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Abstract

Irreversible computation necessarily results in energy dissipa-
tion due to information loss. While small in comparison to the
power consumption of today’s VLSI circuits, if current trends con-
tinue this will be a critical issue in the near future. Reversible
circuits offer an alternative that, in principle, allows computation
with arbitrarily small energy dissipation. Furthermore, reversible
circuits are essential components of quantum logic. We consider
the problem of testing these circuits, and in particular, generating
efficient test sets. The reversibility property significantly simpli-
fies the problem, which is generally hard for the irreversible case.
We discuss conditions for a test set to be complete, give a number
of practical constructions, and consider test sets for worst-case
circuits. In addition, we formulate the problem of finding min-
imal test sets into an integer linear program (ILP) with binary
variables. While this ILP method is infeasible for large circuits,
we show that combining it with a circuit decomposition approach
yields a practical alternative.

1. Introduction

The original motivation for the study of reversible circuits is
the possibility of nearly energy-free computation. Landauer [14]
showed that traditional irreversible circuits necessarily dissipate
energy due to the erasure of information. It was later shown that, in
principle, it was possible to perform reversible computation with
arbitrarily small energy dissipation [2, 8]. Though the fraction of
the power consumption in current VLSI circuits attributed to infor-
mation loss is negligible, this is expected to change as increasing
packing densities force the power consumption per gate operation
to decrease, making reversible computation an attractive alterna-
tive.

A major new motivation for the study of reversible circuits is
provided by the emerging field of quantum computation [15]. In
a quantum circuit the operations are performed on quantum states
or qubits rather than bits. Since quantum evolution is inherently
reversible, the resulting quantum computation is as well. Classi-
cal reversible circuits form an important class of these quantum
circuits.
�This work was supported by the DARPA QuIST program. The
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Figure 1. Examples of reversible logic gates:
(a) NOT (b) C-NOT (c) Toffoli.

Very little previous research has been done on testing for re-
versible circuits. A notable exception is work done at Montpellier,
where reversibility was studied in the context of on-line testing [3,
4]. In their work reversibility was used to synthesize on-line test
structures for irreversible circuits. In contrast, our focus is on test-
ing of inherently reversible circuits. In particular, we consider the
problem of generating efficient test sets for these circuits. Though
this problem is hard for conventional irreversible circuits, it can be
significantly simplified in our case. Agrawal [1] has shown that
fault detection probability is greatest when the information out-
put of a circuit is maximized. This suggests that it may be easier
to detect faults in reversible circuits, which are information loss-
less, than in irreversible ones. While this previous work focused
on probabilistic testing, here we are concerned with complete de-
terministic testing. One of our results shows that surprisingly few
test vectors are necessary to fully test a reversible circuit under the
multiple stuck-at fault model, with the number growing at most
logarithmically both in the number of inputs and the number of
gates. This provides additional motivation for studying reversible
circuits, namely they may be much easier to test than their irre-
versible counterparts.

2. Notation

A logic gate isreversibleif the mapping of inputs to outputs
is bijective, that is, every distinct input yields a distinct output,
and the number of input and output wires are equal. If it hask
inputs (and outputs), we call it a reversiblek�k gate. Three com-
monly used gates, composing the CNT-gate library, are shown in
Figure 1. The NOT gate inverts the input, the C-NOT gate passes
the first input through and inverts the second if the first is 1, and
the Toffoli gate passes the first two inputs through and inverts the
third if the first two are both 1.

