
High-performance and Low-power Clock

Network Synthesis in the Presence of Variation

by

Dong Jin Lee

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

in The University of Michigan

2011

Doctoral Committee:

Associate Professor Igor L. Markov, Chair

Professor David T. Blaauw

Professor Dennis M. Sylvester

Associate Professor Marina A. Epelman

c

Dong Jin Lee 2011

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES : v

LIST OF TABLES : xi

ABSTRACT : xv

PART I Introduction & Background

Chapter I. Clock Network Synthesis in the Physical Design Flow 1

1.1 Industry trends . 2

1.2 Research challenges . 5

1.3 Our contributions . 8

1.4 Organization of the dissertation . 10

Chapter II. State of the Art in Clock Network Synthesis 11

2.1 Key parameters of a clock network and the ISPD contests 11

2.2 Clock-network topologies . 14

2.3 Algorithms for clock tree construction and buffering 17

2.4 Interactions between placement and clock-network synthesis 25

PART II Clock Network Synthesis for SoCs and CPUs

Chapter III. Integrated Optimization of SoC Clock Networks 27

3.1 Introduction . 28

3.2 Problem analysis and a strategy for solutions 30

3.2.1 Optimization objectives and timing analysis techniques 31

3.2.2 Nominal skew optimization 32

3.2.3 Clock latency range (CLR) optimization 35

3.2.4 Coordinating multiple optimizations 35

3.3 Proposed SoC clock-synthesis methodology 36

3.3.1 Obstacle-avoiding clock trees 36

3.3.2 Composite inverter/buffer analysis 39

3.3.3 Initial buffer insertion with sizing 40

ii

3.3.4 Buffer sliding and interleaving 42

3.3.5 Iterative buffer sizing . 43

3.3.6 Iterative top-down wiresizing 44

3.3.7 Iterative top-down wiresnaking 45

3.3.8 Bottom-level �ne-tuning & limits to further optimization . . . 47

3.4 Empirical validation: Contango 1.0 48

3.5 Summary . 52

Chapter IV. Low-power Clock Trees for CPUs 53

4.1 Challenges addressed . 53

4.1.1 Research questions . 54

4.1.2 Trading accuracy for runtime in SPICE analysis 56

4.2 Modeling and objectives . 57

4.2.1 Global and local skew . 58

4.2.2 Local-skew slack . 59

4.2.3 Modeling process variation 61

4.3 Initial tree construction and buffer insertion 64

4.4 Improving robustness to variations 66

4.5 Skew optimizations . 67

4.5.1 Wire snaking . 67

4.5.2 Delay buffer insertion . 70

4.6 Chop-SPICE: an ef�cient SPICE simulation technique 71

4.6.1 Runtime versus accuracy . 72

4.6.2 The Chop-SPICE algorithm 73

4.6.3 Integration with Contango 75

4.7 Empirical validation: Contango 2.0 76

4.7.1 ISPD 2010 benchmarks . 77

4.7.2 Using our slew-constrained buffering algorithm 78

4.7.3 Power versus robustness to variations 78

4.7.4 Empirical validation of Chop-SPICE 81

4.7.5 Comparison with a commercial clock-tree synthesis tool . . . 82

4.8 Summary . 84

PART III Increasing the Scope of Clock-Network-Synthesis Optimizations

Chapter V. Obstacle-aware Clock-tree Shaping during Placement 86

5.1 Introduction . 87

5.2 Limitations of existing techniques 89

5.3 Optimization objective . 92

5.4 Proposed techniques . 93

5.4.1 Obstacle-aware virtual clock trees 93

5.4.2 Arboreal clock-net contraction force 95

5.4.3 Obstacle-avoidance force . 98

iii

5.5 Proposed methodology . 100

5.5.1 The Lopper �ow . 100

5.5.2 Trade-offs and additional features 102

5.6 Empirical validation: Lopper . 105

5.6.1 Experimental setup . 106

5.6.2 Empirical results . 109

5.6.3 SPICE-driven validation . 111

5.7 Summary . 114

Chapter VI. Multilevel Tree Fusion for Robust Clock Networks 117

6.1 Variation modeling for buffered paths 117

6.1.1 Impact of variation on delay 118

6.1.2 Impact of variation on skew 119

6.1.3 Multiple redundant paths . 122

6.1.4 Skew of a clock network . 124

6.2 Multilevel tree fusion . 125

6.2.1 Critical sink pairs . 125

6.2.2 Construction of auxiliary trees and their fusion 126

6.2.3 Advantages of the multilevel tree fusion topology 127

6.3 Implementation insights . 127

6.3.1 Estimating variation on a buffered path 129

6.3.2 Splinter sinks . 130

6.4 Empirical validation: Contango 3.0 131

6.4.1 Experiment design . 131

6.4.2 Empirical results . 134

6.5 Summary . 138

Chapter VII. Conclusions and Future Work 140

7.1 Summary of contributions . 141

7.2 Directions for future research . 144

BIBLIOGRAPHY : 148

iv

LIST OF FIGURES

Figure

2.1 Eligible clock sink pairs. (a) There is combinational logic between two

sinks, which make the skew between these two sinks affects the useful

portion of clock cycle time. (b) This sink pair is not eligible because the

sinks are not logically dependent. 12

2.2 The locus of all midpoints between two sinks s1 and s2 is a Manhat-

tan arc in the Manhattan geometry. On the other hand, the midpoint is

unique in Euclidean geometry. (a) Sinks s1 and s2 are not horizontally

aligned. Therefore, the Manhattan arc has non-zero length. (b) Sinks s1

and s2 are horizontally (left) and vertically (right) aligned. Therefore,

the Manhattan arc for both cases has zero length. Source: [43]. 18

2.3 (a) Sinks s1 and s2 form a Manhattan arc. (b) An example of a tilted

rectangular region (TRR) for the Manhattan arc of s1 and s2 with radius

of two units. Source: [43]. 18

2.4 A bottom-up construction of the merging segment ms(u3) for node u3,

the parent of nodes u1 and u2, given the topology on the left. The sinks s1

and s2 form the merging segment ms(u1), and the sinks s3 and s4 form

the merging segment ms(u2). The two segments ms(u1) and ms(u2)
together form the merging segment ms(u3). Source: [43]. 19

2.5 Construction of a tree of merging segments (DME bottom-up phase).

Solid lines are merging segments, dotted rectangles are the tilted rect-

angular regions (TRR), and dashed lines are edges between merging

segments; s0 is the clock source, and s1 � s8 are sinks. (a) The eight

sinks and the clock source. (b) Construct merging segments for the eight

sinks. (c) Construct merging segments for the segments generated in (a).

(d) Construct the root segment, the merge segment that connects to the

clock source. Source: [43]. 20

2.6 Finding the location of child node v given the location of its parent node

par. Source: [43]. 21

v

2.7 Embedding the clock tree during the DME top-down phase. Gray lines

indicate merging segments, dotted lines show connections between merg-

ing segments, and black lines indicate routing segments. (a) Connecting

the clock source to the root merging segment. (b) Connecting the root

merging segment to its children merging segments. (c) Connecting those

merging segments to its children. (d) Connecting those merging seg-

ments to the sinks. Source: [43]. 22

2.8 Min-wirelength trees with zero and bounded skew (Elmore delay). Only

fragments of actual clock trees are shown. 23

3.1 Key steps of the Contango methodology. Blue boxes represent skew re-

duction techniques, red octilinear shapes show CLR reductions, and the

green box with thick border reduces both objectives. An Improvement-

& Violation-Checking (IVC) step follows each Clock-Network Evalua-

tion (CNE) using circuit simulation tools, e.g., SPICE. �Fail� indicates

no improvement or having slew violations, leading to a transition to the

next optimization. 37

3.2 An illustration of our detouring algorithm. Small solid circle indicates

the source of detour, larger circles indicate sinks. The detour is shown

with red dotted lines. 39

3.3 The clock tree produced by Contango on ispd09fnb1. Sinks are indi-

cated by crosses, buffers are indicated by blue rectangles. L-shapes are

drawn as �diagonal wires� to reduce clutter. Wires are colored by a red-

green gradient to re�ect slow-down slacks, as described in Section 3.2.2.

