
Abstract
Identifying and breaking the symmetries of CNF for-
mulae has been shown to lead to significant reductions
in search times. In this paper we describe a more sys-
tematic and efficient construction of symmetry-break-
ing predicates (SBPs). In particular, we use the cycle
structure of symmetry generators, which typically
involve very few variables, to drastically reduce the
size of SBPs. Furthermore, our new SBP construction
grows linearly with the number of relevant variables as
opposed to the previous quadratic constructions. Our
empirical data suggest that these improvements reduce
search run times by one to two orders of magnitude on
a wide variety of benchmarks with symmetries.

1 Introduction
Modern Boolean satisfiability (SAT) solvers, based on back-
track search, are now capable of attacking instances with
thousands of variables and millions of clauses [Velev and
Bryant, 2001] and are being routinely deployed in a wide
range of industrial applications [Biere et al., 1999], [Nam et
al., 2001], [Stephan et al., 1996]. Their success can be cred-
ited to a combinational of recent algorithmic advances and
carefully-tuned implementations [Silva and Sakallah, 1999],
[Moskewicz et al., 2001], [Goldberg and Novikov, 2002].
Still, there are problem instances that remain beyond the
reach of most SAT solvers.

One aspect of intractability is the presence of symmetry
in the conjunctive normal form (CNF) of a SAT instance.
Intuitively, a symmetry of a discrete object is a transforma-
tion, e.g., a permutation, of its components that leaves the
object intact. The symmetries of a CNF formula are permu-
tations of its literals (variables and their negations) that result
in a re-ordering of its clauses (and the literals within clauses)
without changing the formula itself. Such symmetries induce
an equivalence relation on the set of variable assignments
such that two assignments are equivalent if and only if the
formula assumes the same truth value (either 0 or 1) at each
of these assignments. A search algorithm that is oblivious to
the existence of these symmetries may end up, wastefully
exploring a set of equivalent unsatisfying assignments before
moving on to a more promising region of the search space.

On the other hand, knowledge of the symmetries can be used
to significantly prune the search space. Symmetries are stud-
ied in abstract algebra in terms of groups. We assume the
reader to be familiar with the basics of group theory; in par-
ticular, we assume familiarity with permutation groups and
their representation in terms of irredundant sets of genera-
tors. A good reference on the subject is [Fraleigh, 2000].

The rest of the paper is organized in five sections.
Section 2 provides a brief review of permutations and per-
mutation groups. Section 3 describes pervious work on sym-
metry breaking for SAT. Our main contribution on efficient
constructions of symmetry-breaking predicates is detailed in
Section 4. These constructions are evaluated empirically in
Section 5, and we end with conclusions in Section 6.

2 Notation and Preliminaries
We will be concerned with permutations on the literals of a
set of n Boolean variables which we assume
to be totally ordered according to . We use

 to denote the set of integers between 1 and n inclusive,
and denote non-empty subsets of by upper-case “index
variables” I and J as appropriate. Given an index set I and an
index , we define the “index selector” functions:

(1)

where min and max return, respectively, the least and great-
est element in the given index set. For completeness, we also
let , and .

A permutation of the set of 2n literals
 (where denotes the logical

negation of) is a function that is both one-to-
one and onto. We will denote that is the image of under

 by writing . To preserve Boolean consistency,
whenever maps to it must simultaneously map
to . Such implied mappings will be assumed whenever
not explicitly specified. A permutation is a phase-shift
permutation if for some , i.e., maps some
literal to its complement.