A well-formed reversible circuitis constructed by starting with
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Figure 2. Reversible circuit example. The dot-
ted lines represent the levels in the circuit,
and the small open dots represent possible
stuck-at fault sites.

n wires, forming the basic circuit, and iteratively concatenating
reversible gates to some subset of the output wires of the previous
circuit. The outputs of each reversible gate replace the wires at its
input. This iterative construction naturally gives us the notion of
levelsin the circuit; the inputs to the circuit are at level 0, and the
outputs of any gate are at one plus the highest level of any of its
inputs. For convenience in cases where a wire at the input of a
gate is at leveli and the outputs are at levelj > i +1, we say the
input is at all levels betweeni and j �1 inclusively. This gives us
n wires at each level. Figure 2 shows an example of a reversible
circuit with the levels denoted by dotted lines. Thedepth dof
the circuit is the maximum level, which can be no larger than the
number of gates in the circuit. We will often find it convenient to
use ann-bit vector to refer to the value of the wires at a given level
in the circuit. A binary vector hasweight kif it contains exactly
k ones, and we denote the all-0’s and all-1’s vectors by 0and 1
respectively.

The iterative construction also gives us the notion of asub-
circuit, the part of the original circuit between levelsi and j , or
more specifically, the circuit formed by the gates with outputs at
level greater thani and less thanj + 1. We denote the function
computed by the sub-circuit asfi; j and its inverse asf�1

i; j . If we
omit the first subscripti it should be assumed to be 0. The function
of the entire circuit is thenfd.

We say a reversible circuit isL-constructible, if it can be formed
using theL-gate library. Some important gate libraries used here
are the CNT-gate library mentioned above, the C-NOT gate library
consisting of only C-NOT gates, and theU-gate library which con-
sists of all possible reversiblen�n gates. These three gate libraries
compute the set of even permutations, the set of linear reversible
functions, and the set of all permutations respectively [16]. The
reversible circuit shown in Figure 2 uses the CNT-gate library.

3. Complete Test Sets

The goal here is, given a reversible circuitC and a fault setF ,
to generate a set of test vectors that can be used to detect all faults
in F . We call such a test setcomplete. A complete test set with the
fewest possible vectors isminimal.

Two properties of reversibility simplify the test set generation
problem. The first iscontrollability: there is a test vector that
will generate any given desired state on the wires at any given

level. The second isobservability: any single fault that changes
an intermediate state in the circuit will also change the output.
Neither property holds in general for irreversible circuits.

For most of this paper we adopt the stuck-at fault model used
in testing conventional circuits, which includes all faults that fix
the values of wires in the circuit to either 0 or 1. For reversible
circuits we show that any test set that detects all single faults, also
detects any number of simultaneous faults. In Section 6 we extend
our results to an alternate, and more general, model where the fault
set consists of single gate failures.

3.1 General Properties

The following proposition provides a simple necessary and suf-
ficient condition for a test set to be complete for the stuck-at fault
model.

PROPOSITION 1. Under the single stuck-at fault model a test
set is complete if and only if each of the wires at every level can be
set to both 0 and 1 by the test set.

Proof Assume without loss of generality that a test set does not
set a wire at leveli to 0. A stuck-at 1 fault at this point in the
circuit is then undetectable, since the outputs from the test set are
unaffected.

On the other hand, if all wires at every level can be set to both
0 and 1 by the test set, then a stuck-at fault must affect at least one
test vector, changing the value of the wire at that level from a 0 to
a 1 or vice versa. By the observability property this change will
affect the output.2

The following proposition shows that, in fact, the single stuck-
at fault and multiple stuck-at fault models are equivalent for re-
versible circuits. The intuition behind this property is that in the
case of multiple faults the final fault(s), i.e., those closest to the
outputs, can be detected by working backwards from the outputs.

PROPOSITION 2. Any test set, that is complete for the single
stuck-at fault model is also complete for the multiple stuck-at fault
model.

