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Abstract. Effective search for graph automorphisms allows identifying
symmetries in many discrete structures, ranging from chemical molecules
to microprocessor circuits. Using this type of structure can enhance visu-
alization as well as speed up computational optimization and verification.
Competitive algorithms for the graph automorphism problem are based
on efficient partition refinement augmented with group-theoretic pruning
techniques. In this paper, we improve prior algorithms for the graph au-
tomorphism problem by introducing simultaneous refinement of multiple
partitions, which enables the anticipation of future conflicts in search and
leads to significant pruning, reducing overall runtimes. Empirically, we
observe an exponential speedup for the family of Miyazaki graphs, which
have been shown to impede leading graph-automorphism algorithms.

1 Introduction

An automorphism (symmetry) of a graph is a permutation of the graph’s ver-
tices that preserves the graph’s edge relation. The set of all symmetries of a
graph forms a group1 under functional composition. The graph automorphism
problem seeks a generating set for the automorphism group of a graph. Closely
related to graph automorphism is the problem of canonical labeling which as-
signs a unique signature to a graph that is invariant under all possible labelings
of its vertices. Graph automorphisms and canonical labelings are related to the
functional properties of the combinatorial objects in question. In a representa-
tive application developed in [3, 2], a CNF (conjunctive normal form) formula is
modeled by a graph and passed to a symmetry detection program. During sub-
sequent symmetry-breaking, these symmetries are used to augment the formula
with a set of symmetry-breaking predicates. These predicates do not change the
formula’s satisfiability, but help SAT solvers prune away symmetric portions of
the search space.

Graph symmetry and canonical labeling have been extensively studied over
the past five decades. The nauty program [18, 19], developed by McKay in
1 A group is an algebraic structure comprising a non-empty set of elements with a

binary operation that is associative, admits an identity element, and is invertible.
For example, the set of integers with addition forms a group. A generating set of
a group is a subset of the group’s elements whose combinations under the group
operation generate the entire group.
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1981, pioneered the first high-performance algorithms that inspired all subse-
quent tools. Almost two decades later, Darga et al [9] observed that the use of
an adjacency matrix in nauty could lead to asymptotic inefficiencies in deal-
ing with sparse graphs. This motivated the development of a new tool called
saucy [9, 10, 16], which was limited to just finding a set of symmetry generators,
but was three orders of magnitude faster than nauty on very large and very
sparse graphs. Closely following nauty’s canonical labeling algorithms were two
other tools, namely, bliss [13, 14] and nishe [22]. The search routines in bliss
improved the handling of large and sparse graphs, and the branching heuristics
in nishe facilitated a polynomial-time solution for the Miyazaki graphs [20], a
family of graphs that nauty requires exponential time to process.

Since the emergence of the first version of saucy in 2004 (saucy 1.1) [9],
different algorithmic enhancements improved saucy’s performance over a wide
range of graphs with both theoretical and practical interest. The second ver-
sion of saucy (saucy 2.0) [10] incorporated the observation that the symmetry
generators of sparse graphs were mostly sparse. The major algorithmic changes
that were introduced in saucy 2.0 separated the search for symmetries from the
search for a canonical labeling. Further improvements to saucy’s data structures
and algorithms were reported in saucy 2.1 [16].

In this paper, we present saucy 3.0 which performs simultaneous partition
refinement to anticipate and avoid possible future conflicts. The procedure aug-
ments the method introduced in saucy 2.1 whereby nodes in the search tree rep-
resent sets of vertex permutations encoded by an ordered partition pair (OPP)
of graph vertices. The basic idea of the new procedure is to refine the top and
bottom partitions of an OPP at the same time, making sure that the two parti-
tions conform to each other (according to the graph’s edge relation) after each
refinement step. We implemented this enhancement in saucy 3.0 and tested its
performance on a wide variety of graph benchmarks. Our experimental evalu-
ation shows that this enhancement can significantly prune the search tree for
many graph families, such as the Miyazaki graphs. Furthermore, the concept of
simultaneous refinement helps us better understand and explain the validity of
some of the algorithms that were previously presented in saucy 2.1.

