
MAPLE: Multilevel Adaptive PLacEment for Mixed-Size Designs

Myung-Chul Kim†‡, Natarajan Viswanathan‡, Charles J. Alpert‡, Igor L. Markov†, Shyam Ramji§
†University of Michigan, EECS Department, Ann Arbor, MI 48109

‡IBM Corporation, Austin, TX 78758 / §IBM Corporation, Hopewell Junction, NY 12533
mckima@umich.edu, nviswan@us.ibm.com, alpert@us.ibm.com, imarkov@eecs.umich.edu, ramji@us.ibm.com

ABSTRACT
We propose a new multilevel framework for large-scale placement
called MAPLE that respects utilization constraints, handles mov-
able macros and guides the transition between global and detailed
placement. In this framework, optimization is adaptive to current
placement conditions through a new density metric. As a baseline,
we leverage a recently developed flat quadratic optimization that is
comparable to prior multilevel frameworks in quality and runtime.
A novel component called Progressive Local Refinement (ProLR)
helps mitigate disruptions in wirelength that we observed in lead-
ing placers. Our placer MAPLE outperforms published empirical
results — RQL, SimPL, mPL6, NTUPlace3, FastPlace3, Kraftwerk
and APlace3 — across the ISPD 2005 and ISPD 2006 benchmarks,
in terms of official metrics of the respective contests.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits]: Design Aids—Placement
and routing

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Large-scale placement remains one of the most influential opti-

mizations in interconnect-driven physical design and physical syn-
thesis [3]. Despite the long history of research, three ISPD con-
tests on placement have shown that recent algorithms achieve siz-
able gains over prior state of art [22]. The ISPD 2011 routability-
driven placement contest [30] has demonstrated that the choice of
the wirelength-driven global placement engine is paramount even
in multi-objective placement — two of the top three teams relied
on the high-quality SimPL framework [18], including the contest
winners, who reimplemented SimPL without having access to the
original source code [12]. Yet, no placer dominated across the en-
tire benchmark set, indicating possible improvements. Such im-
provements are described in this paper, although our work is or-
thogonal to and compatible with the innovations developed for the
ISPD 2011 contest [12, 13, 17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’12, March 25–28, 2012, Napa, California, USA.
Copyright 2012 ACM 978-1-4503-1167-0/12/03 ...$10.00.

In this work, we develop MAPLE — a multilevel force-directed
placement algorithm that pioneers key algorithmic components and
a more effective way of combining individual components into a re-
liable multi-objective optimization. MAPLE generates the coarsest-
level placement by a variant of the SimPL algorithm [18] but also
employs multilevel extensions reinforced by our new Progressive
Local Refinement (ProLR).1 This combination enhances trade-offs
between wirelength and module density. Compared to recent liter-
ature, our implementation produces superior solution quality with
reasonable runtimes.
The improvement on ISPD 2006 benchmarks is particularly en-
couraging because it demonstrates that MAPLE not only reduces
the wirelength but also avoids highly concentrated placements, thus
promoting routability and providing greater flexibility for timing
optimization transforms. Note that the original SimPL algorithm
was not evaluated with utilization constraints of the ISPD 2006
benchmark suite and could not handle movable macros present in
those benchmarks. At a more conceptual level, our work explores
limits to optimization imposed by noise inherent in analytic place-
ment algorithms. After studying sources of this noise, we develop
techniques to avoid noise or suppress it, which consistently im-
prove end results beyond the best reported in the literature.
Our key contributions include:
• A study of obstacles to extending analytic placement with

multilevel techniques. We observe that straightforward ex-
tensions cause disruptions between successive optimizations
during global placement.
• A key insight to combine unclustering with two-tier Pro-

gressive Local Refinement (ProLR) so as to ensure graceful
transitions between optimizations at different cluster levels.
Optimization adapts to current wirelength/density trade-offs,
which we track by a newly developed metric — ABUγ .
• A placement algorithm (MAPLE) that relies on SimPL it-

erations, but augments them with two-level clustering and
ProLR. MAPLE guides the transition from global to detailed
placement to avoid unnecessary disruptions. This guidance
allows MAPLE to derive the final placement from the lower-
rather than the upper-bound placement as in the original SimPL,
enhancing solution quality.
• Extensions of the MAPLE algorithm to handle movable macros.

This includes extending the SimPL algorithm and dealing
with macros during refinement.
• Empirical evaluation against best published results on ISPD

2005 and ISPD 2006 benchmarks using official metrics. MA-
PLE consistently outperforms all leading-edge placers de-
scribed in the literature.

1The implementation used in this work was written from scratch.

The remainder of this paper is structured as follows. Section 2
presents background and prior art. Section 3 analyzes disruptions
during multilevel placement optimization that undermine solution
quality. In Sections 4 and 5, we present the MAPLE algorithm and
specific techniques to ensure graceful transitions between succes-
sive optimizations. Section 6 describes extensions of the MAPLE
algorithm to handle movable macros. Section 7 empirically vali-
dates our ideas and algorithms. Section 8 concludes our paper.

2. BACKGROUND AND PRIOR ART
Given a netlist N = (E, V) with nets E and nodes (cells)

V, global placement seeks node locations (xi, yi) such that the
area of nodes within any rectangular region does not exceed the
area of (cell sites in) that region. Some locations of cells may
be given initially and fixed. The interconnect objective optimized
by global placement is the Half-Perimeter WireLength (HPWL).
For node locations ~x = {xi} and ~y = {yi}, HPWLN (~x,~y)=
HPWLN (~x)+HPWLN (~y), where

HPWLN (~x) = Σe∈E [max
i∈e

xi −min
i∈e

xi] (1)

A consistent 2% HPWL improvement is considered significant and
can affect routability, timing and power. For optimization, HPWL
can be approximated by differentiable functions [7, 10, 16].
Quadratic optimization represents the netlist by a weighted graph
G = (EG , V), using the star, clique or Bound2Bound net model
[26]. Here we denote vertices by V and edges byEG . Edge weights
wij > 0 for all edges eij ∈ EG . The quadratic objective ΦG is
defined as