Proof Suppose we have a counter-example. Then there must be a
complete test set for some reversible circuit under the single fault
model, which is not complete for multiple faults. So at least one
multiple faultM is undetectable by our test set. SinceM is unde-
tectable, the outputs of the circuit to our test set must be the same
as those of the fault-free circuit. NowM is composed of faults
at various levels. Lett be the deepest level containing a sub-fault
of M. Since no sub-faults occur at any level greater thant, the
reversible sub-circuit between levelt and the outputs is identical
to the corresponding sub-circuit in the fault-free circuit. There-
fore, since the outputs to our test set and the reversible sub-circuit
between levelt and the outputs are the same as for the fault-free
circuit, the values of the wires at levelt must also be the same as
for the fault-free circuit. Since our test set is complete under the
single fault model, by Proposition 1 each wire at levelt must take
both the value 0 and 1. However this is a contradiction, since there
is at least one sub-fault at levelt that fixes the value of a wire.2

This equivalence between the single and multiple stuck-at fault
models allows us restrict our attention to the simpler case of single
faults. If we have ann-wire circuit with l gates of sizesk1; : : : ;kl ,
then a total of 2(n+∑l

i=1 ki) single stuck-at faults can occur: stuck-
at 0 and stuck-at 1 faults for each gate input and circuit output.
Reversibility then implies the following lemma.



LEMMA 1. Each test vector covers exactly half of the possible
faults, and each fault is covered by exactly half of the possible test
vectors.

Proof Each test vector sets the bit at each fault site to either 0
or 1, detecting either a stuck-at 1 or stuck-at 0 fault respectively.
Therefore, it detects precisely half of the possible single stuck-at
faults. For a given stuck-at fault there are 2n�1 possible values of
the bits at that level that can detect the fault, namely those that set
the faulty bit to the opposite of the stuck-at value. Since the circuit
is reversible, each of these can be traced back to a distinct input
vector. Therefore, half of the 2n input vectors detect the fault.2

We can obtain some properties of a minimal test set of a circuit
by decomposing the circuit into sub-circuits. For example, the
size of a minimal test set for a reversible circuit is greater than
or equal to that of any of its sub-circuits. On the other hand, the
size of a minimal test set for a circuit formed by concatenating
reversible circuitsC1,: : :, Ck is no greater than the sum of the sizes
of minimal test sets for the individualCi ’s. Finally if two reversible
circuitsC1 andC2, with minimal test sets with sizesjT1j andjT2j
respectively, act on a disjoint set of input/output bits, then the size
of the minimal test set of the circuit formed by concatenatingC1
andC2 is equal to maxfjT1j; jT2jg. These properties can be used
to bound the size of the minimal test set, and in some cases, to
simplify the problem of finding a minimal test set.

3.2 Test Set Construction

The following proposition gives a number of complete test set
constructions implicitly providing upper bounds on the size of the
minimal test set.

PROPOSITION 3. A complete test set for an n-wire circuit with
depth d and a total of l gates with sizes k1; : : : ;kl is given by:

a. any2n�1+1 distinct test vectors

b. the following d+2 test vectorsn
0; 1; f�1

1 ( f1(0)); : : : ; f�1
d ( fd(0))

o

c. some set of
�
log2

�
n+∑l

i=1 ki
��
+2 test vectors.

Proof
(a) The value of a wire at a given level is set to 0 (or 1) by exactly
2n�1 input vectors. Therefore, if the test set contains 2n�1 + 1
vectors, then at least one will set it to 1 (or 0). Since this is true for
all fault sites, by Proposition 1 the test set is complete.
(b) The vectorf�1

i ( fi(0)) sets the wires at leveli to the bitwise in-
verse of the values set by the 0vector. Therefore each wire at every
level can be set to both 0 and 1 by the test set. By Proposition 1
the test set is complete.
(c) To prove this part we first prove that given a reversible circuit
and an incomplete set of test vectors, there is a test vector that can
be added that covers at least half of the remaining faults.

Let mbe the number of test vectors given,FC be the faults cov-
ered by this set, andC the size ofFC. If none of the remaining
2n�m input vectors cover at least half of the remaining faults,
then they must each cover more than half of the faults inFC. By
Lemma 1 every test vector covers exactlyn+∑l

i=1 ki faults and
every fault is covered by exactly 2n�1 test vectors. Therefore, the

number of times faults inFC are covered (by all input vectors cu-
mulatively) is 2n�1 �C. Therefore, we have the following inequal-
ities:

(2n�m)
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�
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The second inequality is false since the number of faults covered
cannot be larger than the total number of faults that can occur.
Therefore we have a contradiction, and there must be a test vector
that can be added to cover at least half of the remaining faults.