In the remainder, we first review some preliminaries in Section 2. Then, we
discuss saucy’s baseline algorithms in Section 3. The new partitioning algo-
rithm based on the concept of simultaneous refinement is presented in Section 4.
Section 5 establishes the correctness of “matching OPP” pruning (this pruning
mechanism was presented in saucy 2.1). The results of our experimental study
are provided in Section 6. Finally, we discuss conclusions in Section 7.

2 Preliminaries

We assume familiarity with basic notions from group theory, including such
concepts as groups, subgroups, group generators, cosets, orbit partition, etc.
Information on different group theoretic concepts is available in many abstract
algebra texts such as [11]. In this paper, we focus on the automorphisms of an
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n-vertex colored graph G whose vertex is V = {0, 1, ..., n − 1}. A permutation
of V is a bijection from V to V , and a symmetry of G is a permutation of V
that preserves G’s edge relation. Permutation α, when applied to G, produces
the permuted graph Gα. Every graph has a trivial symmetry, called the identity,
that maps each vertex to itself. The set of symmetries of G forms a group under
functional composition. This group is the symmetry group of G, and is denoted
by Aut(G). Given G, the objective of any symmetry detection tool is to find a
set of group generators for Aut(G).

An ordered partition π = [W1|W2| · · · |Wm] of V is an ordered list of non-
empty pair-wise disjoint subsets of V whose union is V . The subsets Wi are
called the cells of the partition. Ordered partition π is unit if m = 1 (i.e.,
W1 = V ) and discrete if m = n (i.e., |Wi| = 1 for i = 1, · · · , n). An ordered
partition pair (OPP) π is specified as

Π =
[
πT
πB

]
=

[
T1 |T2 |· · · |Tm
B1 |B2 |· · · |Bk

]
with πT and πB referred to, respectively, as the top and bottom ordered par-
titions of π. OPP π is isomorphic if m = k and |Ti| = |Bi| for i = 1, · · · ,m;
otherwise it is non-isomorphic. In other words, an OPP is isomorphic if its top
and bottom partitions have the same number of cells, and corresponding cells
have the same cardinality. An isomorphic OPP is matching if its corresponding
non-singleton cells are identical. We will refer to an OPP as discrete (resp. unit)
if its top and bottom partitions are discrete (resp. unit).

OPPs lie at the heart of saucy’s symmetry detection algorithms, since each
OPP compactly represents a set of permutations. This set of permutations might
be empty (non-isomorphic OPP), might have only one permutation (discrete
OPP), or might consist of up to n! permutations (unit OPP). Several OPP
examples and the permutation set encoded by them are provided below.

– Discrete OPP:
[

2
1

∣∣∣∣ 0
2

∣∣∣∣ 1
0

]
= {(0 2 1)}

– Unit OPP:
[

0, 1, 2
0, 1, 2

]
= {ι, (0 1) , (0 2) , (1 2) , (0 1 2) , (0 2 1)}

– Isomorphic OPP:
[

2
1

∣∣∣∣ 0, 1
2, 0

]
= {(1 2) , (0 2 1)}

– Matching OPP:
[

1
3

∣∣∣∣ 0, 2, 4
0, 2, 4

∣∣∣∣ 3
1

]
= (1 3) ◦ S3 ({0, 2, 4})

– Non-isomorphic OPPs:
[

0, 2| 1
1| 2, 0

]
= ∅,

[
2| 0| 1
1| 2, 0

]
= ∅

3 Baseline Algorithms

Similar to other combinatorial search algorithms, saucy explores the space of
permutations by building a search tree and systematically traversing it. However,
the representation of search nodes as OPPs in saucy is unique. The root of the
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tree is a unit OPP which is initially refined based on the colors and degrees of the
vertices of the input graph. The depth-first traversal of the permutation space is
started by choosing a target vertex from a non-singleton cell of the top partition
and mapping it to all the vertices of the corresponding cell of the bottom parti-
tion. To propagate the constraints of the graph (i.e. the graph’s edge relation),
partition refinement is invoked after each mapping decision. The mapping pro-
cedure continues until the OPP becomes discrete, matching, or non-isomorphic
(the latter is referred to as a conflict). In either case, saucy backtracks one level
up, and maps the target vertex to the remaining candidate vertices. The search
ends when all possible mappings are exhausted.

