
Quipu: High-performance Simulation of
Quantum Circuits using Stabilizer Frames
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Abstract—As quantum information processing gains traction, its sim-
ulation becomes increasingly significant for engineering purposes –
evaluation, testing and optimization – as well as for theoretical research.
Generic quantum-circuit simulation appears intractable for conventional
computers. However, Gottesman and Knill identified an important
subclass, called stabilizer circuits, which can be simulated efficiently
using group-theory techniques. Practical circuits enriched with quantum
error-correcting codes and fault-tolerant procedures are dominated by
stabilizer subcircuits and contain a relatively small number of non-
stabilizer components. Therefore, we develop new group-theory data
structures and algorithms to simulate such circuits. Stabilizer frames
offer more compact storage than previous approaches but requires
more sophisticated bookkeeping. Our implementation, called Quipu,
simulates certain quantum arithmetic circuits (e.g., ripple-carry adders)
in polynomial time and space for equal superpositions of n-qubits. On
such instances, known linear-algebraic simulation techniques, such as
the (state-of-the-art) BDD-based simulator QuIDDPro, take exponential
time. We simulate various quantum Fourier transform and quantum
fault-tolerant circuits with Quipu, and the results demonstrate that our
stabilizer-based technique outperforms QuIDDPro in all cases.

I. INTRODUCTION

Quantum information processing manipulates quantum states rather
than conventional 0-1 bits. It has been demonstrated with a variety
of physical technologies (NMR, ion traps, Josephson junctions in
superconductors, linear and non-linear optics) and used in recently
developed commercial products. Furthermore, it offers a unique
opportunity for EDA research to assist in scientific research. Shor’s
factoring algorithm [17] and Grover’s search algorithm [8] apply
the principles of quantum information to carry out computation
asymptotically more efficiently than conventional computers. These
developments fueled research efforts to design, build and program
scalable quantum computers. Due to the high volatility of quantum
information, quantum error-correcting codes (QECC) and effective
fault-tolerant (FT) architectures are necessary to build reliable quan-
tum computers. Most quantum algorithms are described in terms of
quantum circuits and, just like conventional digital circuits, require
functional simulation to determine the best FT design choices given
limited resources. Simulating quantum circuits on a conventional
computer is a difficult problem. The matrices representing quantum
gates, and the vectors that model quantum states grow exponentially
with an increase in the number of qubits – the quantum analogue of
the classical bit. Several software packages have been developed for
quantum-circuit simulation including Oemer’s Quantum Computation
Language (QCL) [13] and Viamontes’ Quantum Information Decision
Diagrams (QuIDD) implemented in the QuIDDPro package [18].
While QCL simulates circuits directly using state vectors, QuIDDPro
uses a variant of binary decision diagrams to store state vectors
more compactly in some cases. Since the state-vector representation
requires excessive computational resources in general, simulation-
based reliability studies (e.g. simulated fault-injection analysis) of
quantum FT architectures using general-purpose simulators has been
limited to small quantum circuits [3]. Therefore, designing fast
simulation techniques that target quantum FT circuits facilitates more
robust reliability analysis of larger quantum circuits.
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Stabilizer circuits and states. Gottesman [7] and Knill identified
an important subclass of quantum circuits, called stabilizer circuits,
which can be simulated efficiently on classical computers. Stabilizer
circuits are exclusively composed of stabilizer gates – controlled-
NOT, Hadamard and Phase gates (Figure 1) followed by one-
qubit measurements in the computational basis. Such circuits are
applied to a computational basis state (usually |00...0〉) and produce
output states known as stabilizer states. Because of their extensive
applications in QECC and FT architectures, stabilizer circuits have
been studied heavily [1], [7]. Stabilizer circuits can be simulated
in polynomial-time by keeping track of the Pauli operators that
stabilize1 the quantum state. Such stabilizer operators are maintained
during simulation and uniquely represent stabilizer states up to
an unobservable global phase.2 Therefore, this technique offers an
exponential improvement over the computational resources needed to
simulate stabilize circuits using vector-based representations.

Aaronson and Gottesman [1] proposed an improved technique
that uses a bit-vector representation to simulate stabilizer circuits.
Aaronson implemented this simulation technique in his CHP software
package. Compared to other vector-based simulators (QuIDDPro,
QCL) the technique in [1] does not maintain the global phase of a
state and simulates each stabilizer gate in Θ(n) time using Θ(n2)
space. The overall runtime of CHP is dominated by the number of
measurement gates, which require O(n2) time to simulate.
Stabilizer-based simulation of generic circuits. We propose a
generalization of the stabilizer formalism that admits simulation of
non-stabilizer gates such as Toffoli3 gates. This line of research
was first outlined in [1], where the authors describe a stabilizer-
based representation that stores an arbitrary quantum state as a sum
of density-matrix4 terms. In contrast, we store arbitrary states as
superpositions5 of stabilizer states. Such superpositions are stored
more compactly than the approach from [1], although we do not
handle density matrices. Another key difference is that our approach
explicitly maintains the global phase of each stabilizer state because
in a superposition such phases become relative. We store stabilizer-
state superpositions compactly using our proposed stabilizer frame
data structure. To speed up relevant algorithms, we store generator
sets for each stabilizer frame in row-echelon form to avoid expensive
Gaussian elimination during simulation. The main advantages of
using stabilizer-state superpositions to simulate quantum circuits are:

1An operator U is said to stabilize a state iff U |ψ〉 = |ψ〉.
2According to quantum physics, the global phase exp(iθ) of a quantum state is

unobservable and does not need to be simulated.
3The Toffoli gate is a 3-bit gate that maps (a, b, c) to (a, b, c⊕ (ab)).
4Density matrices are self-adjoint positive-semidefinite matrices of trace 1.0, that

describe the statistical state of a quantum system [11].
5A superposition is a norm-1 linear combination of terms.
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Fig. 1. Stabilizer gates: Hadamard (H), Phase (P), controlled-NOT (CNOT).



