectively.

186

While FGR and Sherpa runs were performed on 2.4GHz AMD Opteron machines,

Archer was run on 3.6GHz Intel Xeon processors. We ran speed tests on similar Intel ma-

chines and found those machines to be 1.67x faster, so Archer runtimes have been scaled

up by 1.67x to facilitate comparisons. Sherpa produces the fastest runtimes on 12 of the

16 benchmarks. Overall, Sherpa is 50% faster than Archer (not including newblue3 as

Archer runs were tuned for runtime and Sherpa ran for a 24-hour period). On newblue1,

default Sherpa is not faster than Archer, but Archer finishes routing with nearly twice as

many violations as Sherpa and 4% higher wirelength. Sherpa can produce the same vi-

olation counts as Archer in 72 minutes. Factoring in these newblue1 runtimes, Sherpa

is 2.2x faster than Archer on two-dimensional instances, 1.6x faster on three-dimensional

instances, and 1.9x faster overall. Compared to FGR, Sherpa is 3.0x faster on two- and

three-dimensional instances.

8.5 Conclusions

We have presented the Sherpa global router which outperforms ICCAD’07 results of

Archer [108], BoxRouter 2.0 [42] and FGR in terms of runtime, while matching best wire-

length results and reducing violation counts. Sherpa uses a Lagrange relaxation routing

framework with several key enhancements including a branch-free representation (BFR)

for routed nets, a logarithmic penalty function (LPF), dynamic adjustment of Lagrange

steps (DALS) and a cyclical net-locking (CNL) technique.

187

PART IV

Placement and Routing in Modern
Design Flows

CHAPTER IX

Integration of Routing into Placement and Physical
Synthesis

Dramatic progress has been made in algorithms for placement and routing over the last

5 years, with improvements in both speed and quality. Combining placement and rout-

ing into a joint optimization has also been proposed. However, it remained unclear until

now if the benefits would be significant enough to justify major changes in commercial

tools. Our work addresses this challenge and is the first to demonstrate tangible benefits

of combined place-and-route optimization including fewer global routing detours, reduced

detailed routing violations and runtime, and even shrinking the floorplan of a commercial

design. We employ fast global routing to choose standard cells to temporarily inflate and

188

iteratively spread for congestion reduction. Spreading cells only in congested regions, our

technique CRISP (Congestion Reduction by Iterated Spreading during Placement) enables

die area reduction by facilitating routing with high area utilization.

9.1 Industrial Physical Design

Physical design has been a major bottleneck in modern EDA flows, and its signifi-

cance is increasing for large ICs due to the poor scaling of interconnect delay (relative

to transistor delay). The focus of our work is on extremely large ASIC and SoC designs

that contain multiple millions of standard cells and thousands of macro blocks. Critical

path delay in such designs is often dominated by interconnect, and the choice of cell loca-

tions affects circuit delay to a large extent, followed by the routes chosen for the longest

wires. These degrees of freedom correspond to placement and routing, which have tra-

ditionally been handled by independently-developed EDA tools. Due to the significance

of these optimizations, they received a great amount of attention from researchers, and

the contests organized by IBM at ISPD confirmed dramatic improvements in the speed

and quality of placement and routing on large industry netlists, achieved by university re-

searchers [105,106]. Not only have the basic algorithms changed in the last 5-10 years, but

the very landscape of placement and routing has changed dramatically. Perhaps, the most

visible difference from older ASICs is the presence of large amounts of whitespace, in-

serted to support net buffering, gate sizing, post-placement logic restructuring and ECOs,

as well as to limit power density and to ease routing. Another prominent feature of modern

ASICs and SoCs is the presence of large fixed macros and routing obstacles.

189

Design objectives. Most work on congestion mitigation in placement cites as its pri-

mary motivation the need to facilitate violation-free routing (global or global+detailed) and

decrease turn-around time (TAT) by reducing design iterations. Publications also point out

that interconnect length must not increase too much while routability improves [9, Chapter

22]. While this trade-off is important to our work, we point out that additional motivating

factors can be more critical to success in an industry environment. Indeed, total intercon-

nect length (before or after routing) is rarely a goal in itself, but is rather viewed as a proxy

for circuit delay and dynamic power. Given that a large fraction of dynamic power is due

to clocks, and total dynamic power is decreasing compared to the contribution of static

power, circuit delay is viewed as the key objective. In particular, timing-driven placement

algorithms can be improved by early delay estimates, whose accuracy has a direct impact

on the quality of circuit delay optimization. Such estimates use pre-routes for individual

nets to fully account for the capacitance of Steiner tree and other effects. When congestion

estimates are available, pre-routes can be constructed to avoid congested regions, improv-

ing the quality of delay estimation. However, constructing pre-routes independently per

net often results in multiple pre-routes occupying the same track, especially near obstacles.

Therefore pre-routes should be generated by a global router.

Chip area considerations. An important new consideration in our work is related to

chip size. By working with entire ASICs and SoCs, rather than isolated partitions, one

can control the area and the shape of the chip. In our case, chip floorplans are created by

expert design engineers who account for many factors, including the whitespace required

for routability, as well as the placement of fixed macro blocks. Experiments discussed in

190

Section 9.3 demonstrate a strong place-and-route tool that can handle high area utilization

and thus requires less whitespace in the floorplan. To help us extract maximum benefits

from such a tool, expert design engineers working with us produced alternative floorplans

with smaller area, and we demonstrate that such floorplans can be satisfied in terms of

violation-free routing and timing closure. When using 300mm wafers, decreasing chip

area by 5% increases the number of chips in one wafer, decreasing the cost of each chip [9,

Part VII].

Compatibility with existing EDA infrastructure. On the algorithmic side, we are

working with a state-of-the-art timing-driven force-directed placement framework and en-

hance it by accounting for congestion and routability. Unlike in previous published work

on combined placement and routing [45], we consider and evaluate these steps within

a complete industrial physical-synthesis flow. This imposes a series of compatibility re-

quirements, but also allows us to draw upon available netlist transforms. Our contributions

include a new technique for interconnect estimation, the use of incremental cell inflation,

and the use of dedicated legalization and detailed placement. The need for dedicated steps

is due to the requirement to preserve timing and the validity of neighboring optimizations.

Key contributions of our work include:

• We present CRISP, an incremental placement technique which improves the routabil-

ity of a given placement through highly accurate congestion modeling. CRISP takes

advantage of this accuracy and constructs a novel measure-and-improve incremental

placement flow.

• We formulate exact requirements for determining when a region has too many pins

and propose a separate placement-spreading pass driven by pin density, applied be-

191

tween global and detailed routing. As intended, this pass improves detailed routing

in our experiments while preserving global routes. This work is the first to separately

measure and optimize global and detailed routability in placement.

• We apply CRISP to layouts produced by mPL6 [28] for the ISPD contest bench-

marks [105, 106] and route them using NTHU-Route 2.0 [33]. CRISP improves via

counts by 8.7%, global routed wirelength by 6.5% and detouring by 5.3%.

• We use CRISP in an industrial physical-synthesis flow to make previously unroutable

designs routable, reducing detailed routing runtime, detours and violations.

• We illustrate that effective congestion reduction can be applied to shrink the die size

of a commercial design by 5%. Thus, CRISP leads to savings in manufacturing cost.

The remainder of this chapter is organized as follows. Section 9.2 describes our pro-

posed techniques known as Congestion Reduction by Iterated Spreading during Placement

(CRISP). Section 9.3 validates CRISP in experiments on publicly available benchmarks

with academic placers and routers as well a large commercial ICs. Section 9.4 summa-

rizes our work and concludes.

9.2 CRISP Techniques

We seek an incremental technique which can be applied to any placement in a physical-

design flow to reduce congestion as well as preserve timing characteristics. To this end, we

present CRISP, a technique which reduces routing congestion by incremental placement

changes based on highly accurate congestion metrics. CRISP assembles state-of-the-art

placement and global routing techniques into a new incremental placement flow, adding

192

several missing pieces. CRISP carefully spreads standard cells located in congestion hot-

spots while preserving the placement of uncongested areas where possible. If spreading

creates new congested areas, CRISP iterations identify and eliminate them. In this sec-

tion, we describe the techniques used by CRISP to model routing congestion, spread the

placement and dissolve congested spots.

9.2.1 Modeling Routing Congestion

Using probabilistic congestion maps, while computationally efficient, suffers from two

important drawbacks: (i) it does not account for routing blockages, and (ii) it does not al-

low for detouring. In the presence of numerous fixed routing blockages, common in mod-

ern designs, using a probabilistic congestion map can impair routability as we demonstrate

in Section 9.3.

Rather than build a probabilistic congestion map, CRISP creates a global routing in-

stance from the current placement and uses a global router to generate a full set of routes.

Prior to the ISPD 2007, 2008 routing contests [105, 106], most publications assumed that

global routing was too expensive to invoke during placement. However, we demonstrate

that recent advances in global routing algorithms make them affordable as estimators. To

keep routing runtime practical, CRISP limits the amount of detouring the global router is

allowed to perform. This allows CRISP to capture the areas of the design which have ac-

tual rather than estimated routing congestion as well as identify areas of congestion which

can be caused by detouring. An example of a congestion map derived from an academic

global router is shown in Figure 9.4(b), and a congestion map from an industry global

router is shown in Figure 9.5.

193

Routability metrics. An important consideration when modeling congestion is being

able to determine which of two placements is more routable. At the ISPD global routing

contests, the amount of overflow in a routing solution was the primary quality metric.