ΦG(~x,~y) = Σi,jwi,j [(xi − xj)2 + (yi − yj)2] (2)

ΦG(~x,~y) =
1

2
~xTQx~x +~cTx~x +

1

2
~yTQy~y +~cTy ~y + const (3)

The connectivity matrix Qx captures connections between pairs of
movable vertices, while vector ~cx captures connections between
movable and fixed vertices. Since Qx is positive semi-definite,
ΦG(~x) is a convex function with a unique minimum, which can
be found by solving the system of linear equationsQx~x = −~cx us-
ing preconditioned Conjugate Gradient (CG) as in FastPlace, RQL
and SimPL.
FastPlace-Global [28] is a force-directed quadratic placer with
two-level Best-choice clustering [2]. It relies on a hybrid (star-
clique) net model2 and employs cell shifting to spread the mod-
ules during the early stages of placement flow. The Iterative Local
Refinement (ILR) technique is applied after quadratic optimization
to reduce HPWL and spread the modules (see Section 5). RQL
[29] extends FastPlace-Global by limiting spreading forces (force-
vector modulation). FastPlace-DP [24] is a wirelength-driven de-
tailed placer based on (i) single segment cell clustering, (ii) global
cell swapping, (iii) vertical cell swapping, and (iv) local reordering.
SimPL [18] is a flat, force-directed global placer. It maintains a
lower-bound and an upper-bound placement and progressively nar-
rows the displacement between the two. The final solution is de-
rived from the upper-bound placement when the two bounds con-
verge. The upper-bound placement is generated by lookahead le-
galization (LAL), which is based on top-down geometric partition-
ing and non-linear scaling. Applying the upper-bound placement as
fixed-points, the lower-bound placement is generated by minimiz-
ing the quadratic objective using the CG method. Unlike FastPlace-
Global and RQL, the SimPL algorithm relies on the Bound2Bound
net model [26].
2The numerical equivalence of the clique model and the star model
with a star node was pointed out in [20] and proven in [19].

3. ANALYSIS OF DISRUPTIONS DURING
ANALYTIC OPTIMIZATION

State-of-the-art algorithms for placement integrate multiple op-
timization steps, which sometimes target different objectives. Poor
coordination between successive steps may cause radical changes
in intermediate placements. These changes become disruptive when
they reverse improvement obtained by previous steps, increasing
overall runtime and undermining final solution quality. We now
investigate the sources of disruptive changes between successive
stages of analytic placement.
Unclustering. In multilevel global placement algorithms, place-
ment iterations after unclustering often include changes to the op-
timization objective as well as the netlist. This may abruptly in-
crease wirelength as illustrated in [15, Figure 4] for APlace. The
authors state that “Clustering helps to spread cells more quickly,
but wirelength is impaired during cell expansion. It is clearly seen
from the figures that when wirelength weight is decreased and the
conjugate gradient optimizer restarts, discrepancy drops sharply
and wirelength is often increased at first and then refined during
the optimization”. However, in contrast to our observation in Sec-
tion 5, the authors claim that when both discrepancy (overflow) and
wirelength change slowly, they obtained a near stable suboptimal
solution, in which additional iterations did not further reduce dis-
crepancy and wirelength without a major change to the parameters.
Transition to the HPWL objective. FastPlace [28] and RQL [29]
use ILR iterations to recover HPWL after quadratic optimization
and before detailed placement. ILR iterations include bin resizing
over wide ranges to allow large moves across the placement re-
gion [22, Chapter 8]. Moreover, each bin maintains a bin-specific
utilization weight 0 ≤ θ ≤ 1, which changes depending upon the
current bin’s utilization. As history accumulates on dense bins over
iterations, ILR increasingly penalizes such bins and allows abrupt
moves to decrease local density (Figure 1). The density metric
ABU10 is defined in Section 4.2.

7.0e7

7.5e7

8.0e7

8.5e7

9.0e7

9.5e7

1.0e8

1.1e8

1.1e8

 0 50 100 150 200 250 300 350 400
 1

 1.5

 2

 2.5

 3

H
P

W
L

d
e
n
s
it
y
 m

e
tr

ic
 A

B
U

1
0

Iterations

HPWL

ABU10

Figure 1: Progressions of wirelength and the density metric
ABU10 over ILR iterations on ADAPTEC1. Unclustering is
marked with a vertical line. ILR disruptively improves ABU10

and increases the wirelength. Each ILR iteration traverses all
movable modules once.

Hand-off to detailed placement. Recall that the SimPL algorithm
maintains two placements throughout its iterations, and legaliza-
tion is invoked on the upper-bound placement, when the lower- and
upper-bound placements are reasonably close. The lower-bound
placement within SimPL is analogous to module locations main-

tained by other algorithms. Instead of using the upper-bound, in-
voking (full) legalization on the lower-bound placement should be
potentially better in preserving wirelength optimized by the linear
system solver. However, these placements typically exceed target
utilization and undergo significant changes during full legalization
(Figure 2). Despite local improvement in wirelength during de-
tailed placement, such abrupt changes are detrimental to solution
quality in terms of wirelength, routing congestion and timing.

7.0e7

7.5e7

8.0e7

8.5e7

9.0e7

9.5e7

 0 10 20 30 40 50 60 70 80 90 100

 1

 1.25

 1.5

 1.75

 2

 2.25

H
P

W
L

d
e
n
s
it
y
 m

e
tr

ic
 A

B
U

1
0

Iterations

HPWL

ABU10

Figure 2: Progressions of wirelength and the density metric
ABU10 over FastPlace-DP iterations on ADAPTEC1. The start
of detailed placement is marked with a vertical line. Placements
with high utilization undergo significant changes as full legal-
ization completes.

