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Abstract— In this work we describe significant improvements to core
routing technologies and outperform the best results from the ISPD ‘07
Global Routing Contest, as well as previous literature, in terms of route
completion, runtime and total wirelength. In particular, our router, FGR,
improves upon wirelengths produced by BoxRouter and MaizeRouter in
March 2007 by 9.9% and 8.4%, respectively. Additionally, we reveal the
mathematical basis of negotiated-congestion routing, offer comprehensive
analysis of existing routing techniques and discuss several applications at
the nanometer scale.

1. INTRODUCTION

Despite being one of the first areas of EDA to be automated in the
1960s, VLSI routing remains an area of active research and develop-
ment as evidenced by a growing body of literature [2, 4, 10, 23, 24],
recent collaboration between Cadence and IBM on routing technol-
ogy [20], as well as the ISPD ‘07 Global Routing Contest organized
by IBM Austin Research Laboratory [13]. Current efforts in routing
are motivated by challenges present at the nanometer scale includ-
ing: (i) very large wiring databases that require lean data structures
and extremely efficient algorithms, (ii) sophisticated design rules that
must be abstracted away during initial routing passes, (iii) relatively
unreliable vias whose resistance may vary by up to 30 times [27],
which requires via doubling [17, 18] and motivates additional effort
to minimize via counts, (iv) signal integrity constraints and the dra-
matic impact of lateral capacitance on interconnect delay, which lead
to wire density constraints, and (v) considerations of chemical me-
chanical polishing (CMP) that also lead to density constraints [5].

The ISPD ‘07 routing contest challenged the research community
by distributing 16 very large routing benchmarks derived from re-
cent chip layouts. Thanks to the wide participation in the contest
and the public availability of the results, we observed an important
trend — routers that achieve low wirelength often suffer high viola-
tion counts, and routers that minimize violations often produce high
wirelengths. Therefore, a key focus of our work is on adequate pricing
of routing resources to balance interconnect length and congestion in
multi-million gate designs, in a way that also allows to trade-off other
nanoscale objectives and constraints. Additionally, the effective han-
dling of vias, multiple metal layers and other aspects of nanoscale
routing pose a series of algorithmic, implementation, benchmarking
and integration challenges.

In this work we develop a high-performance routing technique
based on Discrete Lagrange Multipliers (DLM), while pointing out
inaccuracies, limitations and pitfalls of the related technique known as
negotiated-congestion routing [21]. In particular, DLM offers a natu-
ral way to handle net weights and timing optimization in routing, and
explains several empirical effects observed in negotiated-congestion
techniques such as the last-gasp problem and the relative simplic-
ity of 2-d formulations compared to multi-layer (3-d) formulations.
Proposed algorithms are implemented in FGR1, a high-performance
global router for nanometer scale designs.

Our key contributions are:

• A routing technique based on Discrete Lagrange Multipliers
(DLM) which provides a natural way to handle net weights and
timing optimization in global routing. FGR handles two- and
three-dimensional routing of ASICs with up to 870,000 nets.2

1“Fairly Good Router”
2This is almost an order of magnitude greater than what has been reported in the

• Extensions of A*-search to restructure net topologies so as to
avoid congestion and circumvent obstacles.

• Improved wirelength on the ISPD ‘07 Global Routing Contest
suite [13]. FGR produces smaller wirelengths than the winners
of the contest on every benchmark, and is able to route with-
out overflows every benchmark that the winners routed without
overflows. In terms of wirelength, FGR outperforms BoxRouter
[4] by 9.9% and MaizeRouter [22] by 8.4%.

• Violation-free routing of all ISPD ‘98 IBM benchmarks, un-
like routers in previous literature. FGR uses 35% less runtime
than BoxRouter and produces solutions with 2.7% smaller wire-
length.

• Accurate congestion estimation which is extremely important at
the nanometer scale.

• Thorough empirical evaluation of several routing strategies and
algorithms including net decomposition by MST vs. Steiner
trees and layer assignment for 3-d routing problems vs. direct 3-
d maze routing. We identify previously unreported bottlenecks,
such as the “last gasp” problem in negotiated-congestion rout-
ing, and propose solutions.

This paper is organized as follows. In Section 2, we review rele-
vant background and previous work. Next in Section 3 we describe
the architecture of the FGR router, the mathematical basis for its key
algorithms, and important insights into the integration of major com-
ponents. In Section 4 we outline applications of FGR to several areas
of physical design. We benchmark FGR against state of the art in
Section 5 and conclude in Section 6.

2. BACKGROUND AND PREVIOUS WORK

Routing plays a key role in VLSI physical design as it determines
the specific shape and layout of interconnect, impacting performance,
power and manufacturability. Routing is traditionally divided into the
two steps of global and detail routing.

Global and Detail Routing. During global routing, complex de-
sign rules are abstracted away and a design is divided into a regular
grid (see Figure 1). Routes are created for each net that connect adja-
cent grid cells. Capacities are assigned to pairs of adjacent grid cells
to model limited routing resources between the cells. Since different
metal layers may use distinct wire pitches, routing capacities at each
layer may differ to reflect this. A global routing solution is legal if all
nets are connected and all capacity constraints are satisfied.

Detail routing takes a global routing solution with a small number
of capacity violations (overflows), or none at all, and assigns wires
to routing tracks while enforcing spacing constraints and more so-
phisticated design rules. Starting with slightly illegal global routes
can make detail routing considerably more difficult, therefore a global
router must minimize violations and wirelength, seeking to avoid vi-
olations entirely when possible.

