
Enhancing Design Robustness
with Reliability-aware Resynthesis and Logic Simulation

Smita Krishnaswamy, Stephen M. Plaza, Igor L. Markov, and John P. Hayes
{smita, splaza, imarkov, jhayes}@eecs.umich.edu

Advanced Computer Architecture Lab, University of Michigan
2260 Hayward Street, Ann Arbor 48109-2121, USA

Abstract
While circuit density and power efficiency increase with
each major advance in IC technology, reliability with re-
spect to soft errors tends to decrease. Current solutions
to this problem such as TMR require high area and power
overhead. In this work, soft-error reliability is improved
with minimal area overhead by careful, localized circuit re-
structuring. The key idea is to increase logic masking of
errors by taking advantage of conditions already present in
the circuit, such as observability don’t-cares. We describe
two circuit modification techniques to improve reliability:
covering-based resynthesis and local rewriting. A key fea-
ture of these techniques is fast, on-the-fly estimation of soft
error rate (SER) using our reliability evaluator AnSER. This
tool is compared against prior SER evaluators and found to
run orders of magnitude faster. We show empirically that
our reliability-driven synthesis methods can reduce SER by
29-40% with only 5-13% area overhead.

1 Introduction
Reliability with respect to soft (transient) errors is becom-
ing an important concern in digital circuits, and ICs are
now routinely characterized by their soft error rate (SER).
To guide synthesis techniques toward more reliable cir-
cuits, fast methods are needed to identify beneficial de-
sign changes and re-evaluate SER after each change. While
several SER evaluation tools have been developed recently
[14, 15, 7, 11], they require layout and electrical infor-
mation that is usually unavailable during synthesis at the
technology-independent logical level. In this work, we de-
scribe reliability-directed, logic-level resynthesis techniques
that employ a very fast SER evaluator called AnSER.

It has long been known that many soft failures are
masked and do not lead to observable circuit errors. Hence,
soft-error reliability can be improved by increasing mask-
ing opportunities, e.g., by logic replication such as in triple
modular redundancy (TMR). However, these methods sub-
stantially increase a circuit’s area and power consumption.

Our work demonstrates that logic masking can be en-
hanced systematically without significantly increasing cir-
cuit area. We accomplish this by local restructuring that
takes advantage of inherent functional redundancy and
don’t-cares in the logic circuit. Figure 1 outlines our
reliability-aware synthesis methodology, which exploits the
intimate relations between logic masking, observability
don’t-cares (ODCs) at individual nodes of the circuit, func-
tional simulation, and the testability of stuck-at faults. Bit-
parallel logic simulation is used to compute signatures and
don’t-care masks for all signal nodes in a logic circuit. The
signatures and don’t-care masks serve as estimates of node

Figure 1: Proposed reliability-aware synthesis method.

observability, and facilitate a fast new way to identify re-
gions of high impact with respect to reliability. We then
resynthesize these high-impact regions using a reliability
evaluator AnSER to simultaneously improve reliability and
area. This paper’s main contributions are:

• A fast incremental reliability evaluator AnSER that can
be used stand-alone or integrated with logic synthesis

• A novel resynthesis technique to improve reliability by
exploiting logical covering relationships and observ-
ability don’t-cares

• Another resynthesis method based on local rewriting
that improves reliability while decreasing area

The paper is organized as follows. Section 2 discusses
previous work on reliability evaluation and reliability-driven
synthesis. Section 3 covers background on bit-parallel simu-
lation and signatures. Section 4 presents our reliability eval-
uation methodology. Section 5 describes two strategies for
synthesis to improve reliability. Section 6 presents empirical
results, while Section 7 concludes the paper.

2 Previous Work
Recent SER evaluators include SERA [15], FASER [14],
MARS-C [7], and SERD [11]. They all perform gate pre-
characterization using SPICE to estimate the probability
with which a single-event upset (SEU) causes an erroneous
glitch, as well as the probability that the glitch propagates
through the circuit. Glitch propagation is governed by three
masking mechanisms [12]: (i) logic masking (the glitch oc-
curs in a non-sensitized portion of the circuit); (ii) electrical

masking (the glitch is attenuated and blocked by the electri-
cal characteristics of CMOS gates); and (iii) temporal mask-
ing (the glitch occurs in a non-latching portion of the clock
cycle). A new BDD-based SER evaluator in [4] offers ad-
vanced modeling of logic masking for reconvergent fanouts.