Strategies for mitigating disruptions. Disruptions during ana-
lytic optimization can be mitigated by ensuring gradual transitions
between successive optimizations. With this in mind, we develop
a new use of placement metrics to make these transitions more
adaptive to the actual module distribution and interconnect char-
acteristics. (1) the overall placement flow is modified at the points
where the objective function abruptly changes, as identified in the
above analysis — before/after unclustering, and before detailed
placement. We introduce a new intermediate stage that optimizes a
linear combination of the preceding and succeeding objective func-
tions, while gradually modifying parameters to ensure smooth tran-
sition between the objectives. (2) At each substage, we seek near-
monotone improvement of either wirelength or module density in
a predictable manner without disrupting the other objective. (3)
Specifically, each intermediate stage prohibits abrupt cell move-
ment and significant changes in key objective functions. Small
moves are encouraged instead, as this smoothens changes in wire-
length and module density. (4) Weighting is adaptively updated
according to a new placement metric. These ideas are developed in
Progressive Local Refinement (ProLR) in Section 5.

4. MULTILEVEL ADAPTIVE PLACEMENT
We developed our global placement algorithm to address or cir-

cumvent the pitfalls in prior art discussed above. This technique
consists of three phases: clustering, top-level (coarsest-level) place-
ment iterations, and Progressive Local Refinement (ProLR) used
in conjunction with unclustering (Algorithm 1). We apply Best-
choice clustering [2] until the number of clusters is reduced to half
the size of the flat netlist. Top-level placement iterations perform
quadratic optimization on a coarsened netlist and globally regulate
module densities over the placement region while moderating wire-

lengh increase. We adopt a variant of the SimPL algorithm [18] for
this phase. The ProLR technique discussed in Section 5 improves
both wirelength and module density before/after unclustering. Sec-
tion 7.3 gives an outlook for using more than 2 levels of clustering.

Algorithm 1 Multilevel Adaptive PlacEment (MAPLE)
1: Phase 0: Clustering of Standard Cells
2: N0 = number_of_modules in flat netlist
3: while number_of_clusters > N0 / 2.0 do
4: cluster netlist using the Best-choice clustering algorithm
5: end while
6:
7: Phase 1: Top-level Placement Iterations (SimPL extended)
8: initial HPWL optimization
9: while ABU10 of lower-bound placement > threshold do
10: transform the lower-bound placement into an upper-bound
— placement by Extended Lookahead Legalization (E-LAL)
11: fix movable macros upon stabilization (Section 6)
12: update pseudopin locations and pseudonet weights
— in the linear system [18]
13: solve the updated linear system using
— the preconditioned CG method
14: end while
15:
16: Phase 2: Refinement for Mixed-size Netlists
17: determine parameters for ProLR
18: perform ProLR-w and ProLR-d optimizations
19: legalize and fix all movable macros // the end of Phase2a
20: while number_of_modules < N0 do
21: uncluster the netlist
22: place unclustered cells side by side
23: end while
24: recalculate parameters for ProLR
25: perform ProLR-w and ProLR-d // the end of Phase2b

4.1 Top-level placement iterations
Top-level placement for the coarsest netlist is performed by the

SimPL force-directed placement. It generates lower- and upper-
bound placements at each iteration and reduces the displacement
gap between the two upon convergence. In contrast to the original
SimPL algorithm, MAPLE chooses the last lower-bound placement
as a final solution of quadratic placement iterations. This choice
is based on our observation that our implementation of SimPL in
MAPLE does not completely close the gap between lower and up-
per bounds. Also, given that lookahead legalization [18] is un-
aware of wirelength objectives, the upper-bound placements are
likely to suffer suboptimality. On ISPD 2005 benchmarks, MAPLE
typically exhibits a gap of 5.63% to 13.89% between lower and
upper bounds at its final iterations. However, even with superior
wirelength, lower-bound placements typically exhibit worse mod-
ule density than upper-bound placements. To address this chal-
lenge, we improve lower-bound placements using local-search tech-
niques, as described in Section 5.

4.2 A placement density metric - ABUγ
We now explore density metrics during global placement, which

provide insights into the quality of module spreading in intermedi-
ate placements and estimate wirelength impact of legality enforce-
ment. Based on such a metric, the global placer can adaptively ad-
just its parameters depending on how concentrated the placement
is, as described in Section 5.3 To this end, we propose a new den-
3Little is published on density metrics for global placement. Met-
rics based on averaged overflow (including scaled-overflow per bin
in the ISPD 2006 contest) often fail to capture uneven module dis-
tribution. The maximum utilization metric leads to pessimistic esti-
mation in the presence of many fixed modules.

sity metric,ABUγ — average bin utilization of the top γ% densest
bins excluding bins fully occupied by fixed macros. Given that
the top γ% densest bin are averaged,4 this metric reflects the non-
uniformity of module distribution (Figures 1 and 2). Compared to
overflow-based metrics, ABUγ provides a more intuitive, cross-
design perspective into the quality of module spreading.5 Monitor-
ing density along with wirelength during placement enables com-
parisons of different parameter settings and even different placers
(Figure 3). Such comparisons speed up algorithm development.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4.0e7 5.0e7 6.0e7 7.0e7 8.0e7 9.0e7 1.0e8 1.1e8

A
B

U
1

0

HPWL

SimPL lower-bounds
FastPlace3

Figure 3: Progression of the density metricABU10 versus wire-
length, comparing SimPL lower-bounds (w/ FastPlace-DP) and
FastPlace3 on ADAPTEC1. Steeper slope and datapoints closer
to the origin indicate better trade-offs. Each square box indi-
cates the beginning of detailed placement.

5. A METHODOLOGY FOR GRACEFUL
OPTIMIZATION IN PLACEMENT

After quadratic optimization, placements typically exceed the
target utilization in many regions, and their HPWL can be improved
without increasing max module density. Furthermore, unclustering
traditionally counts on subsequent quadratic placement and can be
simple-minded in placing modules within clusters. MAPLE im-
proves this situation by using ProLR — a two-tier technique to re-
duce wirelength and max module density. ProLR adopts single it-
erations of ILR [28,29] — Local Refinement (LR) — as a baseline
and a vehicle for placement modification. While ILR tends to be
disruptive, ProLR promotes gradual transitions via (1) limited bin
resizing, (2) Explicit Bin-Blocking (EBB), (3) careful scheduling
of utilization weights (θ) between wirelength and module density,
and (4) optimizing one objective at a time, while limiting changes
to other objectives; such optimizations are alternated.
Bin sizing. ILR and ProLR use regular bin structures and greedily
move modules between adjacent bins based on Formula 4. Unlike
in ILR, the bins in ProLR are small and remain unchanged during
each invocation of LR. Each bin is 5 times the average movable-
module area (bins shrink after unclustering). This restricts moves
in ProLR.
Explicit Bin-Blocking (EBB) makes local-refinement moves less
disruptive. The technique consists of two components: EBB+ and
EBB−. EBB+ stops the inflow of modules to some bins (when
4In our experiments γ = 10% and the equal-sized square bins in
the grid have 6 standard-cell heights on the side.
5Empirical validation of the ABUγ metric is not reported due to
page limitations.