Traditional algorithms for detail routing often assume a specific,
small number of metal layers and operate in isolated layout regions
— channels or switch-boxes. However, over-the-cell routing with six
or more metal layers made many such algorithms obsolete and lead to
the adoption of similar graph-theoretical techniques in global and de-
tail routing, perhaps with different layout, resource and delay models.

literature for most ASIC and FPGA routers. In the 32-bit address space, FGR scales up
to 1,000,000 nets.



Figure 1. Pictorial representations of the global routing grid. The images on the left and
in the middle show how the layout is abstracted into a regular grid of GCells. GCells are
represented by vertices, with adjacent vertices connected by graph edges. Capacities on
edges that join GCells can be defined as the number of routing tracks that cross GCell
boundaries. The image at the right shows that horizontal and vertical connections can be
on different layers with vias connecting the layers.

In our experience with Cadence WarpRoute, three quarters of to-
tal runtime are spent in detail routing, but the quality of global routes
profoundly affects the runtime and success of detail routing. A recent
proposal [23] suggests invoking a fast global router during global and
detail placement, so as to mitigate wiring congestion early. This ap-
plication is particularly attractive for sub-130nm technology nodes
where lateral capacitance of wires is a major contributor to intercon-
nect delay. In this context, accurate timing analysis requires informa-
tion about regions through which a given net passes as well as wire
density in these regions [30].

Maze Routing connects pairs of terminals on the routing grid us-
ing standard search techniques such BFS and Dijkstra’s algorithm [7].
More than 50% of nets in modern designs connect only two pins. BFS
can find the shortest path between a source location and a target loca-
tion, if one exists, but cannot handle routing segments with non-trivial
weights. Dijkstra’s algorithm can handle non-negative routing seg-
ment costs, but is at least several times slower than BFS. A*-search
is a modification to Dijkstra’s algorithm that significantly improves
speed during 2-d and 3-d routing [11]. In A*-search, a lower bound
of the distance to the target is added to node priority in Dijkstra’s
algorithm. Straight-line distance is commonly used as a lower bound.

Pattern Routing [15] is a technique that severely restricts the num-
ber of ways in which a net can be routed to simplify the routing pro-
cess. For example, L-shape routing seeks to implement each two-pin
net with a single bend. This technique is surprisingly useful in ASIC
routing and justified by via minimization. Empirical studies [32] show
that in a fully-routed design a majority of all 2-pin nets take on L-
shapes. In global routing, where minor detours are abstracted away,
L-shapes are even more prevalent. Two-bend routes are often called
Z-shapes, but generic pattern-based routing can consider any finite
number of routing topologies for each net, and selects one of them.
It is particularly amenable to Integer Linear Programming formula-
tions [4], as described later in the section.

Multi-pin nets. Most global routing algorithms decompose nets
with three or more pins into two-pin subnets at the beginning of global
routing as this eases maze routing. This decomposition has been tra-
ditionally done using Minimal Spanning Tree (MST) algorithms, but
using fast and extremely accurate Rectilinear Steiner Minimal Tree
(RSMT) construction algorithms has become increasingly popular in
the literature [4,23,24]. Four decompositions for a 5-pin net based on
Steiner trees and MST are shown in Figure 2.

The RSMT tool FLUTE [6] is used in both BoxRouter [4] and Fast-
Route [23,24]. FLUTE uses look-up tables for nets with nine or fewer
pins and quickly builds optimal trees for such nets [6]. For larger
nets, a divide-and-conquer method is employed [6]. FastSteiner [14]
is another RSMT algorithm that is more scalable than most RSMT
algorithms. FastSteiner does not guarantee optimality, but frequently
produces solutions with smaller total wirelength than FLUTE for nets
with more than nine pins. In Section 5.3 we compare MST with shar-
ing to a combination of FLUTE and FastSteiner and find that Steiner
constructors lead to smaller routed length but greater via counts.

Rip-up-and-re-route (RRR) takes an initial, usually illegal, rout-
ing solution and iterates greedy one-net-at-a-time routing passes for
nets that compete for routing resources, but may change the ordering
each time in hope to better reconcile these nets. In each iteration, nets

Figure 2. Decomposition of a 5-pin net by minimal Steiner tree (a), MST (b) and MSTs
with sharing (c)&(d). The choice of (c) or (d) depends on congestion. The minimal
Steiner tree (a) contains 5 flat subnets and 1 L-shaped subnet, whereas the shared MST
(d) has 2 flat subnets and 3 L-shaped subnets which gives it greater flexibility.

that pass through congested regions are “ripped up” (all resources for
the net are removed from the routing grid) and are rerouted with a
maze router to use lesser congested regions. Major differences be-
tween various implementations [4,8,10,21,23,24] include which nets
are ripped up and rerouted at each iteration, the order in which to rip
up nets and reroute them, if nets are allowed to be rerouted through
areas that are already congested, and the costs associated with routing
through a particular routing edge given its current congestion.

Congestion Amplification [10] was recently introduced as an im-
provement to pricing of routing resources during RRR. Many routers
that employ RRR do not penalize nets for going through uncongested
regions, and then drastically increase cost once a routing edge is full.
The authors of [10] propose to use a more gradual linear cost function
for edges before they become full in order to spread wires from areas
that are likely to become congested. In addition, when congestion es-
timates are calculated after each iteration of RRR, regions with high
congestion have their estimates artificially increased (amplified) and
regions with low congestion have their estimates decreased. This pro-
vides a greater incentive for maze routers to avoid highly congested
regions, often at the cost of increased wirelength.

Negotiated-congestion Routing (NCR) [21] was introduced in the
mid-1990s for global routing in FPGAs, but has not seen much use
in the ASIC literature. NCR builds upon RRR by gradually mak-
ing routing edges that are consistently congested more expensive, en-
couraging the maze router to choose alternative routes when they are
available. The cost ce of routing edge e

ce = (be +he) · pe (1)

is a function of the intrinsic cost (be), added cost reflecting congestion
history (he), and penalty for current congestion (pe) [21]. NCR seeks
to minimize ∑e ce.