Overflow is defined as the difference between routing edge usage and capacity for all

routing edges that use more than their capacity. In industrial tools, overflow is discarded

in favor of net-based metrics. For each net, one can derive the maximum congestion of any

routing edge used by the net. Using this net congestion metric, one can distinguish nets

whose congestion exceeds a given threshold. For example, the number of nets which are

at least 100% congested refers to all nets passing through at least one routing edge which

uses 100% or more of its routing resources.

Accounting for pin density. Local peaks of pin density often cause routing conges-

tion, but are overlooked as a source of congestion by many algorithms. Global routing

accurately captures the wires that pass between routing edges, but does not focus on con-

gestion internal to GCells. In fact, this source of congestion is ignored completely by aca-

demic global routing formulations, and, in our experience is underestimated by industry

global routers. A design may appear to be easily globally routable, but may fail detailed

routing leaving several shorts and opens. We propose to handle pin density directly in

CRISP with a separate pass of placement-spreading driven by pin density applied before

detailed routing.

A naive method to mitigate the inaccuracy of global routing with respect to pin density

is to shrink GCell sizes so that fewer nets become subsumed by GCells, but this can make

global routing too slow for practical use. Our solution assimilates and extends ideas from

194

(a) (b) (c)

Figure 9.1: (a) A placement with two congested areas. (b) CRISP inflates standard cells in
these regions, (c) and spreads them.

previous work [16,124], which injects whitespace into areas of high pin density or routing

congestion. Novel elements include (i) exact requirements for determining when a region

has too many pins and (ii) a separate placement-spreading pass driven by pin density,

applied before detailed routing. The latter seeks to ease detailed routing while preserving

global routes.

9.2.2 Temporary Cell Inflation

The technique of cell inflation is used by experienced designers to alleviate routing

congestion, and it proves to be very effective in practice [16, 124]. For this reason, we

develop algorithms for cell inflation in the context of incremental placement. During each

iteration of CRISP, we determine areas of congestion and inflate cells in the most con-

gested areas preferentially. Thus cells which are consistently found to be in heavily con-

gested regions grow in size more quickly over time than those in light congestion, which

is illustrated in Figure 9.4(c).

We inflate cells in proportion to their pin counts in order to reduce pin density in

congested regions. Empirically this step improves detailed routability (see Section 9.3).

195

The width of cell c during iteration i, width(c, i), is

max(width(c, i− 1) + 1, d(1 + αT)numPins(c)e)

where T is the number of times c has been in a congested region, α is the width increment

and width(c, 0) is the initial width of c. An example of CRISP inflating cells in shown in

Figure 9.1. We use the same α = 0.2 for all of our experiments in Section 9.3.

9.2.3 Incremental Spreading

Spreading techniques are common in the literature for analytical placement algorithms.

One such technique is iterative local refinement (ILR) used by FastPlace [137]. ILR creates

a regular grid for a given placement and performs many rounds of movement for every cell

in a design. During each round, each movable cell is examined once. A cell may move

from its current grid tile to one of its eight neighboring grid tiles. The choice of destination

for each cell is based on a cost function which is a linear combination of the change in

wirelength and area balance between the source and destination tiles caused by the move.

The FastPlace iterative local refinement framework is insufficient for use in CRISP

because any cell can be moved at any iteration. We enhance ILR for use in CRISP and

remove this limitation. For each grid tile, we define a target density and a multiplier

describing the relative importance of area requirements versus wirelength for the tile. At

the beginning of each round, tiles which are above their target density have their multiplier

increased so that satisfying their density constraint becomes more important than change

in wirelength; tiles which meet their density constraint have their multipliers reduced.

During each round, only movable cells contained within tiles that do not meet their density

constraint are examined. Additionally, we impose a greedy ordering on cells so that those

196

with better gain in cost function are moved preferentially. When we call this modified

ILR during CRISP (Figure 9.3, line 20), we assign the target density for a grid tile to

be the density the tile had at the beginning of the iteration of CRISP before cells were

inflated. Overall, these modifications ensure that areas with no congestion, and thus no cell

inflation, will remain undisturbed during spreading, making ILR suitable for incremental

placement.

Legalization and detailed placement. The fidelity of layout modeling is essential to

the success of CRISP. If routing or pin-density hot-spots identified by the router do not

correspond to actual areas of routing congestion, CRISP could do harm to the placement

rather than help. Since legalization often changes the routabililty of a design, it is par-

ticularly import that all placements CRISP evaluates using a router be legal. Thus any

solution returned by CRISP will necessarily be legal and any observed improvements in

routability will carry over into the final result. Unfortunately, legalization in the presence

of many fixed obstacles often significantly perturbs locations, increasing wirelength. To

recover from wirelength gained during legalization we run detailed placement techniques

after legalization. To save runtime as well as preserve the spreading of the placement, we

limit the detailed placer to one round of its transforms.

9.2.4 The CRISP Flow

In Figure 9.2, we outline the flow of CRISP. Pseudocode is also given in Figure 9.3.

An example of CRISP reducing congestion on a highly-congested commercial design is

shown in Figure 9.5.

197

Initial PlacementInitial Placement

Build Initial
Congestion

Map

Build Initial
Congestion

Map

Inflate and Spread Cells
in Congested Areas

Inflate and Spread Cells
in Congested Areas

Legalize
Placement
Legalize

Placement

Recover
Wirelength
Recover

Wirelength

Degrade Limit
Exceeded?

Degrade Limit
Exceeded?

Build Current
Congestion Map

Build Current
Congestion Map

Build Current
Pin Density

Build Current
Pin Density

Improvement?Improvement?

Reinstate Best-
seen Solution

Reinstate Best-
seen Solution

Build Initial
Pin Density
Build Initial
Pin Density

Final PlacementFinal Placement

yes

no

yes

no

Figure 9.2: The CRISP incremental placement flow.

Congestion measurement. CRISP first determines the routing congestion of an initial

placement by calling a fast and effective global router. To limit runtime, CRISP restricts

the detouring that the router is allowed to perform. In the context of academic routing

tools, CRISP limits the number of iterations of rip-up and reroute. When using an indus-

trial router, CRISP can use more accurate constraints. Thus it limits the industrial router to

5% detouring (see Section 7.2). After the global router produces a solution, CRISP gener-

ates a congestion map and a pin-density map for the current placement. Using these maps,

CRISP determines portions of the design that are problematic in terms of routing conges-

tion or pin density. For pin density, the threshold for our experiments is chosen as 1 pin

per minimum area of a standard cell (one standard row high and one site width wide). For

routing congestion, we use different thresholds when using academic and industrial design

tools. Since academic routers seek to reduce total routing overflow, we set the threshold

to 95% congestion. For commercial designs, we wish to reduce the number of nets which

198

CRISP: CONGESTION REDUCTION BY ITERATED SPREADING DURING PLACEMENT

¤ Input: Placement P , Global router GR, Cell width increment α,
¤ Congestion target congTarget , Maximum iterations maxIter ,
¤ Maximum area increase per iteration maxAreaIter
¤ Output: Congestion optimized placement PBest

1 create two arrays, timesCongested and cellCong ,
having size numMovableCells(P), entries initialized to 0

2 if(isPlacementLegal(P) == FALSE)
3 then legalizePlacement(P), doDetailedPlacement(P)
4 congMap = callRouter(GR,P), pinMap = buildPinDensityMap(P)
5 PBest = P , CongBest = getCongMetric(congMap,pinMap)
6 currArea = getUsedCoreArea(), totalArea = getTotalCoreArea()
7 iters = losingStreak = 0, originalWidth = getCellWidths(P)
8 do
9 foreach cell c

10 cellCong[c] = max(lookUpCong(congMap,getLocation(P ,c)),
lookUpCong(pinMap,getLocation(P ,c))

11 maxAreaThisIter = min(0.95·totalArea , currArea + maxAreaIter ·totalArea)
12 foreach cell c in order of decreasing congestion
13 if(cellCong(c) < congTarget) then break
14 timesCongested [c]++
15 newWidth = max(getWidth(P ,c) + 1, d(1 + α·timesCongested [c)]·getNumPins(c)e)
16 if(currArea + (newWidth - getWidth(P ,c))·getCoreRowHeight() >
17 maxAreaThisIter) then continue
18 currArea + = (newWidth - getWidth(P ,c))·getCoreRowHeight()
19 setWidth(P ,c,newWidth)
20 spreadPlacement(P), legalizePlacement(P), doDetailedPlacement(P)
21 congMap = callRouter(GR,P), pinMap = buildPinDensityMap(P)
22 CurrCong = getCongMetric(congMap,pinMap)
23 if(CurrCong < CongBest)
24 then CongBest = CurrCong , PBest = P , losingStreak = 0
25 else losingStreak++
26 iters++
27 while(iters < maxIters and losingStreak < 2)
28 return PBest

Figure 9.3: The CRISP algorithm for determining which cells to inflate per iteration.

have 90% or more congestion and so set a threshold of 85% congestion.

Cell inflation and spreading. Next CRISP assigns a congestion number to each stan-

dard cell based on the routing and pin density in the regions it occupies. CRISP limits

the amount of inflation that may happen during a particular iteration by imposing a user

defined maximum area increase. Each cell is examined for inflation in order of decreasing

congestion until all cells have been examined or the maximum area is reached for that iter-

199

(a) (b) (c)

Figure 9.4: (a) Placement of adaptec1 with 60% target density and (b) corresponding
congestion map. (c) Map of cells inflated during the first five iterations of
congestion elimination. Colors in (c) correspond to relative inflation with red
cells being the greatest followed by orange, yellow, green, blue and violet.

ation. For all of our experiments, we limit inflation to 1% of the core area per iteration. In

addition, we impose a limit of 95% core area usage to ensure that a legal placement is fea-

sible. After as many congested cells as possible are inflated under the area limits, CRISP

spreads the newly inflated cells to make the placement more legal. The goal of spreading

is to produce a nearly-legal placement by perturbing the original solution as little as pos-

sible, without significantly degrading wirelength. CRISP’s inflation and spreading steps

are illustrated in Figure 9.1, and described in Sections 9.2.2 and 9.2.3. After the solution

has been spread, CRISP calls a legalizer followed by detailed placement to recover wire-

length. Figure 9.4(b) shows a congestion map for an academic design and Figure 9.4(c)

shows which cells are inflated and to what degree over several rounds of CRISP.