Several techniques are known to reduce the impact of
soft errors. Rao et al. [10] use the algorithm from [11] to se-
lectively resize gates and flip-flops. With gates of greater di-
mensions, low-energy particle strikes are less likely to cause
a glitch. Larger gates also imply that glitches are less likely
to appear at gate outputs, and those that do appear are more
likely to be electrically masked.

Soft errors can also be mitigated by adding redundant
logic. Classic techniques such as TMR and quadded logic
[13] achieve this by systematically replicating logic. In
quadded logic, each gate is replaced by a network of four
gates which logically mask single errors. TMR triplicates
the entire circuit and uses voters to mask errors. Mohanram
and Touba [8] reduce the cost of TMR by replicating only
the most susceptible gates. However, even partial replica-
tion of this kind is quite expensive.

More recently, Almukhaizim et al. [2] have proposed
SER reduction via rewiring , i.e., logic transformations that
reconnect wires without modifying gates. Their work ap-
pears to be the first example of reliability-guided circuit re-
structuring, but it has some limitations. Rewiring is much
more restrictive than other synthesis techniques, such as
rewriting [6], which can also add or remove gates. Rewiring
also incorporates automatic test pattern generation (ATPG)
which is often quite slow.

3 Signatures and ODC Masks

We make extensive use of node signatures to compute re-
liability, target high-impact areas of a circuit, and identify
matching nodes for resynthesis. A circuit node g can be la-
beled by a signature sig(g) =

(

Fg(X1),Fg(X2), . . . ,Fg(XK)
)

defined as the sequence of logic values observed at g in
response to a sequence of K input vectors X1,X2, . . . ,XK .
Here, Fg(Xi) ∈ {0,1} indicates the value appearing at g in
response to Xi. The signature sig(g) thus partially specifies
the Boolean function Fg realized by g. Applying all possible
input vectors (exhaustive simulation) generates a signature
that corresponds to a full truth table. Signatures with 64-
1024 bits are useful in pruning non-equivalent nodes during
equivalence-checking [16, 9].

Figure 2 shows a 5-input circuit where each of 10 nodes
is labeled by an 8-bit signature SIG computed with eight
given input vectors. Input vectors are often randomly sam-
pled, and simulation propagates signatures to internal and
output nodes. With bit-parallel simulation, signatures are
manipulated with 64-bit logical operations, ensuring high
simulation throughput. Generating K-bit signatures in an N-
node circuit takes O(NK) time.

Observability don’t-cares (ODCs) occur at node g for
certain input vectors when the values at g do not af-
fect the primary outputs. For example, in the circuit
AND(a,OR(a,b)), the output of the OR gate is inconse-
quential when a = 0. Corresponding to the K-bit signature
sig(g), we define ODCmask(g) as the K-bit sequence whose
ith bit is 0 if input vector Xi is in the don’t-care set of g;
otherwise the ith bit is 1. Formally, ODCmask(g) =

(

X1 6∈

ODC(Fg),X2 6∈ ODC(Fg), . . . ,XK 6∈ ODC(Fg)
)

.
Bit-parallel simulation provides an efficient way to com-

pute ODC masks, and we found the heuristic algorithm from

[9] particularly convenient. This algorithm traverses the cir-
cuit in reverse topological order and, for each node, com-
putes a local ODC mask for its immediate downstream gates.
The local ODC masks are derived by flipping each value in
the signature to see if the output of the gate changes. The
local ODC masks are then bitwise-ANDed with the respec-
tive global ODC mask at the output of the gate in question to
produce the global ODC mask of the node for paths through
the particular fanout branch. The global ODC masks for all
fanout branches are then ORed to produce the final ODC
mask for the node. The ORing takes into account the fact
that a node is observable for an input vector if it is observable
along any of its fanout branches. Reconvergent fanout can
eventually lead to incorrect values. However, the masks can
be corrected by performing exact simulation downstream
from the converging nodes.

Figure 2: Signatures, ODC masks, and testability informa-
tion associated with circuit nodes.