Permutations will be expressed either in tabular form or
in cyclic notation. For example,

x1 … xn, ,{ }
1 2 nx x x≺ ≺"≺

In
In

i I∈

pred(,) { } prev(,) max(pred(,))

succ(,) { } next(,) min(succ(,))

i I j I j i i I i I

i I j I j i i I i I

= ∈ < =

= ∈ > =

∅()min n 1+= ∅()max 0=
π

L x1 x′1 … xn x′n, , , ,{ }= x′i
xi π: L L→

xj xi
π xj xi

π=
π xi xj x′i

x′j
π

xi
π x′i= i In∈ π

Efficient Symmetry Breaking for Boolean Satisfiability
Fadi A. Aloul Karem A. Sakallah Igor L. Markov

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
{faloul, karem, imarkov}@eecs.umich.edu

(2)

denotes a permutation that maps to etc. The same per-
mutation can be expressed as a set of disjoint cycles such as

(3)
Here a cycle is a shortcut for “a maps to b, b
maps to c, . . . and z maps to a.” The length of a cycle is
equal to the number of literals in it; we will refer to a cycle
whose length is k as a k-cycle. We define the support of a
permutation , , to be the set of indices appearing
in its cyclic representation, i.e.,

(4)

The number of cycles in a permutation will be denoted by
. We also define to be the index of

the smallest variable (according to the assumed total order-
ing) that is mapped to its complement by :

(5)

We should note that a phase-shift permutation must have one
or more phase-shift cycles, i.e., length-2 cycles that have the
form . Finally, we define as follows:

(6)

A permutation group G is a group whose elements are
permutations of some finite set and whose binary operation
is function composition, also referred to as permutation mul-
tiplication. The order of a group is the number of its ele-
ments. A subgroup H of a group G, denoted is a
subset of G that is closed under the group’s binary operation.
The cyclic subgroup of , denoted by , is the sub-
group consisting of and its integer powers:

(7)

and is said to generate . A set of permutations
 generates G if the subgroup resulting

from taking all possible products of the integer powers of
these permutations is equal to G. The permutations

 are called generators of G. A set of genera-
tors is irredundant if it is not possible to express any of its
permutations as a product of powers of its other permuta-
tions. A set of irredundant generators serves as an implicit
representation of the group it generates and, in general, guar-
antees exponential compression in the size of the representa-
tion. Note that a set of irredundant generators is not a group
since it is not closed under multiplication and taking inverse.
In the sequel, a set of permutations G that is not necessarily
closed will be indicated by placing a “hat” on the variable
denoting the set, i.e., . Additionally, and with a slight
abuse of notation, we will indicate that G is the group gener-
ated by by writing .

3 Previous Work
The basic framework for utilizing the symmetries in a CNF
instance to prune the search space explored by a SAT solver

was laid out in [Crawford et al., 1996]. This framework was
extended later, in [Aloul et al., 2002], to account for phase-
shift symmetries, take advantage of the cycle structure of
permutations, and consider only generators of the group of
symmetries. In outline, the procedure consists of the follow-
ing steps:
1. Convert a CNF formula to a colored graph whose sym-

metries are isomorphic to the symmetries of the formula.
2. Find the symmetries of the graph in terms of a set of irre-

dundant generators using a suitable graph
automorphism program [McKay, 1981], [Spitznagel,
1994].

3. Map the graph symmetries back to symmetries of the
formula.

4. Construct an appropriate symmetry-breaking predicate
(SBP) and conjoint it to the formula.

5. Solve using a suitable SAT solver [Moskewicz et
al., 2001].
Our concern in this paper is step 4. Noting that the group

of symmetries induces an equivalence relation on the set of
assignments in the n-dimensional Boolean space, the basic
idea is to construct a “filter” that picks out a single represen-
tative from each equivalence class. In particular, choosing
the lexicographically smallest representative—according to
the assumed total ordering on the variables—leads to the fol-
lowing Lex-Leader SBP [Crawford et al., 1996]:

(8)

(9)

(10)

where the index set I in (9) and (10) is equal to . In these
equations, the Lex-Leader SBP is expressed as a conjunction
of permutation predicates (PPs) each of which is a conjunc-
tion of bit predicates (BPs)1. Introducing n auxiliary “equal-
ity” variables makes it possible to express the
ith BP as an (i + 1)-literal CNF clause. This leads to a CNF
representation of the PP in (9) that has n clauses with a total
literal count of . Additionally, each of the intro-
duced equality constraints yields 4 3-literal clauses bringing
the total CNF size of (9) to:

(11)

In its present form, the lex-leader SBP in (8)-(10) can lead
to an exponentially large CNF formula because the order of
the symmetry group can be exponential in the number of
variables. Thus, its value in pruning the search space is
negated by the need of the SAT solver to process a much
larger CNF formula. To remedy this problem [Crawford et
al., 1996] suggested the construction of a symmetry tree to
eliminate some redundant permutations. However, in the
worst case the number of symmetries in the tree remains
exponential. Empirical evidence in [Aloul et al., 2002]

1 2

1 2

n

n

x x x

x x xπ π ππ
 =

"
"

x1 x1
π

(, ,() ,)(, ,() ,)i i i j j jx x x x x xπ π π π π ππ= … ……
a b … z, , ,()

π supp π()

supp π() i In∈ |xi
π xi≠{ }=

π
cycles π() phase-shift π()

π

phase-shift π() i In |∈ xi
π x′i={ }min=

xi x′i,() ends π()

ends π() i In |i is largest index of a variable in a∈{=
non-phase-shift cycle of π}

H G≤

π G∈ <π>
π

<π> πi|i Z∈{ }=

π <π>
π1 G∈ … πk G∈, ,

π1 … πk, ,{ }

Ĝ

Ĝ ˆ=< >G G

1 Note that in the bit predicate means “x implies y”.

ϕ

1
ˆ { , , }π π= kG "

ρ
ϕ ρ∧

LL

ˆ

ˆ() PP()
π

ρ π
∈< >

< > = ∧
G

G

PP() BP(,)π π
∈

=∧
i I

i

() ()
pred(,)

BP(,) π ππ
∈

 = = → ≤
∧ j j i i

j i I
i x x x x

In

x y≤

ei xi xi
π=()≡

0.5 n2 3n+()

clauses PP π()() 5n=
literals PP π()() 0.5 n2 27n+()=

showed that full symmetry breaking, i.e., insuring that the
SBP selects only the lex-leader from each equivalence class,
is not necessary to obtain significant pruning of the search
space. An SBP that breaks some, but not necessarily all, the
symmetries of the formula can, in fact, provide a much better
space/time trade-off during the search. This is accomplished
by replacing the group of symmetries in (8) by a suitable,
and much smaller, set of permutations :

(12)

In particular, [Aloul et al., 2002] advocated the use of the set
of generators returned by the graph automorphism pro-
gram in step 2.

4 Efficient Formulation of Permutation
Predicate

Even when only a small number of permutations is used in
constructing an SBP as in (12), the corresponding CNF for-
mula may still be too large because each PP requires a CNF
formula whose size is quadratic in the number of variables n.
In this section we introduce two refinements that lead to
much smaller PPs. The first refinement utilizes the cycle
structure of a permutation to eliminate redundant bit predi-
cates and can be viewed as replacing n in (11) by a much
smaller number m and represents a more comprehensive and
systematic treatment of cycles than that in [Aloul et al.,
2002]. The second refinement takes advantage of the recur-
sive bit-by-bit structure in (10) to yield a CNF formula

whose size is linear, rather than quadratic, in m. Figure 1
provides an example illustrating these refinements.

Elimination of redundant BPs. Careful analysis of (10)
reveals three cases in which a BP is tautologous, and hence
redundant. The first corresponds to bits that are mapped to
themselves by the permutation, i.e., . This makes the
consequent of the implication in (10), and hence the whole
bit predicate, unconditionally true. Removal of such BPs is
easily accomplished by setting the index set I in (9) and (10)
to rather than . For sparse permutations, i.e., per-
mutations for which , this change alone can
account for most of the reduction in the CNF size of the PP.