Iterative congestion reduction. CRISP then calls the global router and compares

routability metrics with previous placements. If the new placement improves routability

metrics, it is saved. CRISP iterations continue in this way until a stopping criterion is met.

Stopping criteria include (i) a maximum number of iterations, (ii) a maximum number of

200

iterations in a row without congestion metric improvement, (iii) area restrictions prevent-

ing cell inflation, or (iv) complete elimination of congestion. CRISP returns the best-seen

placement in terms of congestion metrics.

9.3 Experimental Results

We test CRISP and compare it with state-of-the-art congestion reduction techniques

on a wide range of designs both academic and commercial. For academic designs, we

choose the ISPD placement and routing contest benchmarks. We place and route these

designs with academic tools and compare CRISP with academic incremental congestion

reduction techniques. On commercial designs, we demonstrate how CRISP reduces global

congestion and detouring, and improves detailed routability. We also show how CRISP can

be used to shrink the die of a commercial design.

9.3.1 ISPD Contest Benchmarks

Benchmark setup. To test the effectiveness of CRISP, we placed the ISPD place-

ment and routing contest benchmarks [105, 106] with the academic placer mPL6 [28].

mPL6 is an analytical placer which finished 2nd place overall at the ISPD 2006 placement

contest. The 2006 placement contest featured density constraints for all benchmarks and

mPL6 achieved the best total wirelength, while largely observing density constraints, but

lost to the contest winner by runtime. For each benchmark, we produce two placements,

one routable and one unroutable, by varying the density constraint passed to mPL6. The

ISPD contest benchmarks range in size from 211,447 objects (543 fixed) for adaptec1

to 2,507,953 objects (26,582 fixed) for newblue7. We exclude newblue3 from our

201

Table 9.1: Using ECO-system [117], the Bonn flow [16] and CRISP to improve the
routability of unroutable mPL6 [28] placements of ISPD contest benchmarks
[105, 106]. We were unable to produce unroutable placements of bb3 or nb2
with mPL6. We exclude nb3 because it is trivially unroutable. Detouring is
measured as the ratio of global routing segments to FLUTE [44] Steiner wire-
length. † NTHU-Route crashed on three instances, ending CRISP prematurely.

Placement Global routing (NTHU-Route 2.0 [33])Benchmark &
Runtime HPWL Estimated Runtime Final Vias RWL Detour Reduction ofTarget density Flow

(min) (e6) overflow (min) overflow (e6) (e6) ratio Vias RWL Detours

mPL6 61 81.7 174626 1030 560 1.98 5.12 1.220 — — —
mPL6 + ECO-system 172 234.8 Placement illegal — — —ad1, 80%

mPL6 + Bonn 126 83.0 152802 52 16 1.88 4.77 1.103 5.1% 7.0% 11.7%
mPL6 + CRISP 88 83.1 148486 65 36 1.83 4.72 1.100 7.4% 7.9% 12.0%

mPL6 80 97.3 97224 >1440 8086 2.00 5.42 1.104 — — —
mPL6 + ECO-system 307 323.7 6316606 >1440 4903640 3.05 17.14 1.427 -52.5% -216% -32.3%ad2, 70%

mPL6 + Bonn 159 100.0 70182 5 6 1.96 5.36 1.037 2.2% 3.0% 6.7%
mPL6 + CRISP 108 96.1 66166 62 92 1.84 5.05 1.049 7.7% 6.7% 5.5%

mPL6 379 216.9 269594 44 38 3.90 12.16 1.049 — — —
ad3, 80% mPL6 + Bonn 695 219.7 227630 11 0 3.88 12.20 1.042 0.5% -0.3% 0.7%

mPL6 + CRISP 442 218.7 182836 9 0 3.70 11.97 1.038 7.5% 3.6% 1.1%
mPL6 221 191.2 97972 >1440 1266 3.62 10.98 1.078 — — —

ad4, 90% mPL6 + Bonn 460 192.1 84052 17 68 3.53 10.52 1.019 2.6% 4.2% 5.9%
mPL6 + CRISP 267 192.3 49334 3 0 3.31 10.33 1.014 8.6% 5.9% 6.4%

mPL6 408 365.2 190026 56 4 5.67 13.91 1.036 — — —
ad5, 70% mPL6 + Bonn 785 372.0 150008 13 0 5.65 13.94 1.024 0.4% -0.2% 1.2%

mPL6 + CRISP 522 359.1 108950 6 0 5.19 13.17 1.020 8.5% 5.3% 1.6%
mPL6 74 113.9 169072 >1440 13296 2.27 5.87 1.372 — — —

bb1, 60% mPL6 + Bonn 151 116.2 125522 13 2 1.94 4.75 1.093 14.3% 19.0% 27.9%
mPL6 + CRISP 109 114.9 116626 10 0 1.83 4.58 1.081 19.2% 22.0% 29.1%

mPL6 213 172.6 58908 7 4 4.05 9.06 1.026 — — —
bb2, 50% mPL6 + Bonn 402 175.2 49176 4 0 4.06 9.13 1.023 -0.2% -0.8% 0.3%

mPL6 + CRISP† 325 171.4 21776 2 0 3.73 8.70 1.019 8.0% 3.9% 0.7%
mPL6 728 954.7 49294 >1440 2102 13.47 27.04 1.026 — — —

bb4, 50% mPL6 + Bonn 1386 959.0 41250 48 212 13.46 26.90 1.010 0.0% 0.5% 1.6%
mPL6 + CRISP† 959 929.7 12892 4 0 12.19 25.13 1.007 9.5% 7.0% 1.9%

mPL6 99 699.6 16990 7 80 2.07 4.69 1.016 — — —
nb1, 70% mPL6 + Bonn 190 699.4 11478 6 54 2.05 4.67 1.012 0.7% 0.4% 0.4%

mPL6 + CRISP 148 695.3 7016 1 0 1.95 4.54 1.008 5.8% 3.2% 0.8%
mPL6 256 295.7 196924 35 42 4.62 12.94 1.039 — — —

nb4, 50% mPL6 + Bonn 522 300.7 263756 >1440 5380 4.89 14.12 1.134 -5.7% -9.1% -9.5%
mPL6 + CRISP 388 293.1 130480 4 0 4.25 12.41 1.028 8.1% 4.1% 1.1%

mPL6 435 528.6 92014 >1440 1440 8.17 23.44 1.023 — — —
nb5, 50% mPL6 + Bonn 883 525.1 73026 9 0 8.12 23.14 1.012 0.5% 1.3% 1.1%

mPL6 + CRISP 770 521.3 16838 4 0 7.53 22.42 1.007 7.8% 4.3% 1.6%
mPL6 359 499.2 479612 >1440 24488 8.80 19.14 1.129 — — —

nb6, 90% mPL6 + Bonn 747 503.9 382422 >1440 702 9.05 19.93 1.176 -2.9% -4.2% -4.7%
mPL6 + CRISP 449 502.8 355260 400 0 8.45 10.08 1.091 3.9% 3.2% 3.8%

mPL6 1020 1101 100578 46 250 16.37 31.73 1.014 — — —
nb7, 70% mPL6 + Bonn 2056 1105 76864 25 60 16.36 31.74 1.012 0.1% 0.0% 0.2%

mPL6 + CRISP† 1306 1078 31940 5 0 14.58 29.50 1.008 10.9% 7.0% 0.6%

experiments because we found that it is trivially unroutable: it contains a standard cell

(o389042) which connects to over 2200 nets at the same pin. No global routing GCell in

newblue3 has capacity for so many nets, making overflow-free global routing impossi-

ble.

202

Table 9.2: Using ECO-system [117], the Bonn flow [16] and CRISP to improve the
routability of routable mPL6 [28] placements of ISPD contest benchmarks
[105, 106]. Detouring is measured as the ratio of global routing segments to
FLUTE [44] Steiner wirelength.

