
Capo: Robust and Scalable Open-Source Min-Cut Floorplacer

Jarrod A. Roy, David A. Papa, Saurabh N. Adya*,
Hayward H. Chan, Aaron N. Ng, James F. Lu, Igor L. Markov

University of Michigan, EECS Department, Ann Arbor, MI 48109-2122
* Synplicity Inc., 600 W. California Ave., Sunnyvale, CA 95054

{royj,iamyou,hhchan,aaronnn,jflu,imarkov}@umich.edu * saurabh@synplicity.com

ABSTRACT
In this invited note we describe Capo, an open-source software tool
for cell placement, mixed-size placement and floorplanning with
emphasis on routability. Capo is among the fastest academic plac-
ers and scales to millions of movable objects. This note surveys
the overall structure of Capo, discusses recent improvements and
describes ongoing research.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Design

Keywords
Physical Design, Placement, Floorplanning

1. INTRODUCTION
The success of min-cut techniques in fixed-die placement is based

on the speed and strength of multi-level hypergraph partitioners, the
convenient top-down framework that efficiently captures available
on-chip resources, and the fact that modern VLSI circuits admit
a large number of good placements, which include slicing place-
ments. The recent trend for large amounts of whitespace, clearly
visible in the ISPD05 contest benchmarks, particularly increases
the flexibility in the placement problem. Further, recent research
alleviated several known weaknesses of min-cut placement.

The Capo placer first released at DAC2000 [10] sought to pro-
duce routable placements with a pure min-cut algorithm. To this
end, Capo 8.0 was successful for most industrial benchmarks eval-
uated, even though it did not build or use congestion maps. For
example, it produced a routable placement of an industrial design
with 200K cells in 1.5 hours on a single-processor workstation. Its
overall performance was on par with commercial tools. However
an ISPD 2002 paper [18] proposed a new set of benchmarks on
which Capo was less successful compared to a newer tool, Dragon.
Dragon found routable placements in most cases by building con-
gestion maps and biasing the placement process accordingly. This
suggested that congestion-driven placement was far from solved
and several papers in 2004 reported even better results.

Detailed analysis of the experiments in [18] revealed that superfi-
cial differences in parsers caused Dragon and Capo to be evaluated
on incompatible variants of the same benchmarks. Specifically, the
Capo variant had additional obstacles scattered throughout the core
region, which decreased available whitespace and otherwise com-
plicated the layout. The Capo-specific benchmarks have recently

Copyright is held by the author/owner.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
ACM 1-59593-021-3/05/0004.

been withdrawn. Capo’s parser can now process the original bench-
marks and after recent algorithmic improvements surveyed below,
Capo 9.1 placements typically take less time to route and have bet-
ter routed wirelength (see Table 1); in all cases, the use of Capo led
to fewer vias. This is remarkable as Capo does not use congestion
maps and runs 8-15 times faster (3-6 with feedback) than Dragon.

Earlier versions of Capo distributed whitespace approximately
uniformly, according to the hierarchical whitespace distribution for-
mula from [13]. However more recent work [1] introduces tunable
whitespace distribution for improved wirelength, while preserving
a minimum amount of local whitespace in most regions to ensure
routability. Whitespace allocation and detail placement have been
further improved by analyzing the performance of Capo on feature
benchmarks [15] designed to stress different aspects of placers.

Unlike Dragon and FengShui [5], Capo does not explicitly use
multi-way partitioning. The recent addition of placement feed-
back [14] counteracts this potential limitation. Additionally, cutline
shifting in recursive bisection adds flexibility in partition shapes
and sizes, as well as whitespace allocation; this is not readily avail-
able in direct min-cut multi-way partitioning.

Using the min-cut floorplacement algorithm from [3], Capo 9.1
performs (i) scalable multi-way partitioning, (ii) state-of-the art
standard-cell placement, (iii) integrated mixed-size placement com-
petitive with best published results and (iv) wirelength-driven fixed-
outline floorplanning that outperforms existing floorplanners by far.

For the last three years, Capo has been improving at the rate of 2-
3% per year on standard benchmarks, but exhibits larger improve-
ments on select proprietary benchmarks. Active ongoing develop-
ment promises further improvements. Source code and executables
of Capo 9.1 are available at http://vlsicad.eecs.umich.edu/BK/PDtools/

2. MIN-CUT PLACEMENT IN CAPO
Row-Based Placement. Internally, Capo’s placement represen-

tation closely resembles the LEF/DEF and Bookshelf [12] file for-
mats, which represent row information in standard-cell layout. Con-
figurations of rows supply constraints for cell placement. Each row
consists of non-overlapping subrows aligned to the coordinate of
the row. All subrows in a row share the same coordinate, height,
site width and site spacing. Placement instances in the Bookshelf
format consist of several rows composed of one or more subrows.