The impact of wiresnaking is too small to be visible. 50

4.1 Local-skew slack for sinks and edges when
� = 5 ps. (a) Sink pairs

within distance � are enclosed by dashed lines. !� = 12 ps based on

sink latencies and �. (b) Local skew-slack for sinks are computed by

Algorithm 2. The algorithm for edge-slack computation is described

in [51, Section 3]. (c) !� is reduced to 5 ps after optimizations, which

satis�es the local skew constraints. 60

4.2 The impact of variations on local skew. Sinks are indicated by crosses,

the clock source is indicated by a solid triangle. Nominal skew of 3 ps is

shown in (a). Full skew of 11 ps is shown in (b), where some tree edges

are delayed (thick red) and some are sped up (dotted green) by random

variations. Only sink A is within the local skew distance from sinks B,

C and D. 62

vi

4.3 Comparison of different wire snaking strategies to satisfy
� = 10 ps.

(a) Unoptimized sink latencies are shown. 20 ps of additional delay is

required for the left sink. (b) Wire snaking at non-buffer output nodes

results in undesired delay at the right sink. (c) The snaked wire is iso-

lated from the right sink by the left buffer, therefore only the left sink is

delayed and !� satis�es local skew constraints. 70

4.4 Delay buffer insertion and subsequent wire snaking when
�= 10 ps,

the delay of the buffer d(B)= 10 ps. (a) Unoptimized sink latencies are

shown. (b) Delay buffer insertion for skew reduction and isolation of the

target node. (c) The snaked wire is isolated from the right sink by the

delay buffer. 71

4.5 Probing points in an RC network. 74

4.6 Sub-circuits are delimited by boundary buffers. 76

4.7 Our clock tree for ispd10cns07. Sinks are indicated by crosses, buffers

are indicated by blue rectangles. � = 600�m is shown near the left-

bottom corner. 79

4.8 Probability density functions for worst local skew of our clock trees (blue

line) and meshes produced by CNSrouter (gray dashed line) for the eight

ISPD 2010 benchmarks, calculated using 500 independent SPICE runs

for each benchmark. The x-axis shows skew in picoseconds. Local skew

limits (
�) are shown with red solid lines, and the 95%-ile of local skew

(!�;�;0:95) are shown by dotted green lines (our work) and dashed gray

vertical lines (CNSrouter). 80

4.9 Trade-off between capacitance and robustness on ispd10cns08. The x-

axis represents total capacitance of a tree and y-axis represents the max-

imal variational skew at 95% yield. 80

4.10 Fidelity of Chop-SPICE estimates (
 = �()) for CNS02, CNS07, and

CNS04 ISPD 2010 benchmarks. 82

4.11 Trade-offs between accuracy and runtime. 83

5.1 Two examples of Manhattan rings proposed in [64]. (a) Zero-skew Man-

hattan rings driven by an H-tree. (b) Manhattan rings on the design with

obstacles. Obstacles are indicated by darker boxes, two sink groups (A,

B) are represented as ellipses. 90

vii

5.2 Bounding boxes of two partial ZST-DME clock trees. (a) HPWL of the

bounding box is (15+12)=27. The total wirelength of the inside clock

tree is 32. (b) HPWL is (10+10)=20 and the total wirelength of the clock

tree is 35. The clock-net wirelength of (b) is greater than (a) although

the bounding-box HPWL of (b) is notably smaller than (a) while the

source-to-sink wirelength is 15 for all sinks. 91

5.3 An example of clock-net optimization with an obstacle. (a) The virtual

clock tree and corresponding contraction forces are created without con-

sidering the obstacle. (b) The result of a placement iteration with the

forces in (a). (c) The obstacle is accounted during virtual clock-tree gen-

eration and when establishing additional forces. (d) The result of (c). . 94

5.4 Two types of forces for clock-net optimization. Registers are indicated

by crosses. (a) For each edge, the corresponding downstream registers

are given force vectors. Right arrows are the force vectors for reduc-

ing e1, and up arrows are the force vectors for reducing e2. (b) Virtual

nodes are inserted (squares), and forces are created between each pair of

connected nodes (dotted lines). 95

5.5 Comparison between our arboreal clock-net contraction force and MLAF

of [103]. (a) Arboreal clock-net contraction forces are generated. (b)

The modi�ed register and virtual clock-node locations when forces in

(a) are utilized. (c) The forces created by the MLAF algorithm. (d) The

modi�ed register and virtual clock-node locations when forces in (c) are

utilized. We can observe that the edges between parents and children

nodes are poorly handled for the force creation in (c), and our method

is more ef�cient on non H-tree structures (which is common in modern

designs). 99

5.6 Obstacle-avoidance force. (a) Five edges of an obstacle-aware virtual

clock tree. (b) The result when all the edges are utilized for contraction

forces. (c) The result when e4 and e5 are excluded from force construc-

tion. 99

5.7 Key steps of Lopper integrated into the SimPL placer, as indicated with

darker rounded boxes and a lozenge. Plain boxes represent the SimPL

steps. 101

5.8 Activity-factor propagation for gated clocks. Registers are indicated

with crosses. Tree edges and registers are labeled with activity factors. . 103

viii

5.9 An example of routing dead space that can be found in the ISPD‘05

benchmarks. (a) Routing dead space is created by enclosing macro

blocks. (b) One macro block is modi�ed to open the space. 107

5.10 Clock trees for clkad1, based on a SimPL register placement (top) and

produced by proposed techniques (bottom). The respective clock-tree

wirelengths based on SimPL and our method are 209.13 mm and 152.27 mm.

The total switching power of SimPL and our method are 279.9 mW and

263.0 mW respectively. 116

6.1 Simple clock networks with source node s, two sink nodes a and b. All

paths are considered buffered. (a) a tree, (b) redundant paths. (c) n
multilevel paths for each sink. Each i-th (2 � i) new root-to-sink path

consists of a shared pwi
section and a pai

or pbi
section that is not shared. 119

6.2 Empirical distributions of signed and absolute skew of two example sink

pairs. The data are collected from Monte-Carlo simulations with varia-

tions. (a) Sink pair with nominal skew 0.3 ps. (b) Sink pair with nominal

skew 1.2 ps. 121

6.3 Skew limit 15 ps with yield 95%. 122

6.4 The impact of redundant paths for a pair of critical sinks (Figure 6.1c) on

clock-network parameters, based on Formulas VI.25, VI.27 and VI.28.

The skew constraint and � are set to 10 ps and 0.1 respectively. (a)

Standard deviation. (b) Yield. (c) Relative total capacitance of each

clock network compared to the total capacitance of the clock tree without

redundant paths (n = 1). 123

6.5 (a) A critical sink pair is indicated by a red oval and the LCA of two

sinks is shown. (b) Corresponding subtree for the sink cluster in (a). . . 126

6.6 Illustration of multilevel tree fusion on ispd10cns02. (a) Initial tree con-

struction. (b) Critical sink pairs are connected by red lines. (c) Auxiliary

trees are fused in to enhance robustness. 128

6.7 Key steps of multilevel tree fusion. Proposed techniques are indicated

with darker rounded boxes and a lozenge. Plain boxes represent tech-

niques adapted from earlier publications. 129

6.8 (a) Multiple paths from clock source to sinks a and b. (b) Splinter sinks

are generated to utilize tree optimization algorithms. 130

ix

6.9 Impact of variations on a buffered path. The path is 2 mm long with

30 fF load capacitance at the end and buffered by 4 inverters. (a) The

45 nm technology, variation model from the ISPD 2010 benchmarks

and a buffer type used in our work are utilized. (b) The 45 nm low-

power technology, buffer library and variation model from STMicro are

utilized. 134

6.10 SPICE waveforms for a reconvergent sink (Sink 680) with largest tempo-

ral displacement of split sinks in a fused clock network with skew limit

4.5 ps on ispd10cns08. Among the four splinter sinks, the maximum

rising-delay displacement before merging is 5.31 ps. The maximum

rising-delay is 423.58 ps and the minimum rising-delay is 418.27 ps.

The delay of the sink after merging is measure as 423.22 ps. The gray

dashed lines represent the waveforms at splinter sinks before merging.

The blue solid lines represent the waveforms at the sink after merging.

(a) rising edge. (b) falling edge. 136

6.11 Skew distributions in our clock networks for ispd10cns08, calculated

using 500 independent SPICE runs with variations (Table 6.4). The x-

axis shows skew in ps, skew limits are shown with red solid lines, and

the 95%-ile of skew are shown by dotted green lines. 138

x

LIST OF TABLES

Table

1.1 Clock networks in industry CPUs [6, Chapter 43] and ISPD 2010 bench-

marks from Intel and IBM (Table 2.1). 4

2.1 ISPD 2010 benchmarks based on 45 nm microprocessor designs.
� is

the local skew limit, and � is the local skew distance limit respectively

(see Section 4.2.1). Nominal voltage is 1.0V and on-chip variations (�)

are accounted by 15% voltage variation and 10% variation of wire para-

sitics [95]. 14

2.2 The impact of skew bounds on ispd09f22. 23

3.1 Inverter analysis for ISPD 2009 CNS benchmarks. 40

3.2 Inverted sinks in ISPD 2009 benchmarks (after buffer insertion) vs. polarity-

correcting inverters. 42

3.3 Progress achieved by individual steps of Contango on ISPD 2009 bench-

marks: the �rst letter in each acronym indicates top-down (T) or bottom-

level (B) optimization, second letter differentiates wires (W) from buffers

(B), while �Sz� stands for �sizing� and �Sn� stands for �snaking�. Gray

highlights indicate whether skew or CLR was the primary optimization

objective. 47

3.4 Results on the ISPD 2009 Contest benchmark suite. CLR is reported in

ps, capacitance in % of the limit speci�ed in benchmarks, and CPU time

in s. Best results from the ISPD 2009 contest and best results overall

are shown in bold. Runtime is dominated by SPICE runs. It was not

used for scoring at the ISPD 2009 contest and can be improved by using

FastSPICE, Arnoldi approximation. 49

3.5 Results from ASPDAC’10 clock routing papers on the ISPD 2009 Con-

test benchmark suite [61,63,87]. Runtimes may be from different work-

stations. CLR and skew are reported in ps and CPU time in s. Only

average skew was published for HKPU [63]. 50

xi

3.6 The ‘Full �ow’ column shows skew change at each step in the Contango

�ow, and the �nal skew in ps. Acronyms are decoded in the caption

of Table 3.3. Subsequent columns show the impact of removing one

optimization. These results illustrate the range of each optimization and

its impact on �nal results. 51

3.7 Scalability on Texas Instruments benchmarks. The �Latency� column

represents maximum 1.2V latencies. SPICE runs are counted in paren-

thesis. 52

4.1 Results on the ISPD 2010 Contest benchmark suite. Skew numbers are

reported in ps, capacitance in pF and CPU time in s. ‘95%’ represents

!�;�;95. The numbers in parentheses of the capacitance column refer to

the fraction of capacitance of the snaked wires in %. Skew constraint

violations are shown in strikethrough font. Otherwise, skew results are

not comparable because skew can be traded for capacitance, which was

the primary objective of the contest. All networks produced by these

tools satisfy slew constraints imposed at the ISPD 2010 contest. Due to

limited page space, we do not include results for the other teams, but

signi�cantly outperform them in solution quality. 77

4.2 Our clock trees for the ISPD 2010 benchmarks, buffered by our slew-

constrained algorithm, versus existing state-of-the-art clock networks

[13, 67]. Skew numbers are reported in ps, capacitance in pF . All net-

works produced by these tools satisfy slew constraints from the ISPD

2010 contest. 79

4.3 Averages delay (D-err.) and slew error (S-err.) (in picoseconds) and

runtimes (in seconds) with varying the granularity on the ISPD 2010

CNS contest benchmark suite. The clock networks are synthesized by

Contango2. 83

4.4 Maximum delay (D-err.) and slew errors (S-err.) in ps, on the ISPD

2010 CNS contest benchmark suite, as sub-circuit granularity varies. . . 84

4.5 Comparison of our software on a design with 309 registers to a commer-

cial clock-tree synthesis tool, Cadence First Encounter. Skew limit 2.0

ps is used to produce each clock network. 84

5.1 The new CLKISPD‘05 benchmarks. 107

xii

5.2 Results on the CLKISPD‘05 benchmark suite. ClkWL represents total

wirelength of a clock network synthesized by the initial phase of Con-

tango 2.0 [53]. HPWL is total HPWL of signal nets. Pwr is total net-

switching power. SimPL+Lopper is 4.16� faster than mPL6 and 1.51�,

1.81� slower than FastPlace3, SimPL respectively. 108

5.3 The results on clkad1 with various clock power ratios �. The speci�-

cations of the reference placement produced by SimPL are in the row

Orig. �avg is calculated based on � and reference placement produced

by SimPL. Total wire-switching power values of the reference place-

ment with the corresponding � are represented in the column Orig. P.