To begin negotiated-congestion routing, each net is routed using
the smallest possible wirelength regardless of edge capacities. Next,
rip-up-and-re-route proceeds. At the beginning of a RRR iteration,
the historical cost he of all over-capacity routing edges is increased:

hk+1
e =

{
hk

e +hinc if e has overflow
hk

e otherwise
(2)

where hinc is a constant. Each net of the design is then individually
ripped up and rerouted by a maze router. The authors suggest that
only nets passing through congested regions need to be rerouted and
we take this approach in FGR. The ordering of nets during rip-up-and-
re-route is the same for each iteration, but can be chosen arbitrarily,
according to the authors of [21], because the gradual cost increase in
congested areas removes ties that require sophisticated net ordering
techniques in traditional RRR implementations.

FastRoute [23, 24] uses a simplified, more greedy form of RRR
and finishes orders of magnitude faster than other routers. However,
it was able to legally route only 6 of 16 benchmarks at the ISPD ‘07
contest [13], while other routers completed up to 12 benchmarks with-
out violations. Additionally, on the easier ISPD ‘98 benchmarks, it
routes fewer benchmarks than FGR (see Table 1).

FastRoute 1.0 [23] first uses FLUTE to decompose nets and es-
timate congestion in the design, then attempts to restructure Steiner
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Figure 3. Cost of a routing edge as a function of relative overflow. Cost is linear while
the edge is not overfilled, but grows exponentially once the edge has overflow.

trees to avoid congestion. FastRoute 2.0 [24] features the following
modification of RRR. When a single subnet is ripped up, the net to
which the subnet belongs will be separated into two connected com-
ponents. It becomes the maze router’s job to connect the two compo-
nents of the net in the least costly way. While this optimization allows
the router to move Steiner points away from congested regions, it in-
validates the point-to-point lower bound on which A*-search relies.
Therefore, the slower Dijkstra’s algorithm must be used instead.

BoxRouter [4] avoids fine-grain net ordering in congested re-
gions through the use integer linear programming (ILP) formula-
tions. BoxRouter decomposes nets using Steiner trees produced with
FLUTE but never re-examines their decomposition. Next it performs
a pass of pattern routing that identifies the most congested rectangu-
lar region, where it formulates an ILP to route as many nets using
L-shapes as possible. Remaining nets are routed by the maze router,
using as few resources outside the region as possible. Next, the re-
gion is expanded, and an incremental ILP formulation is used. This
cycle repeats until the entire layout is covered by the expanding re-
gion. Traditionally ILP solving is considered slow, and ILPs have
difficulty expressing non-linear delay models.

Other techniques for routing have been proposed, such as the use
of multi-commodity flows (MCF) [2, 11]. ILP-based BoxRouter has
been compared to a recent MCF-based router [4] and found to be
superior in speed and solution quality. Additionally, MCF techniques
offer less flexibility in terms of objective functions and constraints
than the RRR and NCR frameworks.

3. HIGH-PERFORMANCE GLOBAL ROUTING

In this section we describe the architecture of FGR, the mathemat-
ical basis for its key algorithms, and notable implementation insights.

3.1 Basic Algorithmic Framework

Routing algorithms must carefully balance wirelength minimiza-
tion and congestion. Some detours may be necessary to avoid rout-
ing violations and overcapacity GCells, but excessive detouring leads
to overconsumption of routing resources, aggravating congestion. In
particular, the results of the ISPD ‘07 routing contest [13] show that
some routers are good at finding violation-free solutions, some are
good at minimizing wirelength, but few are good at both. A likely
source of this inflexibility is the common use of uniform, predeter-
mined rules in all regions of the chip as in FastRoute [23, 24] and the
Chi dispersion router [10].

In continuous optimization, dynamic pricing of constraint satis-
faction can be modeled by Lagrange multipliers — a mathematical
method for optimizing a multivariate function subject to a number of
constraints [16]:

minx∈X W (x)
subject to Ce(x) = 0, 1 ≤ e ≤ n (3)

The constrained optimization is reduced to the unconstrained opti-
mization of the Lagrangian function F

F(x,λ) = W (x)+
n

∑
e=1

λeCe(x) (4)

Figure 4. Net decomposition techniques used by BoxRouter [4], FastRoute 2.0 [24] and
FGR. In Section 5.3, we compare the use of RMSTs and RSMT in FGR.

where λ = (λ1, . . . ,λn) are real-valued Lagrange multipliers. In the
case of routing, Ce(x) represents the overflow of routing edge e. W (x)
represents the total wirelength of routing solution x and is usually
defined as a sum over nets or routing edges

W (x) =
m

∑
i=1

Ri(x) =
n

∑
e=1

Be(x) (5)

where Ri(x) is the number of segments used by net i and Be(x) is the
number of nets passing through edge e. Thus (4) can be rewritten

F(x,λ) =
n

∑
e=1

(Be(x)+λeCe(x)) (6)

Here both original unknowns x and the Lagrange multipliers {λe}
are considered variables subject to optimization. For large sparse con-
vex problems iterative techniques are used, such as steepest descent,
Newton’s method, etc. In particular, Lagrange multipliers are updated
additively as follows

λk+1 = λk +αC(xk) (7)

where α > 0 is a line-search parameter. Note the similarity in the up-
date of the Lagrange multipliers and how he is updated in Formula
2. While we are also dealing with large sparse problems, they are
discrete and non-convex. This calls for a different iterative optimiza-
tion procedure, such as greedy search, hill-climbing or rip-up-and-re-
route. However, since Lagrange multipliers remain continuous, the
same update rule can be adopted.3

Interpreting Formula 6 for a given net i in terms of NCR yields

ce = be +he · pe (8)

which is different than Formula 1 [21], but also makes more sense
since it preserves the base cost. Therefore FGR uses this Discrete
Lagrange Multiplier (DLM) formulation instead of NCR which was
used in FGR’s ISPD ‘07 contest submission. To compute pe, we use
a new penalty function introduced in Section 2 below. Furthermore,
the justification of dynamic cost updates through DLMs explains the
results we see in Sections 3.4, 3.5 and 5.