In addition to partition refinement, saucy exploits two types of pruning
mechanisms: group-theoretical and OPP-based. To enable group-theoretical prun-
ing, namely coset and orbit pruning, the left-most path of the tree should cor-
respond to a sequence of subgroup stabilizers ending in the identity. In other
words, the decisions along the left-most path maps each vertex to itself. This
phase of the search is called subgroup decomposition. Note that no such require-
ment is needed in the remaining parts of the search tree. In contrast, OPP-based
pruning mechanisms are optional techniques that assist saucy’s algorithms to
avoid unnecessary search. Two of these techniques, embedded in saucy 2.1, are
non-isomorphic OPP and matching OPP pruning.

In this paper, we introduce an enhanced partition refinement procedure that
refines the top and bottom partitions of an OPP simultaneously. Our simulta-
neous refinement anticipates the conflicts that might arise in certain subtrees,
and prunes the entire subtree without exploring it. The idea here is to capture
conflicts that might be overlooked by the conventional refinement procedure.

4 Conflict Anticipation via Simultaneous Refinement

Partition refinement in saucy is adapted from nauty, and nauty’s refinement
is based on the concept of equitable partitions. Partition π = [W1|W2| · · · |Wm]
is equitable (with respect to graph G) if, for all v1, v2 ∈ Wi (1 ≤ i ≤ m), the
number of neighbors of v1 in Wj (1 ≤ j ≤ m) is equal to the number of neigh-
bors of v2 in Wj . Although saucy’s partition refinement is adapted from nauty,
the search tree in saucy is completely different from that in nauty. The nodes
of nauty’s tree are single ordered partitions, while the nodes of saucy’s
tree are ordered partition pairs. In nauty, an equitable partition is obtained
by invoking partition refinement after each vertex individualization. Extending
this to OPPs, the refinement procedure in saucy refines both partitions of an
OPP simultaneously after each mapping decision, until 1) both partitions be-
come equitable and the resulting OPP is isomorphic, or 2) the resulting OPP is
non-isomorphic indicating an empty set of permutations, i.e., a conflict. In saucy
2.1 and earlier, simultaneous refinement was basically an algorithmic enhance-
ment that detected conflicts (if any existed) earlier during refinement, without
fully establishing an equitable OPP (an OPP whose top and bottom partitions
are both equitable), and then examining the resulting OPP to see whether it
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Fig. 1. A 20-vertex 46-edge graph with symmetry group of size 32.

root

11→11 11→1 11→0

14→4

4→14 4→12 4→13 4→15

14→2

7→19 7→16

14→3

8→16 8→19

14→5

7→16 7→19

11→10

4 gens 1gen Orbit pruned

9→18 9→17 6→17 6→18 9→17 9→18 6→18 6→17 6→17 6→18 9→18 9→17

Fig. 2. The search tree constructed by saucy 2.1 for the graph in Figure 1.

was isomorphic/non-isomorphic. In implementation, saucy first refines the top
partition until it becomes equitable, records where the cell splits occur, then
starts refining the bottom partition, and compares the splitting locations of the
bottom to the top whenever a new split occurs (i.e., checks the isomorphism of
the two partitions after each split).

In this section, we argue that the significance of simultaneous refinement is
not limited to the early detection of “non-isomorphic equitable OPPs”. In partic-
ular, we demonstrate cases where the resulting equitable OPP is isomorphic, but
the OPP still violates the edge relation of the graph. We illustrate such a case,
and explain why conventional refinement fails to detect the conflict in that case.
We then present an enhanced simultaneous refinement procedure that detects
such cases and does not explore them. We discuss the impact of our proposed
refinement procedure on the search tree constructed for our example.

Consider the 20-vertex 46-edge graph shown in Figure 1. The search tree
generated by saucy 2.1 for this graph is shown in Figure 2. This search tree
produces 16 conflicts (non-isomorphic OPPs), indicated by red-shaded nodes.
In the remainder of this section, we focus on the path from the root that maps
11 7→ 0 and then 14 7→ 4. The OPPs in Figure 3a, labeled with (1), (2) and (3),
represent the nodes of the search tree at the root, after mapping 11 7→ 0, and
after mapping 14 7→ 4, respectively.