By recursively applying this observation we can reduce the
number of uncovered faults to 0 in no more than$

log2
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steps (test vectors).2
Proposition 3 limits the size of the minimal test set based on

the size of the reversible circuit both in terms of its depth and the
number of input/output bits; for the circuit in Figure 2, parts a-c
of the proposition give upper bounds of 9, 7, and 6 test vectors,
respectively. The final part of the proposition implies that a re-
versible circuit can be tested by a very small set of tests. As an
example, a reversible circuit on 64 wires with a million 3�3 gates
can be tested using no more than 23 input vectors. However, while
the first two parts of the proposition give practical constructions,
the last one does not; consequently, it may not be easy to find such
a test set.

4. (L,n)-Complete Test Sets

We define a test set as(L;n)-completefor gate libraryL acting
on n wires, if it is complete for all circuits formed by the library.
The following proposition shows that there is a circuit that requires
such a test set.

PROPOSITION 4. Any reversible gate library L acting on n
wires has an(L;n)-complete set of test vectors that is minimal for
some circuit in the set.

Proof Let C1; : : : ;CN be a set of circuits that computes the set of
all functions computable usingL, andC=C1C

�1
1 � � �CNC�1

N . Then
any test set that is complete forC must be complete for any circuit
formed byL. Therefore, a minimal test set forC is (L;n)-complete.
2

The following proposition characterizes(L;n)-complete test sets
for three classes of reversible circuits:C-constructible,U-constructible,
andCNT-constructible.

PROPOSITION 5.

a. A (C;n)-complete test set must have at least n+1 vectors.
One such set is given by the all-0’s vector and the n weight-1
vectors.

b. A (U;n)-complete test set must have at least2n�1+1 vec-
tors, and any2n�1+1 test vectors will give such a set.

c. A (CNT;n)-complete test set must have at least2n�1 + 1
vectors, and any2n�1+1 test vectors will give such a set.



Proof
(a) Any input to the circuit can be written as a linear combina-
tion of then weight-1 vectors. Furthermore, since the gate library
is linear (under the operation of bitwise XOR), the corresponding
values of the wires at theith level can be written as the same linear
combination of the values for these weight-1 vectors. If any input
vector sets the value of a wire at theith level to 1, then so must
at least one weight-1 vector. Since there are inputs that do, the
weight-1 vectors are sufficient for setting all wires to 1. Further-
more, since the circuit is linear the all-0’s vector sets all wires at
all levels to 0. Therefore, this is a(C;n)-complete test set.

On the other hand, if the test set consists of onlyn input vectors,
we have two possibilities: either the set spans then-dimensional
space or it does not. If the latter is true, a linear reversible cir-
cuit can be constructed that maps the test set into the(n� 1)-
dimensional subspace 0X � � �X, implying that the test set is not
complete. If the test set spans the entiren-dimensional space, we
can construct a linear reversible circuit that maps them to the fol-
lowing linearly independent vectors:

v1 ! 1 0 0 0 � � � 0
v2 ! 1 1 0 0 � � � 0
v3 ! 1 1 1 0 � � � 0

...
...