3.2 Congestion Penalty

Let re and ue represent the resources and current usage of a routing
edge e and define the relative overflow ωe = ue/re. We compute the
congestion penalty term pe for edge e as a function of ωe.

pe =
{

exp
(
k(ωe −1)

)
if ωe > 1

ωe otherwise
(9)

The exponential nature of our cost function for routing edges with
overflow serves to amplify congestion and gives the maze router in-
centive to avoid overfull edges when re-routing nets (see Figure 3,
where k = ln5). We have studied 0 < k ≤ ln10 and found that higher
values of k reduce runtime, but increase detouring and routed length.
FGR uses k = ln5 by default. Instead of routing all nets by their short-
est paths to find an initial routing solution, which is common in NCR,
FGR uses be + pe as the weight for edges to create an initial solution.

3To this end, the use of Lagrange multipliers can be viewed as a way to leverage
continuous optimization in a discrete domain, such as nanoscale routing.



Figure 5. Re-routing a subnet and changing net topology in FGR. The shaded boxes
represent obstacles. The tree in (a) passes through a congested segment in the middle
which must be ripped up. The dashed arrows in (b) represent several possible re-routings
that a restructuring algorithm may consider. The re-routings shown in (c) are two that
FGR will consider during DLM. Paths considered by FGR must start and end along the
endpoints of the segment that was removed. Both of these re-routings reuse routing
segments from the net and create new Steiner points if chosen. The use of temporary
zero-cost edges is required to preserve the efficiency of A*-search.

3.3 Interactions Between Single- and Multi-Net Routing

FGR initially decomposes nets using an RSMT or RMST topology.
However, given that congestion-driven Steiner trees are not easy to
construct and precise congestion in every GCell is not known before-
hand, we found it important to modify net topology during routing.

Figure 4 compares the net decomposition and restructuring tech-
niques used by FGR to those in prior work. During DLM, the most
congested subnets are ripped up and rerouted by A*-search. When
ripping up a subnet with endpoints P1 and P2, FastRoute 2.0 tries
to reconnect the two components of the net, not necessarily using
P1 or P2, which invalidates the point-to-point lower bound used in
A*-search. When re-routing a subnet, FGR requires the replacement
segments to pass between P1 and P2, but we modify the A*-search
as follows. We add a single check when pricing routing edges: if the
routing edge we are considering is already in use by a sibling of the
current subnet (sibling subnets belong to the same net), then we tem-
porarily set its cost to zero. This allows the maze router to re-connect
the net through any pair of points connected to P1 and P2.

Temporary change of edge costs to 0 is easy to implement during
A*-search because we route one net at a time and can undo any cost
adjustments before considering other nets. However, in order to use
A*-search, we must supply a correct lower bound. We normally use
the 3-d Manhattan distance multiplied by the minimum cost of any
routing segment. The naive solution — to ignore the 0-cost edges —
may produce estimates that are greater than the true cost, which would
invalidate A*-search. However, if we literally set an edge’s cost to
zero, the lower bound will automatically become zero. Therefore, in
our implementation we set the cost of previously used edges to ε > 0,
a very small value. This technique is illustrated in Figure 5, where
FGR modifies the net topology to avoid congestion.

While prior state-of-the-art routers (BoxRouter, FastRoute and
MaizeRouter) consistently start by decomposing multi-pin nets with
minimal Steiner trees, we believe that our integration of topology re-
structuring into a powerful DLM framework facilitates additional op-
portunities. As illustrated in Figure 2, Steiner trees tend to generate
net decompositions with many flat subnets which offer no flexibility
in routing. MSTs tend to have fewer edges but with more flexibil-
ity, which can be exploited by DLM to avoid congestion. Moreover,
the gradual addition of sharing to MSTs during DLM-based topol-
ogy restructuring can generate high-quality congestion-driven Steiner
trees without the need to estimate congestion before routing. Starting
with minimal Steiner trees seems to require heavier restructuring to
achieve similar effects, and could not only slow down maze routing,
but also make RRR or DLM less successful. The use of RSMTs and
RMSTs is compared in Section 5.3.

3.4 Overcoming the “Last Gasp” Problem

Discrete Lagrange multipliers work well at the large scale because
the statistical behavior of numerous discrete variables is not very dif-
ferent from the continuous case. However, when only several viola-
tions remain, the routing task becomes much more discrete.