such moves are expected to be harmful), while EBB− stops the
outflow of modules from some bins and encourages the inflow of
modules into these bins. Therefore, EBB+ is applied to a handful
of bins to limit density, while EBB− is applied to a larger set of
bins to attract modules from remaining bins (the density of these
bins may decrease).
Joint optimization of density and wirelength. Local refinement
moves individual modules based on the linear combination of im-
provements in HPWL and density.

Score(m) = α ·∆HPWL + β · θ ·∆density (4)

where θ is the utilization weight, and α and β are normalizing co-
efficients [22, Chapter 8]. In FastPlace and RQL, bin-specific θb
values are managed after they are reset to values 0.4 ≤ θ ≤ 0.6
when ILR iterations start at each level.

Existing move-based algorithms for optimizing (i) max density
and (ii) HPWL use effective techniques for finding highest-gain
moves. Yet, no known algorithms are currently known for directly
finding the best moves with respect to Formula 4. ProLR inspects
best moves for each objective and select those that do not harm the
other objective. ProLR performs two simpler optimizations ProLR-
w and ProLR-d, which optimize wirelength and module density, re-
spectively. To smoothen placement changes, utilization weight (θ)
starts from a small value θ0w = 0.1 for ProLR-w with a coarsened
netlist, and θ0step is found via a monotonic function

θ0step = f(Υtarget −Υdesign) (5)

When the difference between design utilization (Υdesign) and tar-
get utilization (Υtarget) is small, placement iterations should ag-
gressively reduce density, which is achieved by using a large θ0step
(greater emphasis on spreading in LR). On the other hand, a wider
gap between the two justifies a greater weight for wirelength, and
the best wirelength is often achieved by using a small θ0step (greater
emphasis on wirelength in LR). Details can be found in the Ap-
pendix. The utilization weight for ProLR-w with a flat netlist, θ1w
is determined as θ1w = θM−1

d where M is the number of ProLR-d
invocations performed for the coarsened netlist. The θkd values in
the k-th invocation of ProLR-d are determined by

θkstep = θk−1
step · (1 +

ABU10

100Υtarget
) (6)

θkd = θk/Mw + θkstep ∀k ∈ {0,M} (7)

θkd = θk−1
d + θkstep ∀k /∈ {0,M} (8)

ProLR-w improves placement wirelength while maintaining the
initial module density distribution. As ProLR-w begins, bin-specific
θb are reset to θ0w for the clustered netlist and to θ1w for the flat
netlist. These values are updated throughout the LR iterations of
ProLR-w. Given that ProLR-w maintains θb over the entire 300
LR iterations, it closely resembles the use of ILR in FastPlace [28].
However, ProLR-w prohibits abrupt cell movement and significant
changes in placement by (1) EBB+ for bins whose utilization ex-
ceedsABU10 and (2) keeping small bin sizes. ProLR-w terminates
when ABU10 of the current placement exceeds the initial ABU10.
Otherwise, ProLR-w continues until there is no improvement in
wirelength.
ProLR-d reduces module density of a given placement while keep-
ing wirelength low. The changes in wirelength and density are
nearly monotonic. Unlike ProLR-w, ProLR-d consists of up to 15
LR iterations, and bin-specific θ are reset to θkd of each ProLR-d in-
vocation. ProLR-d initially rejects abrupt moves that greatly impact
wirelength, and increasing θkd progressively puts a greater empha-
sis on spreading over multiple invocations. In contrast to ProLR-w,

EBB− is applied to bins with below-target utilization, attracting
modules to sparse bins. We repeat ProLR-d up to 12 times until
ABU10 stabilizes.
Refinement. When a cluster is broken down, constituent modules
are placed side by side. The placement is refined by ProLR.6 Note
in Figures 1 and 2 that during disruptions, wirelength increases
sharply and density decreases. Therefore, we schedule ProLR-d
before the disruption and ProLR-w after the disruption. Figure 4
shows that this schedule smoothens disruptions in both objectives.
Hand-off to detailed placement. Preprocessing lower-bound place-
ments by ProLR gives better trade-offs between wirelength and
density than passing either upper-bound or lower-bound placements
to detailed placement algorithms as in original SimPL [18].

1.3e8

1.4e8

1.5e8

1.6e8

 0 100 200 300 400 500 600

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

H
P

W
L

d
e

n
s
it
y
 m

e
tr

ic
 A

B
U

1
0

Iterations

ProLR-w ProLR-d ProLR-w ProLR-d

ABU10HPWL

Figure 4: Progressions of wirelength and the density met-
ric ABU10 over ProLR iterations (BIGBLUE2). Unclustering
is marked with a vertical line. ProLR alternates ProLR-w
(shaded) and ProLR-d phases.