The second case corresponds to the BP of the last bit in
each cycle of . “Last” here refers to the assumed total
ordering on the variables. Assume a cycle involving the vari-
ables for some index set J and let .
Then

(13)

causing the corresponding bit predicate to be tau-
tologous. Elimination of these BPs is accomplished by
restricting the index set I in (9) and (10) further to just

 and corresponds to a reduction in the
number of BPs from n to .

The third and last case corresponds to the BPs of those
bits that occur after the first “phase-shifted variable.” Let i
be the index of the first variable for which . Thus,

ˆˆ ⊆< >H G
LL

ˆ

ˆ() PP()
π

ρ π
∈

= ∧
H

H

Ĝ

x1 x4,() x3 x8 x′6, ,() x5 x′5,()=

BP π 2,() x1 x4=() x2 x2≤()→=
BP π 1,() x1 x4≤=

BP π 3,() x1 x4=() x2 x2=() x3 x8≤()→=
BP π 4,() x1 x4=() x2 x2=() x3 x8=() x4 x1≤()→=
BP π 5,() x1 x4=() x2 x2=() x3 x8=() x4 x1=() x5 x′5≤()→=
BP π 6,() x1 x4=() x2 x2=() x3 x8=() x4 x1=() x5 x′5=() x6 x′3≤()→=
BP π 7,() x1 x4=() x2 x2=() x3 x8=() x4 x1=() x5 x′5=() x6 x′3=() x7 x7≤()→=
BP π 8,() x1 x4=() x2 x2=() x3 x8=() x4 x1=() x5 x′5=() x6 x′3=() x7 x7=() x8 x′6≤()→=
BP π 9,() x1 x4=() x2 x2=() x3 x8=() x4 x1=() x5 x′5=() x6 x′3=() x7 x7=() x8 x′6=() x9 x9≤()→=
BP π 10,() x1 x4=() x2 x2=() x3 x8=() x4 x1=() x5 x′5=() x6 x′3=() x7 x7=() x8 x′6=() x9 x9=() x10 x10≤()→=

PP π() p1() p1 l1p3→() p3 g1 l3p5→ →() p5 g3 l5→ →()=
p1() p1 x1 x4≤()p3→() p3 x1 x4≥() x3 x8≤()p5→ →() p5 x3 x8≥() x′5→ →()=

Figure 1: Illustration of different formulations of the permutation predicate.

supp π() 1 3 4 5 6 8, , , , ,{ }=

ends π() 4 8,{ }=
supp π() ends π() 1 3 5 6, , ,{ }=

phase-shift π() 5=
succ phase-shift π() I10,() 6 7 8 9 10, , , ,{ }=

supp π() ends π() succ phase-shift π() I10,() 1 3 5, ,{ }=
(a) Permutation in tabular and cyclic notation

(b) Various index sets associated with permutation

(c) Bit predicates according to (10). BPs enclosed in boxes with square corners are tautologous because maps the corre-
sponding bits to themselves. BPs enclosed in boxes with rounded corners are tautologous because they correspond to cycle
“ends.” The BPs for bits 6 to 10 are tautologous because maps bit 5 to its complement.

π

π

(d) Linear formulation of the permutation predicate according to (18), based only on irredundant bits

1 2 3 4 5 6 7 8 9 10

4 2 8 1 5 3 7 6 9 10

π
 = ′ ′ ′

x x x x x x x x x x
x x x x x x x x x x

xi
π xi=

supp π() In
supp π() n

π

xj j J∈{ } i J()max=

xj xj
π=()

j J i{ }∈
∧ xi xi

π≤()→ 1=

BP π i,()

supp π() ends π()
m supp π() cycles π()–≡

xi
π x′i=

 and all BPs for have the form
making them unconditionally true.

