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ABSTRACT
Large macro blocks, pre-designed datapaths, embedded memories
and analog blocks are increasingly used in ASIC designs. How-
ever, robust algorithms for large-scale placement of such designs
have only recently been considered in the literature, and improve-
ments by over 10% per paper are still common. Large macros can
be handled by traditional floorplanning, but are harder to account for
in min-cut and analytical placement. On the other hand, traditional
floorplanning techniques do not scale to large numbers of objects,
especially in terms of solution quality.

We propose to integrate min-cut placement with fixed-outline floor-
planning to solve the more general placement problem, which in-
cludes cell placement, floorplanning, mixed-size placement and achi-
eving routability. At every step of min-cut placement, either parti-
tioning or wirelength-driven, fixed-outline floorplanning is invoked.
If the latter fails, we undo an earlier partitioning decision, merge ad-
jacent placement regions and re-floorplan the larger region to find
a legal placement for the macros. Empirically, this framework im-
proves the scalability and quality of results for traditional wirelength-
driven floorplanning. It has been validated on recent designs with
embedded memories and accounts for routability. Additionally, we
propose that free-shape rectilinear floorplanning can be used with
rough module-area estimates before synthesis.

1. INTRODUCTION
The amount of embedded memory used on a chip is expected to

grow dramatically in the next few years [26], from around 50% of
the die area today to 70% by 2005, and 90% by 2011. This growth is
mostly fueled by chips for high-bandwidth communication, portable
multi-media, interactive consumer electronics and industrial embed-
ded systems. While memories and random logic have traditionally
been manufactured using different semiconductor processes, today
most foundries offer hybrid processes that can produce reasonably
dense memories embedded in random logic with fast gates and so-
phisticated interconnect [26]. The use of on-chip memories substan-
tially improves energy-efficiency and response latency, while reduc-
ing weight, form factor and assembly costs.

Physical design with large pre-designed circuit blocks is more dif-
ficult than conventional standard-cell layout. While commercial lay-
out tools have considerably improved in the last two years, the lo-
cations of large blocks are still typically determined manually. Per-
haps the most obvious challenge is the minimization of wirelength,
which also affects routability. Optimization of wirelength is the
most prevalent approach to placement and floorplanning, and en-
ables other optimizations through the use of net weights and bounds
[13, 15]. Moreover, wirelength optimization appears necessary —
a recent study [25] from Intel shows that 51% of dynamic power
in currently-shipped microprocessors is consumed when driving sig-
nals over interconnects, including local and global wires.

Automated placement of embedded memories, IP blocks and data-
paths can improve time-to-market by quickly generating many high-
quality layout scenarios, from which experienced designers can se-
lect smaller candidate sets, using their domain knowledge. While
there can be hundreds of large placeable circuit blocks, ideal block
locations can also be influenced by millions of small standard cells.
Accounting for this effect is often beyond human capabilities and is
difficult in classical methodologies for automatic layout where floor-
planning and placement are performed in separate steps. Tradition-
ally, a circuit is first partitioned, and then floorplanned with rect-
angular shapes. The macro locations are fixed, and soft blocks are
shaped, followed by standard-cell placement. In the past partition-
ing and floorplanning have often been used to increase the capacity
of older placement algorithms which did not scale beyond half a mil-
lion movable objects. However, modern placement algorithms, and
even some of academic tools used in this work, are routinely used on
flat netlists with over four million movable objects.

From an optimization point of view, floorplanning and placement
are very similar problems – both seek non-overlapping placements to
minimize wirelength. They are mostly distinguished by scale and the
need to account for shapes in floorplanning, which calls for different
optimization techniques (see Table 1). Notice, however, that netlist
partitioning is often used in placement algorithms, where geometric
shapes of partitions can be adjusted. This considerably blurs the sep-
aration between partitioning, placement and floorplanning, raising
the possibility that these three steps can be performed by one CAD
tool. In this work, we develop such a tool and term the unified layout
optimization floorplacement following Steve Teig’s keynote speech
at ISPD 2002. We concentrate on fundamental algorithm develop-
ment and present basic empirical validation. Clearly, industrial use
will also require additional support with new methodologies, e.g., to
allocate repeaters and optimize timing.

Our floorplacer Capo 9.0 is derived from an existing standard-cell
placer and can also be used as a multi-way partitioner. Added func-
tionalities include (1) completely integrated mixed-size placement
competitive with best published results, (2) wirelength-driven fixed-
outline floorplanning, that outperforms existing floorplanners by far,
and (3) free-shape floorplanning that simultaneously determines lo-
cations and shapes of modules to optimize interconnect. Empirically,
most modules are shaped as rectangles, with a noticeable fraction
of L-, T- and U-shapes. However, we observe significantly smaller
wirelengths and runtimes compared to purely rectangular floorplans.