6. PLACING MACRO BLOCKS
In placers based on nonconvex optimization, the handling of

pre-placed macro blocks requires dedicated techniques (sigmoid
functions, level smoothing, etc). In MAPLE, the handling of pre-
placed macro blocks is inherited from the SimPL algorithm [18]
and LR. To handle movable macros, we extend lookahead legal-
ization (LAL) of SimPL, and call the resulting step E-LAL. With E-
LAL, upper-bound placements are generated in two steps: macro
positions are determined first, followed by standard-cell placement
[23]. As in original SimPL, roughly legalized placements gener-
ated by E-LAL produce fixed pseudopins for subsequent quadratic
optimization. Movable macros are legalized by a variant of the
cell shifting algorithm in FastPlace2 [27]. Our variant uses larger
regular bins at 6 times the row height, and employs a 3× 3 Lapla-
cian [28] to smoothen bin utilization. A broader view of utilization
allows E-LAL to move macros further than FastPlace-Global can
and find an almost-legal placement. In the early top-level place-
ment iterations, MAPLE simultaneously places movable macros
and standard cells. Upon stabilization (when the gap between the
upper- and lower-bounds reduces below 50% from the gap at the
10th iteration), we fix only movable macros with heights > 2×
the row height. Further iterations optimize locations of standard
and double-height cells (Figure 5). Recent macro placement litera-
ture [8,11] points out that naive force-directed methods do not reli-
ably find overlap-free placements and that a poor macro placement
6Unclustering is followed by interpolation in [6, 9] to improve or-
dering, but ProLR explicitly optimizes HPWL and module density.

may cause large overlaps and substantial disruption when remov-
ing those overlaps. To address this problem, unlike other force-
directed placers, MAPLE fixes macro positions from the upper-
bound placement, which tend to have little overlap among macros
(Figure 5). Local refinement (LR) moves double-height and stan-
dard cells. For double-height cells, bin-specific θb and the utiliza-
tion weights are averaged over all relevant bins. Following the con-
test protocol, flipping and rotation of macro blocks were disallowed
in this work. While macro placement [8, 11, 23] is not a primary
focus of this work, our techniques produce competitive results on
ISPD 2006 benchmarks. Ongoing work indicates that our algo-
rithms for mixed-size placement can be improved further.

Figure 5: Macro placement on NEWBLUE1. (left) Macros are
fixed at top-level placement iteration 30. (right) Further itera-
tions optimize cell locations.

7. EMPIRICAL VALIDATION
The MAPLE algorithm is implemented in C/C++ within an in-

dustry infrastructure for placement optimization, including a vari-
ant of FastPlace-DP [24] for final legalization and detailed place-
ment. We compared MAPLE to other state-of-the-art academic and
industry placers on the ISPD 2005 and ISPD 2006 placement con-
test benchmark suites. For placers available to us, benchmark runs
were performed on an Intel Core i7 860 Linux workstation running
at 2.8GHz with 8GB RAM, using only one CPU core. For other
placers (marked with asterisks), results were quoted from respec-
tive publications. To ensure the reproducibility of our empirical
results, Formula 9 reports specific constants used in our experi-
ments. All benchmarks were placed with identical parameter set-
tings. HPWL of solutions produced by each placer was computed
by the GSRC Bookshelf Evaluator [1].

7.1 ProLR versus ILR
Figure 6 illustrates the use of ProLR and ILR in MAPLE through

snapshots of placements at different phases of Algorithm 1, starting
with identical placements at Phase1. The use of ILR in Phase2a re-
locates many cells over great distances across fixed macros, as seen
in the upper left regions of ILR plots on the left. These moves
decrease maximal density, but change the placement abruptly and
increase HPWL. After Phase2b, the difference in HPWL between
ILR and ProLR decreases, but ILR results remain inferior. One can
also see that ILR placements on the left are more clustered than the
ProLR placements on the right and deviate more from the top-level
placements. Table 1 compares MAPLE with ProLR to MAPLE
with ILR on ISPD 2005 benchmarks in terms of final HPWL. The
results confirm the superiority of ProLR. On the two largest bench-
marks — BIGBLUE3 and BIGBLUE4, ProLR was on average, 1.5×
slower than ILR.

Figure 6: Snapshots of global placement (ADAPTEC1) after
each phase of Algorithm 1 for MAPLE with ILR (left) and
MAPLE with ProLR (right). Phase1 is top-level placement
(BestChoice+SimPL). Phase2a and Phase2b perform LR place-
ment of the coarsened and flat netlist, respectively.

7.2 Comparisons on ISPD 2005 testcases
As shown in Table 3, MAPLE found placements with the lowest

HPWL for seven out of eight circuits in the ISPD 2005 benchmarks
(no parameter tuning to specific benchmarks was employed). On
average, MAPLE improves wirelength by 9.50%, 6.24%, 6.53%,
7.10%, 8.06%, 4.72%, 2.73% and 2.09% versus APlace2 [16], NTU-
Place3 (V7.05.30) [10], FastPlace3 [28], Kraftwerk2 [26], mFAR
[14], mPL6 [7], SimPL [18] and RQL [29], respectively.

Table 2 compares the runtime of MAPLE with mPL6, APlace2,
NTUPlace3, FastPlace3 and SimPL. On average, MAPLE is 1.13×,
2.68× faster than mPL6, APlace2, and 2.32×, 6.25×, and 7.14×
slower than NTUPlace3, FastPlace3 and SimPL, resp. On BIG-
BLUE4, top-level placement iterations consume 26.3% of total
runtime: 64.1% is in CG, and 18.3% in building sparse matrices for
CG. ProLR iterations consume 65.4% split almost evenly between
ProLR-w and ProLR-d. Best-choice clustering and unclustering
consume 0.2% of the runtime. Detailed placement takes 5.5%.

Ckts MAPLE W/ ILR MAPLE W/ PROLR IMPROV.
AD1 77.41 76.36 1.37%
AD2 89.07 86.95 2.38%
AD3 210.13 209.78 0.17%
AD4 190.07 179.91 5.35%
BB1 95.25 93.74 1.59%
BB2 149.84 144.55 3.53%
BB3 345.20 323.05 6.42%
BB4 792.20 775.71 2.08%
Avg 1.03× 1.00× 2.86%

Table 1: HPWL (×10e6) produced by ProLR and ILR on ISPD
2005 benchmarks “ADAPTEC (AD)” and “BIGBLUE (BB)”.

7.3 Runtime considerations
As MAPLE is currently slower than some of its competitors,

we note that industry implementations like ours tend to be handi-
capped (versus standalone academic implementations) by the use
of a multipurpose design database. Because such a database stores
information unnecessary to placement, the decreased cache local-
ity increases runtime. Other relevant legacy infrastructures in our
database include netlist-query support for accurate timing analy-
sis and physical synthesis. In contrast to academic placers, our
industry-strength implementation can work with a netlist that is dy-
namically changed during physical synthesis.