Taken together, the redundant BPs corresponding to these
three cases can be easily eliminated by setting the index set
in (9) and (10) to:

(14)

In the sequel we will refer to the bits in the above index set
as “irredundant bits.” Note that the presence of a phase-
shifted variable early in the total order can lead to a drastic
reduction in the number of irredundant bits. For example, if

 then is simply regardless of
how many other variables are moved by .

Linear construction of PPs through chaining. The PP in
(9) and (10) has a recursive structure that can be utilized to
produce a CNF formula whose size is linear, rather than qua-
dratic, in the cardinality of the index set I. Specifically, we
introduce the “ordering” predicates and

 and, after algebraic manipulation, write the
following equivalent expressions for the permutation predi-
cate:

(15)

where , and . Noting
that, except for the index set used, the parenthesized expres-
sion on the second line of the above equation is identical to
the expression on the first line, we introduce a sequence of
chaining predicates defined according to:

(16)

where . The recursive
structure of (15), now, makes it possible to express each
chaining predicate in terms of the one that follows it

(17)

and yields the following alternative representation of the per-
mutation predicate:

which can be simplified further by replacing the equalities
by one-way implications leading, finally, to:

(18)

The CNF representation of each conjunct in (18) is obtained
by substituting the definitions of the l and g variables and
using the distributive law. Thus, using this construction the
permutation predicate requires additional variables (the
chaining predicates) and consists of 3-literal and 4-
literal clauses for a total of literals.

5 Experimental Evaluation
We conducted a number of experiments to evaluate the effec-
tiveness of the symmetry breaking constructions described
above in reducing search times. We ran the experiments on
representative CNF instances from the following seven
benchmark families:
1. Hole-n: Unsatisfiable pigeon-hole instances [DIMACS]
2. Urq: Unsatisfiable randomized instances based on

expander graphs [Urquhart, 1987]
3. GRoute: Difficult satisfiable instances that model global

wire routing in integrated circuits [Aloul et al., 2002]
4. FPGARoute and ChnlRoute: Large satisfiable and unsat-

isfiable, instances that model the routing of wires in the
channels of field-programmable integrated circuits [Nam
et al., 2001]

5. XOR: Various exclusive-or chains [SAT 2002]
6. 2pipe: Difficult unsatisfiable instances that model the

functional correctness requirements of modern out-of-
order microprocessor CPUs [Velev and Bryant, 2001]

Each of the benchmarks was converted to a colored graph as
described in [Aloul et al., 2002] and processed by the graph
automorphism program Nauty (version 2) [McKay, 1981]
using the GAP package (version 4, release 3) [Spitznagel,
1994]. The symmetries returned by Nauty were then mapped
back to symmetries of the benchmark and appropriate SBPs
constructed and added. The mChaff SAT solver [Moskewicz
et al., 2001] was then run on the original and SBP-aug-
mented versions of each benchmark. All experiments were
run on a Linux workstation with a 1.2Ghz AMD Athlon pro-
cessor and 1GB of RAM. A time-out limit of 1000 seconds
was set for all runs, and run time results represent averages
over 10 to 200 independent runs.

Table 1 lists, for each benchmark family, the number of
instances tested (col. 2), their total CNF sizes (cols. 3 and 4),
the order of their symmetry groups (col. 5), the total number
of generators returned by Nauty (col. 6), and the number of
those that include phase shifts (col. 7). Columns 8 and 9 list
the cardinality of the generators’ support and the degree of
sparsity present in these generators. The remaining columns
in the table list the CNF sizes of three SBP constructions
based on generators:
• The quadratic construction (using extra equality variables)

based on all bits; this represents the previous state-of-the-
art

• The quadratic construction based only on irredundant bits
• The linear construction (using extra chanining variables)

based only on irredundant bits
Several observations can be made about the data in