In saucy 2.1, the isomorphic OPP (3), obtained after mapping 14 7→ 4, is not
considered to be a conflict node and triggers further vertex mappings (namely,
4 7→ 14, 4 7→ 12, 4 7→ 13, and 4 7→ 15). However, this OPP violates the edge
relation of the graph in Figure 1. To see this, consider the edge that connects
13 to 16. This edge, according to OPP (3), should be mapped to another edge
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Fig. 3a. The search nodes of the tree in Figure 2. OPP (1) is at the root, OPP (2) is
after mapping 11 7→ 0, and OPP (3) is after mapping 14 7→ 4.

ˆ
0 10 1 11 12,13,15 14 2,4,5,3 17,18 8,7 6,9 16,19

˜
(4)ˆ

0 10 1 11 13 12,15 14 2,4,5,3 18 17 8,7 6,9 16 19
˜

(5)ˆ
0 10 1 11 13 12 15 14 2,4,5,3 18 17 8,7 6,9 16 19

˜
(6)

Fig. 3b. The refinement of the top partition of OPP (2) to get OPP (3).

ˆ
11 1 10 0 3,5,2 4 13,14,12,15 9,6 19,16 18,17 7,8

˜
(7)ˆ

11 1 10 0 3 5,2 4 13,14,12,15 9 6 19,16 18,17 7 8
˜

(8)ˆ
11 1 10 0 3 2 5 4 13,14,12,15 9 6 19,16 18,17 7 8

˜
(9)

Fig. 3c. The refinement of the bottom partition of OPP (2) to get OPP (3).

that connects 3 to 7, since OPP (3) maps 13 7→ 3, and 16 7→ 7. Nevertheless, no
such edge exists between 3 and 7 in Figure 1, and hence, OPP (3) is a conflict.

The question now is why the refinement procedure failed to detect the above
conflict? Or, in other words, why was OPP (3) found to be isomorphic? To answer
this question, we should follow the trace of the refinement procedure which is
performed on OPP (2) to get OPP (3) after mapping 14 7→ 4. As elaborated
earlier, saucy first refines the top partition until it becomes equitable, then
refines the bottom partition and checks the isomorphism of the bottom to the top
whenever a new split occurs. The step by step refinement of the top and bottom
partitions when 14 7→ 4 is shown in Figure 3b and Figure 3c, respectively.

The refinement on the top starts by first making 14 a singleton cell (partition
(4)). According to the graph of Figure 1, 14 is connected to 12,15,18 and 19,
but not to 13, 17 and 16. Hence, refinement separates 12 and 15 from 13 (this
makes 13 a singleton cell), 18 from 17, and 19 from 16 (partition (5)). The
refinement continues by looking at the connections of one of the newly created
cells. Here, saucy picks the singleton cell 16. According to the graph, 16 is
connected to 11,13,15,17,18 and 19. This separates 15 from 12 (partition (6)).
The top partition is now equitable, i.e., no further refinement is implied.

After refining the top partition, saucy starts refining the bottom partition.
This is done by first making 4 a singleton cell (partition (7)). Since 4 is connected
to 2,5,8 and 9, refinement separates 2 and 5 from 3 (this makes 3 a singleton
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root

11→11 11→1 11→0

14→4 14→2 14→3 14→5

11→10

4 gens 1gen Orbit pruned

Fig. 4. The search tree constructed by saucy 3.0 for the graph in Figure 1.