Example 1 Figure 2 shows a sample 8-bit signature and
the accompanying ODC mask for each node of a 10-node
circuit. The ODC mask at c, for instance, is derived by com-
puting ODC masks for paths through nodes f and g respec-
tively and then ORing the two. The local ODC mask of c for
the gate through f is 01110101. When this is ANDed with
the ODC mask of f , we find the global ODC of c on paths
through f , 01110001. Similarly, the local ODC mask of c for
the gate with output g 11101100, and the global ODC mask
for paths through g is 01000100. We get the ODC mask of c
by ORing the ODC masks for paths through f and g, which
yields 01110101.

4 Reliability Evaluation
We now present the soft-error reliability evaluator AnSER,
which was specifically designed for use in logic synthesis.

4.1 Fault Model for Soft Errors
Integrating reliability evaluation efficiently into logic syn-
thesis requires scalability and logical fault models that are
technology independent. Other existing tools typically use
complex SPICE-based electrical characterization to model
soft faults. For example, Rao et al. [11] model such faults by
averaging glitch waveforms defined by Weibull probability
distributions. Reliability evaluation becomes prohibitively

2

expensive if small changes require enumeration of all paths
in a circuit, or re-computation of an entire decision diagram.
BDD-based and symbolic techniques [5, 14, 7, 4] are un-
acceptably slow or require too much memory, as we show
in Section 6. Some existing tools only work with a single
process technology and very small gate libraries [14, 11].

AnSER uses a probabilistic logic-level fault model for
both single and multiple faults to reason efficiently about the
resulting errors. As clock frequency increases and threshold
voltages decrease, logical masking also tends to dominate
over electrical and timing masking. Hence reliability opti-
mization need not be delayed until layout and electrical in-
formation are available. By leveraging fast bit-parallel sim-
ulation, AnSER offers linear-time SER evaluation and fast
incremental updates after circuit transformations.

The fault model in question is based on the standard
stuck-at (SA) fault model. For every clock cycle, we as-
sume that each circuit node g has a temporary single stuck-
at-1 (TSA-1) fault with occurrence probability Perr1(g) if g
is 0, and a temporary single stuck-at-0 (TSA-0) fault with
Perr0(g) otherwise. While the TSA model focuses on logic
masking, it can also incorporate the other masking mech-
anisms if desired. For example, electrical masking can be
approximated by derating Perr0 and Perr1 by a factor de-
pendent on adjacent gates [11]. Zhang et al. [14, 7] demon-
strate the incorporation of timing masking by dividing error
probabilities by a constant dependent on the clock period.

Using the TSA fault model, AnSER computes the SER
of the entire circuit as a probability of error per cycle, by
considering primarily logic masking. The results can easily
be converted into units of FIT, or failures per 109 seconds.
If the soft error probability per cycle is p, then the expected
number of failures per 109 seconds is simply p× f req×109

where f req is the clock frequency. Assuming only one error
occurs in each cycle, Perr0(g) is the probability that only
gate g has an error. Therefore, gate SERs in units of FITs
can be used in similar fashion.

We also consider temporary multiple stuck-at (TMSA)
faults. Here, it is assumed that for each node g, the prob-
abilities Perr0(g) and Perr1(g) are independent. Hence the
probability of two gates g1 and g2 experiencing a TSA-0
fault simultaneously is Perr0(g1)Perr0(g2).

4.2 SER and Testability
Next, we describe how AnSER uses signatures and ODC
masks to derive several metrics that are necessary for our
SER computation. These metrics are based on the control-
lability, observability and testability parameters commonly
used in ATPG [3]. In particular, controllability refers to the
ability to set the value of a node to a 0 or a 1.

Figure 3 summarizes the algorithm used by AnSER for
SER computation. It involves two topological traversals of
the target circuit: one to propagate signatures forward and
another to propagate ODC masks backwards. The ratio of
0s and 1s in a node’s signature is taken as a measure of its
controllability, while the relative proportion of 1s in an ODC
mask indicates observability. These two measures are com-
bined to obtain a testability figure-of-merit for each node of
interest, which is then multiplied by the probability of the
associated TSA to obtain the SER for the node.