Unlike the original SimPL, our implementation does not use SSE
instructions and is almost twice as slow (so far, we focused on so-
lution quality and not runtime). Also, ProLR should parallelize
well on multicore CPUs. Another consideration deals with the
role of placement in physical synthesis, where it is invoked several
times [3]. Fast execution is particularly important for early runs
that estimate interconnect before netlist optimization. The top-level
placement step from MAPLE produces good estimates because the
final placement result does not look very different (Figure 6). Top-
level placement consumes only 25− 30% of MAPLE runtime and
can be accelerated as outlined above. As timing analysis and opti-
mizations dominate the runtime of physical synthesis, greater effort
in placement can be justified by improved results.

Runtime can sometimes be reduced by deeper clustering (more
levels). To estimate its potential impact in MAPLE, we note that
top-level placement takes 26% and ProLR takes 65% of MAPLE
runtime on BIGBLUE4 (195.52 min. / 91% total). ProLR runtime
is split 1:2 between the coarse and flat netlists. For three levels of
clustering, top-level placement will take 13%, and ProLR will take
11% + 22% + 43% = 76% runtime. The total (191.23 min. / 89%)
is only a 2% reduction versus two levels.

7.4 Comparisons on ISPD 2006 testcases
We compared MAPLE to other state-of-the-art academic and in-

dustry placers on the ISPD 2006 benchmark suite. Table 4 reports
scaled HPWL and overflow penalty for several placers. Follow-
ing the contest protocol, scaled HPWL is calculated as HPWL ·
(1 + 0.01 · overflow_penalty). On average, MAPLE achieved
11.28%, 5.59%, 13.58%, 6.63%, 11.57%, 4.37%, 3.13% scaled
HPWL improvements versus APlace3 [22], NTUPlace3 (V7.05.30)
[10], FastPlace3 [28], Kraftwerk2 [26], mFAR [14], mPL6 [7], and
RQL [29], respectively. MAPLE obtains the best scaled HPWL
results on seven out of eight circuits. Furthermore, compared to
the other two best-performing placers on the benchmarks — RQL
and NTUPlace3, MAPLE achieves lower overflow penalty on aver-
age. Thus, MAPLE not only reduces the wirelength but also avoids
highly concentrated placements. Recall that the original implemen-
tation of SimPL [18] does not support density constraints of ISPD
2006 benchmarks and does not perform mixed-size placement.

Ckts AP2 NTU3 MPL6 FP3 SIMPL MP
AD1 46.29 7.92 21.45 2.36 2.48 17.48
AD2 65.49 7.28 21.87 3.58 3.46 24.30
AD3 144.27 14.98 67.14 7.56 6.43 47.34
AD4 158.30 15.47 57.70 6.69 5.44 44.32
BB1 56.68 12.67 24.56 3.67 3.53 24.31
BB2 110.96 25.18 65.44 6.51 6.36 43.96
BB3 233.70 49.70 88.87 19.85 13.25 94.36
BB4 516.37 109.82 199.74 32.27 29.50 214.86
Avg 2.68× 0.43× 1.13× 0.16× 0.14× 1.00×

Table 2: Runtime comparison (minutes) on ISPD 2005 bench-
marks for APlace2 (AP2), NTUPlace3 (NTU3), mPL6, Fast-
Place3 (FP3), SimPL and MAPLE (MP).

Benchmarks APLACE2 NTUPLACE3 FASTPLACE3 KRAFTWERK2* MFAR* MPL6 SIMPL RQL* MAPLE
[16] [10] [28] [26] [22] [7] [18] [29]

ADAPTEC1 78.35 81.82 78.66 82.43 82.50 77.93 78.58 77.82 76.36
ADAPTEC2 95.70 88.79 94.06 92.85 92.79 92.04 91.24 88.51 86.95
ADAPTEC3 218.52 214.83 214.13 227.22 217.56 214.16 208.90 210.96 209.78
ADAPTEC4 209.28 195.93 197.50 199.43 197.90 193.89 185.39 188.86 179.91
BIGBLUE1 100.02 98.41 96.67 97.67 98.80 96.80 97.54 94.98 93.74
BIGBLUE2 153.75 151.55 155.74 154.74 160.40 152.34 145.28 150.03 144.55
BIGBLUE3 411.59 360.66 365.16 343.32 368.70 344.10 340.24 323.09 323.05
BIGBLUE4 871.29 866.43 836.20 852.40 865.40 829.44 801.35 797.66 775.71
Geomean 1.10× 1.07× 1.07× 1.08× 1.09× 1.05× 1.03× 1.02× 1.00×

Table 3: Legal HPWL (×10e6) comparison on the ISPD 2005 benchmark suite. The previous best wirelengths are marked with gray.
The placers marked by asterisks were unavailable to us in binary, and we reproduce HPWL from respective publications.

Benchmarks APLACE3* NTUPLACE3 FASTPLACE3 KRAFTWERK2* MFAR* MPL6 RQL* MAPLE
(Υtarget) [22] [10] [28] [26] [22] [7] [29]

ADAPTEC5 520.97 430.73 541.22 449.84 476.28 431.27 443.28 407.33
(0.5) (15.9) (12.2) (36.5) (3.69) (6.21) (1.09) (9.25) (4.76)

NEWBLUE1 73.31 62.39 76.56 65.95 77.54 68.08 64.43 69.25
(0.8) (0.14) (0.76) (1.02) (0.05) (0.23) (0.14) (0.34) (1.05)

NEWBLUE2 198.24 211.77 240.56 206.53 212.90 201.85 199.60 191.66
(0.9) (0.42) (3.21) (1.97) (1.28) (0.59) (1.52) (1.45) (1.01)

NEWBLUE3 273.64 280.19 301.72 279.58 303.91 284.11 269.33 268.07
(0.8) (0.00) (0.01) (0.78) (0.38) (0.11) (0.59) (0.07) (0.77)

NEWBLUE4 384.12 302.25 306.07 309.44 324.40 300.58 308.75 282.49
(0.5) (1.74) (9.22) (7.74) (1.71) (5.42) (1.63) (15.2) (5.86)