(i) Stabilizer subcircuits are simulated with high efficiency.
(ii) Superpositions can be restructured and compressed on the fly

during simulation to reduce resource requirements.
Our stabilizer-based technique simulates certain quantum arithmetic
circuits in polynomial time and space for input states consisting
of unbiased superpositions of computational-basis states. On such
instances, known generic simulation techniques take exponential
time. We simulate various quantum Fourier transform and quantum
FT circuits, and the results demonstrate that our data structure leads
to orders-of-magnitude improvement in runtime and memory as
compared to state-of-the-art simulators.

In the remaining part of this document, we assume a superficial
familiarity with quantum computing, as outlined in [11] and EDA
publications such as [16]. Section II describes key concepts related
to quantum-circuit simulation and the stabilizer formalism. In Sec-
tion III, we introduce stabilizer frames and describe in detail our
simulation flow implemented in Quipu. In Section IV, we discuss
our empirical validation of Quipu and comparisons with state-of-
the-art simulators. Section V closes with concluding remarks.

II. BACKGROUND AND PREVIOUS WORK

Quantum information processes, including quantum algorithms,
are often modeled using quantum circuits and are represented by
diagrams, just like conventional digital circuits [11], [18]. Quantum
circuits are sequences of gate operations that act on some register of
qubits – the basic unit of information in a quantum system. A single
qubit is described by a quantum state |ψ〉, which is a two-dimensional
vector over the complex numbers. In contrast to classical bits, qubits
can be in a superposition of both the 0 and 1 states. Formally,
|ψ〉 = α0 |0〉 + α1 |1〉, where |0〉 = (1, 0)> and |1〉 = (0, 1)> are
the two-dimensional computational basis states and αi are probability
amplitudes that satisfy |α0|2 + |α1|2 = 1. An n-qubit register is the
tensor product of n single qubits and thus is modeled by a complex
vector |ψn〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 =

∑2n−1
i=0 αi |bi〉, where each

bi is a binary string representing the value i of each basis state.
Furthermore, |ψn〉 satisfies

∑2n−1
i=0 |αi|

2 = 1. Each gate operation
or quantum gate is a unitary matrix that operates on a small subset
of the qubits in a register. For example, the quantum analogue of a
NOT gate is the operator X = ( 0 1

1 0 ),

α0 |00〉+ α1 |10〉 X⊗I−−−→ α0 |10〉+ α1 |00〉

Similarly, the two-qubit CNOT operator flips the second qubit
(target) iff the first qubit (control) is set to 1, e.g.,

α0 |00〉+ α1 |10〉 CNOT−−−−−→ α0 |00〉+ α1 |11〉

Another operator of particular importance is the Hadamard (H) gate.
This gate is frequently used to put a qubit in a superposition of
computational-basis states, e.g.,

α0 |00〉+ α1 |10〉 I⊗H−−−→ (α0 |00〉+ α0 |01〉+ α1 |10〉+ α1 |11〉)/
√

2

Note that the H gate generates unbiased superpositions in the
sense that the squares of the absolute value of the amplitudes are
equal. The dynamics involved in observing or measuring a quantum
state are described by non-unitary projection operators. There are
different types of quantum measurements, but the one most pertinent
to our discussion are measurements in the computational basis,
i.e., measurements with respect to the |0〉 or |1〉 basis states. The
projection operators for such measurements are P0 = ( 1 0

0 0 ) and
P1 = ( 0 0

0 1 ), respectively. The probability p(x) of obtaining outcome
x ∈ {0, 1} on the jth qubit of state |ψ〉 is given by the inner product
〈ψ|P jx |ψ〉, where 〈ψ| is the conjugate transpose of |ψ〉. For example,
suppose we want to measure |ψ〉 = α0 |0〉+α1 |1〉 in the |1〉 basis:

p(1) = (α∗0, α
∗
1)P1(α0, α1)> = (0, α∗1)(α0, α1)> = |α1|2

Cofactors of quantum states. The output states obtained after
performing computational-basis measurements are called cofactors,
and are orthogonal states of the form |0〉 |ψ0〉 and |1〉 |ψ1〉. We denote

the |0〉- and |1〉-cofactor by |ψj=0〉 and |ψj=1〉, respectively, where
j is the index of the measured qubit. One can also consider iterated
cofactors, such as double cofactors |ψqr=00〉, |ψqr=01〉, |ψqr=10〉 and
|ψqr=11〉. Cofactoring with respect to all qubits produces amplitudes
of individual basis vectors.

A. Quantum circuits and simulation

To simulate a quantum circuit C, we first initialize the quantum
system to some desired state |ψ〉 (usually a basis state). |ψ〉 can be
represented using a fixed-size data structure (e.g., an array of 2n

complex numbers) or a variable-size data structure (e.g., algebraic
decision diagram). We then track the evolution of |ψ〉 via its internal
representation as the gates in C are applied until one obtains the
output state C |ψ〉 [1], [11], [18]. Most quantum-circuit simulators [5],
[12], [13], [18] support some form of the linear-algebraic operations
described earlier. The drawback of such simulators is that their
runtime grows exponentially in the number of qubits. This holds true
not only in the worst case but also in many practical applications
involving arithmetic and FT circuits.