Placement Global routing (NTHU-Route 2.0 [33])Benchmark &
Flow Runtime HPWL Estimated Runtime Final Vias RWL Detour Reduction ofTarget density

(min) (e6) overflow (min) overflow (e6) (e6) ratio Vias RWL Detours

mPL6 68 84.7 124186 12 0 1.79 4.62 1.061 — — —
mPL6 + ECO-system 146 260.0 8903538 >1440 8416374 1.84 12.12 1.316 -3.2% -162% -25.5%ad1, 70%

mPL6 + Bonn 134 86.0 105482 5 0 1.78 4.62 1.045 0.2% 0.1% 1.6%
mPL6 + CRISP 97 85.3 100784 5 0 1.72 4.54 1.045 1.8% 3.6% 1.6%

mPL6 89 103.2 41322 1 0 1.92 5.29 1.025 — — —
mPL6 + ECO-system 253 312.1 6264548 >1440 4216896 2.93 16.50 1.422 -52.6% -212% -39.7%ad2, 60%

mPL6 + Bonn 179 107.7 28734 1 0 1.92 5.43 1.020 0.1% -2.5% 0.5%
mPL6 + CRISP 113 100.7 27174 1 0 1.80 5.08 1.021 6.3% 4.0% 0.4%

mPL6 305 226.9 196600 13 0 3.82 12.37 1.037 — — —
ad3, 70% mPL6 + Bonn 614 228.7 167068 6 0 3.82 12.41 1.033 0.1% -0.3% 0.4%

mPL6 + CRISP 391 224.4 107830 4 0 3.54 11.92 1.027 8.8% 5.1% 1.0%
mPL6 252 194.8 57474 4 0 3.44 10.50 1.013 — — —

ad4, 80% mPL6 + Bonn 533 195.3 47510 4 6 3.43 10.50 1.012 0.2% 0.0% 0.1%
mPL6 + CRISP 359 195.9 9804 2 0 3.14 10.21 1.008 8.7% 2.8% 0.5%

mPL6 414 391.2 85008 5 0 5.55 14.21 1.017 — — —
ad5, 60% mPL6 + Bonn 777 396.7 75314 3 0 5.56 14.34 1.016 -0.2% -0.9% 0.1%

mPL6 + CRISP 584 385.0 28892 2 0 5.08 13.57 1.013 8.5% 4.5% 0.4%
mPL6 71 121.5 76468 5 0 1.90 4.70 1.042 — — —

bb1, 50% mPL6 + Bonn 150 123.5 72548 3 0 1.90 4.74 1.041 -0.2% -0.9% 0.1%
mPL6 + CRISP 123 124.8 50442 2 0 1.79 4.62 1.026 5.5% 1.6% 1.6%

mPL6 212 186.7 32734 4 0 4.04 9.06 1.020 — — —
bb2, 40% mPL6 + Bonn 400 189.7 30766 2 0 4.04 9.50 1.020 -0.1% -0.9% 0.0%

mPL6 + CRISP 357 183.4 14296 2 0 3.69 8.98 1.016 8.7% 4.6% 0.4%
mPL6 258 344.1 21132 2 0 6.07 13.53 1.012 — — —

bb3, 100% mPL6 + Bonn 507 345.2 16522 2 0 6.07 13.55 1.011 -0.1% -0.2% 0.1%
mPL6 + CRISP 348 343.3 8838 2 0 5.83 13.26 1.008 3.8% 1.9% 0.7%

mPL6 177 199.4 6390 1 0 3.28 7.67 1.006 — — —
nb2, 100% mPL6 + Bonn 372 198.7 5836 1 0 3.28 7.66 1.006 -0.1% 0.2% 0.0%

mPL6 + CRISP 253 198.3 2620 1 0 3.08 7.45 1.006 6.0% 2.8% 0.1%
mPL6 368 515.2 254300 23 0 8.50 18.30 1.036 — — —

nb6, 80% mPL6 + Bonn 779 519.8 201594 14 0 8.49 18.31 1.029 0.2% -0.1% 0.7%
mPL6 + CRISP 505 515.0 132644 8 0 7.74 17.41 1.022 8.9% 4.8% 1.4%

mPL6 1105 1150 48522 10 2 16.14 32.11 1.008 — — —
nb7, 60% mPL6 + Bonn 2134 1154 36770 10 0 16.13 32.15 1.007 0.1% -0.1% 0.1%

mPL6 + CRISP 1597 1125 4402 4 0 14.41 29.95 1.003 10.8% 6.7% 0.5%

Routability evaluation. To determine routability and guide CRISP, we use the win-

ning router of the ISPD 2008 routing contest, NTHU-Route 2.0 [33]. CRISP limits NTHU-

Route 2.0 to a single round of rip-up and reroute. This limits the runtime of the router as

well as the detouring in the routed solution.1 Final routability of each placement is deter-

mined by routing the nets using NTHU-Route 2.0 with default parameters.

1The initial routing produced by NTHU-Route 2.0 uses Steiner trees, so at least one round of rip-up and
reroute must be performed for detouring to occur.

203

Comparing routability improvement techniques. We compare CRISP against state-

of-the-art congestion reduction techniques ECO-system and a congestion reduction flow

based on BonnPlace [16] that we refer to as the “Bonn flow.” ECO-system is an incremen-

tal placement technique which, when in congestion reduction mode, estimates congestion

with a probabilistic congestion map and re-allocates whitespace to routing congested re-

gions of the placement. The Bonn flow, similar to CRISP, temporarily inflates standard

cells in routing congested regions. The Bonn flow differs from CRISP in that inflates all

cells in regions where routing resources are more than 100% utilized. The techniques em-

ployed by BonnPlace are not strictly incremental since they are presented for use inside a

global placer, so we make the Bonn flow applicable to any initial placement by first esti-

mating congestion with NTHU-Route 2.0, inflating all cells in congested regions, and then

replacing the design with mPL6 using the same target density as the initial placement.

Tables 9.1 and 9.2 compare CRISP to ECO-system and the Bonn flow on unroutable

and routable placements of the ISPD benchmarks, respectively. For both the routable and

unroutable benchmarks, ECO-system placements were in one case illegal and in other

cases uncompetitive. We believe that this is caused by the use of probabilistic congestion

maps which cause ECO-system to think that areas near routing blockages have the same

routing resources as other areas. Thus many standard cells are placed on top of blockages,

leaving a large burden to the legalizer of ECO-system. Indeed more than 80% of ECO-

system’s runtime was spent during legalization. For these reasons, we only provide results

for ECO-system on adaptec1 and adaptec2. For unroutable benchmarks, the Bonn

flow improves via counts by 1.4%, routed wirelength by 1.6% and detouring by 3.3% on

204

average. On the same designs, CRISP improves via counts by 8.7%, routed wirelength by

6.5% and detouring by 5.3% on average. CRISP improves the routability of each of the

unroutable designs whereas the Bonn flow degrades routability on newblue4. Of the 13

unroutable benchmarks, CRISP produces the best solutions on 11 of the 13, with the Bonn

flow producing less routing overflow on adaptec1 and adaptec2.

Results on the 11 ISPD contest benchmarks where we could produce routable solutions

using mPL6 alone are given in Table 9.2. The Bonn flow reduces via counts and detouring

by 0.1% and 0.5%, respectively, but degrades routability on adaptec4 and increases

routed wirelength by 0.7%. CRISP improves routability on all test cases, and decreases

via counts by 6.8%, routed wirelength by 4.0% and detouring by 0.8%. CRISP takes 38%

of the runtime of placing the design from scratch and is faster than the Bonn flow in all

cases.

9.3.2 Commercial Designs

Timing impact of CRISP. To judge how effective CRISP is at preserving the timing

characteristics of commercial designs, we added CRISP to an industrial physical-synthesis

flow. We applied CRISP to four designs which have high congestion after the initial place-

ment stage of the flow. After CRISP, we applied medium effort timing transformations to

optimize critical paths as well as the timing histogram. These transformations mainly con-

sist of buffering and resizing techniques. After these timing optimizations, we measured

timing with an industry timer and report the results in Table 9.3. Designs 1 and 2 in Ta-

ble 9.3 are large commercial designs with approximately 1,000,000 objects (20,000 fixed

blockages) and 700,000 objects (90,000 fixed blockages), respectively. Designs 3 and 4

205

H
or

iz
on

ta
l

V
er

tic
al

Initial Placement Iteration 5 Iteration 10 Iteration 15

Figure 9.5: Incrementally relieving congestion problems on a heavily congested industrial
design with low whitespace. Areas colored pink and purple have global routing
resource usage over 100%. These areas are targeted by CRISP and eliminated.

are smaller designs both with approximately 100,000 objects (1,000 fixed blockages). For

each design, we report congestion and timing statistics after timing optimization has been

performed. For all four designs, CRISP is very effective in reducing the number of nets

with at least 90% and 100% congestion. In terms of timing, CRISP has better worst slack

in three of the four layouts and better total negative slack in the two larger designs, with

only minor degradations for the smaller designs. Since CRISP does not consider timing

in its flow, we attribute the gains in timing to the fact that the placements are more spread

and it is easier to apply cell resizing and buffering to them.

Detailed routing improvement. To judge the effectiveness of pin-density congestion

removal by CRISP on detailed routing, we chose 40 high-performance designs and ran

them through an industrial physical-synthesis flow. We added CRISP to the flow after

206

Table 9.3: CRISP’s global routing and timing impact on commercial designs. For conges-
tion we report the percentage of nets which are at least 90% and 100% con-
gested. Fewer nets congested implies better routability.

CRISP Routing congestion Timing slack (ns)Design
used? 100% nets 90% nets Worst Total negative

No 18.1% 19.8% -4.861 -177020design 1
Yes 0.4% 6.8% -3.292 -175931
No 0.7% 4.7% -0.961 -1249design 2
Yes 0.2% 2.3% -0.904 -1187
No 4.3% 9.6% 0.096 0design 3
Yes 0.1% 1.5% 0.072 0
No 5.7% 11.7% -0.097 -17.8design 4
Yes 0.1% 3.2% -0.062 -18.6

clocks were inserted into the design such that CRISP targeted only pin density. We report

results from a few of the designs as well as a summary of the designs in Table 9.4. On

average, CRISP was able to reduce detailed routing runtime by 10.2%, detoured nets by

4.5%, DRC violations by 79.0% and shorts & opens by 62.5%. CRISP increased DRC

violations, shorts or open count in five of the 40 designs, but by only one violation, short

or open in these designs.