cell), 9 from 6, and 8 from 7 (partition (8)). Note that, at this point, partition
(8) is isomorphic to partition (5), i.e., no conflict is detected. This time saucy
picks the singleton cell 7, since it had previously chosen 16 from the top, and 7
is at the same index on the bottom as 16 on the top. According to the graph, 7
is connected to 0,2,5,6,8 and 9. Since 7 is connected to both 2 and 5, no further
refinement is implied. At this point, saucy should detect the conflict that 16 on
the top separated 15 from 12, but 7 on the bottom did not distinguish 2 from 5.
However, since no new cell is created on the bottom, saucy does not invoke the
isomorphism check, and falsely assumes that the bottom stays isomorphic to the
top. Note that the failure to detect this conflict is not a bug in refinement, since
nauty’s (and essentially saucy’s) refinement procedure refines one partition at
a time, and checks isomorphism once both partitions are equitable. After refining
based on 7, saucy refines based on 6. Vertex 6 is connected to 1,3,5,7,8 and 9.
Since 6 is connected to 5 but not 2, it separates 5 from 2 (partition 9). The
bottom partition is now equitable and isomorphic to the top.

After the refinement procedure ends, saucy builds isomorphic OPP (3), and
starts exploring it by mapping 4 to 14, 12, 13, and 15. However, this phase of
the search is superfluous, since we know that OPP (3) violates the graph’s edge
relation, and its further exploration will always result in conflicts. Another case
of a conflicting isomorphic OPP is when two corresponding singleton cells of the
top and bottom partitions have different connections to the other singleton cells
of their own partition. In this case, the conflict is again overlooked by saucy’s
conventional refinement procedure, since singleton cells cannot be partitioned to
smaller cells (i.e., no new cell splitting occurs), and hence, the top and bottom
partitions remain isomorphic after this step of refinement.

To detect the conflicts that might remain undetected during partition refine-
ment, we enhanced saucy’s partition refinement in two ways; 1) the isomorphism
of the bottom partition to the top is checked after each refinement step, rather
than after each time a new split occurs, and 2) in addition to the isomorphism
check, we also ensure that the connections of each newly created cell on the bot-
tom match the connections of its corresponding cell on the top. These two new
checks verify that the top and bottom partitions remain isomorphic and con-
forming (according to the graph’s edge relation) after each refinement step. In
our implementation, the overhead of the first check is negligible, as it is per-
formed within the main refinement loop, but the second check requires an extra
iteration over the outgoing edges of the vertices of the newly created cells. We
would like to emphasize that our enhancement is enabled by the OPP-encoding
of permutations that is unique to saucy’s search for automorphisms.
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Figure 4 shows the search tree for the graph in Figure 1 when our new
simultaneous refinement is invoked. Comparing this search tree to that in Figure
2, the number of conflicts is reduced from 16 to 4.

5 The Validity of Matching OPP Pruning

When matching OPP π is encountered in the search, saucy “constructs” a
permutation α from π by mapping the vertices in matching cells identically. It
then uses α to prune the entire subtree rooted at this OPP in one of two ways;
either 1) α is an automorphism of the graph, which means that the subtree is a
coset of the stabilizer subgroup, and α is a coset representative, or 2) α is not an
automorphism, which indicates that the subtree is not a coset, and the search for
a coset representative in that subtree will always fail. In this section, we show
that, if π is found to be matching by our enhanced simultaneous refinement
(described in Section 4), the second case cannot occur, i.e., α must always be an
automorphism of the graph. The proof of this claim is presented next.

Assume that π is an OPP that is found matching by our enhanced refinement
procedure. This means that π is equitable, isomorphic, matching, and conforming
according to G’s edge relation. Let α be the permutation that corresponds to π,
i.e., the permutation that maps the vertices in π’s non-singleton cells identically.
To show by contradiction that α is a symmetry of G, assume that it is not. Then,
there must be an edge in Gα that does not exist in G (or vice versa). Assume
that this edge connects v1 to v2. Trivially, both v1 and v2 cannot be mapped
identically in α, otherwise, an edge between v1 and v2 in G would map to the
exact same edge in Gα. Hence, permutation α either maps v1 to v′

1 (v1 6= v′
1), or

v2 to v′
2 (v2 6= v′

2), or both. We first consider the case where v1 is mapped to v′
1

but v2 is mapped identically (this is similar to the case where v2 is mapped to
v′
2 but v1 is mapped identically). This case contradicts our assumption that π

is equitable, since v1 and v′
1 were both singleton cells of π, and having an edge

between v1 and v2 but not between v′
1 and v2 would imply further refinement

on π. Now consider the case where v1 is mapped to v′
1 and v2 to v′

2. This case
contradicts our assumption that π is conforming according to G’s edge relation,
since v1, v2, v′

1 and v′
2 were all singleton cells of π, and having an edge between

v1 and v2 but not between v′
1 and v′

2 would violate G’s edge relation.