Gottesman developed a simulation method involving the Heisen-
berg model [7] often used by physicists to describe atomic phe-
nomena. In this model, one keeps track of the symmetries of an
object rather than represent the object explicitly. In the context of
quantum-circuit simulation, this model represents quantum states by
their symmetries, rather than complex vectors. The symmetries are
operators for which these states are 1-eigenvectors. Algebraically,
symmetries form group structures, which can be specified compactly
by group generators.

B. The stabilizer formalism

A unitary operator U stabilizes a state |ψ〉 iff |ψ〉 is a 1–eigenvector
of U , i.e., U |ψ〉 = |ψ〉. We are interested in operators U derived
from the Pauli matrices: X = ( 0 1

1 0 ) , Y =
(

0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

and the identity I = ( 1 0
0 1 ). The one-qubit states stabilized by the

Pauli matrices are:
X : (|0〉+ |1〉)/

√
2 −X : (|0〉 − |1〉)/

√
2

Y : (|0〉+ i |1〉)/
√

2 −Y : (|0〉 − i |1〉)/
√

2
Z : |0〉 −Z : |1〉

Observe that I stabilizes all states and −I does not stabilize any
state. Thus, the entangled state (|00〉 + |11〉)/

√
2 is stabilized by

the Pauli operators X ⊗ X , −Y ⊗ Y , Z ⊗ Z and I ⊗ I . As
shown in Table I, it turns out that the Pauli matrices along with
I and the multiplicative factors ±1, ±i, form a closed group
under matrix multiplication [11]. Formally, the Pauli group Gn on
n qubits consists of the n-fold tensor product of Pauli matrices,
P = ikP1⊗···⊗Pn such that Pj ∈ {I,X, Y, Z} and k ∈ {0, 1, 2, 3}.
For brevity, the tensor-product symbol is often omitted so that P
is denoted by a string of I , X , Y and Z characters or Pauli
literals and a separate integer value k for the phase ik. This string-
integer pair representation allows us to compute the product of Pauli
operators without explicitly computing the tensor products,6 e.g.,
(−IIXI)(iIY II) = −iIY XI . Since | Gn |= 4n+1, Gn can have at

6This holds true due to the identity: (A⊗ B)(C ⊗D) = (AC ⊗ BD).

TABLE I
MULTIPLICATION TABLE FOR PAULI MATRICES. SHADED

CELLS INDICATE ANTICOMMUTING PRODUCTS.

I X Y Z

I I X Y Z
X X I iZ −iY
Y Y −iZ I iX
Z Z iY −iX I



most log2 | Gn |= log2 4n+1 = 2(n+1) irredundant generators [11].
The key idea behind the stabilizer formalism is to represent an n-qubit
quantum state |ψ〉 by its stabilizer group S(|ψ〉) – the subgroup of
Gn that stabilizes |ψ〉. One can show that, if |S(|ψ〉)| = 2n, the group
uniquely specifies |ψ〉. In this case, |ψ〉 belongs to an important class
of quantum states called stabilizer states. Furthermore, S(|ψ〉) itself
is specified by only log2 2n = n irredundant stabilizer generators.
Therefore, an arbitrary n-qubit stabilizer state can be represented
by a stabilizer matrix M whose rows represent a set of generators
Q1, . . . , Qn for S(|ψ〉). (Hence we use the terms generator set and
stabilizer matrix interchangeably.) Since each Qi is a string of n
Pauli literals, the size of the matrix is n × n. The phases of each
Qi are stored separately using a vector of n integers. For example,
one can show that |ψ〉 = (|00〉 + |11〉)/

√
2 is uniquely specified by

any of the following matrices: M1 = +
+

[
XX
ZZ

]
, M2 = +

−
[
XX
Y Y

]
,

M3 = −
+

[
Y Y
ZZ

]
. One obtains M2 from M1 by left-multiplying the

second row by the first. Similarly,M3 is obtained fromM1 orM2

via row multiplication. Observe that, multiplying any row by itself
yields II , which stabilizes |ψ〉. However, II cannot be used as a
generator because it is redundant and carries no information about
the structure of |ψ〉. The storage cost for M is Θ(n2), which is an
exponential improvement over the O(2n) cost often encountered in
vector-based representations.
Stabilizer-circuit simulation. The computational basis states are
stabilizer states that can be represented by the stabilizer-matrix
structure depicted in Figure 2-a. In this matrix form, the ± sign of
each row along with its corresponding Zj-literal designates whether
the state of the jth qubit is |0〉 (+) or |1〉 (−). Suppose we want
to simulate circuit C. Stabilizer-based simulation first initializes M
to specify some basis state. Then, to simulate the action of each
gate U ∈ C, we conjugate each row Qi of M by U .7 We require
that UQiU† maps to another string of Pauli literals so that the
resulting matrix M′ is well-formed. It turns out that the H, P and
CNOT gates have such mappings, i.e., these gates conjugate the Pauli
group onto itself [7], [11]. Table II lists the mapping for each of
these gates. For example, suppose we simulate a CNOT operation on
|ψ〉 = (|00〉+ |11〉)/

√
2. Using the stabilizer representation, we have

Mψ =
[

+XX
+ZZ

] CNOT−−−−−→ M′ψ =
[

+XI
+IZ

]
. One can verify that the

rows ofM′ψ stabilize |ψ〉 CNOT−−−−−→ (|00〉+|10〉)/
√

2 as required. Since
H, P and CNOT gates are directly simulated using stabilizers, these
gates are commonly called stabilizer gates and any circuit composed
exclusively of such gates is called a unitary stabilizer circuit. Table II
shows that at most two columns ofM are updated when a stabilizer
gate is simulated. Thus, such gates are simulated in Θ(n) time.