Core area reduction. Previous work has optimized routability of designs in order to

reduce routing violations, routed wirelength and turn-around-time. While these are impor-

tant metrics which we evaluate in our experiments, they do not necessarily communicate

all the benefits that strong place-and-route tools can provide such as the ability to reduce

manufacturing cost. To this end, we worked with expert designers to re-floorplan design 3

from Table 9.3 to use less die area and fewer routing resources. The result is design 4 (also

shown in Table 9.3), which uses 5% less area than design 3. This increased the design

utilization from 73% to 79%, which is high for a modern design. This also provides less

area with which to perform spreading during CRISP. As Table 9.3 shows, without CRISP

207

Table 9.4: Impact of pin-density CRISP on high-performance commercial designs.
CRISP Detailed routing Detoured DRC ShortsDesign
used? runtime (m) nets violations & Opens

No 357 255 5 4design 5
Yes 122 227 0 0
No 11 69 0 0design 6
Yes 11 60 0 0
No 81 59 0 0design 7
Yes 83 41 0 0
No 73 9 0 0design 8
Yes 57 7 0 0

Avg. improvement 10.2% 4.5% 79.0% 62.5%

design 4 would have been extremely difficult to route since 5.7% of its nets were 100%

or more congested after timing optimization. The congestion of design 4 during CRISP is

shown in Figure 9.5. After applying CRISP to make design 4 routable, we used industry

timing optimizations to close on timing and inserted clocks. After clock insertion, we used

CRISP again to eliminate areas of high pin density which reduced shorts and opens from

370 to 41 and detailed routing runtime from 10.9 hours to 7.4 hours. The designers were

able to fix all shorts and opens with some minor alterations after CRISP, making design 4

routable without violations.

9.4 Conclusions

In this chapter we have presented CRISP, an incremental technique for Congestion

Reduction by Iterated Spreading during Placement. CRISP combines highly accurate con-

gestion modeling with carefully chosen incremental placement transformations. CRISP

leverages recent advances in global routing algorithms to model congestion and enhanc-

ing previous congestion-driven placement techniques to make them incremental. We have

empirically validated CRISP on a number of modern placement instances using (i) aca-

208

demic tools and (ii) integrated industrial design-tool flows. CRISP consistently improves

routability on common benchmarks, reducing via counts by 8.7%, global routed wire-

length by 6.5% and detouring by 5.3%. We have also verified CRISP’s effectiveness on

industrial designs and demonstrated CRISP’s ability to preserve timing and improve de-

tailed routability by eliminating pin-density hot-spots. Finally, we have shown that with

the aid of strong place-and-route tools, designers can shrink die sizes, which leads to sav-

ings in manufacturing cost. We believe that our work is the first to demonstrate the link

between improved congestion-driven placement and manufacturing cost reductions.

209

PART V

Summary

CHAPTER X

Conclusions and Future Work

Modern designs comprise millions of standard cells, macros and signal nets, and it is

predicted that their size and complexity will continue to increase in the near term. Such

designs require powerful and scalable placement and routing techniques to reach design

closure. Rather than crudely approximate design goals, state-of-the-are techniques must

faithfully model key layout characteristics and solve important problems in physical de-

sign, such as ensuring routability and meeting timing constraints.

In this dissertation, we have identified new objectives, constraints and concerns in

VLSI physical design, and developed new computational techniques to address them.

Specifically, we developed new techniques for VLSI placement and routing to improve

solution quality, robustness and make optimizations more consistent with each other in

210

a modern industrial physical synthesis flow. Below we summarize our contributions and

discuss avenues for future work.

10.1 Summary of Contributions

We have found that a large source of suboptimality in both academic and industry

physical design tools today is the fact that they optimize an incorrect or wrong objective

function. One glaring example of this phenomenon is the fact that global and detailed

placement algorithms target the minimization of half-perimeter wirelength rather than

more relevant objectives such as final routed wirelength, timing of critical paths, man-

ufacturability, etc. These discrepancies are especially important as designs are produced

at sub-65nm technologies because the suboptimality is amplified. To this end, we identify

new objectives, constraints and concerns in physical design, and develop new algorithms

to solve them.

Part II introduces our work on VLSI placement, starting with techniques for accurate

control of whitespace allocation. These techniques can suit a wide range of important ob-

jectives at the nanometer scale such as routability, yield and manufacturability. We also

introduce the first work in the literature for minimizing Steiner wirelength in global place-

ment. In combination with our routability-driven whitespace allocation techniques, our

ROOSTER placer outperforms all previous literature in via counts on a wide variety of

publicly available benchmarks in addition to highly competitive routed wirelength. Lastly,

we detail our incremental placement techniques, collectively known as ECO-system. In-

cremental placement is vital to preserve design properties across optimizations, Engineer-

ing Change Orders (ECOs) and design iterations, especially at the nanometer scale. ECO-

211

system provides fast and robust legalization for a wide range of design modifications from

high-level synthesis to physical synthesis and detailed placement. ECO-system detects

geometric regions and sections of the netlist that require modification and applies an ade-

quate amount of change in each case. This allows ECO-system to run many times faster

than a global placer, increase wirelength only slightly, and have minimal impact on timing.

Part III presents our FGR global routing framework. FGR (Fairly Good Router) utilizes

Discrete Lagrange Multipliers (DLM) and A*-search based maze routing to support two-

and three-dimensional routing of ASICs with millions of nets. FGR outperforms the best

results from the ISPD ‘07 Global Routing Contest, as well as previous literature, in terms

of route completion, runtime and total wirelength. We also present enhancements to the

FGR framework in terms of runtime and solution quality. These improvements increase

the applicability of FGR as a fast and accurate routability predictor early in the design

flow. We also show how to make FGR optimize the length of some nets preferentially over

others, making FGR useful for timing-driven routing.

Our work culminates in Part IV with the integration of our routing techniques into sev-

eral modern design flows. We present CRISP (Congestion Reduction by Iterated Spreading

during Placement) which is an incremental global and detailed routability improvement

technique. CRISP improves the global and detailed routability of a given placement while

preserving relevant statistics, such as timing, which may already have been optimized in

a design. CRISP identifies areas of congestion in a design by calling a global router and

limiting its detouring. This allows CRISP to account for areas of congestion caused by

fixed routing obstacles as well as those that arise due to detouring. CRISP also identifies

212

regions of a design that may prove difficult to a detailed router by actively reducing areas

of high pin-density throughout the design. We show that CRISP improves the routability

of both academic and industry placements and allows an experienced designer to reduce

manufacturing costs by shrinking the floorplan of an industrial design. This is the first

published demonstration of how enhancing place-and-route techniques can directly im-

prove manufacturing cost of commercial multi-million-gate designs.

10.2 Directions for Future Work

There are several fronts on which to continue our work. One direction for future re-

search is further extending the FGR routing framework. For example, built-in support for

incremental routing would be a useful addition. Like incremental placement, incremental

routing is necessary in a modern design flow to preserve good solution quality and design

properties and keep design iteration times small. This would improve the scalability of

algorithms such as CRISP as well.

Technology-related concerns, such as pitch- and parasitics-aware layer assignment,

would be valuable extensions to FGR. It is becoming more common for different layers

of metal to have drastically different timing properties in modern designs. For example,

wires in the highest metal layers are usually thicker and faster, but are therefore a more

scarce resource. Current global routing formulations and benchmarks do not take this

phenomenon into account; indeed, they assume that wire thickness is the same at all layers

of the routing grid. Furthermore, individual nets can be assigned to one or more layers for

timing reasons, inducing layer constraints which invalidate the assumptions of most if not

all layer assignment techniques currently in the literature.

213

Timing-driven enhancements to FGR are also a possibility. In Chapter VII we showed

that net weights can be used to reduce the length of specific nets. The dual Lagrange

formulation presented in Section 8.3.2 can also be used to place length limits on individual

nets. Combining these two routing techniques with net criticality information and critical-

net weighting, used in timing-driven placement flows, FGR could generate timing-driven

global routing solutions.

Yield is significantly impacted by wire shorts and wire opens. The susceptibility to

these random defects is measured in terms of critical area (with respect to each type of de-

fect), i.e., the area where a particle of a certain size will cause a given defect. Susceptibility

to opens is a function of wirelength, whereas susceptibility to shorts is a function of wire

density. Indiscriminately spreading wires further apart will in many cases increase their

length, therefore yield optimization for shorts and opens must be carefully balanced. FGR

could be extended to accomplish such optimization by tracking wire density during the

global routing process and estimating critical areas based on wirelength and wire density.

Our CRISP work pointed out that there is a discrepancy between global and detailed

routability of a design. A design may quickly admit violation-free global routes, but local

pin-access problems may block detail routes. CRISP was able to mitigate this problem by

examining and eliminating pin-density congestion in the design. This drastically reduced

the detailed routing problems, the remainder of which were corrected by a skilled chip-

designer at IBM. These sorts of failures require more in-depth study to determine how

they might be detected earlier (perhaps by a global router) and fixed with reduced designer

effort.

214

We also suggest to integrate more global routing ideas into placement to close the gap

between these separate stages in modern design flows. CRISP effectively improves the

routability of designs by reducing routed wirelength, via counts and detouring, but does

not currently leverage all the information given to it by the global router. CRISP can be

extended to target detoured nets for optimization directly. Specifically, CRISP can iden-

tify those nets which are detoured by a global router and find ways reduce their detouring

by giving these nets more importance during global placement. Routing-aware detailed

placement techniques can also be introduced. For example, a detailed placement engine

can (i) focus on those nets which use many vias and (ii) see if via counts can be decreased

through pin alignment moves. Combined with a fast incremental router, detailed place-

ment techniques would be able to accurately assess the impact of local moves on routabil-

ity and routed wirelength. These techniques will produce more routable placements and

help placement software optimize for additional relevant objectives such as timing.