The relative power ratios are indicated with Rel. 110

5.4 Impact of excluding obstacle-aware virtual clock trees (OAVCT), ob-

stacle avoidance forces (OAF). OAVCT and OAF are excluded in the

columns under �w/o OAVCT�. Only OAF is removed in �w/o OAF� . . 111

5.5 Results of the MLAF technique integrated into SimPL with comparison

to our technique. Average results are compared to the results for SimPL

in Table 5.2. The numbers in parentheses represent the amount of re-

duction(ClkWL, Pwr) [increase(HPWL)] assuming 100% reduction [in-

crease] for our technique. For example, [209.1(SimPL) - 182.4(MLAF)]

/ [209.1(SimPL) - 152.3(Lopper)] = 46.9%. 112

5.6 Results of SPICE-driven optimizations on the modi�ed CLKISPD‘05

benchmark suite. Regs represents the number of registers in each bench-

mark. Ins. D. is insertion delay and Skew is nominal local skew de�ned

in [53] with local skew distance limit 600�m. Cap. represents total

capacitance of the clock tree including driving buffers. 112

5.7 Results of SPICE simulations in the presence of variations. Regs rep-

resents the number of registers in each benchmark. Cap. represents the

capacitance limit for clock networks. Nom. represents nominal skew

without variation and Mean is average skew with variation. Yield rep-

resents the percentage of acceptable results with given skew limit 7.5

ps. 114

6.1 Results of clock trees on ispd10cns05 with parallel buffering. Local

skew limit is 7.5 ps as in the ISPD 2010 benchmarks. The statistics

of nominal skew, total skew are reported based on Monte-Carlo simula-

tions. For each tree, we report its mean, standard deviation (�), as well

as yield for a given skew limit. ‘95%’ column represents the worst local

skew for 95% yield. 132

xiii

6.2 Comparison of buffer types. ispd10b1 and ispd10b2 are two buffer types

in ISPD 2010 CNS benchmarks. The large buffer utilized in this work

has Gaussian variation and parallel buffering is not allowed. The buffer

type in this work is intended to represent a composite buffer made from

8 ispd10b2 buffers, but in a way that would prevent modeling constituent

buffers as experiencing independent PVT variation. 133

6.3 Comparison of results on ispd10cns08 to published data for meshes. Lo-

cal skew limit 6.0 ps is used to produce a clock network with better

robustness than meshes. Our clock network is more robust than meshes

but also 2.30� greater power ef�cient than CNSRouter [105]. 135

6.4 Results on ispd10cns08 with different local skew limits. The statistics

of nominal skew, total skew and variational skew are reported based on

Monte-Carlo simulations. For each tree, we report its mean, standard

deviation (�), as well as yield for a given skew limit. the worst local

skew when yield is 95%. All the results satisfy slew constraints. 135

6.5 Results on ispd10cns08 with the buffer type ispd10b1 in Table 6.2 with-

out parallel buffering. The statistics of nominal skew, total skew and

variational skew are reported based on Monte-Carlo simulations. Mean,

standard deviation (�) and yield for given local skew limit are reported

for each tree. ‘95%’ column represents the worst local skew when yield

is 95%. All the results satisfy slew constraints. 136

6.6 Delay analysis of splinter sinks before/after merging on ispd10cns08.

dSS represents displacement of splinter-sink delay before merging. err.

represents difference between average splinter-sink delay (before merg-

ing) and actual delay (after merging). 137

xiv

ABSTRACT

High-performance and Low-power Clock Network Synthesis

in the Presence of Variation

by

Dong Jin Lee

Chair: Igor L. Markov

Semiconductor technology scaling requires continuous evolution of all aspects of phys-

ical design of integrated circuits. Among the major design steps, clock-network synthesis

has been greatly affected by technology scaling, rendering existing methodologies inade-

quate. Clock routing was previously suf�cient for smaller ICs, but design dif�culty and

structural complexity have greatly increased as interconnect delay and clock frequency in-

creased in the 1990s. Since a clock network directly in�uences IC performance and often

consumes a substantial portion of total power, both academia and industry developed syn-

thesis methodologies to achieve low skew, low power and robustness from PVT variations.

Nevertheless, clock network synthesis under tight constraints is currently the least auto-

mated step in physical design and requires signi�cant manual intervention, undermining

turn-around-time. The need for multi-objective optimization over a large parameter space

and the increasing impact of process variation make clock network synthesis particularly

challenging.

xv

Our work identi�es new objectives, constraints and concerns in the clock-network syn-

thesis for systems-on-chips and microprocessors. To address them, we generate novel

clock-network structures and propose changes in traditional physical-design �ows. We

develop new modeling techniques and algorithms for clock power optimization subject

to tight skew constraints in the presence of process variations. In particular, we offer

SPICE-accurate optimizations of clock networks, coordinated to reduce nominal skew be-

low 5 ps, satisfy slew constraints and trade-off skew, insertion delay and power, while

tolerating variations. To broaden the scope of clock-network-synthesis optimizations, we

propose new techniques and a methodology to reduce dynamic power consumption by

6.8%-11.6% for large IC designs with macro blocks by integrating clock network synthe-

sis within global placement. We also present a novel non-tree topology that is 2.3� more

power-ef�cient than mesh structures. We fuse several clock trees to create large-scale

redundancy in a clock network to bridge the gap between tree-like and mesh-like topolo-

gies. Integrated optimization techniques for high-quality clock networks described in this

dissertation achieve strong empirical results in experiments with recent industry-released

benchmarks in the presence of process variation. Our software implementations were

recognized with the �rst-place awards at the ISPD 2009 and ISPD 2010 Clock-Network

Synthesis Contests organized by IBM Research and Intel Research.

xvi

PART I

Introduction & Background

CHAPTER I

Clock Network Synthesis in the Physical Design Flow

Synchronous systems consist of sequential registers (latches, �ip-�ops) and combi-

national logic connecting registers [76]. While the functional requirements of a digital

system are satis�ed by the register transfer level (RTL) and logic synthesis, the overall

performance and timing constraints require insertion of pipeline registers to ensure that

the latencies of critical paths between registers satisfy timing constraints [76]. Clock sig-

nals are delivered from a clock generator to sequential elements by a clock distribution

network, which must optimize important parameters such as clock skew, slew rate, inser-

tion delay, power dissipation, area and sensitivity to variations [6, 43]. In a modern EDA

�ow, the number, type and netlist of combinational logic and sequential elements are de-

�ned after RTL and logic synthesis [8, 9]. The physical locations of sequential elements

1

become known after the placement stage, which consists of global placement, legaliza-

tion and detail placement [6, 43]. For ASIC and SoC designs, clock-network synthesis is

traditionally performed after placement [43].

A clock distribution network is typically the largest net in the circuit netlist and op-

erates at the highest speed of any signal within the entire synchronous system, hence

the clock network often takes a signi�cant fraction of the power consumed by a chip

[26, 31, 66, 96]. Clock waveforms must be sharp and noise-free since all the data signals

are referenced by the clock signals. Technology scaling has made long global interconnect

wires signi�cantly more resistive as wires become thinner [34]. Clock signals are particu-

larly affected by this increased wire resistance, and precise control of clock-signal arrival

times has grown in importance since they severely limit the maximum performance of the

entire system.

To ensure performance and reliability, proper design and effective optimization of

clock distribution networks are crucial; therefore, clock network synthesis is excluded

from other signal-net routing and processed by specialized algorithms and techniques prior

to global routing of signal nets [6, 43].

1.1 Industry trends

Processor-based systems fueled the development of electronics since the 1960s. PCs

were the main driver of growth in electronics in the 1990s, and in the 2000s mobile phones

and other battery-powered consumer devices became a signi�cant market segment, fol-

lowed by automotive electronics. These electronic systems are controlled by synchronous

CPUs and ASIC chips, whose clock frequency has steadily increased for many years.

2

However, semiconductor scaling in the 1990s made clock optimization more challenging.

While transistors continued scaling, interconnect lagged in performance [34]. The max-

imal length of a wire that can be driven by an inverter started a steady decrease. This

phenomenon boosted demands for repeaters in clock networks, raised their power pro-

�le, and complicated their synthesis. Research in delay-driven buffering of single signal

nets � arguably an easier problem and on a smaller scale � has blossomed well into the

late 2000s, leaving clock-tree synthesis a dif�cult, high-value target. As the accuracy of

compact delay models for transistors and wires deteriorated, clock-network design in the

industry moved to SPICE-driven optimizations [33, 82].