NEWBLUE5 613.86 547.20 633.72 563.15 601.27 537.14 537.49 515.04
(0.5) (12.5) (20.82) (28.31) (2.69) (5.92) (1.42) (13.6) (4.05)

NEWBLUE6 522.73 518.25 531.56 537.59 535.96 522.54 515.69 494.82
(0.8) (0.03) (6.08) (1.26) (1.70) (1.63) (1.40) (4.33) (1.08)

NEWBLUE7 1098.9 1114.2 1116.7 1162.1 1153.8 1084.4 1057.8 1032.6
(0.8) (0.06) (5.19) (1.33) (3.15) (1.58) (1.14) (2.57) (1.70)

Geomean 1.13 × 1.04 × 1.16 × 1.07 × 1.13 × 1.06 × 1.03 × 1.00 ×
(0.32) (2.55) (3.47) (1.09) (1.29) (1.22) (2.30) (1.90)

Table 4: Comparison of scaled HPWL (×10e6) which includes overflow penalty w.r.t the given target utilization on the ISPD 2006
benchmark suite. Overflow penalty values computed by the contest script are reported in parentheses. The placers marked by
asterisks were unavailable to us in binary, and we reproduce results from respective publications. This hinders runtime comparisons.

8. CONCLUSIONS AND FUTURE WORK
The significance of large-scale placement in IC physical design

is well-documented in recent literature [3] and is continuing to
grow with the amount of on-chip random logic and current trends
in interconnect scaling. Placement algorithms in the industry and
academia were initially developed with the HPWL objective in mind
[22] and later extended [3] to account for other objectives and con-
cerns [12, 13, 17]. Despite known pitfalls, the HPWL objective ap-
pears to be a good performance predictor for various extensions of
core placement algorithms. Focusing on the HPWL objective and
module density, our research (i) contributes the discovery of essen-
tial deficiencies in prior techniques and (ii) advances the state of
the art by developing algorithms that improve the quality of bench-
mark layouts beyond all published results. A full list of our con-
tributions can be found in Section 1. For results on the ISPD 2011
routability-driven placement contest benchmark suite, see our re-
lated publication [17].

8.1 Perspectives
Our results bear some relevance to three recurring themes in

physical design and physical synthesis. One is the comparisons
and trade-offs between linear and quadratic wirelength functions.
Since the 1960s, it was known that quadratic optimization was
computationally efficient, but did not adequately track the demand
for routing resources, which is much closer to the HPWL objec-
tive and its weighted variants [4]. Seminal work by Sigl, Doll

and Johannes in the early 1990s developed a linearization tech-
nique that represents the linear wirelength objective on graphs by
a dynamically-weighted quadratic objective [25]. However, the
modeling of multi-pin nets remained inaccurate, and the research
community has largely replaced quadratic optimization by much
more cumbersome and slow non-convex optimization techniques
ten years later [7, 10, 16]. In the mid-2000s, Spindler and Johannes
developed the Bound2Bound model [26], which considerably im-
proved the modeling accuracy for multi-pin nets in quadratic place-
ment by employing a dynamic (placement-dependent) graph topol-
ogy. With additional improvements to flat quadratic placement, this
technique has recently outperformed prior art in both runtime and
quality of results, both in terms of HPWL and in routability-driven
placement [12, 17, 18]. This development raised several key re-
search questions:
• Is there a tangible gap between the Bound2Bound model and

the HPWL objective in practice ?

• Can global quadratic optimization with the Bound2Bound
model be effectively improved on multi-million gate netlists
(with respect to HPWL) ?

• Is multilevel placement optimization compatible with
Bound2Bound and competitive in performance ?

Our work answers these three questions in the affirmative. The
gap between Bound2Bound and HPWL is illustrated by the SimPL
line in Figure 3 — note the return to smaller HPWL when detailed

placement is invoked. Global quadratic placement of multi-million
gate netlists can be improved by using the ProLR technique pro-
posed in Section 5. MAPLE demonstrates that multilevel place-
ment is compatible with the Bound2Bound model and is competi-
tive with state of the art, as long as abrupt changes to placement are
avoided before/after clustering. However, Section 7.3 shows that
only two levels of clustering are useful for current benchmarks.
Larger netlists may justify deeper clustering.

The second theme addressed in our work is relatively new to
physical design, but no less fundamental — methodology for mod-
ule spreading and handling of whitespace. These considerations
are essential not only to global placement, but also to buffer in-
sertion, gate sizing and other physical synthesis transformations,
as well as to congestion-driven placement. Until the late 1990s,
whitespace was rare in IC layouts, but now can reach over 60% by
area [22]. We develop efficient techniques for spreading modules
during placement, while satisfying density constraints and optimiz-
ing HPWL beyond the accuracy of the Bound2Bound model.

The third fundamental theme explored in our work has not re-
ceived as much recognition, but may deserve it — we study the
composition of multiple optimizations into a high-precision, reli-
able multi-objective optimization process. Our key discovery is
that transitions between multiple objective functions and optimiza-
tion techniques in placement often lead to major disruptions. In
particular, adding netlist clustering or ILR to the SimPL algorithm
for quadratic placement with the Bound2Bound model does not
directly improve quality of results because the disruptions over-
shadow the benefits of such integration. To this end, we devel-
oped new techniques, such as two-tier Progressive Local Refine-
ment (ProLR), to facilitate graceful transitions between multiple
optimizations. In placement, these techniques are applied before
and after unclustering, during the transition from a quadratic ob-
jective to HPWL, and before detailed placement. Many more ap-
plications exist in physical synthesis.

8.2 Further directions for future work
Empirical results in Tables 3 and 4 indicate a trend — quadratic

placers RQL, SimPL and MAPLE produce overall better solutions
than placers APlace3, NTUPlace3 and mPL6 based on non-convex
optimization, which also tend to be slower. This is due, in part,
to the greater amount of recent research on quadratic placement,
including the development of successful industry tools [5,29]. Yet,
many of our contributions, such as ProLR, can be adapted for use
in non-convex placers. Whether this will make non-convex placers
competitive again, remains a curious direction for future work.