215

BIBLIOGRAPHY

216

BIBLIOGRAPHY

[1] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. Markov,“Unification of
Partitioning, Placement and Floorplanning,” ICCAD, pp. 550-557, 2004.

[2] S. N. Adya and I. L. Markov, “Consistent Placement of Macro-blocks Using Floor-
planning and Standard-Cell Placement,” ISPD, pp. 12-17, 2002.

[3] S. N. Adya and I. L. Markov,“Fixed-outline Floorplanning: Enabling Hierarchical
Design,” IEEE Trans. on VLSI, vol. 11, no. 6, pp. 1120-1135, 2003. (ICCD 2001,
pp. 328-334).

[4] S. N. Adya and I. L. Markov, “Combinatorial Techniques for Mixed-size Place-
ment,” ACM Trans. on Design Autom. of Elec. Sys., vol. 10, no. 5, 2005. (ISPD
2002, pp. 12-17).

[5] S. N. Adya, I. L. Markov and P. G. Villarrubia, “On Whitespace and Stability in
Physical Synthesis,” Integration: the VLSI Journal, vol. 25, no. 4, pp. 340-362,
2006. (ICCAD 2003, pp. 311-318).

[6] A. Agnihotri et al., “Mixed Block Placement via Fractional Cut Recursive Bisec-
tion,” IEEE Trans. Computer-Aided Des. Integr. Circuits Syst., vol. 24, no. 5, pp
748-761, 2005. (ICCAD, pp. 307-310, 2003).

[7] C. Albrecht, “Global Routing by New Approximations for Multicommodity Flow,”
IEEE Trans. on CAD, vol. 20, no. 5, pp. 622-632, 2001.

[8] C. J. Alpert, A. Devgan and C. Kashyap, “A Two Moment RC Delay Metric for
Performance Optimization,” ISPD, pp. 69-74, 2000.

[9] C. J. Alpert, D. P. Mehta and S. S. Sapatnekar, eds., Handbook of Algorithms for
VLSI Physical Design Automation, CRC Press, 2008.

[10] C. J. Alpert, G.-J. Nam and P. G. Villarrubia, “Effective Free Space Management
for Cut-Based Placement via Analytical Constraint Generation,” IEEE Trans. on
CAD, vol. 22, no. 10, pp. 1343-1353, 2003. (ICCAD 2002, pp. 746-751).

[11] C. J. Alpert, G.-J. Nam, P. Villarrubia and M. C. Yildiz, “Placement Stability Met-
rics,” ASP-DAC, pp. 1144-1147, 2005.

217

[12] C. J. Alpert et al., “Techniques for Fast Physical Synthesis,” Proc. of the IEEE 95(3),
pp. 573-598, 2007.

[13] P. Azzoni, M. Bertoletti, N. Dragone, F. Fummi, C. Guardiani and W. Ven-
draminetto, “Yield-aware Placement Optimization,” DATE, pp. 1232-1237, 2007.

[14] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research,” FPGA, pp. 213-222, 1997.

[15] E. Bozorgzadeh, R. Kastner and M. Sarrafzadeh, “Creating and Exploiting Flexibil-
ity in Rectilinear Steiner Trees,” IEEE Trans. on CAD, vol. 22, no. 5, pp. 605-615,
2003.

[16] U. Brenner and A. Rohe, “An Effective Congestion Driven Placement Framework,”
IEEE Trans. on CAD, vol. 22, no. 4, pp. 387-394, 2003. (ISPD 2002, pp. 6-11).

[17] U. Brenner and J. Vygen, “Faster Optimal Single-Row Placement with Fixed Or-
dering,” DATE pp. 117-121, 2000.

[18] U. Brenner and J. Vygen, “Legalizing a Placement With Minimum Total Move-
ment,” IEEE Trans. on CAD, vol. 23, no. 12, pp. 1597-1613, 2004. (ISPD 2004, pp.
2-9).

[19] M. Breuer, “Min-cut Placement,” Journal of Design Automation and Fault Tolerant
Computing, vol. 1, no. 4, pp. 343-362, 1977. (DAC 1977, pp. 284-290).

[20] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “On
Wirelength Estimations for Row-Based Placement,” IEEE Trans. on CAD, vol. 18,
no. 9, pp. 1265-1278, 1999.

[21] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone
Produce Routable Placements?” DAC, pp. 477-482, 2000.

[22] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Design and Implementation of
Move-based Heuristics for VLSI Hypergraph Partitioning,” ACM J. of Experimental
Algorithms, vol. 5, 2000.

[23] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Optimal Partitioners and End-case
Placers for Standard-cell Layout,” IEEE Trans. on CAD, vol. 19, no. 11, pp. 1304-
1314, 2000. (ISPD 1999, pp. 90-96).

[24] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Hierarchical Whitespace Allocation
in Top-down Placement,” IEEE Trans. on CAD, vol. 22, no. 11, pp. 716-724, 2003.

[25] H. H. Chan, S. N. Adya and I. L. Markov, “Are Floorplan Representations Useful
in Digital Design?” ISPD, pp. 129-136, 2005.

[26] T. F. Chan, J. Cong, T. Kong and J. Shinnerl, “Multilevel Optimization for Large-
scale Circuit Placement,” ICCAD, pp. 171-176, 2000.

218

[27] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze and M. Xie, “mPL6: Enhanced Multilevel
Mixed-size Placement,” ISPD, pp. 212-214, 2006.

[28] T. F. Chan, J. Cong, J. Shinnerl, K. Sze and M. Xie, “mPL6: Enhanced Multilevel
Mixed-size Placement with Congestion Control,” Modern Circuit Placement, eds.
G.-J. Nam and J. Cong, Springer, pp. 247-288, 2007.

[29] C.-C. Chang, J. Cong, D. Pan and X. Yuan, “Multilevel Global Placement with
Congestion Control,” IEEE Trans. Computer-Aided Des. Integr. Circuits Syst., vol.
22, no. 4, pp. 395-409, 2003.

[30] C.-C. Chang, J. Cong, M. Romesis and M. Xie, “Optimality and Scalability Study
of Existing Placement Algorithms,” IEEE Trans. on CAD, pp. 537-549, 2004.

[31] C.-C. Chang, J. Cong and X. Yuan, “Multi-Level Placement for Large-Scale Mixed-
Size IC Designs,” ASP-DAC, pp. 325-330, 2003.

[32] Y. C. Chang et al., “B*-trees: A New Representation for Non-Slicing Floorplans,”
DAC, pp. 458-463, 2000.

[33] Y.-J. Chang, Y.-T. Lee and T.-C. Wang, “NTHU-Route 2.0: A fast and stable global
router,” ICCAD pp. 338-343, 2008.

[34] H.-Y. Chen, M.-F. Chiang, Y.-W. Chang, L. Chen and B. Han, “Novel Full-chip
Gridless Routing Considering Double-via Insertion,” DAC, pp. 755-760, 2006.

[35] T.-C. Chen, M. Cho, D. Z. Pan and Y.-W. Chang, “Metal-Density Driven Placement
for CMP Variation and Routability,” ISPD, pp. 31-38, 2008.

[36] T.-C. Chen and Y.-W. Chang, “Modern Floorplanning Based on Fast Simulated
Annealing,” ISPD, pp. 104-112, 2005.

[37] T.-C. Chen, Y.-W. Chang and S.-C. Lin, “IMF: Interconnect-Driven Multilevel
Floorplanning for Large-Scale Building-Module Designs,” ICCAD, pp. 159-164,
2005.

[38] T.-C. Chen, Y.-W. Chang and S.-C. Lin, “A Novel Framework for Multilevel Full-
chip Gridless Routing,” ASP-DAC, pp. 636-641, 2006.

[39] C.-L. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” IC-
CAD, pp. 690-695, 1994.

[40] M. Cho and D. Z. Pan, “BoxRouter: A New Global Router Based on Box Expansion
and Progressive ILP,” DAC, pp. 373-378, 2006.

[41] M. Cho, H. Xiang, R. Puri and D. Z. Pan, “Wire Density Driven Global Routing for
CMP Variation and Timing,” ICCAD, pp. 487-492, 2006.

[42] M. Cho, K. Lu, K. Yuan and D. Z. Pan, “BoxRouter 2.0: Architecture and Imple-
mentation of a Hybrid and Robust Global Router,” ICCAD, pp. 503-508, 2007.

219

[43] C. Chiang and J. Kawa, “Design for Manufacturability and Yield for Nano-Scale
CMOS,” Springer, 2007.

[44] C. C. N. Chu and Y.-C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design,” IEEE Trans. on CAD, vol. 27,
no. 1, pp. 70-83, 2008. http://class.ee.iastate.edu/cnchu/flute.
html

[45] C. C. N. Chu and M. Pan, “IPR: An Integrated Placement and Routing Algorithm,”
DAC pp. 59-62, 2007.

[46] J. Cong, J. Fang and Y. Zhang, “Multilevel Approach to Full-Chip Gridless Rout-
ing,” ICCAD, pp. 396-403, 2001.

[47] J. Cong and G. Luo, “Highly Efficient Gradient Computation for Density-
Constrained Analytical Placement Methods,” ISPD, pp. 39-46, 2008.

[48] J. Cong, G. Nataneli, M. Romesis and J. Shinnerl, “An Area-optimiality Study of
Floorplanning,” ISPD, pp. 78-83, 2004.

[49] J. Cong, M. Romesis and J. Shinnerl, “Fast Floorplanning by Look-Ahead Enabled
Recursive Bipartitioning,” ASP-DAC, pp. 1119-1122, 2005.