The stabilizer formalism also admits measurements in the com-
putational basis [7]. Conveniently, the formalism avoids the direct
computation of projection operators and inner products (Section II).
Note that any qubit j in a stabilizer state is either in a |0〉 (|1〉)
state or in an unbiased superposition of both. The former case is
called a deterministic outcome and the latter a random outcome.

7Since Qi |ψ〉 = |ψ〉, the resulting state U |ψ〉 is stabilized by UQiU
† because

(UQiU
†)U |ψ〉 = UQi |ψ〉 = U |ψ〉.

TABLE II
CONJUGATION OF PAULI-GROUP ELEMENTS BY STABILIZER GATES [11].

FOR CNOT , SUBSCRIPT 1 INDICATES THE CONTROL AND 2 THE TARGET.

GATE INPUT OUTPUT

X Z
H Y -Y

Z X
X Y

P Y -X
Z Z

GATE INPUT OUTPUT

CNOT

I1X2 I1X2

X1I2 X1X2

I1Y2 Z1Y2

Y1I2 Y1X2

I1Z2 Z1Z2

Z1I2 Z1I2

(a) (b)

Fig. 2. (a) Stabilizer-matrix structure for basis states. (b) Row-echelon form
for stabilizer matrices. The X-block contains a minimal set of generators with
X/Y literals. Generators with Z and I literals only appear in the Z-block.

We can tell these cases apart in Θ(n) time by searching for X or
Y literals in the jth column of M. If such literals are found, the
qubit must be in a superposition and the outcome is random with
equal probability (p(0) = p(1) = .5); otherwise the outcome is
deterministic (p(0) = 1 or p(1) = 1).

Randomized-outcome case: one flips an unbiased coin to decide the
outcome and then updatesM to make it consistent with the outcome
obtained. Since we might have to examine M in its entirety, the
runtime is O(n2).

Deterministic-outcome case: no updates to M are necessary but
we need to figure out whether the qubit is in the |0〉 or |1〉 state, i.e.,
whether the qubit is stabilized by Z or -Z. One approach is to perform
Gaussian elimination (GE) to put M in row-echelon form. This
removes redundant literals fromM and makes it possible to identify
the row containing a Z in its jth position and I’s everywhere else.
The ± phase of such a row decides the outcome of the measurement.
Since this is a GE-based approach, it takes O(n3) time in practice.

The work in [1] improved the runtime of deterministic measure-
ments by doubling the size ofM to include n destabilizer generators.
Such destabilizer generators help identify exactly which row multi-
plications to compute in order to decide the measurement outcome.
This approach avoids GE and thus deterministic measurements are
computed in O(n2) time.

III. SIMULATION OF QUANTUM CIRCUITS
USING STABILIZER FRAMES

The stabilizer gates by themselves do not form a universal set for
quantum computation [1], [11]. However, the Hadamard and Toffoli
(TOF ) gates do [2]. Thus, it suffices to show how to simulate the
Toffoli gate using the stabilizer formalism in order to make our gate
set universal. To accomplish this, we represent arbitrary quantum
states as superpositions of stabilizer states. For example, recall from
Section II-B that the computational basis states are stabilizer states.
Thus, any one-qubit state |ψ〉 = α1 |0〉+α2 |1〉 is a superposition of
the two stabilizer states |0〉 and |1〉. Observe that, if |ψ〉 is unbiased,
i.e., |α1|2 = |α2|2, it can represented using a single stabilizer state
instead of two (up to a global phase). The key idea behind our
technique is to identify and compress large unbiased superpositions
on the fly during simulation to reduce resource requirements.
Stabilizer frames. Suppose |ψ〉 is an n-qubit stabilizer state and we
want to simulate the action of TOFc1c2t, where c1 and c2 are the
control qubits, and t is the target. First, we decompose |ψ〉 into all
four of its double cofactors (Section II) over the control qubits,

|ψ〉 = (|ψc1c2=00〉+ |ψc1c2=01〉+ |ψc1c2=10〉+ |ψc1c2=11〉)/2

which is an unbiased superposition of orthogonal states. Since |ψ〉
is a stabilizer state and the cofactors are obtained by performing
measurements on |ψ〉, each |ψc1c2〉 is computed in O(n2) time
(Section II-B). We compute the action of the Toffoli as,

TOFc1c2t |ψ〉 = ( |ψc1c2=00〉+ |ψc1c2=01〉
+ |ψc1c2=10〉+Xt |ψc1c2=11〉)/2



Fig. 3. Simulation of the Toffoli gate using a superposition of stabilizer states.
Amplitudes are omitted for clarity. The X gate is applied to the third qubit
of the |ψc1c2=11〉 cofactor. The (±)-phase vectors are shown as prepended
columns to the corresponding stabilizer matrices.