In our experiments with almost every benchmark, we have ob-
served unusual behavior where FGR spends many DLM iterations

Input: 2-d routing solution, 2dsol
Output: 3-d routing solution, 3dsol
1 foreach net n in 2dsol

2 foreach subnet s of n

3 route = 2dsol.getRoute(s)

4 currPoint = s.terminal1

5 currLayer = currPoint.layer

6 while(currPoint != s.terminal2)

7 nextPoint = route.getNextPoint(currPoint)

8 find nextLayer: the layer closest to

currLayer where adding an edge connecting

currPoint and nextPoint causes least overflow

9 add segment from currPoint to nextPoint on layer nextLayer to 3dsol

10 add vias connecting (currPoint.x,currPoint.y,currLayer)

and (currPoint.x,currPoint.y,nextLayer) to 3dsol

11 currPoint = nextPoint

12 currLayer = nextLayer

13 add vias connecting (currPoint.x,currPoint.y,currLayer)

and (currPoint.x,currPoint.y,s.terminal2.layer) to 3dsol

Figure 6. Layer assignment in FGR.

with a nearly legal solution before it is able to terminate with a com-
pletely legal solution. Indeed, more than 75% of DLM’s iterations
for the adaptec2 benchmark [13] take place when less than 0.01% of
routing segments have overflow. We term this undesirable behavior
the “last gasp” problem.

To rectify this situation, we propose the following improvement to
negotiated-congestion routing. When the percentage of routing edges
with overflow becomes small, we restrict the maze router to using
only edges that have available space and weigh routing edges only by
their base cost be. Thus if there is any way to route the net without
causing overflow, we will take it, to avoid further rip-up iterations. If
no path is possible, default DLM is used. This last phase of DLM re-
duces iterations without noticeably impacting total routed wirelength.

3.5 Three-dimensional Routing

The difficulties experienced by DLM due to discreteness also sug-
gest that traditional 2-d routing may be considerably easier than
proper 3-d routing where smaller edge capacities are spread through
multiple routing layers. In other words, aggregating edge capacities
in one layer would encourage continuous-like resource pricing, mak-
ing it easier to satisfy all constraints. This is consistent with what we
observe in experiments discussed in Section 5.4.

FGR performs 3-d routing by first projecting the routing instance
onto a 2-d grid and aggregating the capacities of edges that project
onto each other. This grid contains a single layer of horizontal wires
and a single layer of vertical wires connected by a layer of vias, such
as grid depicted at the right of Figure 1. Capacities on higher layers
may be smaller due to increased pitch, but for each routing grid edge,
we calculate the number of wires that are allowed to pass through it
when aggregating, which takes wire widths and pitches into account.
FGR routes this 2-d problem instance as normal until a legal solution
is found or a runtime/iteration limit is reached. Next FGR performs
layer assignment for each routing segment used in the 2-d solution.

Theorem 1 If the projected 2-d instance has a legal solution and vias
are unconstrained, the original 3-d instance has a legal solution.

Proof: 3-d routes can be constructed by the algorithm in Figure 6.

FGR’s method will produce a 3-d solution that uses exactly the
same number of routing segments as the 2-d solution, but differ in via
counts. Unfortunately the difference in via counts is usually large and
proportional to the number of layers in the 3-d instance. As such, we
perform a single round of RRR for every subnet to reduce vias. In
this round of optimization, the cost of each routing segment is much
simpler than in DLM: each routing segment is assigned a cost of 1
and vias are assigned an appropriate relative cost (for example, one
via costs as much as three routing segments in the ISPD ‘07 Contest,
so vias would have a cost of 3). It is easy to lower-bound the cost
of a path with these edge costs, so it is particularly amenable to A*-
search (the lower bound is the 3-d Manhattan distance). Each subnet
is ripped up and rerouted with the maze router individually and edges
with no spare capacity are not allowed.



(a) (b)

Figure 7. Congestion on the adaptec4 2-d benchmark [13] (a) by FGR in estimation
mode and (b) after full violation-free routing by FGR.

4. APPLICATIONS

We now discuss applications of proposed techniques for high-
performance routing to congestion and delay estimation, timing-
driven routing, as well as detail routing of ASICs and FPGAs.

Congestion and Delay Estimation. Lateral capacitance of wires
is a major contributor to interconnect delay in sub-130nm technology.
In this context, accurate timing analysis can use information about
regions through which a given net passes as well as wire density in
these regions [30]. Accurate wire density information is especially
important to properly account for crosstalk [25].

Recent work on probabilistic congestion estimation used the as-
sumption that L- and Z-shaped routes were the most common routes
taken by industrial routers [32]. Unfortunately, these routing statistics
differ significantly from what we observed in detailed layouts of re-
alistic circuits placed with Cadence QPlace and routed with Cadence
WarpRoute / NanoRoute. In fact, more recent work by Westra and
Groeneveld has questioned the usefulness of probabilistic congestion
estimators [33], including the technique presented in [32].4 They find
poor correlation between probabilistic estimates and final routing con-
gestion for both routable and especially unroutable designs [33]. To
rectify the situation, the authors propose to use a fast global router as a
congestion estimator — the idea more recently proposed in [23]. FGR
can also be used to create accurate congestion estimates. Since FGR
uses essentially the same edge costs during initial routing as during
DLM and reroutes congested areas gradually, we find that congestion
directly after the initial routing phase correlates very well with final
routing congestion (see Figure 7) The initial routing phase is at least
10 times faster than entire global routing, but its results can accurately
predict congestion in final routing solutions making it valuable during
upstream stages of physical design and physical synthesis. In its es-
timation mode, FGR also performs layer assignment which is crucial
for accurate delay estimation at the nanometer scale due to varying
wire thickness, buffer requirements, and higher usage of vias (which
have high resistance, defect rates and variability).

In addition to delay estimation, FGR can also be used to reduce
delay in a circuit. In particular, to avoid detouring critical nets, FGR
can route them preferentially as follows. Firstly, FGR can order these
nets earlier during the initial routing phase. The majority of rout-
ing resources will be unused early in the initial routing phase, so the
critical nets will have a greater likelihood of routing without detours.
After the initial routing phase, FGR can require that these nets only
be routed within their bounding boxes. Delay budgets per net can
be modeled as constraints (with associated Lagrange multipliers) and
nets which do not meet their budgets can be ripped up at each DLM
iteration and rerouted.