[50] J. Cong, M. Romesis and J. Shinnerl, “Robust Mixed-Size Placement Under Tight
White-Space Constraints,” ICCAD, pp. 165-172, 2005.

[51] J. Cong and M. Sarrafzadeh, “Incremental Physical Design,” in ISPD, pp. 84-92,
2000.

[52] J. Cong and M. Xie, “A Robust Detailed Placement for Mixed-Size IC Designs,”
ASP-DAC, pp. 188-194, 2006.

[53] J. Cong, M. Xie and Y. Zhang, “MARS—A Multilevel Full-Chip Gridless Routing
System,” IEEE Trans. on CAD, vol. 24, no. 3, pp. 382-394, 2005.

[54] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algo-
rithms, Second Edition. MIT Press and McGraw-Hill, 2001. Section 24.3: Dijk-
stra’s algorithm, pp. 595-601.

[55] W. A. Dees, Jr. and P. G. Karger, “Automated Rip-up and Reroute Techniques,”
DAC, pp. 432-439, 1982.

[56] K. Doll, F. M. Johannes and K. J. Antreich, “Iterative Placement Improvement By
Network Flow Methods,” IEEE Trans. Computer-Aided Des. Integr. Circuits Syst.,
vol. 13, no. 10, pp. 1189-1200, 1994.

[57] W. Donath et al., “Transformational Placement and Synthesis”, DATE, pp. 194-201,
2000.

220

[58] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard Cell
VLSI Circuits,” IEEE Trans. on CAD, vol. 4, no. 1, pp. 92-98, 1985.

[59] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for Improving
Network Partitions,” DAC, pp. 175-181, 1982.

[60] M. R. Garey and D. S. Johnson, “The Rectilinear Steiner Problem is NP-Complete,”
SIAM Journal of Applied Mathematics, vol. 32, pp. 826-834, 1977.

[61] R. Goering, “Cadence CTO: CAD ‘Foundations’ Must Change,” EETimes,
April 11, 2006, http://www.eetimes.com/showArticle.jhtml?
articleID=185300099

[62] R. Goering, “IC Routing Contest Boosts CAD Research,” EE Times, March 22,
2007. http://www.eetimes.com/showArticle.jhtml?articleID=
198500084

[63] A. V. Goldberg, “An Efficient Implementation of a Scaling Minimum-Cost Flow
Algorithm,” J. Algorithms, vol. 22, no. 1, pp. 1-29, 1997.

[64] R. Hadsell and P. H. Madden, “Improved Global Routing through Congestion Esti-
mation,” DAC, pp. 28-34, 2003.

[65] D. Hill, “Method and System for High Speed Detailed Placement of Cells Within
an Integrated Circuit Design,” U.S. Patent 6370673, April 2002.

[66] S. Hu and J. Hu, “Pattern Sensitive Placement For Manufacturability,” ISPD, pp.
27-34, 2007.

[67] J. Hu and S. S. Sapatnekar, “A Survey on Multi-net Global Routing for Integrated
Circuits,” Integration, the VLSI Journal, vol. 31, no. 1, pp. 1-49, 2001.

[68] D. J.-H. Huang, and A. B. Kahng, “Partitioning-based Standard-cell Global Place-
ment With an Exact Objective,” ISPD, pp. 18-25, 1997.

[69] S. W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell Placement,”
ICCAD, pp. 165-170, 2000.

[70] ISPD 1998 Global Routing benchmark suite.
http://www.ece.ucsb.edu/˜kastner/labyrinth

[71] ISPD 2007 Global Routing Contest and benchmark suite.
http://www.sigda.org/ispd2007/rcontest/

[72] IWLS 2005 Benchmarks, http://iwls.org/iwls2005/benchmarks.
html

[73] D. Jariwala and J. Lillis, “On Interactions Between Routing and Detailed Place-
ment,” ICCAD, pp. 387-393, 2004.

221

[74] Z.-W. Jiang et al., “NTUPlace2: A Hybrid Placer Using Partitioning and Analytical
Techniques,” ISPD, pp. 215-217, 2006.

[75] Z.-W. Jiang, B.-Y. Su and Y.-W. Chang, “Routability-driven analytical placement
by net overlapping removal for large-scale mixed-size designs,” DAC, pp. 167-172,
2008.

[76] A. B. Kahng and S. Mantik, “On Mismatches Between Incremental Optimizers and
Instance Perturbations in Physical Design Tools,” ICCAD, pp. 17-22, 2000.

[77] A. B. Kahng, S. Mantik and I. L. Markov, “Min-max Placement For Large-scale
Timing Optimization,” ISPD, pp. 143-148, 2002.

[78] A. B. Kahng, I. I. Mandoiu and A. Zelikovsky, “Highly Scalable Algorithms for
Rectilinear and Octilinear Steiner Trees,” ASP-DAC, pp. 827-833, 2003.

[79] A. B. Kahng and S. Reda, “Placement Feedback: A Concept and Method for Better
Min-cut Placement,” DAC, pp. 357-362, 2004.

[80] A. B. Kahng and S. Reda, “Evaluation of Placer Suboptimality Via Zero-Change
Netlist Transformations,” ISPD, pp. 208-215, 2005.

[81] A. B. Kahng and G. Robins, “A New Class of Iterative Steiner Tree Heuristics With
Good Performance,” IEEE Trans. on CAD, vol. 11, no. 7, pp. 893-902, 1992.

[82] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic
Placer,” IEEE Trans. on CAD, vol. 25, no. 5, pp. 734-747, 2005.

[83] A. B. Kahng and X. Xu, “Accurate Pseudo-constructive Wirelength and Congestion
Estimation,” SLIP, pp. 81-86, 2003.

[84] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel Hypergraph Par-
titioning: Applications in VLSI Domain,” IEEE TVLSI, vol. 7, no. 1, pp. 69-79,
1999.

[85] R. Kastner, E. Bozorgzadeh and M. Sarrafzadeh, “Pattern Routing: Use and Theory
for Increasing Predictability and Avoiding Coupling,” IEEE Trans. on CAD, vol.
21, no. 7, pp. 777-790, 2002.

[86] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh and P. H.
Madden, “Recursive Bisection Based Mixed Block Placement,” ISPD, pp. 84-89,
2004.

[87] J. Kim, M. C. Papaefthymiou and J. L. Neves, “Parallelizing Post-Placement Timing
Optimization,” IPDPS 2006.

[88] S. H. Kulkarni, D. Sylvester and D. Blaauw, “A Statistical Framework for Post-
silicon Tuning Through Body Bias Clustering,” ICCAD, pp. 39-46, 2006.

222

[89] Lagrange multipliers. http://en.wikipedia.org/wiki/Lagrange_
multipliers

[90] S. Lee and M. D. F. Wong, “Timing-driven Routing for FPGAs based on Lagrangian
Relaxation,” IEEE Trans. on CAD, pp. 506-510, 2003.

[91] K.-Y. Lee and T.-C. Wang, “Post-routing Redundant Via Insertion for
Yield/Reliability Improvement,” ASP-DAC, pp. 303-308, 2006.

[92] C. Li, C.-K. Koh and P. H. Madden, “Floorplan Management: Incremental Place-
ment for Gate Sizing and Buffer Insertion,” ASP-DAC, pp. 349-354, 2005.

[93] C. Li, M. Xie, C.-K. Koh, J. Cong and P. H. Madden, “Routability-driven Placement
and White Space Allocation,” IEEE Trans. on CAD, vol. 26, no. 5, pp. 858-871,
2007.

[94] C.-W. Lin et al., “Recent Research and Emerging Challenges in Physical Design for
Manufacturability/Reliability,” ASP-DAC, pp. 238-243, 2007.

[95] L. Luo, Q. Zhou, X. Hong and H. Zhou, “Multi-stage Detailed Placement Algorithm
for Large-Scale Mixed-Mode Layout Design,” ICCSA, pp. 896-905, 2005.

[96] T. Luo, H. Ren, C. J. Alpert and D. Pan, “Computational Geometry Based Place-
ment Migration,” ICCAD, pp. 41-47, 2005.

[97] D. McGrath, “Routing Technology Came from Within Cadence, execs say,” EE
Times, Sept. 8, 2006. http://www.eetimes.com/showArticle.jhtml?
articleID=192700243

[98] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-based Performance-
driven Router for FPGAs,” ACM Symp. on FPGAs, pp. 111-117, 1995.

[99] M. Moffitt, Personal communication, March 2007.

[100] M. D. Moffitt, A. N. Ng, I. L. Markov and M. E. Pollack, “Constraint-driven Floor-
plan Repair,” DAC, pp. 1103-1108, 2006.

[101] D. Müller, “Optimizing Yield in Global Routing,” ICCAD, pp. 480-486, 2006.

[102] G.-J. Nam, “ISPD 2006 Placement Contest: Benchmark Suite and Results,” ISPD,
p. 167, 2006.

[103] G.-J. Nam, F. Aloul, K. A. Sakallah and R. A. Rutenbar, “A Comparative Study of
Two Boolean Formulations of FPGA Detailed Routing Constaints,” IEEE Trans. on
Computers, vol. 53, no. 6, pp. 688-696, 2004.

[104] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and M. Yildiz, “The ISPD2005
Placement Contest and Benchmark Suite,” ISPD, pp. 216-220, 2005.

223

[105] G.-J. Nam, C. C. N. Sze and M. Can Yildiz, “The ISPD global routing benchmark
suite,” ISPD pp. 156-159, 2008.