6 Experimental Evaluation

We implemented our simultaneous partition refinement technique in saucy 3.0,
and tested its performance on 1445 graph benchmarks drawn from a wide variety
of domains. Our experiments were conducted on a SUN workstation equipped
with a 3GHz Intel Dual-Core CPU, a 6MB cache and an 8GB RAM, running
the 64-bit version of Redhat Linux. A time-out of 1000 seconds was applied.
Table 1 lists the benchmark families used in our experiments. For these fam-
ilies, the name, the number of instances, the size of the smallest and largest
instances, and a short description are provided. The families are divided into
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Table 1. Benchmark families

Family Instances Smallest Instance Largest Instance Description
vertices edges vertices edges

mz [20, 15] 25 40 60 1,000 1,500 Original Miyazaki graphs
cmz [15] 46 120 90 200 1,900 (mz), and their variants
mz-aug [15] 25 40 92 1,000 2,300 designed to mislead the
mz-aug2 [15] 24 96 152 1,200 1,900 bliss cell selector

circuit [23, 1] 33 3,575 14,625 4,406,950 8,731,076 saucy benchmarks from
router [7, 12] 3 112,969 181,639 284,805 428,624 place-route, verification,
roadnet [6] 56 1,158 1,008 1,679,418 2,073,394 routers & road networks

application [8] 300 464 2,066 32,813,545 65,487,132 SAT 2011 application,
crafted [8] 300 105 320 776,820 3,575,337 crafted and random
random [8] 600 1,165 5,375 310,000 680,000 CNF instances

binnet [17, 4] 33 1,000 720 6,000,000 4,391,515 binary networks

four categories. These categories were chosen based on the general construction
of the graphs, considering metrics such as the number of vertices and edges, con-
nectivity and sparsity. The first category is the Miyazaki graphs [20, 15], which
nauty takes exponential time to process. The second category contains bench-
marks used to test earlier versions of saucy. It represents graphs from various
domains, such as logic circuits and their physical layouts [23, 1], internet routers
[7, 12], and road networks in the US states and its territories [6]. The third cat-
egory includes CNF benchmarks from the international SAT 2011 competition
[8]. The fourth category consists of graphs not previously reported in graph au-
tomorphism or satisfiability research. These graphs were proposed for testing
community-detection algorithms [17, 4] 2.

Figure 5 compares the number of conflicts produced by saucy 3.0 and saucy
2.1. If a benchmark is not processed within the time-out, the number of conflicts
encountered right before termination is reported. The results show that saucy
3.0 always produces fewer or the same number of conflicts. This is expected, as
our proposed refinement procedure anticipates and avoids certain conflicts that
might arise in saucy 2.1. Of all the benchmark families, mz-aug and mz-aug2
benefit most from the new refinement procedure. For these two families, the
highest number of conflicts reported by saucy 3.0 was 696 (for mz-aug-50). In
contrast, the number of conflicts reported by saucy 2.1 was at least 10,000 for
46 out of 49 mz-aug and mz-aug2 instances. Of the remaining two Miyazaki
families, mz did not experience any change in its number of conflicts, and cmz
showed a slight improvement for 5 out of its 46 instances (8 fewer conflicts were
reported for those 5 instances). Of the graphs from circuits, internet routers,
and road networks, only one instance (from circuit) showed significant conflict

2 We used the implementation of the algorithm described in [17] (available at [4])
to generate 33 undirected and unweighted binary networks. We set the number of
nodes to {1, ..., 9} × {103, 104, 105} and {1, ..., 6} × 106 (generating larger networks
required more than 8GB RAM), and fixed the remaining parameters in all instances.
Specifically, we set the average degree to 2, the max degree to 4, the mixing parameter
to 0.1, the minimum community size to 20, and the maximum community size to 50.
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Fig. 5. Number of conflicts returned by saucy 3.0 versus saucy 2.1.

reduction (from 43 million to only 102). The remaining instances produced the
same number of conflicts (not more than 42) in saucy 3.0 and saucy 2.1. Of
the 1200 CNF benchmarks, only 72 (15 from application and 57 from crafted)
encountered conflicts in saucy 2.1, and only 12 (all from crafted) experienced
a reduction in the number of conflicts. The smallest reduction was 1 and the
largest was 2.9 million. The binnet instances also produced the same results
in both versions of saucy. The reported number of conflicts for those instances
ranged from no conflicts to 4,412.