where Xt is the Pauli gate (NOT) acting on target t. Each |ψc1c2〉
is represented by the same M, but with a different permutation of
leading row phases as shown in Figure 3. Thus, one can represent the
orthogonal stabilizer-state superpositions that arise when simulating
Toffoli gates by a stabilizer frame F consisting of (i) a stabilizer
matrix M and (ii) a set of k distinct leading (±)-phase vectors.
Each phase vector in the frame represents a distinct state in the
superposition. Additionally, one maintains a vector a = (a1, . . . , ak)
of the amplitudes associated with the states (phase vectors) in the
superposition, e.g., a = (.5, .5, .5, .5) in Figure 3. Controlled-phase
gates R(α)ct can also be simulated using stabilizer frames. This gate
applies a phase-shift factor of eiα if both the control qubit c and target
qubit t are set. Thus, we compute the action of R(α)ct as,

R(α)ct |ψ〉 = ( |ψct=00〉+ |ψct=01〉+ |ψct=10〉+ eiα |ψct=11〉)/2

Observe that, in contrast to TOF gates, controlled-R(α) gates
produce biased superpositions. The Hadamard and controlled-R(α)
gates are used to implement the quantum Fourier transform circuit,
which plays a key role in Shor’s factoring algorithm.

A. Frame-based Simulation

We now discuss how to manipulate a stabilizer frame F in order
to simulate generic quantum circuits with both stabilizer and non-
stabilizer gates. To simulate stabilizer gates, we first update the
stabilizer matrix M associated with F as per Section II-B. Then,
we iterate over the phase vectors in F and update each accordingly
(Table II). Thus, this operation takes O(nk) time for a superposition
with k states. To simulate a non-stabilizer gate, we first update
M (i.e., apply measurements to obtain relevant cofactors). We then
iterate over each phase vector in F and permute the corresponding
phases in order to generate additional phase vectors corresponding to
the cofactor states. As in the case of stabilizer gates, this operation
is linear in the number of phase vectors. However, by the end of
the operation, the number of phase vectors (states) in F will have
grown by a (worst case) factor of four in the case of both TOF
and controlled-R(α). For an arbitrary n-qubit stabilizer frame F ,
the number of phase vectors is upper bounded by 2n, the number of
possible ± permutations.

Prior work on simulation of non-stabilizer gates using the stabilizer
formalism can be found in [1] where the authors propose an approach
that represents a quantum state as a sum of O(42d) density-matrix
terms, where d is the number of distinct qubits involved in non-
stabilizer operations.
Global phases of states in F . In quantum mechanics, the states
eiθ |ψ〉 and |ψ〉 are considered phase-equivalent because eiθ does
not affect the statistics of measurement. During stabilizer-based
simulation, such global phases are not maintained. Since these phases
are unobservable, this is not a problem when simulating a single
stabilizer state. However, since we manipulate superpositions of
states, such global phases become relative and cannot be ignored. In
frame-based simulation, we maintain the global phases of the states in

F using the amplitude vector a. Let pi be the phase-vector associated
with ai ∈ a. When simulating gate U , we update each ai as follows:

1) Set the leading phases of the rows in M to pi.
2) Obtain a basis state |b〉 from M and store its amplitude β. If

U is the Hadamard gate, it may be necessary to sample a sum
of two non-zero basis amplitudes (one real, one imaginary).

3) Compute U(β |b〉) = β′ |b′〉 via the state-vector representation.
4) Obtain |b′〉 from UMU† and store its non-zero amplitude γ.
5) Compute the global-phase factor generated as ai = (ai · β′)/γ.
To sample the computational-basis amplitudes |b〉 and |b′〉 from the

stabilizer, M needs to be in row-echelon form (Figure 2-b). Thus,
each global-phase computation takes O(n3) time for an n-qubit M.
To improve this, we introduce a simulation invariant.

Invariant 1: The stabilizer matrix M associated with F remains
in row-echelon form (Figure 2b) during simulation.

Since stabilizer gates affect at most two columns ofM, Invariant 1
can be repaired with O(n) row multiplications. Since each row
multiplication takes Θ(n), the runtime required to update M during
global-phase maintenance simulation is O(n2). Therefore, for an
arbitrary n-qubit stabilizer frame with k states, the overall runtime
for simulating a single gate is O(n2 + nk) since one can memoize
the updates to M required to compute each ai.
Measuring F . Since the states in F are orthogonal, the outcome
probability when measuring F is calculated as the sum of the
normalized outcome probabilities of each state. The normalization is
with respect to the amplitudes stored in a and thus the overall mea-
surement outcome may have a non-uniform distribution. Formally, let
Ψ =

∑
i ai |ψi〉 be the superposition of states represented by F , the

probability of observing outcome x ∈ {0, 1} upon measuring qubit
m is,

p(x)Ψ =

k∑
i=1

|ai|2 〈ψi|Pmx |ψi〉 =

k∑
i=1

|ai|2p(x)ψi

where Pmx denotes the projection operator in the computational
basis x as discussed in Section II. The outcome probability for
each stabilizer state p(x)ψi is computed as outlined in Section II-B.
Once we compute p(x)Ψ, we flip a (possibly biased) coin to decide
the outcome and update the stabilizer matrix associated with F
(Section II-B). In the worst case, the outcomes of all the states
in Ψ are random and each require an O(n2)-time update to M.
(Deterministic measurements do not require updates toM and, since
we maintain Invariant 1, such measurements can be decided in linear
time.) Thus, measuring a frame with k states takes O(n2 +nk) time.
Multiframe simulation. Although a single frame is sufficient to rep-
resent a stabilizer-state superposition Ψ, one can tame the exponential
growth of states in Ψ by admitting a multiframe representation. Such
a representation cuts down the total number of states required to
represent Ψ by at least a half, thus improving the scalability of our
technique. Our experiments in Section IV show that, when simulating
ripple-carry adders, the number of states in Ψ grows linearly when
multiframes are used but exponentially when a single frame is used.