...
...

vn ! 1 1 1 1 � � � 1

Since the first wire cannot be set to 0 the test set is not complete
for this circuit.
(b) Suppose we have a(U;n)-complete test set with 2n�1 test vec-
tors. Because the gate library computes all permutations, we can
generate a circuit mapping all 2n�1 test vectors to output vectors
of the form 0XX� � �X. This test set does not set the first output
bit to 1, and thus is not complete for thisU-gate circuit. This im-
plies it is not(U;n)-complete. By Proposition 3a any 2n�1+1 test
vectors will give(U;n)-completeness.
(c) Any permutation can be composed from a series of transposi-
tions. TheCNT gate library can construct circuits computing any
even permutation of the input values [16], that is, a permutation
that can be composed from an even number of transpositions. Fol-
lowing the proof for part b, a permutation can map any 2n�1 test
vectors to output vectors of the form 0XX � � �X. If this permutation
is even we have shown that this is an incomplete test set, otherwise
we can add a transposition that exchanges the outputs 00� � �0 and
00� � �1. This new permutation is even and still maps the test vec-
tors to the set of outputs 0XX � � �X, and therefore, the test set is not
complete for thisCNT-circuit. By Proposition 3a any 2n�1+1 test
vectors will give(CNT;n)-completeness.2

5. ILP formulation

While Proposition 3c guarantees that an efficient test set exists
for any reversible circuit, it gives no practical construction. In this
section, we formulate the problem of constructing a minimal test
set as an integer linear program (ILP) with binary variables. We
then use this to find a practical heuristic for generating efficient
test sets.

Alternately we could formulate the problem as an instance of
satisfiability (SAT) [9]. This is distinct from the SAT formula-
tion of the ATPG (automatic test pattern generation) problem [17],
where the object is to find a test pattern that detects a given fault
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Table 1. Minimal test set size distribution for
optimal 3-wire CNT-circuits with respect to
gate count.

or prove the fault undetectable. In our case the ATPG problem is
relatively easy because of reversibility; the difficult part is finding
a minimal test set.

5.1 Basic Formulation

We can formulate the minimal test set problem as an ILP with
binary decision variablesti associated with each input vector;ti
takes a value of one if the corresponding input vector is in the test
set, and zero otherwise. We ensure the completeness of the test set
by a set of 2n(d+1) linear inequality constraints. A minimal test
set is then determined by minimizing the sum of theti ’s.

Minimize t0+ t1+ � � �+ t2n�1

subject to the constraints
2n
�1

∑
i=0

f j (Ti) � ti � 1

2n
�1

∑
i=0

f j (Ti) � ti � 1; for all 0� j � d

whereti 2 f0;1g ; 0� i � 2n�1; and

Ti is then-bit binary expansion of integeri

Each feasible solution gives a complete test set composed of those
vectorsi for which ti = 1. For relatively small circuits this ILP can
be solved efficiently using an off-the-shelf optimization tool such
as CPLEX [12].

Using this formulation and CPLEX 7.0, we obtained minimal
test sets for all optimal 3-wire CNT-circuits. CPLEX was able to
solve the ILP for each circuit in a fraction of a second on a Sun
SPARC. Table 1 gives a distribution of minimum test set size with
respect to the number of gates in the circuit. We should note that
the optimal CNT implementation of a given function is not unique,
and therefore the distribution in Table 1 may be dependent on the
particular optimal set chosen.

As expected, the number of test vectors needed generally in-
creases with the length of the circuit. However, there are long
circuits that have more efficient test sets than much shorter cir-
cuits. The largest minimal test set had 4 vectors, however, we can
construct suboptimal circuits that require 5 test vectors.

5.2 Circuit Decomposition Approach

Solving the ILP exactly is feasible for small circuits; however,
since the number of variables increases exponentially with the
number of input/output bits, it is impractical for large circuits. An
alternate approach is to decompose the original circuit into smaller



1) Partition circuit into disjoint sub-circuits
C0; : : : ;Cl each acting on �m wires

2) Initialize test set = fg and i = 0
3) Generate ILP for Ci as in Section 5.1
4) Add constraints for each vector in test set
5) Solve ILP
6) Incorporate new test vectors into test set,

setting any unused wires of new vectors to
don’t cares

7) Apply Ci to test set, setting don’t cares at
inputs of Ci to 0

8) If i < l , i = i+1 and go to Step 3
9) Set remaining don’t cares in test set to 0
10) Apply C�1 to test set to get complete test set

Figure 3. Algorithm for complete test set gen-
eration based on circuit decomposition.

sub-circuits acting on fewer input/output bits, and use the ILP for-
mulation iteratively for these sub-circuits combining the test vec-
tors dynamically; a similar approach has been used for irreversible
circuits [10]. While the resulting test set is not guaranteed to be
minimal, it is generally small enough to enable efficient testing.
Furthermore, it may be possible to use lower bounds to ensure the
test set is not much larger than a minimal one. For example, the
size of the minimal test set of a sub-circuit can be used to bound
that of the larger circuit.