We define the 1-controllability of node g, denoted
coni1(g), as the fraction of 1s in the signature sig(g):

con1(g) = ones
(

sig(g)
)

/K (1)

compute TSA SER(Circuit C, int K)
{
topological sort(C);
Perr(C) = 0;
for(all nodes g ∈ C)
sig(g) = compute sig(g);

reverse topological sort(C);
for(all gates g ∈ C)
ODCmask(g) = compute odc mask(g);

for(all nodes g ∈ C)
test0(g) = zeros(sig(g)&ODCmask(g))/K;
test1(g) = ones(∼ sig(g)&ODCmask(g))/K;
Perr(C)+ = (Perr0(g)test1(g)+Perr1(g)test0(g));

return Perr(C);
}

Figure 3: The SER computation algorithm for TSA faults.

The corresponding 0-controllability metric is con0(g) = 1−
con1(g). The observability of a node is defined as the num-
ber of 1s in its ODC mask.

obs(g) = ones
(

ODCmask(g)
)

/K (2)

This observability metric is an estimate of the probability
that g’s value is propagated to a primary output. The 1-
testability of g, denoted test1(g), is the number of bit po-
sitions where g’s ODC mask and signature both are 1.

test1(g) = ones
(

sig(g)&ODCmask(g)
)

/K (3)

Similarly, 0-testability is the number of positions where the
ODC mask is 1 and the signature is 0. In other words, 0-
testability is an estimate of the number of vectors that test
for stuck-at-0 faults.

Example 2 Consider again the circuit in Figure 2.
Node g has signature sig(g) = 01011011 and ODC
mask ODCmask(g) = 01000100. Hence, con1(g) =
ones(sig(g)) = 5/8, con0(g) = 3/8, obs(g) = 2/8,
test0(g) = 1/8 and test1(g) = 1/8.

Suppose each node g in a circuit C has fault probabilities
Perr0(g) and Perr1(g) for TSA-0 and TSA-1 faults, respec-
tively. Then the SER of C is the sum of SER contributions
at each gate g in the circuit. Here, we weigh gate error prob-
abilities by the testability of the gate for the particular TSA.

Perr(C) = ∑
g∈C

test1(g)Perr0(g)+ test0(g)Perr1(g) (4)

Example 3 The test0 and test1 measures for all of the nodes
in the circuit are given in Figure 2. If each gate has TSA-1
probability Perr0 = p and TSA-0 probability Perr1 = q, then
the SER is given by Perr(C) = 2p+(13/8)q.

The metrics test0 and test1 implicitly incorporate error
sensitization and propagation conditions, Hence Eq. 4 ac-
counts for the possibility of an error being logically masked.
Note that the Perr0(g) refers to the 1-controllability of g and
so is weighted by the 1-testability; similarly for Perr1(g).

4.3 Node Impact Analysis
In order to identify areas of the circuit for resynthesis, we
need to assess the impact of individual nodes on the circuit’s
SER. Intuitively, a nodes’s influence on SER is proportional

3

compute impact(Circuit C, node n)
{

F = fanin cone(n,C);
impact(n) = 0;
for(all gates g ∈ F)

impact(n)+ = Perr0(g)reltest1(g,n);
impact(n)+ = Perr1(g)reltest0(g,n);

return impact(n);
}

Figure 4: The impact computation algorithm for TSA faults.

to the probability that faults arrive at the node, and the prob-
ability that those faults are observed as errors at the output.
In other words, a node has high impact if many observable
faults “flow” through it.

The proposed algorithm for computing impact is shown
in Figure 4. It employs a notion of the testability of one node
g relative to another node n, embodied in the definitions of
reltest1(g,n) and reltest0(g,n).

reltest1(g,n) = ones((ODCmask(g)&ODCmask(n))&sig(f))/K

In general, nodes closer to the primary outputs are more ob-
servable than those closer to the primary inputs. However, a
node g in the fanin-cone C of node n may have observability
greater than n due to fanout in C. Thus, we can mask the
ODC of node g by the ODC mask of n in order to compute
relative testability. The impact of n on the overall SER is
then calculated as:

impact(n) = ∑
g∈ f anin(n)

Perr0(g)reltest1(g,n)+Perr1(g)reltest0(g,n)

Example 4 For the circuit in Figure 2, reltest1(g,h) is
given by ones(sig(g)&(ODCmask(g)&ODCmask(h)))/K
which is ones

(

01011011 & (01000100 & 01110111)
)

/8 =
1/8. Suppose that each gate has a TSA probabilities Perr1 =
p and Perr0 = q. Then, the impact of h is q/8+ p/8+q/8+
4p/8 = q/4+5p/8.