Table 1. The number of symmetries in these benchmarks is
large, but all symmetries, including phase shifts in bench-
mark families Urq, XOR and 2pipe, can be represented by
fairly small sets of generators. The generators returned by
Nauty appear very sparse on average, i.e., a typical generator
affects only a small number of variables.2 This explains the
reduction, by 1-2 orders-of-magnitude, in the size of symme-
try-breaking predicates in column 13 (our first construction)
versus column 11 ([Crawford et al., 1996]). Both the number
of variables and the number of literals are reduced. While
our construction in column 13 only slightly extends the qua-

ei 0= j i> 0 xj xj
π≤()→

I supp π() ends π() succ phase-shift π() In,()=

π x1 x′1,()…= PP π() x′1()
π

li xi xi
π≤()=

gi xi xi
π≥()=

0
pred(,)

0
pred(,)

PP()π
∈ ∈

∈ ∈

 = → →
 = → ∧ → →

∧ ∧

∧ ∧

j i
i I j i I

k k j i
i K j i K

g g l

g l g g l

g0 1≡ k next 0 I,()= K succ k I,()=

pi |i I∈{ }

prev(,)
pred(,)∈ ∈

 = → →

∧ ∧i i I j k
k K j k K

p g g l

K i{ } succ i I,()∪ k I| k i≥∈{ }= =

pi g
prev i I,()

li pnext i I,()
→= i I∈ pn 1+ 1≡,

PP π() p I()min pi g
prev i I,()

li pnext i I,()
→=

i I∈
∧∧=

PP π() p I()min pi g
prev i I,()

li pnext i I,()
→ →

i I∈
∧∧=

|I|
2|I| 2|I |

14|I|

dratic-size construction in [Aloul et al., 2002], our more
advanced linear-size construction (column 15) offers an
additional reduction by up to an order of magnitude. Note,
however, that the number of variables is unchanged—the
extra variables added by the two constructions have different
function, but can be mapped to each other one-to-one.

Table 2 empirically compares the effectiveness of the
symmetry-breaking predicates described in Table 1. First, in

most cases it takes much less time to find symmetries of a
CNF instance than to solve it. The 2pipe instances are an
exception, but we believe that further advances in symmetry-
finding can rectify this exception. Second, the all-bits qua-
dratic construction due to [Crawford et al., 1996] is dramati-
cally slower than our variants based on the cycle structure.
Our linear-sized construction provides a further speed-up.
Exceptions are the Hole-n benchmarks, where the difference
between our two constructions is small, and the 2pipe bench-
marks where the quadratic-sized SBPs led to shorter run
times despite being almost thirteen times larger. Further
investigation showed that this was a side-effect of mChaff’s
VSIDS decision heuristic which tended to choose the auxil-
iary variables first because they occur in many more clauses
than the original instance variables. Using BerkMin [Gold-

2 While our experiments clearly confirm that such generators exist,
finding them is a function of the graph automorphism program.
Since we used Nauty as a black box, we do not have a clear expla-
nation of what causes Nauty to find such sparse generators,
whether even sparser generators can be found and whether Nauty
will in some cases return less sparse generators.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bench-
mark

Family

In
st

an
ce

s

Total Instance Sizes

Symmetries Total SBP Sizes

Total
Generators

All bits Irredundant bits

Quadratic Const. Linear Const.

Vars Lits Tot PS Avg
|supp| S Extra Vars Lits Extra Vars Lits Extra Vars Lits

Hole-n 6 616 6818 3E+18 108 0 20.6 79% 11788 865018 1112 20903 1112 14380

Urq 4 162 7212 6E+08 94 94 1.0 98% 3876 133047 0 94 0 94

GRoute 5 4704 93262 2E+11 138 0 46.6 95% 130032 63307944 3216 87312 3216 43506

FPGARoute 9 1580 19612 1E+21 241 0 24.2 86% 43429 4657249 2922 66603 2922 38257

ChnlRoute 6 1710 24366 2E+52 270 0 29.5 89% 79782 13705131 3987 138079 3987 52848