The algorithm shown in Figure 3 uses this decomposition ap-
proach. First the circuit is decomposed into a series of circuits
acting on a smaller number of wires. One way to do this is to start
at the input of the circuit and add gates to the first sub-circuitC0
until no more can be added without havingC0 act on more thanm
wires. Then we continue withC1, and so on until the entire circuit
has been decomposed. The remaining steps in the algorithm are
best illustrated by an example.

Consider the decomposition of the reversible circuit in Fig-
ure 4. Though the entire circuit acts on six wires, each sub-circuit
acts on no more than four. Using the ILP formulation onC0 gives
test vectors:

x0 x1 x2 x3 x4 x5
v0 = X 0 1 X 1 1
v1 = X 1 0 X 0 0
v2 = X 1 1 X 1 0

C0

=)

x0 x1 x2 x3 x4 x5
X 1 1 X 0 0
X 1 0 X 1 0
X 0 0 X 1 1

where the X’s represent don’t cares and the left and right halves
represent the test vectors at the input and output ofC0, respectively.
Sub-circuitC1 acts on wiresx0, x1, x4 andx5. We generate the ILP
for C1, and add the following constraints:

x0 x1 x4 x5
X 1 0 0
X 1 1 0
X 0 1 1

2 T )

Constraints
t4 + t12 � 1
t6 + t14 � 1
t3 + t11 � 1

Solving this ILP gives the solutiont6 = t11 = t12= 1. Incorporat-
ing these values into the previous test vectors we have:

x0 x1 x2 x3 x4 x5
1 1 1 X 0 0
0 1 0 X 1 0
1 0 0 X 1 1

C1

=)

x0 x1 x2 x3 x4 x5
0 1 1 X 0 0
1 1 0 X 1 0
1 0 0 X 1 1

C1 C2

x

x

x

x

x

x

0

1

2

3

4

5

0C

Figure 4. Circuit decomposition example.

Sub-circuitC2 acts on wiresx0, x1, x2, andx3. We generate the
ILP for this sub-circuit, and incorporate the current test set using
the following constraints:

x0 x1 x4 x5
0 1 1 X
1 1 0 X
1 0 0 X

2 T )

Constraints
t6 + t7 � 1
t12 + t13 � 1
t8 + t9 � 1

Solving this ILP gives solutionst5, t7, t8, andt12. The last three
can be incorporated into the previous test set, however the first test
vector must be added:

x0 x1 x2 x3 x4 x5
0 1 1 1 0 0
1 1 0 0 1 0
1 0 0 0 1 1
0 1 0 1 X X

C2
=)

x0 x1 x2 x3 x4 x5
0 1 1 0 0 0
0 1 0 0 1 0
1 1 0 0 1 1
1 0 0 1 X X

Filling the don’t cares with 0’s and applyingC�1 to the test set
yields a complete test set forC. While the resulting test set is not
guaranteed to be minimal in general, in this case it is, as can be
shown by applying the ILP method on the entire circuit.

5.3 Test Set Compaction

The circuit decomposition method in the previous section will
generally lead to redundant test sets. One way to reduce this redun-
dancy is to compact the test set, that is, find the smallest complete
subset. This approach has been considered previously for use with
ATPG (automatic test pattern generation) algorithms for conven-
tional circuits [11, 6, 7].