One of the benchmark sets used in our empirical evaluation is
completely new and is the first to incorporate embedded memories
with complete routing information. Embedded memories often use
only two layers of metal (aside from power stripes) and do not block
routing tracks at other metal layers. Therefore, our benchmarks
mainly emphasize the effect of embedded memories on the place-
ment of standard cells and can be viewed as a minimal sanity-check



Characteristics Partitioners Floor- Placers Floor-
planners placers

Scalable runtime Yes No Yes Yes
Scalable wirelength N/A No Yes Yes
Explicit non-overlapping No Yes No Yes
constraints

Can handle large modules Yes Yes No Yes
Routability optimization No N/A Yes Yes
Can optimize No Yes No Yes
orientation of modules

Support for Yes Limited No Yes
non-rectangular blocks

Support for Yes Yes No Yes
soft rectangular blocks

Handling net weights Yes Yes Yes Yes
Handling length bounds No Yes Yes Yes

Table 1: A comparison of common algorithms for partitioning, floor-
planning, and placement, contrasted with what can be achieved by a
unified floorplacer. Published floorplanning algorithms assume a par-
ticular shape for each block, e.g., rectangle, L-shape or T-shape, but
floorplacers may be able to automatically choose an acceptable shape.

for mixed-size placement. In particular, we evaluate recent work
on mixed-size placement [6, 24] which relies on greedy legalization
of cell macro locations through left (or right) packing. Such strate-
gies typically produce unroutable standard-cell placements [31, 5],
and careful re-distribution of whitespace shown in [31] to improve
routability may be less effective with large circuit blocks present,
due to the fragmentation of layout. More generally, it seems that
reliable incremental modification of mixed-size layouts is more dif-
ficult than that of pure standard-cell layouts. Therefore, in this work
we attempt to minimize the need for such modification.

The rest of the paper is structured as follows. Section 2 describes
relevant previous work. In Section 3 we integrate floorplanning into
partitioning-based placement. The Appendix introduces new mixed-
size placement benchmarks which are used for empirical validation
in Section 4. Section 5 concludes our paper.

2. RELEVANT PREVIOUS WORK
As pointed out in [19, 10, 3], modern hierarchical ASIC design

flows are typically based on fixed-die floorplanning, placement and
routing, rather than the older variable-die style. In such a flow, each
top-down step may start with a floorplan of prescribed aspect ratio
and with blocks of bounded, but not always fixed, aspect ratios.

2.1 Min-cut Placement
Top-down placement algorithms seek to decompose a given place-

ment instance into smaller instances by sub-dividing the placement
region, assigning modules to subregions and cutting the netlist hy-
pergraph [10]. In this context a placement bin represents (i) a place-
ment region with allowed module locations (sites), (ii) a collection
of circuit modules to be placed in this region, (iii) all signal nets
incident to the modules in the region, and (iv) fixed cells and pins
outside the region that are adjacent to modules in the region (termi-
nals). The top-down placement process can be viewed as a sequence
of passes where each pass examines all bins and divides some of
them into smaller bins. Most commonly the division step is accom-
plished with balanced min-cut partitioning that minimizes the num-
ber of signal nets connecting modules in multiple regions. These
techniques leverage well-understood and scalable algorithms for hy-
pergraph partitioning and typically lead to routable placements.

This work uses the top-down placer Capo [10], which implements
three min-cut partitioners — optimal (branch-and-bound), middle-
range (Fiduccia-Mattheyses) and large-scale (multi-level Fiduccia-
Mattheyses). Bins with seven cells or less are processed with an
optimal end-case placer. To allow the partitioners to find better cuts,
Capo often shifts the cutline to accommodate an excess of circuit
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Figure 1: Layout styles. Standard-cell layout is shown in Figure 4(a).

modules in one partition. This also allows Capo to distribute the
available whitespace uniformly [12] so as to facilitate easier routing.
Non-uniform distribution can be easily achieved by pre-processing
[1]. Recent enhancements are based on the concept of placement
feedback [21] in which a given collection of bins is partitioned N
times, without requiring steady improvement, to achieve more con-
sistent terminal propagation. This change improves both wirelength
and routability. Table 2 compares routability of placements pro-
duced by three leading min-cut placers on the IBM-Dragon (v2)
benchmarks. We run Dragon 3.01 [31] in a mode where it spreads
whitespace according to congestion. This significantly increases
wirelength, but produces more routable placements. As of August
2004, FengShui [24] does not have such a mode and shifts all cells
to the left (or right), typically yielding unroutable placements.