A variety of clock network topologies and deskewing techniques were developed for

microprocessors previously. Table 1.1 shows key parameters of clock networks in the mi-

croprocessors designed by IBM and Intel from the late 1990s to early 2000s [6, Chapter

43]. All those clock networks are regular, and only minimally adapt to sink locations.

IBM S/390 used two-level balanced H-like trees. The clock network of the IBM Power4

processor consists of tuned H-trees driving a single full-chip grid. Active deskewing and

wire-width tuning were employed to reduce skew. Alpha 21264 utilized hierarchical struc-

tures consisting of a global grid, six major grids and local clocks. The Intel Pentium series

used spine (tall tree) structures driven by balanced binary trees. Adaptive deskewing tech-

nique based on a delay-locked loop (DLL) reduced skew from 100 ps to 15 ps in Pentium

III. Deskewing by a 5-bit domain deskew register (DDR) was employed in Pentium 4. The

clock network of the Intel Itanium microprocessor series features three levels of global dis-

tribution by two identical and balanced H-trees, regional clock distribution by the regional

3

clock driver (RCD) and regional clock grid and local clock distribution by local clock

buffers (LCBs) and local clock routings. A fuse-based deskewing technique was devel-

oped for Intel Itanium 2, reducing skew from 71 ps to 24 ps. In recent high-performance

microprocessors, clock signals are distributed using two-level hybrid networks consisting

of a global grid and local buffered gated trees connecting to the grid [81, 82].

Processors Year Node, Freq., Clock Deskew Skew,

nm MHz Topology ps

IBM S/390 1997 200 400 tree � 30

IBM Power4 2002 180 1300 tree+grid � 25

Alpha 21264 1998 350 600 grid � 65

Pentium 2 1997 350 300 spine � 140

Pentium 3 1999 250 650 spine active 15

Pentium 4 2001 180 2000 spine active 16

Itanium 2000 180 800 tree+grid active 28

Itanium 2 2003 130 1500 tree+grid fuse 24

ISPD 2010 2010 45 2000 tree � 7.5

Table 1.1: Clock networks in industry CPUs [6, Chapter 43] and ISPD 2010 benchmarks

from Intel and IBM (Table 2.1).

In the early 2000s, the emphasis in CPU design has shifted from high performance to

power-performance-cost trade-offs, including the advent of multicore CPUs and the grow-

ing popularity of low-power ARM CPUs. In the netbook market, the low-power 1.6GHz

Atom CPU from Intel is currently competing with ARM’s multicore 2GHz Cortex-A9

CPUs and the 1GHz Cortex-A8, but 98% of world’s mobile phones rely on ARM-based

CPUs [49] which offer better power-performance-cost trade-offs than Intel CPUs [90].

ARM cores often drive system-on-chip (SoC) designs, laid out using low-power ASIC

methodologies. Such methodologies perform automated clock-tree synthesis after place-

ment, whereas traditional high-performance CPU methodologies pre-design clock net-

works and use active deskewing to lower clock skew and susceptibility to process varia-

4

tions [82]. Clock trees are more susceptible to variations than meshes (common in CPUs),

but are 2-4 times more power-ef�cient. This is signi�cant because clock networks and cor-

responding sequential elements consume up to 50% of CPU power and can affect power-

performance comparisons between CPUs [83]. Unused parts of the clock network can be

temporarily turned off (clock gating), but this does not always reduce peak power.

1.2 Research challenges

In high-quality synchronous VLSI designs, clock network synthesis is becoming a

more important problem as it signi�cantly impacts the performance, area and power dis-

sipation of the design. The trend of increasing system complexity in conjunction with

architectural-level pipelining increases the number of clocked elements [24, 108]. Semi-

conductor scaling facilitates smaller cycle times, but this trend assumes increasingly re-

liable clock distribution. The design of clock networks directly in�uences the maximum

operating clock frequency because it determines clock skew, slew rate and insertion de-

lay of the clocked elements [10]. Decreasing power consumption has become one of the

main objectives in IC design today. The bene�ts of voltage reduction and device size scal-

ing are often overwhelmed by the increase in the number of gates and clock frequency.

The high costs of system cooling have also increased the importance of low-power de-

sign. Clock networks consume a signi�cant fraction of the total system power due to its

very high capacitive load and frequent switching. Being responsible for 30-50% of chip

power [27, 60], clock networks require careful optimization. With shrinking cycle times,

the impact of process, voltage and temperature (PVT) variation is becoming more serious

and complicates the design of reliable clock networks [82]. The time it takes to design

5

and synthesize clock networks is becoming signi�cant, because laborious accurate timing

analysis is often required to satisfy the tight constraints for clock signals.

Nominal clock skew is usually improved �rst during clock routing since in GHz-range

systems, performance can be seriously affected by skew in tens of picoseconds. For skew

optimization, highly accurate timing analysis tools (e.g., SPICE) are required, but they

are slow and dominate the runtime of clock network synthesis. Therefore, choosing ap-

propriate timing analysis tools and how to utilize them is also important in clock network

synthesis. Skew is affected by PVT variations. Hence, skew optimization based on only

nominal parameters (no variation, single corner) does not guarantee a reliable clock net-

work. We distinguish two approaches to the design of reliable clock networks. First,

one can use strong devices or thick wires that are less affected by variations. Second,

one can build a redundant clock network with multiple paths from the clock source to

each clock sink, or only some clock sinks. The impact of variation on one path can be

compensated for by the clock signals from the other less-affected paths. In modern clock

network design, this is mostly done by using mesh/grid type structures. However, neither

method can avoid increase in total capacitance, which results in an increase in total power

consumption. In general, making a more robust clock network requires a signi�cant in-

crease in power consumption. Since reducing power dissipation is another primary goal

of clock network synthesis, careful analysis of the optimal point between reliability and

power consumption is mandatory in modern clock routing. Mesh/grid structure is utilized

when a tree structure is insuf�cient to ensure a robust clock network, even after best pos-

sible optimizations. However, meshes require a dramatic resource overhead compared to

6

tree structures. Although some publications propose adding cross-links to harden the tree

structure [36, 37, 50], recent studies suggest that these proposals are unworkable. There-

fore, designing effective clock tree structures that combine the reliability of a mesh with

the small footprint of a tree remains an open challenge.

Clock network synthesis for commercial designs is veri�ed with respect to multiple

process corners (or scenarios). Each corner represents a different operation environment of

the chip and commercial clock network synthesis tools try to optimize the clock network

based on multi-corner optimization. However, this multi-corner analysis cannot model

intradie-process variations and decreases the accuracy of skew analysis as the impact of

variations increases. One can utilize Monte-Carlo simulations for accurate estimation of

the impact of variations, but this method is too time-consuming and remains impractical

within clock network synthesis. Statistical timing analysis can model the impact of timing

variations more ef�ciently, but remains relatively unexplored in the context of state-of-the-

art clock network synthesis.

In a physical design �ow, clock routing is performed after cell placement, which de-

termines the physical locations of registers [6, 43]. Most academic/commercial placement

tools do not distinguish clocked elements from combinational logic cells [20, 64, 103].

Hence, even though it is possible to improve the quality of a clock network (especially

in terms of power) by modifying the locations of registers, clock network synthesis tech-

niques are often prevented from altering the locations of registers. Some researchers pro-

posed techniques like leaf-level register clustering [16, 75], but �nding optimal register

locations during placement remains an open challenge.

7

Producing high-quality clock networks is becoming more dif�cult, and related chal-

lenges may soon overwhelm those at other stages of a physical design �ow because of

con�icting objectives. Novel multi-objective methods are needed that can generate clock

networks satisfying tight design constraints. Our solutions to these challenges are ad-

dressed in this dissertation, whose structure we outline next.

1.3 Our contributions

The contributions of this dissertation can be summarized as follows.

SPICE-accurate SoC clock network synthesis. Most existing algorithms and tech-

niques establish fundamental methodologies for clock network synthesis, but perform

large-scale optimization using analytical models that lose accuracy at recent technology

nodes, and are not always validated by realistic SPICE simulations on large industry de-

signs. In Chapter III we propose specialized optimization algorithms necessary to bridge

the gaps between existing point-optimizations. We develop an EDA methodology for in-

tegrating clock-network optimization steps and describe a robust software implementation

called Contango. We then extend our implementation to large industrial clock networks.

Optimization of clock trees for microprocessors. Clock networks account for a sig-

ni�cant fraction of system power dissipation while limiting CPU performance. Therefore,

power-performance-cost trade-offs are becoming a major issue in modern high-performance

CPU clock design. On the other hand, the increasing impact of process variation makes

clock network synthesis particularly challenging. Mesh structures are often utilized to im-

prove robustness to variations, but signi�cant additional power consumption is unavoid-

8

able. In Chapter IV we propose a tree-based solution for CPU clock routing that improves

power consumption under tight skew constraints in the presence of variations. We intro-

duce the notion of local-skew slack for clock trees, modeling and optimization of varia-

tional skew, a path-based technique to enhance robustness, a new time-budgeting algorithm

for clock-tree tuning and accurate optimizations that satisfy budgets. Our strong empirical

results suggest that clock trees constructed using accurate variational skew modeling and

optimizations have distinct advantages in power consumption and similar robustness as

meshes.

Clock network optimization during placement. Most of the existing literature for

clock network synthesis assumes that register locations are given and cannot be changed.

While clock networks can be improved by �nding better register locations during place-

ment, most publications do not propose such optimization, hence the quality of resulting

clock networks is limited by un-optimized locations of the clocked elements. In Chapter V,

we propose to optimize the locations of registers at the placement stage for power-ef�cient

high-quality clock networks.

Closing the gap between tree and mesh structures. Common clock-network topolo-

gies can be categorized into two major types: trees and meshes. While older chips re-

lied on trees, mesh structures were utilized to satisfy tight variation-related constraints in

high-performance microprocessor designs where performance is emphasized over power

consumption. However, implementation of mesh-type clock networks requires substantial

amount of total wire/buffer capacitance, which signi�cantly increases power dissipation.