The ILP formulation in Section 5.1 can be used to perform this
test set compaction. We simply eliminate all test vectors that are
not in the original complete test set, along with the correspond-
ing columns in the constraint matrix. Generally, this ILP can be
solved more efficiently than the minimal test set ILP, since it has
significantly fewer variables.

5.4 Simulation Results

In this section we discuss the results of simulations we have
conducted to evaluate the performance of our algorithm. We gen-
erated random CNT-circuits of various lengths over 8, 16, 24 and
32 wires. The circuits were generated by selecting at random from
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Figure 5. Average test set size vs. circuit
length for circuit decomposition algorithm
limiting sub-circuit size to 8 wires.

the set of all allowable NOT, C-NOT, and Toffoli gates. Each cir-
cuit was decomposed into sub-circuits acting on at most 8 wires,
and our algorithm was used to find a complete test set. Figure 5
shows the average number of test vectors needed with respect to
the circuit length. At least 150 circuits were generated for each
data point.

The average execution time for the algorithm seemed to in-
crease linearly with circuit length and did not vary very much with
the number of input/output wires, all with the exception of the
8-wire case for which execution time appeared to increase expo-
nentially with circuit length. This is most likely due to the fact
that for this latter case the number of constraints increases linearly
with the number of gates, yielding increasingly difficult ILPs. On
the other hand, for the circuits on more than 8 wires, an increase in
the length of circuit does not generally lead to significantly harder
individual ILPs, rather only a (linearly) larger number of them to
solve.

Test compaction, as expected, was most effective for longer
circuits, eliminating an average of approximately one redundant
test vector for circuits lengths of 800 or more.

6. Cell Fault Model

While the use of the stuck-at fault model has been very ef-
fective in conventional circuit testing, other fault models may be
more appropriate for reversible circuits, especially in the quantum
domain. For example, the cell fault model [13], where the func-
tion of the faultyk� k gate changes arbitrarily from the desired
function, may be more realistic. In this section we extend some of
our results to this model.

The following proposition provides a simple necessary and suf-
ficient condition for a test set to be complete for the cell fault
model.

PROPOSITION 6. Under the cell fault model a test set is com-

plete if and only if the inputs of every k�k gate in the circuit can
be set to all2k possible values by the test set.

Proof If a test set does not set the input wires of a gate to a partic-
ular value saya, then it would not be able to detect a failure in this
gate that only affects the output ofa.

On the other hand, if the input wires of every gate in the circuit
can be set to all possible values by the test set, then any single-gate
failure will affect at least one test vector, changing the value at
the output of the gate. By the observability property of reversible
circuits, this will be reflected in a change at the output.2

Let g1; : : : ;gl be the gates in a reversible circuit, andk1; : : : ;kl
the respective gate sizes. If we consider every possible value at the
input of each gate as representing a distinct fault, the total number
of faults that need to be covered is∑l

i=1 2ki . Under this definition,
we have the following lemma.

LEMMA 2. Each input vector covers exactly l faults, and a
fault associated with a k� k gate is covered by exactly2n�k in-
put vectors.

Proof Each input vector sets the bits at the inputs of each gate
to some value. Therefore, since there arel gates, the vector can
detectl faults. For a given fault associated with ak�k gate there
are 2n�k possible values for then bits at that level that can detect
it. Since the circuit is reversible, each of these can be traced back
to a distinct input vector.2

The following proposition, which is analogous to Proposition 3,
gives upper bounds on the size of the minimal test set under the cell
fault model.