Figure 6 shows the distribution of depth of the conflicts that were captured
and avoided by saucy 3.0. Recall that the new refinement procedure in saucy
3.0 prunes some subtrees that are explored by saucy 2.1. Suppose that one
such subtree is found to be conflicting at level l in saucy 3.0, but leads to c
conflicts in saucy 2.1, where the n-th conflict (1 ≤ n ≤ c) occurs at level ln.
Trivially, ln ≥ l. We define the depth of the n-th conflict as d = ln − l. If
d = 0, both saucy 3.0 and saucy 2.1 capture the conflict at the same time.
If d > 0, saucy 3.0 anticipates and avoids the conflict d levels sooner than it
occurs in saucy 2.1. We use conflict depth as a numeric criterion to evaluate the
effectiveness of our new refinement procedure. The results in Figure 6 show that
the deepest conflicts captured by saucy 3.0 occur in the instances of Miyazaki
families. The greatest reported depth was 98, which occurred 2.8×108 times for
mz-aug-50. The only benchmark from the circuit family that had significant
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Fig. 6. Histogram of the conflict depths captured by saucy 3.0.

conflict reduction produced conflict depth of up to 29, where the largest conflict
depth happened 1.3×107 times. For the CNF benchmarks, the deepest reported
conflict had a depth of 11, and occurred roughly 105 times. The histogram in
Figure 6 excludes the results for binary networks, since all those conflicts were
reported at depth 0.

The runtime comparison between saucy 3.0 and saucy 2.1 is depicted in
Figure 7. For the families of mz-aug and mz-aug2, we observed an exponential
speedup when our proposed refinement procedure was invoked. Of the 49 in-
stances in these two families, saucy 3.0 solved all in less than a second, while
saucy 2.1 failed to process 39 within the time-out limit. For the mz and cmz
families, saucy 2.1 and 3.0 had comparable runtimes. The instances of router,
roadnet, and binnet did not experience much change either. For the circuit
family, the results were comparable, except for one benchmark that was solved by
saucy 3.0 in a second but remained unsolved in saucy 2.1. Interestingly enough,
we did not observe any major improvement in the runtimes of the SAT 11 CNF
benchmarks, although conflict reduction of up to 2.9 million was reported for
some of those instances. Our further analysis revealed that high reduction in the
number of conflicts was reported for instances that timed out in both saucy 3.0
and saucy 2.1, and the reduction in the remaining instances was not significant
enough to reflect a major improvement in runtimes. Note that the runtimes re-
ported in Figure 7 match with the number of conflicts reported in Figure 5. In
fact, fewer conflicts generally led to better runtimes.