XOR 4 316 2512 7E+10 108 107 1.0 99% 9240 544092 1 121 1 110

2pipe 3 2620 61566 168 15 10 12.3 82% 13154 5954599 1031 186708 1031 14329

Total 37 11708 215348 2E+52 974 211 24749 90% 291301 89167080 12269 499820 12269 47751

KEY: Vars: # variables; Lits: # literals; Extra Vars: # additional variables used in SBPs; Tot: total # generators;
PS: # phase-shift generators; Avg. |supp|: average support of generators; S: sparsity of generators (1-Avg |supp|/Vars)

Table 1: Symmetry statistics for various benchmark families and size comparisons of three SBP constructions based on group generators.

1 2 3 4 5 6 7 8 9 10 11 12

Bench-
mark

Family

In

st
an

ce
s

G

en
er

at
or

s

G

en
er

at
or

s &
th

ei
r

co
m

po
si

tio
ns

Ti
m

e
to

 fi
nd

sy
m

m
et

ri
es

 (s
ec

)

Ti
m

e
to

 so
lv

e
or

ig
in

al
 in

st
an

ce
s

(s
ec

)

Time to solve instances and SBPs (sec) Speedup

Generators only Generators &
their comp.

All bits Irredundant bits

Quadratic Construction Linear Construction

Hole-n 6 108 1157 0.38 1246.81 18.75 0.06 0.07 0.65 8832 171

Urq 4 94 94 0.76 895.65 3.72 1.17 1.17 1.17 2084 11

GRoute 5 138 2037 38.76 132.30 960.10 15.55 5.08 38.32 15 99

FPGARoute 9 241 3595 3.24 5070.30 4832.70 0.31 0.21 4.08 13391 12835

ChnlRoute 6 270 6578 25.86 2755.00 2675.85 0.37 0.17 5.87 588 569

XOR 4 108 108 11.43 1900.16 20.52 2.41 2.41 2.41 531 5

2pipe 3 15 18 23.50 7.84 16.88 3.19 8.01 8.31 0.8 2

Total 37 974 13587 103.93 12008.06 8528.52 23.06 17.12 60.81 3635 1956

Table 2: Comparison of search run times for various choices of SBP constructions and symmetries to break.

co
l 6

co
l 5

co
l 9

+

--

co
l 7

co
l 5

co
l 9

+

--

berg and Novikov, 2002] or GRASP [Silva and Sakallah,
1999] in the same experiment yielded opposite results as
expected.

Table 2 offers additional data to evaluate symmetry-
breaking by generators, which may not be complete. We
added symmetry-breaking predicates built for pairwise prod-
ucts of generators, but the overall runtimes increased. While
additional SBPs may break more symmetries, their overhead
does not justify their use.

Table 3 describes experiments with generators that have
long cycles in which we evaluated extensions to symmetry-
breaking by generators. Namely, we tried adding powers of
all generators and, alternatively, adding pairwise products of
generators. Neither extension proved useful, which supports
our main symmetry-breaking approach.

6 Conclusions
The main contribution of our work is a better construction of
symmetry-breaking predicates for Boolean satisfiability. We
empirically demonstrate improvements both in the size of
predicates and the run time of SAT solvers after these predi-
cates are added to the original CNF instances. We also show
that (1) symmetry-breaking by generators is difficult to
improve upon, and that (2) the efficiency of symmetry-
breaking does not improve when larger cycles are found in
generators.

Our work articulates that better symmetry finding algo-
rithms would be useful, especially if tailored to CNF formu-
las and, perhaps, the kinds of symmetry groups commonly
found in structured CNF instances.

Acknowledgments
This work was funded by the DARPA/MARCO Gigascale
Silicon Research Center and by an Agere Systems/SRC
Research fellowship.

References
[Aloul et al., 2002] F. Aloul, A. Ramani, I. Markov, and K.