If a subcircuit C′ is hardened against TSA faults, the
number of errors flowing through C′ will decrease, as will
the obs metric of nodes in C′’s fanin cone. Therefore, once
local design changes are made, the testability measures are
incrementally updated by updating the corresponding signa-
tures and ODC masks in C′’s fanin and fanout cones.

4.4 Handling Multiple Errors
We now consider multiple simultaneous errors using the
TMSA fault model. As pointed out in [4], error cancellation
due to mutual masking can change error propagation condi-
tions. AnSER addresses TMSA faults by propagating joint
signal controllability, while considering cumulative error
probabilities on groups of correlated signals, as explained
in Figure 5. For a given set of gates S (not only pairs as in
[4]), we compute the output error probability PerrinO(S) by
considering the probability of each input combination (in-
cluding cumulative input errors) PerrinI(S), and gate errors
PerrE(S). The SER is derived by adding the error probabil-
ity for each output combination thus:

Perr(C) = ∑
O
|PerrinO(C)− conO(C)| (5)

In the case of fanout-free circuits, each set of gates s is just a
single gate since no signal correlations exist. Then the SER

calculation reduces to propagating cumulative error proba-
bilities and error correlations forward through the circuit,
gate by gate. This calculation runs in linear time. In circuits
with reconvergent fanout, AnSER uses pairs of gates in order
to capture pairwise signal correlations. Joint controllabilities
are also computed using signatures, e.g., the probability of
x = 1,y = 1 is

con11(x,y) = ones
(

sig(x)&sig(y)
)

/K (6)

The law of large numbers implies convergence to cor-
rect joint distributions as the number of simulation vectors
grows.

compute output probs(gate sets S)
{

topological sort(S);
for(all gates sets s ∈ S)

for(all input combinations I)
for(all gate error combinations E)

O = erroneous output(I,E);
PerrinO(s)+ = PerrinI(s)∗PerrE(s);

}
compute TMSA SER(Circuit C, int K)
{

S = gates with common sinks(C);
compute output probs(S);

for(all output combinations O)
Perr(C)+ = |PerrinO(C)−conO(C)|;

return Perr(C);
}

Figure 5: The SER computation algorithm for TMSA faults.

5 Synthesis for Reliability

We now present two methods for logic synthesis that lever-
age the fast reliability evaluation methods embodied in
AnSER to improve the reliability of a given circuit.

5.1 Covering-based Resynthesis
The first method increases logic masking at high-impact
nodes by exploiting redundancy already present in the cir-
cuit as identified by covering relationships among existing
nodes. Compared to techniques such as partial TMR that
replicate vulnerable signals, it incurs a smaller area over-
head as it increases logic masking through the addition of
single gates.

We say that g covers f , denoted f ⊆ g, if g is 1 for every
input vector that makes f = 1 (here we are equating nodes
with the Boolean functions they realize in the usual manner).
In the presence of observability don’t-cares, this relation can
be generalized (using bitwise operations) to:

f &C(g) ⊆ g&C(g) (7)

Here C(g) = ∼ ODC(g), is the Boolean function represent-
ing the care set of g. In other words, g covers f if and only
if g is 1 or a don’t-care wherever f is 1. We define node g to
be an anti-cover of node f when:

g&C(g) ⊆ f &C(g) (8)

The impact measure defined in Section 4.3 is used to se-
lect areas of the circuit for redesign. For a high-impact node

4

x, we find other nodes that it covers or anti-covers. Given a
candidate node y covered by x , one can add redundant logic
by transforming node x into OR(x,y) because y ⊆ x implies
OR(x,y) = x. Similarly, if x is an anti-cover of y, we trans-
form node x into AND(x,y). To generalize, we identify y
such that x = OP(x,y).

In the trivial case where x is chosen as a candidate cover
for itself, the redundant logic generated by x = OP(x,x) will
not lead to reliability improvements. At the other extreme,
if x and y have disjoint fanin cones and x = y, then all errors
that cause x to flip from 0 to 1 will be masked when x is
replaced by AND(x,y). Similarly, all 1-to-0 errors will be
masked by OR(x,y). In the general case of x = OP(x,y)
where x and y are different nodes, the impact of x and the
portion of its fanin that is disjoint from y will be reduced as
determined by OP. This occurs because sensitized paths in
the fanin cone that include x but not y will benefit from the
extra logic masking generated by OP(x,y).