Fixed objects may displace sites in the core region. Since fixed
objects prevent standard cells from being placed in those sites, they
are obstacles. Figure 1 shows two placements with many such ob-
stacles. To prevent the placer from using sites occupied by obsta-
cles, one solution is to remove the sites beneath all fixed objects.
Capo accomplishes this by fracturing the rows containing the oc-
cupied sites into subrows, excluding the sites beneath the obstacle
[10, Sec. 4.2]. The result is a row-based placement structure con-
taining only legal locations for placing standard cells.

“Easy” variants of IBM Dragon v2 benchmark suite [18]
Benchmarks → ibm01 ibm02 ibm07 ibm08 ibm09 ibm10 ibm11 ibm12
↓ Placers ↓ rWL viol rWL viol rWL viol rWL viol rWL viol rWL viol rWL viol rWL viol
Capo 9.1 7.8e5 0 2.2e6 0 4.5e6 0 4.5e6 0 3.4e6 0 6.6e6 0 5.0e6 0 9.9e6 0

Dragon 3.01 [18] 8.4e5 0 2.1e6 0 4.5e6 0 4.6e6 0 3.7e6 0 7.0e6 0 5.4e6 0 1.1e7 0
FengShui 2.6 [5] time-out 24h 2.2e6 0 4.8e6 77 4.5e6 0 3.5e6 0 6.8e6 0 5.3e6 0 1.0e7 33

“Hard” variants of IBM Dragon v2 benchmark suite [18]
Benchmarks → ibm01 ibm02 ibm07 ibm08 ibm09 ibm10 ibm11 ibm12
↓ Placers ↓ rWL viol rWL viol rWL viol rWL viol rWL viol rWL viol rWL viol rWL viol
Capo 9.1 7.7e5 23 2.1e6 0 4.6e6 0 4.8e6 0 3.3e6 0 6.5e6 0 4.9e6 0 1.0e7 0

Dragon 3.01 [18] 9.1e5 84 2.2e6 0 4.5e6 0 5.0e6 0 3.5e6 0 7.0e6 0 5.4e6 0 9.9e6 0
FengShui 2.6 [5] time-out 24h 2.3e6 0 4.7e6 251 5.1e6 52 3.4e6 0 6.7e6 0 5.3e6 0 time-out 24h

Table 1: Comparison of three leading placers by routed wirelength and violation counts. In all cases Capo produces best via counts.

Min-Cut Bisection. Top-down placement algorithms seek to de-
compose a given placement instance into smaller instances by sub-
dividing the placement region, assigning modules to subregions
and cutting the netlist hypergraph [10]. Min-cut placers generally
use either bisection or quadrisection to divide the placement area
and netlist. Capo uses bisection as it allows for greater flexibility in
cutline shifting to adapt to changing partition sizes [10, Sec. 3.2].

Each hypergraph partitioning instance is induced from a rectan-
gular region, or bin, in the layout. In this context a placement bin
represents (i) a placement region with allowed module locations
(sites), (ii) a collection of circuit modules to be placed in this re-
gion, (iii) all signal nets incident to the modules in the region, and
(iv) fixed cells and pins outside the region that are adjacent to mod-
ules in the region (terminals). Top-down placement can be viewed
as a sequence of passes where each pass examines all bins and di-
vides some of them into smaller bins.

Capo implements three types of min-cut partitioners – optimal
(branch-and-bound [11]), middle-range (Fiduccia-Mattheyses [8])
and large-scale (multi-level Fiduccia-Mattheyses partitioner ML-
Part [9]). Bins with seven or fewer cells use an optimal end-case
placer. This variety of algorithms facilitates partitioning with small
tolerance, allowing Capo to distribute the available whitespace uni-
formly [13] so as to facilitate routing. This provides a convenient
baseline for further wirelength improvement [1] by non-uniform
distribution (this configuration is now used by default).

The efficiency of the partitioners and placers implemented in
Capo as well as the min-cut placement framework are directly re-
sponsible for Capo’s speed and scalability. To this end, large-scale
partitioning is performed in O(P logP) time, where P is the number
of pins in the hypergraph. The overall run-time spent on middle-
range partitioning (FM) scales linearly, and so do cumulative run-
times of all calls to optimal paritioning and placement. Further
complexity analysis shows that Capo’s asymptotic run-time scales
as O(P log2 P) on standard-cell designs.

3. RECENT IMPROVEMENTS TO CAPO
Placement Feedback. Terminal propagation relates wirelength

optimization in placement to cut optimization in partitioning. Am-
biguous terminal propagation arises due to terminals that are nearly
equidistant to child bins of a bin being partitioned. The concept of
placement feedback [14] is a solution to this problem whereby fu-
ture node locations control present terminal propagation. In feed-
back a given collection of bins is partitioned N times, without re-
quiring steady improvement, to achieve more consistent terminal
propagation. Experiments show consistent improvements for routed
wirelength with a smaller run-time penalty than reported in [14].