One derives a multiframe representation directly from a single
frame F by examining the set of phase vectors and identifying
candidate pairs that can be coalesced into a single phase vector
associated with a different stabilizer matrix. Since we maintain the
stabilizer matrix M of a frame in row-echelon form (Invariant 1),
examining the phases corresponding to Zj rows (Z-literal in jth

column and I’s in all other columns) allows us to identify the columns
in M that need to be modified in order to coalesce candidate pairs.
Figure 4 shows an example of this process. To obtain M1 in the
Figure 4 example, we conjugate the first column of M by an H
gate. Similarly, to obtain M2 we conjugate the first column by H
and then conjugate the first and third columns by CNOT. Thus, the
output of this coalescing process is a list of frames F1,F2, . . . ,Fl



Fig. 4. Example of how a multiframe representation is derived from a single-
frame representation. Each frame Fi consists of a stabilizer matrixMi, a set
of (±)-phase vectors and a vector of amplitudes ai.

that together represent the same superposition as the original input
frame. We introduce the following invariant to facilitate simulation
of quantum measurements on multiple frames.

Invariant 2: The stabilizer frames that represent a superposition of
stabilizer states remain mutually orthogonal during simulation, i.e.,
every pair of (basis) vectors from any two frames are orthogonal.

To maintain Invariant 2 we define a specific type of candidate
pair such that the new frames generated from the set of coalesced
phase vectors are mutually orthogonal. Suppose 〈pr,pj〉 are a pair
of phase vectors from the same n-qubit frame. Then 〈pr,pj〉 is
considered a candidate iff it has the following properties: (i) pr
and pj are equal up to m ≤ n entries corresponding to Zk-rows
(where k is the qubit the row stabilizes), and (ii) ar = idaj for some
d ∈ {0, 1, 2, 3} (where ar and aj are the frame amplitudes paired
with pr and pj). The stabilizer circuit needed to coalesce a candidate
pair is defined as C=CNOTv1,v2CNOTv1,v3 · · ·CNOTv1,vmPdv1Hv1 ,
where the vk designate the qubits stabilized by the m differing entries
in the candidate pair. The steps in our coalescing procedure are:

1) Sort phase vectors according to differing entries such that
candidate pairs are next to each other.

2) Coalesce candidate pairs into a new set of phase vectors.
3) Create a new frame Fi consisting of the set of coalesced phase

vectors and the new stabilizer matrix CMC†.
4) Repeat steps 2–3 until no candidate pairs remain.
The runtime of this procedure is dominated by Step 1. Each phase-

vector comparison takes Θ(n) time, where n is the size of the phase
vectors. Therefore, the runtime of step 1 and our overall coalescing
procedure is O(nk log k) for a single frame with k phase vectors.

To simulate stabilizer, TOF , controlled-R(α) and measurement
gates using multiple frames, one applies our single-frame algorithms
to each frame in the list independently. In the case of TOF and
controlled-R(α) gates, additional steps are required:

1) Apply the coalescing procedure to each frame and insert the
new “coalesced” frames in the list.

2) Merge frames with equivalent stabilizer matrices.
3) Repeat Steps 1 and 2 until no new frames are generated.
The simulation flow of our technique is shown in Figure 5 and

implemented in our software package Quipu.

IV. EMPIRICAL VALIDATION

We tested a single-threaded version of Quipu on a conventional
Linux server using several benchmark sets consisting of stabilizer
circuits, quantum ripple-carry adders, quantum Fourier transform
circuits and quantum fault-tolerant (FT) circuits.
Stabilizer circuits. We compared the runtime performance of Quipu
against that of CHP using a benchmark set similar to the one used
in [1]. We generated random stabilizer circuits on n qubits, for
n ∈ {100, 200, . . . , 1500}. The use of randomly generated bench-
marks is justified for our experiments because (i) our algorithms are
not explicitly sensitive to circuit topology and (ii) random stabilizer

Fig. 5. Simulation flow for Quipu.

circuits have been considered representative [9]. For each n, we
generated the circuits as follows: fix a parameter β > 0; then
choose βdn log2 ne random unitary gates (CNOT, P or H) each with
probability 1/3. Then measure each qubit a ∈ {0, . . . , n − 1} in
sequence. We measured the number of seconds needed to simulate
the entire circuit. The entire procedure was repeated for β ranging
from 0.6 to 1.2 in increments of 0.1. Figure 6 shows the average
time needed by Quipu and CHP to simulate this benchmark set. The
purpose of this comparison is to evaluate the overhead of supporting
generic circuit simulation in Quipu. Since CHP is specialized to
stabilizer circuits, we do not expect Quipu to be faster. When
β = 0.6, the simulation time appears to grow roughly linearly
in n for both simulators. However, when the number of unitary
gates is doubled (β = 1.2), the runtime of both simulators grows
roughly quadratically. Thus, the performance of both CHP and Quipu
depends strongly on the circuit being simulated. Although Quipu is
5× slower than CHP, we note that Quipu maintains global phases
whereas CHP does not. Figure 6 shows that Quipu is asymptotically
as fast as CHP when simulating stabilizer circuits that contain a linear
number of measurements.
Ripple-carry adders. Our second benchmark set consists of n-
bit ripple-carry (Cuccaro) adder [4] circuits, which often appear as
components in many arithmetic circuits [10]. The Cuccaro circuit
for n = 3 is shown in Figure 7. Such circuits act on two n-qubit
input registers, one ancilla qubit and one carry qubit for a total
of 2(n + 1) qubits. We applied H gates to all 2n input qubits in
order to simulate addition on a superposition of 22n computational-
basis states. Figure 8 shows the average runtime needed to simulate
this benchmark set using Quipu. For comparison, we ran the
same benchmarks on an optimized version of QuIDDPro, called
QPLite8, specific to circuit simulation [18]. When n < 15, QPLite