PROPOSITION 7. A complete test set under the cell fault model
for an n-wire reversible circuit with a total of l gates with sizes
k1 � k2 � : : :� kl is given by

a. any2n�2n�k1 +1 distinct test vectors

b. a set of
�
∑l

i=1 2ki
�
� l +1 test vectors

c. some set of at most∑l
i=1

l
2ki

i

m
test vectors

Proof
(a) For anyk� k gate in the circuit there are 2n�k distinct inputs
that yield a particular value at its input. Therefore, if the test set
has 2n�2n�k1 +1 vectors (implying that fewer than 2n�k are not
included) then it must include at least one such input. Since this
is true for all gates in the circuit, by Proposition 6, the test set is
complete.
(b) Any input vector will coverl faults leaving∑l

i=1 2ki � l . By the
controllability property we can cover these with one test vector
each. Therefore, all of the faults can be covered with no more than
∑l

i=1 2ki � l +1 test vectors.
(c) We first prove that given an incomplete set ofm test vectors
covering faults in the setFC, there must be a test vector that covers
at least

l �

$
∑

f2FC

2�k( f )

%
(1)

of the remaining faults, wherek( f ) is the size of the gate associ-
ated with faultf .

Suppose this is false. By Lemma 2 every test vector covers
exactly l faults and a faultf is covered by exactly 2n�k( f ) input
values. Therefore the number of times faults inFC can be covered



is ∑ f2FC
2n�k( f ) and the current test set accounts form� l of these.

Furthermore, each of the remaining input vectors must cover more
than∑ f2FC

2�k( f ) of the already covered faults, otherwise our as-
sertion would be true. Combining these we have the following
inequalities.

(2n�m)

 
∑

f2FC

2�k( f )

!
< ∑

f2FC

2n�k( f )�m� l

l < ∑
f2FC

2�k( f )

The second inequality is false since the right side can be no larger
than l . Therefore we have a contradiction, and our proposition
must be true.

We can iteratively apply this property to obtain an upper bound
on the number of test vectors needed for completeness. A weak
form of the above result enables a simple closed form upper bound.
To cover the first 2kl faults we need at mostd2kl =le test vectors,
since each test vector we add coversl faults. To cover the next
2kl�1 faults we need at mostd2kl�1=(l � 1)e test vectors, and so
on. Thus, we can cover all single cell faults using no more than
∑l

i=1

�
2ki=i

�
test vectors.2

For a reversible circuit on 64 wires with a million 3�3 gates
parts a-c of Proposition 7 give upper bounds of approximately
1019, 7 � 106 and 106 test vectors, respectively. However, since
part c uses the property illustrated in Equation 1 very conserva-
tively in order to obtain a closed form, a much tighter bound can
be obtained by applying this property directly. In fact, by itera-
tively applying this property, one can show that no more than 108
test vectors are needed for complete testing.

To obtain an ILP formulation for the cell fault model only the
constraints given in Section 5 need to be modified. For eachk�k
gate at each level we generate 2k constraints, one for each of the
possible inputs to the gate. The circuit decomposition method
from Section 5.2 as well as the test set compaction method in Sec-
tion 5.3 can be applied as in the stuck-at fault case.

7. Conclusions and Future Work

We use the property of reversibility to simplify the testing prob-
lem for reversible circuits, and give conditions for an input set
to fully test a reversible circuit under both the stuck-at and cell
fault models. We develop some theoretical results on test set con-
structions and(L;n)-complete test sets for several reversible gate
libraries. The problem of finding minimum size test sets is for-
mulated as an integer programming problem. Because this formu-
lation is intractable for large circuits, we give a circuit decompo-
sition method, incorporating the ILP formulation. This approach
yields complete, though not necessarily minimal, test sets. Simu-
lation results show that the resulting test sets are generally small.

An ongoing area of work is determining good lower bounds
on the size of the minimal test set. This would be useful in eval-
uating the efficiency of complete test sets generated by heuristic
algorithms such as ours. Towards this latter goal, we also plan
to search for non-trivial test circuits with known minimal test set
sizes. In addition to fault detection, we also plan to study fault
diagnosis, that is, using test sets to localize faults. As with fault
detection, fault diagnosis may be much easier for reversible cir-
cuits than for irreversible ones. Finally, though we have focused
on testing of classical reversible circuits here, we hope to extend

our work to non-classical quantum circuits as well. In particular,
the work using the cell fault model in Section 6 may be useful for
the quantum case.
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