In order to evaluate the performance of saucy 3.0 versus state-of-the-art
graph automorphism tools, we ran bliss (version 0.72, available at [5]) on all
the 1445 benchmarks listed in Table 1, and compared its runtimes to those
obtained from saucy 3.0. This comparison is shown in Figure 8. Of the four
Miyazaki graph families, bliss showed difficulties in processing the instances of
cmz (took up to 856 seconds to complete all those instances), but processed the
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Fig. 7. Runtime of saucy 3.0 versus saucy 2.1 (timeout is 1000 seconds).
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remaining three families in less than a second. In contrast, saucy solved all
Miyazaki graphs in less than a second. Furthermore, bliss timed out on 8 and
3 out of 33 and 56 instances of the circuit and roadnet families, respectively,
but solved the remaining instances of those two families and all 3 instances of
router in 550 seconds. This was while saucy solved all the 92 instances of
these three families in 5 seconds (processed 90 in less than a second). For the
CNF benchmarks, saucy and bliss showed mixed results. Of the 600 crafted
and application instances, bliss failed to process 4 crafted and 3 application
instances, whereas, saucy failed to process 17 crafted instances, but solved all
application instances. The 4 crafted benchmarks that were unsolved by bliss
were also unsolved by saucy. This means that bliss solved 13 crafted instances
that saucy failed to process, and saucy solved 3 application instances that bliss
did not solve. Of the remaining crafted and application benchmarks, bliss solved
541 in less than 10 seconds, and 52 in 366 seconds, while saucy solved 577 in less
than 10 seconds, and 6 in 300 seconds. Both saucy and bliss solved all random
benchmarks in less than a second. Overall, the results in Figure 8 indicate that
saucy outperformed bliss on the majority of SAT 11 benchmarks. For binary
networks, saucy consistently produced better results. Specifically, saucy solved
all 33 instances of binnet in 14 seconds (the largest runtime was 13.67 seconds
which was reported for the largest instance of this family with 6× 106 vertices),
but bliss timed out on 19, and solved the remaining in 727 seconds.

As part of our study, we also ran nishe 0.1 [21] on all the graph benchmarks in
our suite, and compared its results to saucy 3.0. In general, we observed that the
runtimes of nishe and saucy were comparable for the Miyazaki graphs. For the
remaining benchmarks, however, nishe exhibited poor performance compared
to saucy and bliss. In particular, it failed to process (either timed out or had
a segmentation fault) 59 out of 92 saucy benchmarks, 950 out of 1200 CNF
instances, and 24 out of 33 binary networks.

Figure 9 shows the runtimes of saucy 3.0, saucy 2.1, and bliss 0.72 as a
function of graph size for all the 1445 benchmarks listed in Table 1. As this fig-
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ure suggests, the smaller instances seem to be more challenging for saucy. This
is particularly not true of bliss, as bliss tends to produce larger runtimes for
larger instances. The smallest instance that saucy 3.0 timed out on had 583 ver-
tices, and the largest had 52,786 vertices, while these numbers were respectively
reported to be 1,620 and 33 million for bliss 0.72. Of the 446 benchmarks with
more than 52,786 vertices, saucy 3.0 solved 389 in less than a second, and pro-
cessed the rest in 100 seconds, while bliss 0.72 solved 213 in less than a second,
took up to 550 seconds to process 200, and timed out on 33. On the other hand,
of the 999 benchmarks that had less than 52,786 vertices, saucy 3.0 solved 979
in less than a second, timed out on 17, and took up to 550 seconds to process the
rest, whereas, bliss 0.72 processed 946 in less than a second, timed out on 4, and
processed the remaining in 856 seconds. To investigate the reason why saucy
3.0 did not perform as expected on relatively small instances, we examined the
effect of different decision heuristics on the 17 benchmarks that saucy failed to
process. Interestingly, 4 out of those 17 benchmarks were solved in less than a
second with an alternative decision heuristic. Of those 4, one was reported to
be unsolved by bliss 0.72. These results suggest that branching decisions play a
crucial role in minimizing the time for automorphism search. We plan to pursue
the effect of decision heuristics in our future research.

7 Conclusions

In this work, we have advanced the state of the art in algorithms for solving graph
automorphism, which finds applications in many fields. Our technique takes ad-
vantage of a unique feature in the saucy algorithm — the representation of
partial permutations (search nodes) in terms of ordered partition pairs. Previ-
ously, these partitions were refined one at a time, but we have now developed
simultaneous partition refinement, which allows saucy to anticipate possible fu-
ture conflicts and prune the search tree early. This optimization significantly
improves runtime on several benchmark families, including the ones suggested
by Miyazaki [20] for further study because nauty provably requires exponential
time on these benchmarks. Our empirical comparisons show that our implemen-
tation saucy 3.0 outperforms the competition on most available benchmarks.
Our ongoing work is focused on several benchmarks where saucy 3.0 is outper-
formed by bliss 0.72. Preliminary analysis suggests that these benchmarks tend
to be small, which may be due to subtle inefficiencies in our implementation
rather than asymptotic bottlenecks. We hope that our future research will shed
additional light on this.
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