Handling Density Constraints. Given that wire density impacts
lateral capacitance [30] and crosstalk [25], it is natural to consider
density constraints as well as resource constraints during global rout-

4An additional deterrent to using probabilistic congestion estimation in the industry is
that it has been patented in 1994/96 [31].

Bench- BoxRouter [4] FastRoute 2.0 [24] FGR
mark ovfl WL time (s) ovfl WL ovfl WL time (s)
ibm01 102 65588 6 31 68489 0 63332 10
ibm02 33 178759 25 0 178868 0 168918 13
ibm03 0 151299 13 0 150393 0 146412 5
ibm04 309 173289 18 64 175037 0 167101 29
ibm05 0 409747 37 – – 0 409739 6
ibm06 0 282325 25 0 284935 0 277608 18
ibm07 53 378876 39 0 375185 0 366180 20
ibm08 0 415025 68 0 411703 0 404714 18
ibm09 0 418615 50 3 424949 0 413053 20
ibm10 0 593186 73 0 595622 0 578795 92

Average +2.71% +3.64%

Table 1. Comparison of FGR to FastRoute 2.0 and BoxRouter on the ISPD ‘98 IBM
benchmark suite [12]. FGR completes all 10 of the benchmarks while BoxRouter [4] and
FastRoute 2.0 [24] leave overflow on 4 and 3 of the benchmarks, respectively. In terms
of routed wirelength, FGR outperforms BoxRouter by 2.7% and FastRoute 2.0 by 3.6%.
Runtimes for BoxRouter and FGR are given in seconds. FastRoute runtimes are not
listed as binaries are unavailable. FGR is faster than BoxRouter on 7 of the 10
benchmarks and uses 35% less runtime.

ing. Edge capacities can be reduced to combat high wire densities, but
this can make routing unnecessarily difficult. FGR’s techniques are
sufficiently general to directly handle a wide range of constraints, in-
cluding density constraints. An additional cost (Lagrange multiplier)
can be added per routing edge which represents a penalty for violat-
ing density constraints, similar to the historical costs for congestion.
At every iteration where a routing edge is part of an overly dense re-
gion, these new costs can be gradually increased. As this modified
form of DLM progresses, dense regions will gradually become more
expensive, causing the maze router to avoid them.

Detail Routing for ASICs and FPGAs. Traditional algorithms
for channel routing have become less relevant in the context of over-
the-cell routing, and even less relevant given the complicated design
rules imposed by manufacturability considerations. In contrast, the
algorithmic paradigms in FGR naturally extend to over-the-cell detail
routing on a grid of tracks. In particular, A*-search can handle spac-
ing constraints found in common design rules: routing segments that
are too close to used tracks can have their costs significantly increased
or can be temporarily blocked in the routing graph.

We note that negotiated-congestion routing (NCR) was originally
developed for global routing of FPGAs [21], but in most recent work
[29] has been extended with A*-search and applied to hard instances
of detail routing for FPGAs. All analysis and improvements to NCR
reported in our work are directly applicable in that context. Moreover,
the constraint-driven nature of DLM provides a generic way to handle
new constraints, including those endemic to FPGAs and ASICs.

5. EXPERIMENTAL RESULTS

We have implemented FGR in C++ without external libraries (com-
piled with GCC 3.4.5), but added optional interface to the Steiner-tree
packages FLUTE [6] and FastSteiner [14] to compare them with MST
decompositions. The core algorithms and data structures of FGR were
implemented in one month. All runs were performed on 2.4 GHz
Opteron processors with at least 4GB of RAM.

5.1 Performance on ISPD ‘98 Benchmarks

Table 1 compares FGR to BoxRouter and FastRoute 2.0 [24] on
the ISPD ‘98 benchmarks [12]. Unlike all previous routers in the lit-
erature, FGR routes all of the IBM designs without overflow. Both
BoxRouter and FastRoute 2.0, which report the best results on this
suite so far, produce solutions with overflow on 4 and 3 of the bench-
marks, respectively. Overall, FGR produces solutions with 2.72%
shorter wirelength than BoxRouter and 3.62% shorter than FastRoute
2.0. FGR is faster than BoxRouter on 7 of the 10 benchmarks and uses
35% less runtime to complete the entire suite. Unlike the ISPD ‘07
contest benchmarks, the ISPD ‘98 benchmarks feature only a single
metal layer, making via minimization unnecessary.

5.2 Performance on ISPD ‘07 Benchmarks and Impact of Vias

The ISPD ‘07 Global Routing Contest benchmarks [13] are con-
siderably larger than the ISPD ‘98 benchmarks and include both two-
and three-dimensional variants. These benchmarks feature non-trivial



Best of BoxRouter and MaizeRouter FGR
Bench- Overflow Cost Overflow Cost vs.
mark total max (e5) Router total max (e5) Best

#1 2-d 0 0 58.84 Box 0 0 53.81 -8.55%
#1 3-d 0 0 99.61 Maize 0 0 88.39 -11.26%
#2 2-d 0 0 55.69 Box 0 0 51.86 -6.88%
#2 3-d 0 0 98.12 Maize 0 0 89.89 -8.39%
#3 2-d 0 0 137.75 Maize 0 0 129.58 -5.93%

ad
ap

te
c

#3 3-d 0 0 214.08 Maize 0 0 199.60 -6.76%
#4 2-d 0 0 128.45 Maize 0 0 124.12 -3.37%
#4 3-d 0 0 194.38 Maize 0 0 179.36* -7.73%
#5 2-d 0 0 164.32 Box 0 0 150.64 -8.33%
#5 3-d 0 0 298.08 Box 0 0 259.89 -12.81%
#1 2-d 400 2 51.13 Box 452 4 47.43 -7.24%
#1 3-d 400 2 101.83 Box 452 2 94.27 -7.42%
#2 2-d 0 0 79.64 Maize 0 0 75.87 -4.73%

ne
w

bl
ue

#2 3-d 0 0 139.66 Maize 0 0 129.40* -7.35%
#3 2-d 32588 1236 114.63 Maize 38580 1120 109.34 -4.61%
#3 3-d 32840 1058 184.40 Maize 38580 374 173.82 -5.74%