9

In Chapter VI, we propose a novel �exible structure that maintains many advantages of

tree structures, but is more robust to variations. Through in-depth structural analysis of

a given clock tree, we quantitatively diagnose where and why it fails to satisfy variation-

related constraints. We then go on to enhance the tree structure to attain required power-

performance-robustness trade-offs.

1.4 Organization of the dissertation

The remaining part of the dissertation is organized as follows:

� Part I reviews relevant background in clock-network synthesis in Chapter II.

� Part II lays the foundation for our research. Chapter III describes our method for

SPICE-accurate SoC clock network synthesis. Chapter IV describes optimizations

of clock trees for microprocessors.

� Part III proposes new techniques that broaden the scope of optimization for clock

network synthesis. Chapter V introduces placement optimization for registers to

reduce clock-network size and total power consumption. In Chapter VI, we propose

algorithms and techniques for a novel non-tree clock network structure that bridges

the gap between trees and meshes.

� The dissertation concludes in Chapter VII with a summary of contributions and an

outline of future research directions.

10

CHAPTER II

State of the Art in Clock Network Synthesis

As clock networks distribute clock signals to numerous clocked elements all over the

chip, they consume a sizable portion of routing resources. Their high switching activity

implies signi�cant power consumption. Hence clock networks must be carefully designed

to optimize the performance of the chip, routing resource usage, and power.

This chapter covers basic terminology, core algorithms, prior work and other prereq-

uisite topics in clock network design. Additional background information relevant to our

contributions appears in further chapters. Section 2.1 discusses key parameters of a clock

network and reviews the ISPD clock network synthesis contests which were held in 2009

and 2010. In Section 2.2, general types of clock networks are presented. Section 2.3

covers algorithms for clock-tree generation. In Section 2.4, existing techniques for clock

network optimization during/after placement are discussed.

2.1 Key parameters of a clock network and the ISPD contests

Clock skew between two clock sinks connected to the same clock source is the abso-

lute value of the difference in transition arrival times. The clock skew of an entire clock

network is the maximum pairwise clock skew between any two sinks (more details and fur-

11

ther de�nitions are given in Section 4.2.1). Clock jitter refers to the time variation of the

clock period at a given clock sink on the chip. The term slew characterizes how quickly

a rising-edge or falling-edge transition occurs in a given wire. For 0V to 1V transition,

10%-90% slew can be measured by the time taken to change the value from 0.1V to 0.9V.

Clock skew, jitter and slew are major issues in digital circuits, and can fundamentally limit

the performance of a digital system. Therefore, clock-network synthesis must limit skew,

jitter and slew. When a clock network is designed to have zero nominal skew, permanent

(static) skew can occur as a result of manufacturing device and interconnect variations

(i.e., process variations). Temperature gradients across a chip also contribute to skew. On

the other hand, power-supply variations are the major source of jitter in clock distribution

networks.1 In this dissertation, we evaluate our clock networks using Monte-Carlo simu-

lations with PVT variations to effectively measure clock skew affected by jitter. In other

words, when we improve robustness of clock networks, we reduce not only permanent

skew induced by process variations, but also temporal skew and jitter induced by voltage

and temperature variations.

FF FFLogic FF FF

(a) (b)

Figure 2.1: Eligible clock sink pairs. (a) There is combinational logic between two sinks,

which make the skew between these two sinks affects the useful portion of

clock cycle time. (b) This sink pair is not eligible because the sinks are not

logically dependent.

1Another major contributor to jitter is a clock-signal generator, but optimization of such a generator is

beyond the scope of this dissertation.

12

Sink pairs eligible for local-skew calculation. In a large clock network, skew between

adjacent and connected sinks is a more meaningful optimization objective than global

skew [32, 81]. When two clock sinks are connected by combinational logic (Figure 2.1a)

the clock skew between two sinks directly affects the useful portion of clock cycle time for

the combinational logic. Otherwise, where there is no combinational logic between two

sinks (Figure 2.1b), the skew between them is not a source of performance degradation,

therefore we do not need to optimize the clock network to reduce the skew between those

sink pairs. Eligible sink pairs for skew can be de�ned based on the netlist after Register-

Transfer Level (RTL) synthesis so that only sink pairs that are connected by combinational

logic are considered for skew calculation. In the ISPD 2010 Clock Network Synthesis

(CNS) Contest, local skew distance limit was introduced to de�ne the eligible sink pairs

and local skew [95]. If the Manhattan distance between two sinks is less than the local

skew distance limit, it is assumed that there is combinational logic between the two sinks

and otherwise, there is no logic dependency. We use the same notion of local skew in

our work, but do not rely on the metric de�nition, and all our techniques apply in a more

realistic context where eligible pairs of sinks are derived directly from the netlist.

The ISPD 2009 clock-network synthesis contest organized by IBM Austin Research

Lab was based on a 45 nm technology [94]. Sink latencies were evaluated by SPICE. The

main objective was the difference between the least sink latency at 1.2V and the greatest

sink latency at 1V. This Clock Latency Range (CLR) metric was intended to capture the

impact of multiple power modes with different supply voltages [65], but nominal skew

was also recorded. Total power was limited and the 10%-90% slew rate of 100 ps was

13

enforced. The CLR objective attracted signi�cant criticism, which we share. Therefore

we also evaluate our techniques in terms of nominal skew. The benchmarks were derived

from industry SoC designs and include dozens to hundreds �xed rectilinear obstacles.

The ISPD 2010 high-performance clock-network synthesis contest used several 2 GHz

CPU benchmarks from IBM and Intel to compare tools submitted by 10 teams across the

world (down-selected from 20 initial registrants). To evaluate the quality of the clock

networks, dif�cult slew and skew constraints were checked against 45 nm Monte-Carlo

SPICE simulations that modeled PVT variations. The 100 ps slew constraints were un-

changed from the ISPD 2009 contest. Clock networks that cleared all constraints were

compared by their total capacitance � a proxy for dynamic power. Table 2.1 shows the

statistics of the ISPD 2010 contest benchmarks.

ISPD‘10 Pro- Area, Num. Obsta- �,
�,

Bench. vider mm2 sinks cles �m ps

CNS01 IBM 64 1107 4 600 7.5

CNS02 IBM 91 2249 1 600 7.5

CNS03 IBM 1.51 1200 2 370 4.999

CNS04 IBM 5.73 1845 2 600 7.5

CNS05 IBM 5.9 1016 1 600 7.5

CNS06 Intel 1.74 981 0 600 7.5

CNS07 Intel 3.67 1915 0 600 7.5

CNS08 Intel 2.99 1134 0 600 7.5

Table 2.1: ISPD 2010 benchmarks based on 45 nm microprocessor designs.
� is the

local skew limit, and � is the local skew distance limit respectively (see Section

4.2.1). Nominal voltage is 1.0V and on-chip variations (�) are accounted by

15% voltage variation and 10% variation of wire parasitics [95].

2.2 Clock-network topologies

The choice between a tree and non-tree topology is a central question in modern clock-

network design. High-performance microprocessors typically use meshes due to their

14

robustness to late design changes and process variations, but at a great cost in terms of ca-

pacitance. Tree topologies offer many advantages, including simplicity, symmetry, faster

timing analysis and amenability to incremental tuning. We start by surveying general types

of clock networks, and will describe details of relevant algorithms in Section 2.3.

Clock trees have been widely supported by academic and commercial EDA tools. Sim-

ple methods including H-tree [11], the method of means and medians (MMM) [40], the

geometric matching algorithm (GMA) [22] and path length balancing method (PLB) [42]

were commonly utilized before the deferred merge embedding (DME) algorithm [12, 28]

was introduced. Recently several methodologies for SoC clock-tree tuning have been

developed with robustness improvement. A clock-synthesis methodology for SPICE-

accurate skew optimization with tolerance to voltage variations was proposed in [51].

The Dynamic Nearest-Neighbor Algorithm (DNNA) to generate tree topology and the

Walk-Segment Breadth First Search (WSBFS) for routing and buffering were proposed

in [87]. A three-stage CTS �ow based on an obstacle-avoiding balanced clock-tree rout-

ing algorithm with monotonic buffer insertion is proposed in [61]. A Dual-MST (DMST)

geometric matching approach is proposed in [63] for topology construction and recursive

buffer insertion. Modeling techniques and algorithms for microprocessor clock power

optimization subject to local skew constraints in the presence of variations are proposed

in [53].

Meshes. From the mid 1990s when the impact of PVT variation became signi�cant, clock

networks were more affected by PVT variations than random logic, due to their struc-

ture and more stringent timing constraints. In a tree network, such unexpected changes

15

are likely to propagate to the sinks. Mesh (or grid) structures have emerged to address

the structural drawbacks of trees. In meshes, there are multiple paths from the clock

source to individual clock sink; thus, the impact of variations on one path can be averaged

out by multiple redundant paths [107]. However, meshes require signi�cant overhead in

terms of on-chip resources and power. Published examples suggest that mesh-type clock

networks suffer much greater power consumption. Nevertheless, mesh structures were

utilized to satisfy tight variation-related constraints in high-performance microprocessor

designs where performance is more emphasized than power consumption [6, 43]. Some

methods to analyze the characteristics of mesh structures are proposed in [19, 106] and

a combinatorial algorithm to optimize a clock mesh is proposed in [98]. An obstacle-

avoiding clock mesh synthesis method which applies a two-stage approach of mesh con-

struction followed by driving-tree synthesis is proposed in [86,105]. A methodology based

on binary linear programming for clock mesh synthesis is described in [21].