[106] G.-J. Nam, M. C. Yildiz, D. Z. Pan and P. H. Madden: “ISPD placement contest
updates and ISPD 2007 global routing contest,” ISPD, p. 167, 2007.

[107] A. N. Ng, I. Markov, R. Aggarwal and V. Ramachandran, “Solving Hard Instances
of Floorplacement,” ISPD, pp. 170-177, 2006.

[108] M. M. Ozdal and M. D. F. Wong, “Archer: A History-driven Global Routing Algo-
rithm,” ICCAD, pp. 488-495, 2007.

[109] M. Pan and C. Chu, “FastRoute: A Step to Integrate Global Routing into Place-
ment,” ICCAD, pp. 464-471, 2006.

[110] M. Pan and C. Chu, “FastRoute 2.0: A High-quality and Efficient Global Router,”
ASP-DAC, pp. 250-255, 2007.

[111] M. Pan, N. Viswanathan and C. Chu, “An Efficient and Effective Detailed Place-
ment Algorithm,” ICCAD, pp. 48-55, 2005.

[112] S. Reda and A. Chowdhary, “Effective Linear Programming Based Placement
Methods,” ISPD, pp. 186-191, 2006.

[113] H. Ren, D. Z. Pan, C. J. Alpert and P. Villarrubia, “Diffusion-based Placement Mi-
gration,” DAC, pp. 515-520, 2005.

[114] H. Ren, D. Z. Pan and P. G. Villarubia, “True Crosstalk Aware Incremental Place-
ment with Noise Map,” ICCAD, pp. 402-409, 2004.

[115] J. A. Roy, S. N. Adya, D. A. Papa and I. L. Markov, “Min-cut Floorplacement,”
IEEE Trans. on CAD, vol. 25, no. 7, pp. 1313-1326, 2006. (ICCAD 2004, pp. 550-
557).

[116] J. A. Roy and I. L. Markov, “Seeing the Forest and the Trees: Steiner Wirelength
Optimization in Placement,” IEEE Trans. on CAD, vol. 26, no. 4, pp. 632-644, 2007
(ISPD 2006, pp. 78-85).

[117] J. A. Roy and I. L. Markov, “ECO-system: Embracing the Change in Placement,”
IEEE Trans. on CAD, vol. 26, no. 12, pp. 2173-2185, 2007 (ASP-DAC 2007, pp.
147-152).

[118] J. A. Roy, A. N. Ng, R. Aggarwal, V. Ramachandran and I. L. Markov, “Solving
Modern Mixed-size Placement Instances,” to appear in Integration, the VLSI Jour-
nal, 2009.

[119] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, J. F. Lu, A. N. Ng and I. L. Markov,
“Capo: Robust and Scalable Open-Source Min-cut Floorplacer,” ISPD, pp. 224-
227, 2005.

224

[120] J. A. Roy, D. A. Papa, A. N. Ng and I. L Markov, “Satisfying Whitespace Require-
ments in Top-down Placement,” ISPD, pp. 206-208, 2006.

[121] L. K. Scheffer, “Physical CAD Changes to Incorporate Design for Lithography and
Manufacturability,” ASP-DAC, pp. 768-773, 2004.

[122] L. K. Scheffer, L. Lavagno and G. Martin, eds., Electronic Design Automation for
Integrated Circuits Handbook, Chapter 8: Routing, CRC Press, 2006.

[123] N. Selvakkumaran and G. Karypis, “THETO - A Fast and High-quality Partitioning
Driven Global Placer,” Technical Report 03-046, Univ. of Minnesota, 2003.

[124] N. Selvakkumaran, P. N. Parakh and G. Karypis, “Perimeter-degree: A Priori Met-
ric for Directly Measuring and Homogenizing Interconnection Complexity in Mul-
tilevel Placement,” SLIP, pp. 53-59, 2003.

[125] K. So, “Solving Hard Instances of FPGA Routing with a Congestion-Optimal
Restrained-Norm Path Search Space,” ISPD, pp. 151-158, 2007.

[126] P. Spindler and F. M. Johannes, “Fast and accurate routing demand estimation for
efficient routability-driven placement,” DATE, pp. 1226-1231, 2007.

[127] P. V. Srinivas, M. Borah and P. Buch, “System and Method for Estimating Capaci-
tance of Wires Based on Congestion Information,” U.S. Patent 6519745, filed May
26, 2000, issued Feb. 11, 2003.

[128] P. R. Suaris and G. Kedem, “An Algorithm for Quadrisection and Its Application to
Standard Cell Placement,” IEEE Trans. on Circuits and Systems, vol. 35, no. 3, pp.
294-303, 1988. (ICCAD 1987, pp. 474-477).

[129] T. Taghavi, X. Yang, B.-K. Choi, M. Wang and M. Sarrafzadeh “Dragon2005:
Large-Scale Mixed-size Placement Tool,” ISPD, pp. 245-247, 2005.

[130] T. Taghavi, X. Yang, B.-K. Choi, M. Wang and M. Sarrafzadeh “Dragon2006:
Blockage-Aware Congestion-Controlling Mixed-Size Placer,” ISPD, pp. 209-211,
2006.

[131] K. Takahashi, K. Nakajima, M. Terai, and K. Sato, “Min-cut Placement with Global
Objective Functions for Large Scale Sea-of-gates Arrays,” IEEE Trans. on CAD,
vol. 14, no. 4, pp. 434-446, 1995.

[132] X. Tang, R. Tian, M. D. F. Wong, “Optimal Redistribution of White Space for Wire
Length Minimization,” ASP-DAC, pp. 412-417, 2005.

[133] J. W. Tschanz et. al, “Adaptive Body Bias for Reducing Impacts of Die-to-Die and
Within-Die Parameter Varations on Microprocessor Frequency and Leakage,” IEEE
JSSC, vol. 37, no. 11, pp. 1396-1402, 2002.

225

[134] TSMC: Silicon Success. http://www.tsmc.com/download/
enliterature/html-newsletter/September03/InDepth/index.
html.

[135] K. Tsota, C.-K. Koh and V. Balakrishnan, “Guiding Global Placement with Wire
Density,” ICCAD, pp. 212-217, 2008.

[136] N. Viswanathan, M. Pan and C. Chu, “FastPlace 2.0: An Efficient Analytical Placer
for Mixed-Mode Designs,” ASP-DAC, pp. 195-200, 2006.

[137] N. Viswanathan, M. Pan and C. C. N. Chu “FastPlace 3.0: A Fast Multilevel
Quadratic Placement Algorithm with Placement Congestion Control,” ASP-DAC,
pp. 135-140, 2007.

[138] J. Vygen, “Algorithms for Large-Scale Flat Placement”, DAC, pp. 746-751, 1997.

[139] D. C. Wang, “Method for Estimating Routability and Congestion in a Cell Place-
ment for Integrated Circuit Chip,” U.S. Patent 5587923, filed Sept. 7, 1994, issued
Dec. 24, 1996.

[140] E. Wein and J. Benkoski, “ Hard macros will revolutionize SoC design,”
EE Times, August 20, 2004. http://www.eetimes.com/news/design/
showArticle.jhtml?articleID=26807055

[141] J. Westra, C. Bartels and P. Groeneveld, “Probabilistic Congestion Prediction,”
ISPD, pp. 204-209, 2004.

[142] J. Westra and P. Groeneveld, “Is Probabilistic Congestion Estimation Worthwhile?”,
SLIP, pp. 99-106, 2005.

[143] X. Yang, B. K. Choi, and M. Sarrafzadeh, “Routability Driven White Space Allo-
cation for Fixed-die Standard-cell Placement,” IEEE Trans. on CAD, vol. 22, no. 4,
pp. 410-419, April 2003. (ISPD 2002, pp. 42-49).

[144] X. Yang, R. Kastner and M. Sarrafzadeh, “Congestion Estimation During Top-down
Placement,” IEEE Trans. on CAD, vol. 21, no. 1, pp. 72-80, 2002.

[145] M. C. Yildiz and P. H. Madden, “Improved Cut Sequences for Partitioning Based
Placement,” DAC, pp. 776-779, 2001.

226

ABSTRACT

High-performance Placement and Routing for the Nanometer Scale

by

Jarrod Alexander Roy

Chair: Igor L. Markov

Modern semiconductor manufacturing facilitates single-chip electronic systems that

only five years ago required ten to twenty chips. Naturally, design complexity has grown

within this period. In contrast to this growth, it is becoming common in the industry to

limit design team size which places a heavier burden on design automation tools.

Our work identifies new objectives, constraints and concerns in the physical design of

systems-on-chip, and develops new computational techniques to address them. In addition

to faster and more relevant design optimizations, we demonstrate that traditional design

flows based on “separation of concerns” produce unnecessarily suboptimal layouts. We

develop new integrated optimizations that streamline traditional chains of loosely-linked

design tools. In particular, we bridge the gap between mixed-size placement and rout-

ing by updating the objective of global and detail placement to a more accurate estimate

of routed wirelength. To this we add sophisticated whitespace allocation, and the com-

bination provides increased routability, faster routing, shorter routed wirelength, and the

best via counts of published techniques. To further improve post-routing design metrics,

we present new global routing techniques based on Discrete Lagrange Multipliers (DLM)

which produce the best routed wirelength results on recent benchmarks. Our work culmi-

nates in the integration of our routing techniques within an incremental placement flow to

improve detailed routing solutions, shrink die sizes and reduce total chip cost.

Not only do our techniques improve the quality and cost of designs, but also simplify

design automation software implementation in many cases. Ultimately, we reduce the time

needed for design closure through improved tool fidelity and the use of our incremental

techniques for placement and routing.