Average -7.35%

Table 2. Comparison of FGR to the other top-3 routers at the ISPD ‘07 Global Routing
Contest [13]. FGR routes as many benchmarks without overflow as the winners of the
contest with 7.4% better wirelength than the best of BoxRouter [4] and
MaizeRouter [22]. *These benchmarks were routed using FGR’s option “-full3d”.

routing obstacles, and, consequently, routing resources are not spread
evenly as in the ISPD ‘98 suite. Table 3 shows runtimes for FGR
on these benchmarks. In all cases FGR stays within the 32-bit mem-
ory space and finishes well under a given 24-hour timeout on all but
the newblue1 and newblue3 benchmarks for which no legal solutions
were found at the ISPD ‘07 contest.5

We compare FGR to the routers that scored best at the ISPD 2007
contest and results are shown in Table 2. Since an earlier version of
FGR placed 1st in the 2-d and 3rd in the 3-d categories, we exclude
it from comparison (however, the version we report improves upon
FGR’s contest results on every benchmark). MaizeRouter [22] placed
1st in 3-d and 2nd in 2-d, and BoxRouter placed 2nd in 3-d and 3rd
in 2-d at the contest. FGR produces smallest wirelengths on every
benchmark and is able to route without overflow every benchmark
that was legally routed at the contest. In particular, FGR outperforms
BoxRouter in wirelength by 9.9% and MaizeRouter by 8.4%.

Via counts are included in the total cost of a routing solution to both
the 2-d and 3-d variants of the contest benchmarks such that one via
costs the same as three routing segments. Vias represent from 26%
to 49% of the total cost of FGR’s solutions to the 2-d benchmarks.
When moving from 2-d to 3-d, and increasing the number of metal
layers from 2 to 6, via counts approximately triple and account for
50% to 74% of total cost. Given that the resistivity of tungsten (the
material of vias) is much higher than that of copper and aluminum,
vias are also critical in timing-driven routing. Furthermore, the high
variability in via parasitics [27] and the common practice of post-route
via doubling to improve yield [17, 18] suggest that via minimization
is a key issue in routing at the nanometer scale. In contrast, previous
works on negotiated-congestion routing do not consider via minimiza-
tion because they focus on FPGA routing.

5.3 Steiner Trees vs. MSTs

Traditionally net decomposition has been done using Minimal
Spanning Tree (MST) algorithms, but fast and extremely accurate
Rectilinear Steiner Minimal Tree (RSMT) construction algorithms
have become increasingly popular [4, 23, 24]. FGR can use any well-
formed net decomposition, so we study how the choice of net decom-
position affects FGR’s overall results—we compare MST to a com-
bination of FLUTE [6] and FastSteiner [14] that returns the better
Steiner tree every time. FGR merges segments of decomposed nets,
as described in Section 3.3 and produces non-trivial Steiner trees even
when given MST decompositions. The results on the ISPD ‘07 bench-
marks are shown in Table 3. Time taken for decomposition by MSTs
or Steiner trees is less than 1 minute on all benchmarks and does not

5FGR can be stopped much earlier, with only a slight increase in overflows.

Decomposition by MST Decomposition by Steiner trees
Benchmark Segment Vias Total Time Segment Vias Total Time

WL (e5) (e5) cost (m) WL (e5) (e5) cost (m)
adaptec1 2-d 35.88 6.19 54.44 451 35.78 6.24 54.49 403
adaptec1 3-d 36.37 17.36 88.45 430 36.26 18.04 90.37 395
adaptec2 2-d 33.21 6.36 52.30 56 33.10 6.43 52.38 170
adaptec2 3-d 33.74 18.72 89.89 64 33.62 19.37 91.72 168
adaptec3 2-d 96.09 11.60 130.89 179 95.55 11.67 130.57 222
adaptec3 3-d 97.02 34.21 199.66 243 96.42 35.49 202.90 281
adaptec4 2-d 90.02 11.66 125.00 19 89.37 11.72 124.53 18
adaptec4 3-d 91.28 30.56 182.96 55 90.59 31.59 185.35 58
adaptec5 2-d 102.79 16.45 152.13 713 102.56 16.63 152.45 771
adaptec5 3-d 103.89 52.03 259.98 740 103.62 53.78 264.97 796
newblue1 2-d 24.15 7.76 47.42 1441 24.00 7.74 47.22 1441
newblue1 3-d 24.15 23.37 94.26 1442 24.00 24.00 96.01 1442
newblue2 2-d 46.81 9.90 76.51 4 46.41 9.95 76.27 4
newblue2 3-d 47.91 28.08 132.16 10 47.51 29.08 134.75 10
newblue3 2-d 75.63 11.20 109.23 1555 75.24 11.15 108.71 1460
newblue3 3-d 75.63 32.69 173.71 1501 75.24 33.04 174.35 1462

Ratio -0.52% +1.81% +0.74% +22.0%

Table 3. Comparing net decomposition by MST vs. Steiner trees on the ISPD ‘07
benchmarks [13]. Time taken for decomposition by MST or Steiner trees is less than 1
minute on all benchmarks and does not impact runtimes.

significantly impact runtimes. As expected, routed segment length
is smaller when Steiner tree algorithms are used, but using Steiner
tree algorithms increases via counts by 1.8% and causes total cost
to increase by 0.7%. All evidence we have seen suggests that MST
decompositions leave more flexibility than RSMTs, allowing one to
avoid some detouring. Prior work has shown that RSMTs for a given
set of points can vary widely. Specialized techniques can increase
flexibility [3], but FLUTE and FastSteiner do not currently optimize
tree flexibility. In addition, Steiner points may inadvertently be placed
in congested areas during construction, causing increased congestion
and detouring. Congestion-driven Steiner trees could be helpful in
this context, but MSTs already provide a good solution and can also
be biased to avoid congestion.