The SimPL placer used by MAPLE was recently extended to
routability-driven placement [17] and power-driven placement with
integrated clock-network synthesis [21]. Precision-handling of net
weights demonstrated in [21] enables timing optimization. Oppor-
tunities remain for improving mixed-size placement in MAPLE.

Appendix - Computation of Initial θstep
To implement Formula 5, MAPLE uses a step function that dis-
tinguishes three different cases: (i) emphasis on wirelength opti-
mization, (ii) no bias, and (iii) emphasis on spreading. Given that
Υdesign is fixed, the step function only depends on Υtarget, which
is typically chosen by the designer. Assuming fixed-outline place-
ment (Υtarget ≥ Υdesign),

θ0step =

8<: 0.0250, if Υtarget −Υdesign ≥ 0.5
0.0275, if Υtarget −Υdesign ≥ 0.05 (9)
0.0375, if Υtarget −Υdesign < 0.05

9. REFERENCES
[1] S. N. Adya, I. L. Markov, “Executable Placement Utilities,”

http://vlsicad.eecs.umich.edu/BK/PlaceUtils/
[2] C. J. Alpert et al., “A Semi-persistent Clustering Technique for VLSI

Circuit Placement,” ISPD 2005, pp. 200-207.
[3] C. J. Alpert et al., “Techniques for Fast Physical Synthesis,” Proc.

IEEE 95(3), 2007, pp. 573-599.
[4] A. E. Caldwell et al., “On Wirelength Estimations for Row-based

Placement,” TCAD 18(9), 1999, pp. 1265-1278.
[5] U. Brenner, M. Struzyna, J. Vygen, “BonnPlace: Placement of

Leading-Edge Chips by Advanced Combinatorial Algorithms,”
IEEE TCAD 27(9) 2008, pp.1607-20.

[6] T. F. Chan, J. Cong, K. Sze, “Multilevel Generalized Force-directed
Method for Circuit Placement,” ISPD 2005, pp. 185-192.

[7] T. F. Chan et al., “mPL6: Enhanced Multilevel Mixed-Size
Placement,” ISPD 2006, pp. 212-214.

[8] H.-C. Chen et al., “Constraint Graph-based Macro Placement for
Modern Mixed-size Circuit Designs,” ICCAD 2008, pp. 218-223.

[9] H. Chen et al., “An Algebraic Multigrid Solver for Analytical
Placement with Layout Based Clustering,” DAC 2003, pp. 794-799.

[10] T.-C. Chen et al.,“NTUPlace3: An Analytical Placer for Large-Scale
Mixed-Size Designs With Preplaced Blocks and Density
Constraints,” IEEE TCAD 27(7) 2008, pp.1228-1240.

[11] T.-C. Chen et al.,“MP-trees: A Packing-based Macro Placement
Algorithm for Mixed-size Designs,” TCAD 27(9) 2008, pp. 657-662.

[12] X. He et al., “Ripple: An Effective Routability-Driven Placer by
Iterative Cell Movement,” ICCAD 2011, pp. 74-79.

[13] M.-K. Hsu et al., “Routability-Driven Analytical Placement for
Mixed-Size Circuit Designs,” ICCAD 2011, pp. 80-84.

[14] B. Hu, M. Marek-Sadowska, “mFAR: Fixed-Points-Addition-based
VLSI Placement Algorithm,” ISPD 2005, pp. 239-241.

[15] A. B. Kahng, Q. Wang, “Implementation and Extensibility of an
Analytic Placer,” IEEE TCAD 2005, pp. 734-747.

[16] A. B. Kahng, Q. Wang, “A Faster Implementation of APlace,” ISPD
2006, pp. 218-220.

[17] M.-C. Kim, J. Hu, I. L. Markov, “A SimPLR Method for
Routability-driven Placement,” ICCAD 2011, pp. 67-73.

[18] M.-C. Kim, D.-J. Lee, I. L. Markov, “SimPL: An Effective
Placement Algorithm,” IEEE TCAD 31(1), 2012, pp. 50-60.

[19] A. A. Kennings, I. L. Markov, “Smoothening Max-terms and
Analytical Minimization of Half Perimeter Wirelength,” VLSI
Design 14(3), 2002, pp. 229-237.

[20] J. J. Kleinhans et al., “GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization,” IEEE TCAD 10(3), 1991,
pp. 356-365.

[21] D.-J. Lee, I. L. Markov, “Obstacle-aware Clock-tree Shaping during
Placement” to appear in IEEE TCAD 31(2), 2012.

[22] G.-J. Nam, J. Cong, “Modern Circuit Placement: Best Practices and
Results,” Springer, 2007.

[23] A. N. Ng et al., “Solving Hard Instances of Floorplacement,” ISPD
2006, pp. 170-177.

[24] M. Pan, N. Viswanathan, C. Chu, “An Efficient & Effective Detailed
Placement Algorithm,” ICCAD 2005, pp. 48-55.

[25] G. Sigl, K. Doll, F. M. Johannes,“Analytical Placement: A Linear or
a Quadratic Objective Function?” DAC 1991, pp.427-432.

[26] P. Spindler, U. Schlichtmann, F. M. Johannes, “Kraftwerk2 - A Fast
Force-Directed Quadratic Placement Approach Using an Accurate
Net Model,” IEEE TCAD 27(8) 2008, pp. 1398-1411.

[27] N. Viswanathan, M. Pan, C. Chu, “FastPlace2.0: An Efficient
Analytical Placer for Fixed-mode Designs,” ASPDAC 2006, pp.
195-200.

[28] N. Viswanathan, M. Pan, C. Chu, “FastPlace3.0: A Fast Multilevel
Quadratic Placement Algorithm with Placement Congestion
Control,” ASPDAC 2007, pp. 135-140.

[29] N. Viswanathan et al., “RQL: Global Placement via Relaxed
Quadratic Spreading and Linearization,” DAC 2007, pp. 453-458.

[30] N. Viswanathan et al., “Routability-Driven Placement Contest and
Benchmark Suite,” ISPD 2011, pp. 141-146.