Variable-effort Partitioning. While the effort of partitioning is
tuned to the average difficulty, we observed that some partitioning
instances appearing in Capo are more difficult. Normally two in-
dependent partitioning starts are performed and the better result is
V-cycled. We now compare the cuts of the two solutions and per-

form more partitioning calls if the two cuts are sufficiently far apart.
MLPart [9] now repeats V-cycling until no improvement.

Unified Partitioning, Floorplanning and Placement. Min-cut
placers scale well in terms of run-time and wirelength minimiza-
tion, but cannot produce non-overlapping placements of modules
with a wide variety of sizes, e.g. mixed-size placement instances.
On the other hand, annealing-based floorplanners can handle vastly
different module shapes and sizes, but for relatively few (100-200)
modules at a time. Solution quality and run-time suffer on larger
numbers of modules. Following the work in [3], Capo now applies
min-cut placement as much as possible and performs fixed-outline
floorplanning using Parquet [4] when necessary.

Since min-cut placement generates a slicing floorplan, it can be
viewed as an implicit floorplanning step. Min-cut placement breaks
down on bins with modules that are close in size to bin outlines.
When such a module appears in a bin, Capo switches from recur-
sive bisection to “local” floorplanning where the fixed outline is
determined by the bin. This “correct-by-construction” approach
preserves wirelength, congestion and delay estimates, and avoids
the need to legalize overlapping macros. Floorplaning determines
the locations of large objects, and the remaining small objects are
placed by further partitioning. In the case where fixed-outline floor-
planning fails to meet area constraints we undo the previous parti-
tioning step and merge the failed bin with its sibling bin, replacing
both bins. The merged bin includes all modules contained in the
two smaller bins, and its rectangular outline is the union of the two
rectangular outlines. This bin is floorplanned, and in the case of
failure can be merged with its sibling. After successful floorplan-
ning, the locations of all large modules are returned to the top-down
placer, snapped to rows and considered fixed obstacles. Min-cut
placement then resumes with a bin that has no large modules in it.

Failure-induced backtracking steps incur some overhead in failed
floorplan runs. To avoid floorplanning calls that cannot be suc-
cessful, Capo uses ad hoc look-ahead [3]. For example, if the two
largest blocks in a child-bin do not fit into its outline, one should
floorplan immediately. We revised and extended such ad hoc con-
ditions from [3], to the improvement of both runtime and solution
quality. When none of these conditions trigger on sufficiently small
bins, we invoke pure area-driven floorplanning with Parquet (ignor-
ing wire saves runtime) as another form of look-ahead.

Improvements in Parquet. Parquet 3.1 used in Capo 9.1 im-
plements both sequence pairs and B*-tree. The former typically
produces better wirelengths, but the latter packs better. Thus when
floorplanning with sequence pairs fails to satisfy a given fixed out-
line, Parquet switches to B*-trees. Each annealing move in Par-
quet 3.1 is faster and this allowed extention of the temperature
schedule for better solution quality. The sum effect of the mixed-
size placement improvements is 3% better results on average on
the IBM-MSwPins benchmarks from [3] so that Capo 9.1 is behind
FengShui 2.6 by only 2% while not packing to the left or right.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

adaptec1 HPWL=9.091e+07, #Cells=211447, #Nets=219794

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

adaptec3 HPWL=2.518e+08, #Cells=451650, #Nets=466295

Figure 1: Legal Capo placements of trial benchmarks. Capo places adaptec1 and adaptec3 in approximately 1.5 and 3.5 hours respectively on a
2.4 GHz Xeon workstation. Fixed obstacles are drawn with double lines. To indicate orientation, north-west corners of blocks are truncated.

4. ONGOING WORK
Weighted Terminal Propagation. Recent work by Selvakkuma-

ran and Karypis notes the inaccuracy of representing wirelength ob-
jective by cut objective in partitioning driven placement [16]. They
developped a new terminal propagation method that allows the par-
titioner to better map the half-perimeter wirelength cost to min-cut
cost using weighted nets. Optimizing the half-perimeter wirelength
objective directly through partitioning provides potential improve-
ments over simple min-cut objective.

Advanced Whitespace Management. Capo uses optimal plac-
ers when bins contain fewer than a threshold of cells. These “small
placers” [11] pack cells, and whitespace is accounted for by adding
fake cells with no pins. To model whitespace accurately, one fake
cell per site is needed. To limit run-time, Capo uses up to three
fake cells of varying sizes to model whitespace. To further improve
placements, we are considering techniques for optimal allocation
of whitespace without changing relative placement of cells [7, 17].
The scalability of network-flow solvers used in [7, 17] is a concern.