The covering relation can be extended naturally to signa-
tures and bit-parallel simulation. For instance, suppose x has
signature sig(x) = 11000 and sig(y) = 11001. By definition,
sig(x)⊆ sig(y), therefore x can be replaced by AND(x,y). In
this case, all 0-to-1 flips of the third and fourth input vectors
will be masked, as long as they are not propagated through
both x and y. If y is replaced by OR(x,y) then all 1-to-0 flips
of the first two bits will be masked.

Since AnSER maintains signatures and ODC informa-
tion for each node, we can quickly find covers for resynthe-
sis. If a node has multiple covers, we break ties using impact
of candidate nodes. Figure 6b illustrates replicated logic for
node a derived by utilizing don’t-care values stored with its
signature. Signature-based replication must be verified since
signatures do not fully capture Boolean functions. We use a
SAT solver (MiniSAT) to check equivalence by construct-
ing miters along a cut in the fanout cone of x between the
original circuit and the new circuit with cover OP(x,y); for
further details, see [9].

5.2 Local Rewriting
Our second method for synthesis guides logic rewriting to
optimize area and reliability simultaneously. Rewriting is
a general technique that optimizes small subcircuits to ob-
tain overall area improvements [6]. The implementation re-
ported in [1, 6] first derives a 4-input cut for a selected node,
defining a one-output subcircuit. Functionally-equivalent re-
placement candidates are then found using look-up tables.

To extend algorithms described in [1] to improve relia-
bility and area, we rewrite 4-input subcircuits such that their
reliability improves locally. To ensure global reliability im-
provement, we re-simulate the circuit and update SER esti-
mates. Computational efficiency is ensured through fast in-
cremental updates by AnSER. Figure 6a illustrates two can-
didate rewrites, of which the larger circuit exhibits greater
logic masking.

The inherent trade-off between reliability and testability
suggests that our synthesis techniques may complicate post-
manufacturing test. However, our method maintains testa-
bility and signature information for each node with respect
to given input vectors. Therefore, by avoiding mergers be-
tween nodes with identical signatures, one can ensure that
every fault is testable by some of existing input vectors.

6 Empirical Validation

We report empirical results for reliability evaluation using
AnSER and our two reliability-driven synthesis techniques.

Figure 6: (a) Rewriting a subcircuit to improve area. (b)
Finding a candidate cover for node a.

The experiments were conducted on a 2.4 GHz AMD Athlon
4000+ workstation with 2GB of RAM. The algorithms were
implemented in C++.

In the spirit of traditional comparisons to Monte-Carlo,
we first compared our AnSER algorithm under the TSA
fault model with complete test-vector enumeration using the
ATPG tool ATALANTA. We provided ATALANTA with a
list of possible stuck-at faults in the circuit to generate tests
in “diagnostic mode” which generates all test vectors for
each fault. Since TSA faults are SA faults that last only for
one cycle, the probability of a TSA fault causing an output
error is equal to the number of test vectors for the corre-
sponding SA fault weighted by their frequency. Assuming
uniform input distribution, the fraction of vectors that detect
a fault provides an exact measure of its testability. Then, we
computed the SER by weighting the testability with a small
gate error probability as in Eq. 4. While the exact compu-
tation can be performed only for small benchmarks, Table 1
suggests that our algorithm is accurate to about 3% for 2,048
simulation vectors. More vectors can be used if desired.

To obtain accurate gate information for the experiments,
we adapted data from [11], where several gate types are
characterized in a 130nm, 1.2VDD technology via SPICE.
By using an average SER value of 4×10−7 for all gates, we
are able to match the numerical results from [11]. While the
reliability evaluators in [15, 14, 11, 4] report error rates that
differ by orders of magnitude, AnSER can be calibrated to
a given dataset. Table 2 compares AnSER with the prior art
on ISCAS-85 benchmarks, using similar or identical CPUs.
While the runtimes in [4] include 50 runs, the runtimes in
[11] are reported per input vector. Thus we multiply data
from [11] by the number of vectors (2,048) used there. Our
runtimes appear better by several orders of magnitude.