Trees with cross-links. The dichotomy between meshes and trees is striking, and several

researchers attempted to �nd intermediate topologies that would retain the advantages of

meshes but reduce capacitance overhead. A key idea in the literature is to insert cross-links

into clock trees, creating redundant paths to sinks that contribute to nominal or variational

clock skew [77, 78]. These methods are later extended to handle buffered clock trees

in [79, 99]. Most publications discuss cross-links that directly connect pairs of sinks. Sur-

prisingly, none of these techniques were useful at the ISPD 2009-2010 clock-network con-

tests [94, 95] despite diligent attempts, as improved tree-tuning methods were suf�cient.

Careful experiments and analytical estimates [67] have shown that direct cross-links are

16

only effective in poorly tuned clock trees and/or at relatively short distances. However, in

high-quality clock trees it is rare to �nd a critical pair of sinks at a short distance. A recent

proposal [67] suggests adding cross-links higher in the tree to connect entire branches.

As several other publications with strong empirical results, [67] uses unrealistically large

composite buffers, and arranges them in a unique two-layer con�guration (10+40 small in-

verters). Given that the ISPD 2010 contest infrastructure does not adequately model such

con�gurations, the competitiveness of cross-links in practice remains unclear.

2.3 Algorithms for clock tree construction and buffering

The �rst geometric algorithms for clock routing evaluated skew in terms of wirelength

from the source to sinks and produced minimum-wirelength trees for a given sink cluster-

ing using the deferred merging and embedding (DME) principle [12].

DME algorithms [43]. The deferred-merge embedding (DME) algorithm defers the

choice of merging (tapping) points for subtrees of the clock tree. DME optimally embeds

any given topology over the sink set S: the embedding has minimum possible source-

sink linear delay, and minimum possible total tree cost. The algorithm was independently

proposed by several groups - Boese and Kahng [12], Chao et al. [17], and Edahiro [28].

In the Manhattan geometry, two sinks in general position will have an in�nite number

of midpoints, creating a tilted line segment, or Manhattan arc (Figure 2.2 [43]); each of

these midpoints affords the same minimum wirelength and exact zero skew. Ideally, the

selection of embedding points for internal nodes will be delayed for as long as possible.

The DME algorithm embeds internal nodes of the given topology G via a two-phase

process. The �rst phase of DME is bottom-up, and determines all possible locations of

17

s2

s1

Euclidean midpoint

Locus of all

Manhattan midpoints

s2s1

s2

s1

Euclidean midpoint

(a) (b)

Figure 2.2: The locus of all midpoints between two sinks s1 and s2 is a Manhattan arc in

the Manhattan geometry. On the other hand, the midpoint is unique in Eu-

clidean geometry. (a) Sinks s1 and s2 are not horizontally aligned. Therefore,

the Manhattan arc has non-zero length. (b) Sinks s1 and s2 are horizontally

(left) and vertically (right) aligned. Therefore, the Manhattan arc for both

cases has zero length. Source: [43].

internal nodes of G that are consistent with a minimum-cost ZST T . The output of the

�rst phase is a tree of line segments, with each line segment being the locus of possible

placements of an internal node of T . The second phase of DME is top-down, and chooses

the exact locations of all internal nodes in T . The output of the second phase is a fully

embedded, minimum-cost ZST with topology G.

Tilted Rectangular

Region (TRR)

Core

Radius

s2

s1

s2

s1

Figure 2.3: (a) Sinks s1 and s2 form a Manhattan arc. (b) An example of a tilted rectangu-

lar region (TRR) for the Manhattan arc of s1 and s2 with radius of two units.

Source: [43].

A tilted rectangular region (TRR) is a collection of points within a �xed distance of a

Manhattan arc (Figure 2.3 [43]). The core of a TRR is the subset of its points at maximum

18

distance from its boundary, and its radius is the distance between its core and boundary.

The merging segment of a node v in the topology, denoted by ms(v), is the locus of

feasible locations for v, consistent with exact zero skew and minimum wirelength (Figure

2.4 [43]). The following presents the sub-algorithms used for DME.

u1

s1

u3

u2

s2 s3 s4

|eu |

ms(u2)ms(u1) ms(u3)

s1

s2

s3

s4

2

|eu |
1

trr(u2)

trr(u1)

Figure 2.4: A bottom-up construction of the merging segment ms(u3) for node u3, the

parent of nodes u1 and u2, given the topology on the left. The sinks s1 and s2

form the merging segment ms(u1), and the sinks s3 and s4 form the merging

segment ms(u2). The two segments ms(u1) and ms(u2) together form the

merging segment ms(u3). Source: [43].

The bottom-up phase of DME (building a tree of segments) starts with all sink loca-

tions S given. Each sink location is viewed as a (zero-length) Manhattan arc. If two sinks

have the same parent node u, then the locus of possible placements of u is a merging seg-

ment (Manhattan arc) ms(u). In general, given the Manhattan arcs that are the merging

segments of two nodes a and b, the merging segment of their parent node is uniquely de-

termined due to the minimum-cost property, and is itself another Manhattan arc (Figure

2.4 [43]). The edge lengths jeaj and jebj are uniquely determined by the minimum-length

and zero-skew requirements. As a result, the entire tree of merging segments can be con-

structed bottom-up in linear time (Figure 2.5 [43]).

19

s1

s2

s8

s7

s6

s5

s0

s1

s2

s3

s4

s8

s7

s6

s5

s0

s3

s4

s1

s2

s3

s4

s8

s7

s6

s5

s0

(a) (b)

(c) (d)

s1

s2

s8

s7

s6

s5

s0

s3

s4

Figure 2.5: Construction of a tree of merging segments (DME bottom-up phase). Solid

lines are merging segments, dotted rectangles are the tilted rectangular regions

(TRR), and dashed lines are edges between merging segments; s0 is the clock

source, and s1 � s8 are sinks. (a) The eight sinks and the clock source. (b)

Construct merging segments for the eight sinks. (c) Construct merging seg-

ments for the segments generated in (a). (d) Construct the root segment, the

merge segment that connects to the clock source. Source: [43].

In the DME top-down phase (�nding exact locations), exact locations of internal nodes

in G are determined, starting with the root. Any point on the root merging segment from

the bottom-up phase is consistent with a minimum-cost ZST. Given that the location of a

parent node par has already been chosen in the top-down processing, the location of its

child node v is determined from two known quantities: (1) jevj, the edge length from v to

its parent par, and (2) ms(v), the locus of placements for v consistent with a minimum-

20

cost ZST. The location of v, i.e., pl(v), can be determined as illustrated in Figure 2.6 [43].

Thus, the embeddings of all internal nodes of the topology can be determined top-down in

linear time (Figure 2.7).

ms(v)
pl(par)trr(par)

Possible locations of v

|epar|

Figure 2.6: Finding the location of child node v given the location of its parent node par.

Source: [43].

The Deferred Merge Embedding (DME) algorithm was extended to the bounded-skew

tree (BST) problem. BST/DME algorithms [23,38] generalize merging segments to merg-

ing regions. When BST/DME algorithms were introduced in the early 1990s, many chip

designs included one large central buffer to drive clock signals through the entire chip. To-

day traditional clock trees cannot satisfy slew constraints in large ICs because the maximal

length of unbuffered interconnect decreased signi�cantly due to technology scaling [34].

Furthermore, the Elmore delay model used by published clock-tree optimizations lost ac-

curacy due to resistive shielding and the impact of slew on delay.

BSTs allow one to trade off a small increase in skew for reduced total wirelength.

Figure 2.3 shows that BSTs are shorter than ZSTs. However, BSTs are less balanced than

ZSTs and Elmore delay used in BST generation is inaccurate, thus the capacitance saved

on wires can be lost when compensating for skew with accurate timing analysis. After

initial buffer insertion, slow sinks and fast sinks are more clustered in ZSTs. Since our

21

s1

s2

s8

s7

s6

s5

s0

s3

s4

(a)

(c) (d)

s1

s2

s8

s7

s6

s5

s0

s3

s4

(b)

s1

s2

s8

s7

s6

s5

s0

s3

s4

s1

s2

s8

s7

s6

s5

s0

s3

s4

Figure 2.7: Embedding the clock tree during the DME top-down phase. Gray lines indicate

merging segments, dotted lines show connections between merging segments,

and black lines indicate routing segments. (a) Connecting the clock source

to the root merging segment. (b) Connecting the root merging segment to

its children merging segments. (c) Connecting those merging segments to its

children. (d) Connecting those merging segments to the sinks. Source: [43].

skew optimization techniques exploit these clusters, BSTs need greater resources to reach

near zero-skew than ZSTs. Table 2.2 shows the impact of BST skew bounds on �nal

results (CLR is de�ned in Section 2.1). The skew bounds during BST construction are

based on Elmore delay, and the �nal results are based on SPICE simulations. Based on

overwhelming empirical evidence against BSTs, Contango does not use them.

Obstacle-avoiding clock trees. The concept of merging regions in BST/DME was ex-

22

(a) ZST (b) 3 ps BST (c) 9 ps BST

Figure 2.8: Min-wirelength trees with zero and bounded skew (Elmore delay). Only frag-

ments of actual clock trees are shown.

Skew Initial After skew and CLR optimizations

Bound, ps CLR, ps CLR, ps Skew, ps Cap., fF

0 52.01 13.75 1.633 77653

3 57.87 16.33 3.106 74606

6 68.06 18.91 6.004 79955

9 69.64 31.51 18.403 78779

Table 2.2: The impact of skew bounds on ispd09f22.

tended to obstacle-avoiding trees in [44], where (i) obstacles were assumed rectangular,

(ii) no routing over obstacles was allowed, and (iii) buffering was not considered. The

authors noted that obstacle processing slowed down their BST/DME algorithm and hinted

at more advanced geometric data structures. Unlike in [44], the ISPD 2009 contest allowed

routing but not buffering over obstacles, with SoCs in mind. ISPD 2009 benchmarks in-

cluded abutting obstacles that formed monolithic rectilinear obstacles.