8QPLite is up to 4× faster since it removes overhead related to QuIDDPro’s
interpreted front-end for extended quantum programming [15].
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|b0〉 H • • �������� |s0〉

|a0〉 H • • • |a0〉
|0〉 �������� �������� • • • �������� �������� |0〉
|b1〉 H �������� • �������� �������� • �������� �������� |s1〉

|a1〉 H • • �������� �������� • • �������� �������� • • |a1〉

|b2〉 H �������� • �������� �������� |s2〉

|a2〉 H • • • • • |a2〉
|z〉 �������� �������� |z ⊕ s3〉

Fig. 7. Ripple-carry (Cuccaro) adder for 3-bit numbers a = a0a1a2 and
b = b0b1b2. The third qubit from the top is an ancilla and the z qubit is the
carry. The b-register is overwritten with the result s0s1s2.

is faster than Quipu because the QuIDD representing the state
vector remains compact during simulation. However, for n > 15,
the compactness of the QuIDD is considerably reduced, and the
majority of QPLite’s runtime is spent in non-local pointer-chasing
and memory (de)allocation. Thus, QPLite fails to scale on such
benchmarks and one observes an exponential increase in runtime.
Furthermore, Quipu consumed 62% less memory than QPLite in
each of these benchmarks.

We ran the same benchmarks using both the single-frame and
multiframe approaches. In the case of a single frame, the number of
states in a superposition grows exponentially in n. However, in the
multiframe approach, the number of states grows linearly in n. This
is because TOF gates produce large equal superpositions that are
effectively compressed by our coalescing technique. Since our frame-
based algorithms require poly(k) time for k states in a superposition,
Quipu simulates Cuccaro circuits in polynomial time and space for
input states consisting of large superpositions of basis states. On
such instances, known linear-algebraic simulation techniques (e.g.,
QuIDDPro) take exponential time.

The work in [10] describes additional quantum arithmetic circuits
that are based on Cuccaro adders (e.g., subtractors, conditional
adders, comparators). We used Quipu to simulate such circuits and
observed similar runtime performance as that shown in Figure 8.
Quantum Fourier transform (QFT) circuits. Our third benchmark
set consists of circuits for implementing the n-qubit QFT, which
computes the discrete Fourier transform of the amplitudes in the input
quantum state. Let |x1x2 . . . xn〉, xi ∈ {0, 1} be a computational
basis state and x1,2,...,m =

∑m
k=1 xk2−k. The action of the QFT on

input state can be expressed as:

|x1 . . . xn〉 =
1
√

2n

(
|0〉+ e2iπ·xn |1〉

)
⊗
(
|0〉+ e2iπ·xn−1,n |1〉

)
⊗

· · · ⊗
(
|0〉+ e2iπ·x1,2,...,n |1〉

)
(1)
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Fig. 8. Average runtime needed by Quipu and QuIDDPro to simulate n-bit
Cuccaro adders after an equal superposition of allcomputational basis states
is obtained using a block of Hadamard gates (Figure 7). Quipu consumed
62% less memory than QPLite for each of these benchmarks.

|x2〉 • • H |y0〉

|x1〉 • H R(π/2) |y1〉

|x0〉 H R(π/2) R(π/4) |y2〉

Fig. 9. The three-qubit QFT circuit. In general, The first qubit requires one
Hadamard gate, the next qubit requires a Hadamard and a controlled-R(α)
gate, and each following qubit requires an additional controlled-R(α) gate.
Summing up the number of gates gives O(n2) for an n-qubit QFT circuit.

The QFT is used in many quantum algorithms, notably Shor’s
factoring and discrete logarithm algorithms. Such circuits are com-
posed of a network of Hadamard and controlled-R(α) gates, where
α = π/2k and k is the distance over which the gate acts. The three-
qubit QFT circuit is shown in Figure 9. Figure 10 shows average
runtime and memory usage for both Quipu and QPLite on QFT
instances for n = {10, 12, . . . , 20}. Quipu runs approximately
4× faster than QPLite on average and consumes about 90% less
memory. For these benchmarks, we observed that the number of
states in our multiframe data structure was 2n−1. This is because
controlled-R(α) gates produce biased superpositions (Section III-A)
that cannot be effectively compressed using our coalescing procedure.
Therefore, as Figure 10 shows, the runtime and memory requirements
of both Quipu and QPLite grow exponentially in n for QFT
instances. However, Quipu scales to 22-qubit instances whereas
QPLite scales to only 18 qubits.
Fault-tolerant (FT) circuits. Our last benchmark set consists of
circuits that, in addition to preparing encoded quantum states, im-
plement procedures for performing FT quantum operations [6], [11],
[14]. FT operations limit the propagation errors from one qubit
in a QECC-register (the block of qubits that encodes a logical
qubit) to another qubit in the same register, and a single faulty
gate damages at most one qubit in each register. One constructs
FT stabilizer circuits by executing each stabilizer gate transversally9

across QECC-registers [7], [11], [14]. Non-stabilizer gates need to
be implemented using a FT architecture that often requires additional
ancilla qubits, measurements and correction procedures conditioned
on measurement outcomes. Figure 11 shows a circuit that implements
a FT-Toffoli operation [14]. Each line in Figure 11 represents a 5-
qubit register implementing the DiVincenzo/Shor code.