Planning Cutlines Relative to Obstacles. IP blocks, large macros
and area array I/Os are increasingly common, and it is necessary to
effectively handle such circuit elements. These features can act as
boundaries that, in effect, divide a bin into two or more regions.
They are also just a few ways in which obstacles can introduce
placement bins with non-rectangular fixed outline. Many steps in
min-cut floorplacement are frustrated by non-rectangular bins. In
particular, floorplanning has trouble satisfying area constraints for
non rectangular regions. We propose to plan the geometric place-
ment of cutlines to leverage these observations about obstacles in
the placement region, extending [10, Sec. 3.2]. One goal is to place
the cutline through objects that act as natural cuts, which already
divide the bin into regions. Another promising avenue is to choose
cutlines that restore bins to rectangular shapes as soon as possible.

Integration of Analytic Placement. We observe that bench-
marks in Figure 1 have many obstacles distributed through the lay-
out. This motivates the use of quadratic placement, and we seek to
integrate it into Capo, e.g. to control partition balances [6].

Acknowledgements. We thank the following contributors to
Capo and related infrastructure: Sherief Reda from UCSD, Michael
Wrighton from CalTech, Dr. Patrick Madden from SUNY Bing-
hamton, and Dr. Xiaojian Yang from Synplicity.

This work was partially supported by the DARPA/MARCO Gi-
gascale Systems Research Center, the National Science Founda-
tion, the Design Automation fellowship, IBM, Synplicity, as well
as equipment donations from Intel and IBM.

5. REFERENCES
[1] S. N. Adya, I. L. Markov, P. G. Villarrubia, “On Whitespace and

Stability in Mixed-size Placement and Physical Synthesis,” ICCAD
2003, pp. 311-318.

[2] S. N. Adya et al., “Benchmarking for Large-Scale Placement and
Beyond,” IEEE Trans. on CAD 23(4), pp. 472-488, 2004.

[3] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, I. L.
Markov,“Unification of Partitioning, Placement and Floorplanning,”
ICCAD, 2004, pp. 550-557.

[4] S. N. Adya and I. L. Markov, “Combinatorial Techniques for
Mixed-size Placement,” ACM Trans. on Design Autom. of Elec. Sys.,
10(5), Jan 2005, pp. 58-90. Also see ISPD 2002, pp. 12-17.

[5] A. Agnihotri et al., “Fractional Cut: Improved recursive bisection
placement,” ICCAD, 2003, pp. 307-310.

[6] C. J. Alpert, G.-J. Nam, P. G. Villarrubia, “Free-Space Management
for Cut-Based Placement,” ICCAD 2002, p. 746.

[7] U. Brenner and J. Vygen, “Faster Optimal Single-Row Placement
with Fixed Ordering,” DATE 2000, pp. 117-121.

[8] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Design and
Implementation of Move-Based Heuristics for VLSI Hypergraph
Partitioning,” ACM J. on Experimental Algorithms, vol. 5, 2000.

[9] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Improved Algorithms
for Hypergraph Bipartitioning,” ASPDAC 2000, pp. 661-666.

[10] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?” DAC’00, p. 477.

[11] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Optimal Partitioners
and End-case Placers for Standard-cell Layout,” IEEE Trans. on
CAD 19(11), pp. 1304-1314, 2000.

[12] A. E. Caldwell, A. B. Kahng, I. L. Markov, “VLSI CAD Bookshelf”
http://vlsicad.eecs.umich.edu/BK. Also see A. E.
Caldwell, A. B. Kahng, I. L. Markov, ”Toward CAD-IP Reuse: The
MARCO GSRC Bookshelf of Fundamental CAD Algorithms,”
IEEE Design and Test, May 2002, pp. 72-81.

[13] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Hierarchical
Whitespace Allocation in Top-down Placement,” IEEE Transactions
on CAD 22(11), Nov, 2003, pp. 716-724.

[14] A. B. Kahng and S. Reda, “Placement Feedback: A Concept and
Method for Better Min-cut Placement,” DAC 2004, pp. 357-362.

[15] D. A. Papa, S. N. Adya, I. L. Markov, “Constructive Benchmarking
for Placement,” GLSVLSI 2004, pp. 113-118.
http://vlsicad.eecs.umich.edu/BK/FEATURE/

[16] N. Selvakkumaran and G. Karypis, “THETO: A Fast and
High-Quality Partitioning Driven Global Placer,” Technical Report
03-046, 2003, University of Minnesota.

[17] X. Tang, R. Tian, M. D.F. Wong, “Optimal Redistribution of White
Space for Wire Length Minimization,” ASPDAC 2005, p. 412.

[18] X. Yang, B.-K. Choi, M. Sarrafzadeh, “Routability Driven White
Space Allocation for Fixed-Die Standard-Cell Placement,” ISPD
2002, pp. 42-50.