5.4 Layer Assignment vs. Full 3-d Routing

FGR performs 3-d routing by first flattening the routing instance
onto a 2-d grid, routing the new 2-d problem instance, and then con-
verting the 2-d solution into a 3-d solution with layer assignment.
FGR is also capable of solving 3-d problems directly by using full
3-d maze routing, and in Table 4 we compare both methods. It is
readily apparent that full 3-d routing takes far longer than 2-d routing
with layer assignment, most likely because 3-d routing is more com-
plex. On the easiest benchmarks, adaptec4 and newblue2, full 3-d
routing takes at least 50% longer, but is able to decrease via counts
significantly and in turn improve total cost by 2.0% and 2.1%, respec-
tively. On the other hand, on the benchmarks where FGR with layer
assignment cannot find a legal solution within 24 hours, newblue1 and
newblue3, full 3-d routing produces solutions with significantly more
overflow given the same timeout.

6. CONCLUSIONS

In this paper we have presented FGR, a high-performance global
router for nanometer scale designs. FGR’s implementation is very
compact—core algorithms and data structures require only 1200 lines
of C++ code. FGR outperforms the best results from the ISPD ‘07
Global Routing Contest, as well as previous literature, in terms of
route completion, runtime and total wirelength. In particular, FGR
improves upon wirelength produced by BoxRouter and MaizeRouter
in March 2007 by 9.9% and 8.4%, respectively. Given that no high-
performance routers are open-source today, FGR is likely to boost
research in physical design, while also leading to better commercial
place-and-route tools [9].



Layer Assignment Full 3-d Routing
Bench- Total Segment Vias Total Time Total Segment Vias Total Time
mark ovfl WL (e5) (e5) cost (m) ovfl WL (e5) (e5) cost (m)

#1 0 36.37 17.36 88.45 430 1456 36.02 17.55 88.70 1453
#2 0 33.74 18.71 89.89 64 2 33.36 19.06 90.54 1444

ad
ap

te
c

#3 0 97.02 34.21 199.66 243 2 96.69 34.77 201.01 1487
#4 0 91.28 30.56 182.96 55 0 91.39 29.32 179.36 83
#5 0 103.89 52.03 259.98 740 5512 102.78 52.27 259.61 1462

ne
w

bl
ue #1 514 24.15 23.37 94.26 1442 1012 24.21 22.33 91.19 1447

#2 0 47.91 28.08 132.16 10 0 47.93 27.15 129.40 18
#3 39828 75.63 32.69 173.71 1501 51098 75.73 29.30 163.63 1827

Table 4. Comparing layer assignment with full 3-d routing on the 3-d instances of the
ISPD ‘07 benchmarks [13]. Total cost of the better of the two solutions (compared first
by overflow and then by total cost) for each benchmark are highlighted in bold.

Challenges for Future Research. FGR’s core algorithms are
directly relevant to detail routing of ASICs and FPGAs, while its
constraint-driven nature makes it amenable to the handling of com-
plex design rules. To this end, a key challenge for future research is
to develop a prototype of a detail routing tool based on negotiated-
congestion routing. Such a prototype would be particularly useful to
explore design rules and models expected at future technology nodes.

Another key challenge is to integrate accurate congestion modeling
provided by FGR into global and detail placement. This could be
used to mitigate congestion early and to provide accurate information
about length of individual wires, which is particularly important in
timing-driven placement.

Benchmarking Challenges. Much empirical progress in place-
and-route research has been driven by carefully designed benchmark
suites. Therefore, ensuring the high quality of public suites is of ma-
jor importance. To this end, a comparison of FGR results on the ISPD
‘98 and ISPD ‘07 benchmarks suggests that the ISPD ‘98 benchmarks
have become outdated. They do not allow for via minimization since
they have but one layer of metal, and their sizes are at least an order of
magnitude smaller than common industrial designs. In terms of diffi-
culty, 7 of the 10 ISPD ‘98 benchmarks can be routed with only minor
detouring (no more than 1% above Steiner-tree lengths produced by
FLUTE [6]) which is in contrast to the 3-d variants of the ISPD ‘07
benchmarks where FGR produces solutions with at least 2% detour-
ing in all cases and up to 7% for more difficult benchmarks.

The sheer size of the ISPD ‘07 benchmarks can complicate some
empirical studies, however, an easy solution is to partition them and
use fractions of their layouts to quickly evaluate changes in routing
algorithms. In addition, it has been shown that one can control the
difficulty of routing instances through whitespace distribution dur-
ing placement. Distributing whitespace uniformly generally improves
routability, making routing problems easier [1] while congestion-
driven allocation further simplifies routing [26].

Neither the ISPD ‘98 nor the ISPD ‘07 benchmarks require signif-
icant detouring. It is likely that by adding obstacles or zero-capacity
GCells one can make routing more difficult. In particular, multi-pin
net decomposition in the presence of obstacles remains a challenging
problem, as evidenced by recent papers on obstacle-avoiding Steiner-
trees [19, 28].
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