Fast buffer insertion. L. van Ginneken introduced an algorithm for buffering RC-trees

[30], which minimizes Elmore delay and runs in O(n2) time, given n possible buffer

locations and buffer speci�cation. While not intended for clock trees, it minimizes worst

delay rather than skew. The O(n log n)-time variant of van Ginneken’s algorithm proposed

in [84] is more appropriate for large trees. A key insight into van Ginneken’s algorithm and

its faster variant makes them applicable to our work � while trying to minimize source

23

to sink latencies, these algorithms insert almost same number of buffers on every path and

therefore result in low skew if the initial tree was already balanced.

Other buffering techniques have been proposed as well, e.g., a linear-time algorithm

from [7] that minimizes the number of buffers while bounding capacitive load and slew

rate, but does not minimize delay or skew. A dynamic program from [3] inserts a limited

number of buffers subject to a maximal skew in buffer counts on source-to-sink paths. At

the ISPD 2009 contest, slew constraints were checked by SPICE, but capacitance limits

were relatively generous. Our competitors predominantly used greedy bottom-up buffer-

insertion algorithms that added each buffer as high in the tree as possible, while satisfying

slew constraints. Such technique seek to minimize capacitance as the top priority. How-

ever, we chose the (faster variant of) van Ginneken’s algorithm, which seeks to minimize

worst sink latency. Our rationale was that process variations can be moderated by lower-

ing sink latency and that it is relatively easy to slow down paths that are too fast, but it

is harder to speed up slow paths. It is dif�cult to make a rigorous comparison with slew-

based buffering. In particular, some of our competitors at the ISPD 2009 contest relied on

it and produced relatively poor results, but others did better. In any case, our overall results

compare favorably to the best published results, especially in terms of nominal skew, and

we were unable to improve them further by using slew-based buffering.

Several methodologies for clock-tree tuning have recently been developed for the ISPD

2009 clock-network synthesis contest which focused on ASIC and SoC designs. A clock-

synthesis methodology for SPICE-accurate skew optimization with tolerance to voltage

variations called Contango was proposed in [51]. Dynamic Nearest-Neighbor Algorithm

24

to generate tree topology and Walk-Segment Breadth First Search for routing and buffering

were proposed in [87]. A three-stage CLR-driven CTS �ow based on an obstacle-avoiding

balanced clock-tree routing algorithm, monotonic buffer insertion, as well as wire-sizing

and wire-snaking is proposed in [61]. A Dual-MST geometric matching approach is pro-

posed in [63] for topology construction, along with recursive buffer insertion and a way to

handle blockages. SoC methodologies often spend signi�cant effort dealing with hundreds

of layout obstacles, while CPU layouts include very few obstacles. However, skew con-

straints are more dif�cult in CPU clock synthesis. Because of these differences and due

to the incorporation of process variation into the ISPD 2010 contest, most of the above

techniques were not adopted by the contestants.

2.4 Interactions between placement and clock-network synthesis

Power consumption is one of the primary optimization objectives for modern IC de-

signs [76]. It includes three basic components: short-circuit power, leakage power and

net-switching power [62]. Net-switching power is usually the largest contributor, and

clock networks are often responsible for over 30% of total power consumption due to

their high capacitance and frequent switching [26, 31, 66, 96]. The quality of clock net-

works is greatly affected by register placement, but mainstream literature on placement

and most commercial EDA tools have largely overlooked this fact by focusing on wire-

length of signal nets [48], routability [102] and circuit timing [35]. As far as we know,

high-quality register placement cannot be achieved by easy pre- or post-processing of ex-

isting techniques. To this end, most appropriate changes to cell locations that reduce the

clock network may depend on the current structure of the clock network, which is not

25

accounted for in existing placement tools. However, over-emphasizing the placement of

clock sinks may harm the overall design performance by making signal nets longer.

To address the apparent con�ict between clock-net optimization and traditional place-

ment objectives, some researchers proposed techniques and algorithms for better regis-

ter placement without intrusive interference in traditional placement objectives. Lu [64]

proposed several techniques including Manhattan ring-based register guidance, center-of-

gravity constraints for registers, pseudo-pins and register-cluster contraction. Cheon [20]

proposed power-aware placement that performs both activity-based register clustering and

activity-based net weighting to simultaneously reduce the clock and signal net-switching

power. In order to reduce the clock network size, Wang [103] proposed dynamic clock-

tree building (DCTB), multi level bounding box (MLBB) and multi level attractive force

(MLAF), and integrated them into a force-directed placement (FDP) framework [101].

Clock-network optimization after placement can be performed by clustering nearby

�ip-�ops [16, 75] to share inverters (inside �ip-�ops) and shorten the clock tree. This

clustering does not adversely affect signal nets, but is rather limited by the locations of

combinational gates. In high-performance CPUs �ip-�ops are often replaced by single

latches, which reduces savings from clock-sink clustering.

26

PART II

Clock Network Synthesis for SoCs and

CPUs

CHAPTER III

Integrated Optimization of SoC Clock Networks

On-chip clock networks are remarkable in their impact on the performance and power

of synchronous circuits, in their susceptibility to adverse effects of semiconductor tech-

nology scaling, as well as in their strong potential for improvement through better CAD

algorithms and tools. Existing literature is rich in ideas and techniques, but performs large-

scale optimizations using analytical models that lost accuracy at recent technology nodes,

and have rarely been validated by realistic SPICE simulations on large industry designs.

This chapter offers a methodology for SPICE-accurate optimization of clock networks,

coordinated to satisfy slew constraints and achieve best trade-offs between skew, insertion

delay, power, as well as tolerance to variations. Our implementation, called Contango,

27

is evaluated on 45 nm benchmarks from IBM Research and Texas Instruments with up

to 50K sinks. It outperforms all published results in terms of skew and shows superior

scalability on the ISPD 2009 benchmarks.

3.1 Introduction

Clock networks were among the �rst circuits to suffer the impact of process, voltage

and temperature variations. Systematic variations can affect paths to different sinks in dif-

ferent ways, making effective skew higher than nominal skew. Intra-die variations may be

stronger on some paths than on others, which would further increase effective skew. These

challenges have motivated research at the device, circuit and algorithm levels [45]. In gen-

eral, smaller sink latencies and shorter tree paths decrease exposure to variations. Some

researchers tried to increase the tolerance of buffers to CD changes and temperature varia-

tion [39], some proposed to tune wires or buffers based on post-silicon measurements [92],

and some developed methodologies for inserting cross-links into the trees [36, 37, 50], ar-

guing that such links can decrease the impact of variation on skew. Existing literature

tends to (1) rely on closed-form delay models during large-scale optimization, (2) fre-

quently focus on a single optimization technique in analysis and evaluation, (3) neglect

the dif�culties in modifying highly optimized clock trees. Our work seeks to address these

omissions and develops a practical methodology for effective SPICE-accurate optimiza-

tion, rather than just elegant algorithms with provable abstract properties. With process

variation in mind, microprocessor designers combine regular meshes with local or global

trees [82]. However, meshes have much higher capacitance and use more power.

28

This chapter focuses on clock-network synthesis for ASICs and SoCs, where clock

frequencies are not as aggressive as in high-performance CPUs, but power is limited, es-

pecially for portable applications. In this context, tree topologies remain the most popular

choice, but may require accurate tuning and further enhancements. The SoC context in-

troduces another twist � layout obstacles. SoCs include numerous pre-designed blocks

(CPUs, RAMs, DSPs, etc) and datapaths. While it may be possible to route wires over

such obstacles, buffer insertion is typically not allowed. One can fathom the dif�culty

of such optimization through comparison to signal-net routing, where obstacle-avoiding

Steiner trees currently remain an active area of research [59]. Our contributions include

� A careful analysis of design steps and optimizations for high-performance clock

trees, including the range, accuracy, and substitutability of speci�c techniques

� Notions of slow-down & speed-up slack for clock trees

� Tree optimizations driven by accurate delay models

� A simple and robust technique for obstacle avoidance in clock trees subject to slew

constraints

� A provably-good sink-polarity correction algorithm

� A methodology for clock-tree optimizations that outperforms the best results at the

ISPD 2009 contest on every benchmark by 2.15-3.99 times, while reducing skew to

2.2-4.6 ps. On newer Texas Instruments benchmarks with up to 50K sinks, skew

remains < 11 ps.

29

Selecting best parameters for each benchmark can further improve results, at the cost of

increased runtime. But global skew < 20 ps is considered very small for ASICs and SoCs.

In the remainder of this chapter, Section 3.2 describes our analysis of the clock-

network synthesis problem and introduces slow-down & speed-up slacks. Major opti-

mization steps are described in Section 3.3, and Section 3.4 presents empirical results.

Section 3.5 summarizes this chapter and raises several intriguing research questions.

3.2 Problem analysis and a strategy for solutions

The design of a clock network offers a large amount of freedom in topology selection,

spacing and sizing of inverters, as well as the sizing of individual wires. Traditionally, net-

work topology is decided �rst. Trees offer unparalleled �exibility in optimization because

latency from the root to each sink can be tuned individually, while large groups of sinks

can be tuned by altering nodes and edges high up in the tree.

Composite buffers can be built by stacking up inverters in parallel and/or in series. Par-

allel composition decreases driver resistance, but increases input pin capacitance, while

leaving the intrinsic delay intact. The spacing of buffers is largely responsible for pre-

venting slew violations and also affects clock skew. It is sensitive to driver resistances,

the maximal capacitance (wire and input pins) that can be driven by a given composite

buffer, as well as branches in the buffer’s fanout, which determine the number of input

pins driven. A single wire segment can be split into smaller segments, and each can be

sized independently.

30

3.2.1 Optimization objectives and timing analysis techniques

Accurate clock network design is complicated by the fact that the optimization objec-

tives are not available in closed form and take signi�cant CPU resources to evaluate. Skew

optimization requires much higher accuracy than popular Elmore-like delay models. For

example, a 5 ps error represents only 1% of 500 ps sink latency, but 50% of 10 ps skew.