Table 3 shows improvements in SER and area overhead
due to covering-based resynthesis. The first set of results
are for exact covers, i.e., covers that do not consider ODCs,

Circuit No. Gates ATALANTA AnSER % Error
c17 13 6.96E-07 6.96E-07 0.01
majority 21 6.25E-06 6.63E-06 6.05
decod 25 2.60E-05 2.62E-05 0.83
b1 25 1.28E-05 1.31E-05 2.81
pm1 68 2.86E-05 3.00E-05 4.70
tcon 80 5.30E-05 5.39E-05 1.67
x2 86 3.78E-05 3.87E-05 2.20
z4ml 92 5.29E-05 5.37E-05 1.50
parity 111 7.60E-05 7.69E-05 1.24
pcle 115 5.38E-05 5.34E-05 0.75
pcler8 140 7.06E-05 7.24E-05 2.52
mux 188 1.58E-05 1.38E-05 12.54
Avg 3.06

Table 1: SER (FIT) data from AnSER and ATALANTA.

5

Circuit Gates Runtime (s)
AnSER SERD[15] FASER [14] [4]

c432 246 <0.01 10 22 —
c880 591 <0.01 10 — —
c1355 746 0.014 20 40 2.09
c1908 760 0.015 20 66 0.781
c3540 1951 <0.01 60 149 5m42s
c6280 4836 1.00 120 278 —

Table 2: Runtime comparisons of reliability evaluators.

With exact covers With approx covers
Circuit SER Area % improv % area % improv % area

SER ovrhead SER ovrhead
cordic 5.334 E-5 84 1.7 1.2 27.3 45.2
b9 1.89E-5 114 18.1 14.9 30.7 31.6
C432 1.39E-3 215 37.6 14.0 38.7 14.9
C880 5.17E-5 341 9.6 0.9 13.1 2.3
C499 4.24E-4 432 1.0 3.2 32.2 20.6
C1908 1.92E-4 432 5.9 9.0 32.4 24.1
C1355 1.09E-2 536 25.3 9.0 30.7 8.6
alu4 6.12E-4 740 55.9 0.9 55.9 1.6
i9 1.66E-4 952 65.4 6.6 65.4 6.6
C3540 2.38E-3 1055 31.1 2.2 49.4 3.6
dalu 3.08E-4 1387 74.3 1.2 74.3 1.2
i10 1.0E-4 2824 40.4 5.4 40.4 5.6
des 9.84E-5 4252 11.4 2.9 26.7 4.4
Average 29.1 5.5 39.8 13.1

Table 3: Improved SER with covering-based resynthesis.

while the second uses ODCs to increase the number of can-
didates. In both cases AND/OR gates are used according
to the covering relationship. For exact covers, we average
29.1% SER improvement with only 5% area overhead. The
improvements for the ODC covers are 39.8% with area over-
head of 13.1%, suggesting a greater gain per additional unit
area than in partial TMR techniques [8] which achieve a
91% improvement but increase area by 1,04%.

Table 4 illustrates the use of AnSER to guide the local
rewriting implementation in the ABC logic synthesis pack-
age [1]. AnSER calculates the global reliability impact of
each local change to decide whether to accept this change.
After checking hundreds of circuit rewriting possibilities,
those that improve SER and have limited area overhead are
retained. The data indicate that, on average, SER decreases
by 10,7%, while area decreases by 2.3%. For instance, for
alu4, a circuit with 740 gates, we achieve 29% lower SER,
while reducing area by 0.5%. Although area optimization is
often thought to hurt reliability, results show that carefully
guided logic transformations can eliminate this problem.

Circuits SER Area No. %improv %area Time
rewrites SER decrease (s)

alu4 6.12E-4 740 13 29.3 0.5 24.5
b1 8.62E-6 14 0 0.0 0.0 0.2
b9 1.89E-5 114 8 6.8 0.9 0.3
C1355 1.09E-2 536 97 1.2 9.0 37.6
C3540 2.38E-3 1055 23 5.8 0.9 51.5
C432 1.38E-3 215 68 5.5 1.4 12.1
C499 4.23E-4 432 37 0.0 0.5 13.0
C880 5.17E-5 341 7 0.2 0.0 5.4
cordic 5.33E-5 84 5 1.2 1.2 0.5
dalu 3.08E-4 1387 58 24.0 3.2 35.0
des 9.84E-5 4252 282 11.2 0.1 12.3
frg2 1.98E-5 1228 96 27.9 2.0 8.9
i10 2.00E-4 2824 143 5.0 0.6 16.7
i9 1.66E-4 952 83 31.4 11.7 35.3
Average 10.7 2.3 18.1

Table 4: Improvements in SER and area with local rewriting.