Sakallah, “Solving Difficult SAT Instances in the Pres-
ence of Symmetries,” in Proc. Design Automation Conf.
(DAC), pp. 731-736, 2002.

[Crawford et al., 1996] J. Crawford, M. Ginsberg, E. Luks,
and A. Roy, “Symmetry-breaking predicates for search

problems,” in Proc. Intl. Conf. Principles of Knowledge
Representation and Reasoning, pp. 148-159, 1996.

[Biere et al., 1999] A. Biere, A. Cimatti, E. Clarke, M.
Fujita, and Y. Zhu, “Symbolic Model Checking Using
SAT Procedures Instead of BDDs,” in Proc. Design Auto-
mation Conf. (DAC), pp. 317-320, 1999.

[DIMACS] DIMACS Challenge benchmarks in ftp://
Dimacs.rutgers.EDU/pub/challenge/sat/benchmarks/cnf.

[Fraleigh, 2000] J. B. Fraleigh. A First Course in Abstract
Algebra. 6th ed. Addison Wesley Longman, Reading,
Massachusetts, 2000.

[Goldberg and Novikov, 2002] E. Goldberg and Y. Novikov,
“BerkMin: A fast and robust SAT-solver,” in Proc.
Design, Automation, and Test in Europe Conf. (DATE),
pp. 142-149, 2002.

[McKay, 1981] B. McKay, “Practical Graph Isomorphism,”
in Congressus Numerantium, vol. 30, pp. 45-87, 1981.
http://cs.anu.edu.au/~bdm/nauty/

[Moskewicz et al., 2001] M. Moskewicz, C. Madigan, Y.
Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an
Efficient SAT Solver,” in Proc. Design Automation Conf.
(DAC), pp. 530-535, 2001.

[Nam et al., 2001] G. Nam, F. Aloul, K. Sakallah, and R.
Rutenbar, “A Comparative Study of Two Boolean Formu-
lations of FPGA Detailed Routing Constraints,” in Proc.
Intl. Symp. on Physical Design (ISPD), pp. 222-227,
2001.

[SAT 2002] SAT 2002 Competition, http://www.satlive.org/
SATCompetition/submittedbenchs.html

[Silva and Sakallah, 1999] J. Silva and K. Sakallah,
“GRASP: A New Search Algorithm for Satisfiability,” in
IEEE Trans. on Computers, 48(5), pp. 506-521, 1999.

[Spitznagel, 1994] E. Spitznagel, “Review of Mathematical
Software, GAP,” in Notices Amer. Math. Soc., 41(7), pp.
780-782, 1994.

[Stephan et al., 1996] P. Stephan, R. Brayton, and A. Sangio-
vanni-Vincentelli, “Combinational Test Generation Using
Satisfiability,” in IEEE Trans. on Computer-Aided
Design, 15(9), pp. 1167-1175, 1996.

[Urquhart, 1987] A. Urquhart, “Hard Examples for Resolu-
tion,” in Journal of the ACM, 34(1), pp. 209-219, 1987.

[Velev and Bryant, 2001] M. N. Velev and R. E. Bryant,
“Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Micropro-
cessors”, in Proc. Design Automation Conf. (DAC), pp.
226-231, 2001.

In
st

an
ce

2-cycle
generators Generators with long cycles

Tot Time
(sec)

Max cycle
length

Generators only Generators and
their powers

Generators and
their comp.

Tot Time (sec) Tot Time (sec) Tot Time (sec)

Hole-7 13 0.01 21 12 0.01 94 0.08 52 0.07

Hole-8 15 0.01 12 14 0.03 127 0.05 24 0.17

Hole-9 17 0.01 63 16 0.55 161 2.95 77 0.97

Hole-10 19 0.01 42 18 8.2 207 30 116 8.3

Table 3: mChaff search run times of “randomized” Hole-n instances augmented with linear SBPs based on different sets of permutations.
Tot denotes the total number of permutations used in constructing each SBP.