Closed-form models do not capture resistive shielding in long wires, do not propagate slew

with suf�cient accuracy, and do not account for slew’s impact on delay well. Newer, more

sophisticated models are laborious to implement and only available in modern commercial

tools. Our strategy is to use simple analytical models at the �rst steps of the proposed �ow

� (1) to construct zero-skew clock trees and (2) to perform initial fast buffer insertion,

� but drive further optimizations by SPICE runs, Arnoldi approximation, or any other

available timing analysis tool/model.

To minimize the number of time-consuming SPICE invocations, we pursued several

techniques. Runtime can be signi�cantly reduced using localization and batch-mode eval-

uation. During localization, one prunes large portions of the clock tree that do not affect

latencies to the sinks impacted by the changes in question [36]. This does not reduce the

number of SPICE calls, but rather decreases the complexity of each run. On the other

hand, a batch of changes can be evaluated by a single SPICE run, as long as multiple

changes do not affect the same path from root to a sink.

Another avenue to streamlined SPICE-driven optimizations is to use mathematical

properties of circuit delay, such as monotonicity, convexity, and linearity with respect

to some parameters. Monotonicity and convexity support binary search, where an optimal

31

value is sought on a certain interval. At each step of the search, the middle point of the

interval is evaluated by SPICE (e.g., a wire can be sized half-way) and the result deter-

mines whether to recur to the left or right half-interval. Linearity enables extrapolation of

multiple values based on several SPICE runs.

3.2.2 Nominal skew optimization

An initial buffered clock tree is constructed early in the design �ow. Assuming no

slew violations, the latency of each sink s (Ts) is known from SPICE simulations (or

faster techniques, such as Arnoldi-based delay calculations), at which point minimal and

maximal latencies (Tmax and Tmin) can be found.1 Since absolute sink latencies are not

as important as skew (Tmax � Tmin), skew can be improved by either decreasing Tmax

(speeding up the slowest sinks) or increasing Tmin (slowing down the fastest sinks).

De�nition III.1 Consider a clock tree and its sink s. The slow-down slack Slackslow
s

(speed-up slack SlackF ast
s) of s is the amount in ps by which the sink latency can be unilat-

erally increased (decreased) without increasing clock skew. In other words, Slackslow
s =

Tmax � Ts and SlackF ast
s = Ts � Tmin.

Slow sinks often cluster together, and so do fast sinks. Hence, clock skew can be

improved by modifying a few nodes or edges high in the tree. To �nd desired delay

change, we propagate slack information up the tree as follows.

Let Sinkse be the set of downstream sinks for edge e.

1Separately for rising and falling transitions, for each PVT corner.

32

De�nition III.2 Consider a clock tree and its edge e. The slow-down slack Slackslow
e

(speed-up slack SlackF ast
e) of e is the amount in ps by which the edge delay can be unilat-

erally increased (decreased) without increasing clock skew.

Lemma 1 For any edge e in the tree

� Slackslow
e = mins2Sinkse

Slackslow
s

� SlackF ast
e = mins2Sinkse

SlackF ast
s

Given slacks on n sinks, all edge slacks can be computed in O(n) time.

Lemma 2 For any edge e and its parent in the tree, Slackslow
e � Slackslow

parent(e) and

SlackF ast
e � SlackF ast

parent(e).

The �exibility of a tree edge is limited by each downstream sink. Therefore, for edges

close to the root we often have Slackslow
e = SlackF ast

e = 0. It is important to note that the

validity of slacks-related calculations does not depend on the use of speci�c delay models

or SPICE simulations. When visualizing clock trees, we color their edges with a red-green

gradient, indicating low slack with red and high slack with green, as shown in Figure 3.4.

Lemma 2 suggests that, instead of changing the delay of an edge, one can change the

delay of its downstream edges by an equal amount, as long as only one delay change is

applied on each root-to-sink path. When choosing between tree edges on the same path,

we prefer (at early stages of optimization) to tune edges as high in the tree as possible, so

as to minimize (i) the amount of change, (ii) the risk of introducing slew violations and

(iii) power overhead. However, in a highly optimized tree, we tune bottom-level edges

33

where we can better predict the impact on skew. The preference for high-level tree edges

can be formalized as follows.

Proposition 1 For each edge e in the tree, de�ne �slow
e = Slackslow

e � Slackslow
parent(e). If

every edge is slowed down exactly by �slow
e , the tree’s skew will become zero, and both

slow-down and speed-up slacks will become zero.

Naturally �fast
e = Slackfast

e � Slackfast

parent(e), and a mirror statement holds. For a tree

edge e, it is possible that �fast
e > 0 and �slow

e > 0, facilitating con�icting optimizations.

If optimizations are not coordinated well, some edges may be sped up and some slowed

down, while the overall skew is unchanged. To avoid such con�icts, one can perform

rounds of speed-up and rounds of slow-down, separated by SPICE-based analysis and

slack update. In practice, it is easier to slow down an edge than to speed it up. Thus, any

possible speed-up, e.g., by using stronger buffers, is performed �rst. Rounds of speed-up

and slow-down are more conveniently performed top-down, so that when an edge cannot

be tuned by the desired amount, the remainder is passed to its downstream edges.

We found that after nominal skew is suf�ciently optimized, both rising and falling

transitions can individually limit speed-up and slow-down slacks. We handle the two

transitions separately and de�ne edge slacks as the smaller of rise-slack and fall-slack.

Furthermore, speed-up and slow-down slacks can be computed for each process corner

given (two in the ISPD 2009 contest). In order to improve the multicorner CLR objective,

a tree edge can be sped up conservatively by the minimum of its speed-up slacks, and can

be slowed down by the minimum of its slow-down slacks.

34

3.2.3 Clock latency range (CLR) optimization

Our methodology pursues two objective functions �- nominal skew and the ISPD

2009 CNS contest metric, CLR, introduced in Section 2.1. Due to signi�cant correla-

tion between CLR and nominal skew, some of the optimizations in our �ow target skew

optimization, some target CLR, and some address both (see Table 3.3). In practice this

approach achieves a good trade-off between the two optimization objectives, and is repre-

sentative of multi-objective optimization required in many practical settings. Recall that

the CLR calculation is based on the sink latencies at two different supply voltage settings.

There are mainly two strategies to reduce CLR. First, reducing skew directly contributes

to reducing CLR until skew becomes very small (e.g. less than 5 ps). Let sink L be the

sink with the least sink latency @1.2V (T 1:2V
L) and sink G be the sink with the greatest

sink latency @1.0V (T 1:0V
G). Then CLR = T 1:0V

G - T 1:2V
L . When we consider the latency of

sink G @1.2V (T 1:2V
G), then CLR = (T 1:0V

G -T 1:2V
G) +(T 1:2V

G -T 1:2V
L). We call (T 1:0V

G -T 1:2V
G)

the variational part of CLR and (T 1:2V
G -T 1:2V

L) the skew part of CLR. The skew part of CLR

can be reduced by skew optimization techniques. Since the corner sinks of skew are not al-

ways same to the corner sinks of CLR (sink L and G), CLR needs to be measured after any

skew optimization to check CLR improvement. The second strategy for CLR optimization

targets the variational component of CLR. The detailed descriptions of optimizations for

the skew and variational part of CLR are discussed in Section 3.3.

3.2.4 Coordinating multiple optimizations

We found that different clock-tree optimizations exhibit different strength/range and

different accuracy (see Tables 3.3 and 3.6). For example, buffers can be inserted to in-

35

crease delay with the purpose to decrease nominal skew. This optimization offers a great

range (signi�cant strength) because a buffer’s intrinsic delay can be signi�cant. However

its accuracy is low because buffer delay cannot be accurately controlled. Our strategy in

coordinating clock-tree optimizations is to start with optimizations that offer the great-

est range, and then transition to optimizations with greater accuracy. Each step should

decrease the main optimization objective suf�ciently to be within the range of the next

optimization. For example, in the ISPD 2009 contest, top-down wiresizing can decrease

nominal skew from hundreds of ps to 10 - 20 ps. This is suf�cient for top-down wires-

naking to take over and reduce nominal skew to 5 ps where more accurate techniques can

be used. Here we observed that wiresnaking also exhibits a signi�cant range of optimiza-

tion, but we sequenced it after wiresizing because it offer a greater accuracy and because

it increases capacitance, whereas wiresizing decreases it.

3.3 Proposed SoC clock-synthesis methodology

Our proposed clock-network synthesis methodology and its major algorithmic steps

are shown in Figure 3.1. Contango �rst builds an initial tree using a ZST/DME algo-

rithm [23] and alters it to avoid obstacles. It then uses an O(n log n)-time variant of van

Ginneken’s buffer insertion algorithm [84] to ensure small insertion delay and to satisfy

slew constraints. A series of novel clock-tree optimizations are applied next.

3.3.1 Obstacle-avoiding clock trees

As we pointed out in Section 2.3, obstacle-avoiding clock trees can be built by repair-

ing obstacle violations in ZSTs. This approach is attractive when large obstacles abut the

36

Figure 3.1: Key steps of the Contango methodology. Blue boxes representskew reduction
techniques, red octilinear shapes showCLR reductions, and the green box with
thick border reduces both objectives. An Improvement- & Violation-Checking
(IVC) step follows each Clock-Network Evaluation (CNE) using circuit sim-
ulation tools, e.g., SPICE. “Fail” indicates no improvement or having slew
violations, leading to a transition to the next optimization.

chip's periphery because ZSTs naturally avoid areas without clock sinks. This approach is

also attractive when obstacles are small or thin enough thata buffer inserted immediately

before the obstacle can drive the wire over the obstacle, so that no rerouting is necessary.

A third convenient case occurs when a wire can be rerouted around the obstacle without an

increase in length. Most obstacles are rectangular in shape, but such rectangles may abut,

creating rectilinear-shaped obstacles. When two obstacles abut, we cannot place a buffer

between them, and therefore handle them as one compound obstacle. Contango detours

37