7 Conclusions

We have presented a technology-independent reliability
evaluator AnSER designed for use in logic synthesis.
AnSER achieves very high speed by efficient use of node
signatures and ODC masks. We also described a method
for identifying high-impact areas of a circuit to target for
restructuring. Fault models with single and multiple er-
rors per cycle are supported. Empirically, our SER evalu-
ator runs 2-to-3 orders of magnitude faster than the prior
art. We also proposed a new, reliability-aware resynthesis
strategy that replicates a vulnerable node by adding a single
gate. This strategy manipulates previously-stored signatures
to find ODCs. On average, it improves reliability by some
29-40% with only 5-13% area overhead. Finally, we suc-
cessfully applied AnSER to local rewriting, and showed that
this approach simultaneously improves area and reliability.

Acknowledgments. This work was sponsored in part
by the Air Force Research Laboratory under Agreement No.
FA8750-05-1-0282.

References

[1] Berkeley Logic Synthesis and Verification Group, “ABC:
A System For Sequential Synthesis & Verification”,
http://www.eecs.berkeley.edu/∼alanmi/abc/

[2] S. Almukhaizim, et al, “Seamless Integration of SER in
Rewiring-Based Design Space Exploration,” Proc. ITC 2006,
pp. 1-9.

[3] M. Bushnell, V. Agrawal, Essentials of Electronic Testing,
Kluwer, 2000, pp. 129-150.

[4] M. Choudhury, K. Mohanram, ”Accurate and Scalable Re-
liability Analysis of Logic Circuits,” Proc. DATE 2007, pp.
1454-1459.

[5] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, J. P. Hayes,
“Accurate Reliability Evaluation and Enhancement via Prob-
abilistic Transfer Matrices”, Proc. DATE 2005, pp. 282-287.

[6] A. Mishchenko, S. Chatterjee, R. Brayton, “DAG-aware AIG
rewriting: A Fresh Look at Combinational Logic Synthesis”,
Proc. DAC 2006, pp. 532-535.

[7] N. Miskov-Zivanov, D. Marculescu, “MARS-C: Modeling
and Reduction of Soft Errors in Combinational Circuits,”
Proc. DAC 2006, pp.767-772.

[8] K. Mohanram, N. A. Touba, “Partial error masking to reduce
soft error failure rate in logic circuits” Proc. DFT 2003, pp.
433-440.

[9] S. Plaza, K-H. Chang, I. Markov, V. Bertacco, “Node Mergers
in the Presence of Don’t Cares” Proc. ASP-DAC 2007, pp.
414-419.

[10] R. Rao, D. Blaauw, D. Sylvester, “Soft Error Reduction in
Combinational Logic Using Gate Resizing and Flipflop Se-
lection,” Proc. ICCAD 2006, pp. 502-509.

[11] R. Rao, et al., ”An Efficient Static Algorithm for Computing
the Soft Error Rates of Combinational Circuits,” Proc. DATE
2006, pp. 164-169.

[12] P. Shivakumar, M. Kistler, et al., “Modeling the Effect of
Technology Trends on Soft Error Rate of Combinational
Logic” Proc. DSN 2002, pp. 389-398.

[13] J.G. Tryon, “Quadded Logic,” Redundancy Techniques for
Computing Systems, 1962, pp. 205-228.

[14] B. Zhang, W. S. Wang, M. Orshansky, ”FASER: Fast Analysis
of Soft Error Susceptibility for Cell-Based Designs,” Proc.
ISQED 2006, pp. 755-760.

[15] M. Zhang, N.R. Shanbhag, ”A Soft Error Rate Analysis
(SERA) Methodology,” Proc. ICCAD 2004, pp. 111-118.

[16] Q. Zhu, N. Kitchen, A. Kuehlmann, A. Sangiovanni-
Vincentelli, “SAT sweeping with Local Observability Don’t-
cares”, Proc. DAC 2006, pp. 229-234.

6