We implemented FT benchmarks for the half-adder and full-adder
circuits as well as for computing f(x) = bxmod 15. Each circuit from
Figure 12 implements f(x) with a particular co-prime base value b
as a (2, 4) look-up table (LUT).10 The Toffoli gates in all our FT
benchmarks are implemented using the FT architecture from Figure
11. Since FT-Toffoli operations require 6 ancilla registers, a circuit

9In a transversal operation, the ith qubit in each QECC-register interacts only with
the ith qubit of other QECC-registers.

10A (k,m)-LUT takes k read-only input bits and m > log2 k ancilla bits. For
each 2k input combination, an LUT produces a pre-determined m-bit value, e.g., a
(2, 4)-LUT is defined by values (1, 2, 4, 8) or (1, 4, 1, 4).
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TABLE III
AVERAGE TIME AND MEMORY NEEDED BY QUIPU AND QPLITE TO SIMULATE OUR BENCHMARK SET OF QUANTUM FT CIRCUITS.

THE SECOND COLUMN INDICATES THE QECC USED TO ENCODE k LOGICAL QUBITS INTO n PHYSICAL QUBITS. WE USED THE
3-QUBIT BIT-FLIP CODE FOR LARGER BENCHMARKS AND THE 5-QUBIT DIVINCENZO/SHOR CODE [6] FOR SMALLER ONES (∗).

FAULT-TOLERANT QECC TOTAL QUBITS NUM. OF GATES RUNTIME (SECS) MEMORY (MB) MAX SIZE(Ψ)
CIRCUIT [n, k] (INC. ANCILLA) STAB. TOFF. QPLite Quipu QPLite Quipu SINGLE F MULTI F
toffoli∗ [15, 3] 45 155 15 43.68 0.20 98.45 12.76 2816 32

halfadd∗ [15, 3] 45 160 15 43.80 0.20 94.82 12.76 2816 32
fulladd∗ [20, 4] 80 320 30 84.96 0.88 91.86 12.94 2816 32
2xmod15 [18, 6] 81 396 36 4.81hrs 1.48 11.85 12.96 22528 64
4xmod15∗ [30, 6] 30 30 0 0.01 < 0.01 6.14 12.01 1 1
7xmod15 [18, 6] 81 402 36 11.25hrs 1.52 12.41 13.29 22528 64
8xmod15 [18, 6] 81 399 36 11.37hrs 1.52 12.48 13.29 22528 64

11xmod15∗ [30, 6] 30 25 0 0.02 < 0.01 6.14 12.01 1 1
13xmod15 [18, 6] 81 399 36 11.28hrs 1.56 11.85 12.25 22528 64
14xmod15∗ [30, 6] 30 40 0 0.02 < 0.01 6.14 12.01 1 1

that implements t FT-Toffolis using a k-qubit QECC, requires 6tk
ancilla qubits. Therefore, to compare with QPLite, we used the 3-
qubit bit-flip code [11, Ch. 10] instead of the more robust 5-qubit code
in our larger benchmarks. Our results in Table III show that Quipu
is typically faster than QPLite by several orders of magnitude and
consumes 8× less memory for the toffoli, half-adder and full-adder
benchmarks. Table III also shows that our coalescing technique is
effective as the maximum size of the stabilizer-state superposition is
orders-of-magnitude smaller when multiple frames are used.

V. CONCLUSIONS AND FUTURE WORK

In this work, we developed new techniques for quantum-circuit
simulation based on superpositions of stabilizer states, and managed
to circumvent shortcomings in prior work [1]. We implement our
algorithms in our software package Quipu. Current simulators based
on the stabilizer formalism, such as CHP, are limited to simulation
of stabilizer circuits. Our results show that Quipu performs asymp-
totically as fast as CHP on stabilizer circuits with a linear number of
measurement gates. Our stabilizer-based technique simulates certain
quantum arithmetic circuits in polynomial time and space for input
states consisting of unbiased superpositions of computational-basis
states. QuIDDPro takes exponential time on such instances. We
simulated various quantum Fourier transform and quantum fault-
tolerant circuits with Quipu, and the results demonstrate that our
stabilizer-based technique leads to orders-of-magnitude improvement
in runtime and memory as compared to QuIDDPro. While our
technique uses more sophisticated mathematics and quantum-state
modeling, it is significantly easier to implement and optimize.
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Fig. 11. Fault-tolerant implementation of a Toffoli gate. Each line represents
a 5-qubit register and each gate is applied transversally. The state |cat〉 =
(
∣∣0⊗5

〉
+
∣∣1⊗5

〉
)/
√
2 is obtained using a stabilizer subcircuit (not shown). The

arrows point to the set of gates that is applied if the measurement outcome
is 1; no action is taken otherwise. Controlled-Z gates are implemented as
HjCNOTi,jHj with control i and target j. Z gates are implemented as P 2.
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Fig. 12. Mod-exp with M = 15 implemented as (2, 4)-LUTs [10] for several
co-prime base values. Negative controls are shown with hollow circles. We
apply Hadamards to each x-qubit to generate a superposition of all the input
values for x. Our benchmarks implement these computations using the 3-qubit
bit-flip code [11, Ch. 10] and the FT-Toffoli architecture from Figure 11.
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