2.2 Fixed-outline Floorplanning
A typical floorplanning formulation deals with a set of circuit

modules, each characterized by area and shape type. Rectangular
modules (blocks) may have varying aspect ratios (soft blocks). This
is common for IP blocks available in several shapes, and for hier-
archical partitions where area can be estimated before synthesis. A
floorplan specifies module locations and shapes such that modules
do not overlap. Classical floorplanning minimizes a linear combi-
nation of floorplan area and total net length. However, in modern
design flows the floorplan often has a fixed outline [19], which ac-
centuates the minimization of wirelength, reminding of placement.

The floorplanner Parquet [3, 11] performs fixed-outline floorplan-
ning with rectangular modules (supporting soft blocks) by combin-
ing Simulated Annealing with a new mechanism for move selection,
based on floorplan slack [3]. Slack represents the amount of hor-
izontal or vertical space next to each block and can be computed
quickly. To improve the width of a floorplan, one must relocate a
block with zero horizontal slack (similarly for height). Such moves
are performed at regular time intervals during Simulated Annealing
to bias the aspect ratio of the current floorplan to that of the desired
outline. When the temperature schedule runs out, the final floorplan
may still violate the outline. Parquet empirically achieves high rates
of success on fixed-outline instances with 15% whitespace [3].

Circuit Capo 9.0 -feedback Dragon 3.01 -fd FengShui 2.5
routed WL Viol routed WL Viol routed WL Viol

ibm01e 839802 0 871052 53 time-out 1351
ibm01h 860067 147 832928 0 time-out 1736
ibm02e 2239345 0 2198366 200 2202910 0
ibm02h 2162938 0 2215116 0 time-out 1722
ibm07e 4620754 0 4249798 0 time-out 85
ibm07h 4861456 25 4643654 0 time-out 649
ibm08e 4750574 0 4681110 0 4609964 0
ibm08h 4882005 0 4530017 0 time-out 133116

Table 2: Routing results on IBM-Dragon V2 benchmarks with a 24-
hour time-out. Cadence WarpRoute typically routes Dragon’s and
Capo’s placements, sometimes with a small number of violations.
WarpRoute often fails on FengShui placements.



2.3 Mixed-size Placement
For the reasons outlined in the introduction, mixed-size placement

is becoming increasingly important. Much progress has been made
recently [1, 2, 14, 24, 30], and we survey relevant algorithms below.

The force-directed algorithm Kraftwerk [16] models interconnect
with attraction forces and introduces additional repulsion forces be-
tween overlapping modules. The new module locations achieved by
applying those forces are estimated by solving the Poisson equation,
which is reduced to solving large sparse systems of linear equations.
Forces are recomputed for each new placement, and the algorithm
is applied until convergence. Kraftwerk is fast and can success-
fully handle large mixed-size placement instances with significant
amounts of whitespace, but often fails to resolve overlaps between
large modules in realistic circumstances where blocks may be diffi-
cult to pack [2]. In a recent empirical comparison of standard-cell
placers [5] Kraftwerk was outperformed by several min-cut tools.
Another potential shortcoming of this analytical algorithm is hav-
ing no provisions for optimizing orientations of large modules — a
clearly discrete optimization problem.

MMP [30] attempts to solve the mixed-size placement problem
by a bottom-up clustering of standard cells and subsequent cluster
placement. The placement engine is a combination of quadratic and
min-cut techniques. It balances partition areas by shifting the cut-
line after each min-cut optimization. As described, the algorithm
assumes pre-determined orientations for all circuit modules and does
not attempt to optimize them. No empirical comparisons to other
techniques or scalability data are available. It is especially unclear if
this technique can handle large, fixed-size, difficult-to-pack blocks.

The work in [2] proposes a methodology for mixed-size placement
that combines floorplanning and standard-cell techniques as follows.

Step 1. During pre-processing, each large module is shredded
into small fake cells connected by a grid of fake wires. Pins are
propagated to shredded cells to reflect pin offsets. Assigning
sufficiently high weights to fake wires ensures that fake cells
belonging to the same large module are placed next to each
other if the placer minimizes linear wirelength. A black-box
standard-cell placer is applied to the shredded netlist.
Step 2. Initial locations of large modules are computed by aver-
aging the locations of respective fake cells. A module is rotated
according to the prevailing orientation in the grid that models it.
To remove overlaps between large modules, small cells are clus-
tered (bottom up, based on locations) into soft blocks to create
a fixed-outline floorplanning instance with 100-200 blocks.
Step 3. Non-overlapping locations of large modules are gener-
ated by running a fixed-outline floorplanner, e.g., Parquet [3].
Initial locations can be discarded, or else can be re-used with
low-temperature annealing during floorplanning.
Step 4. Large modules are fixed, and remaining soft blocks
are disintegrated into original standard cells. The black-box
standard-cell placer is called again to re-place small cells.
Observe that the shredding process facilitates physical (location-

based) clustering of small cells and thus improves final locations
of large modules, even if their initial locations are discarded. A
major advantage of this methodology is its robustness — it often
produces legal placements when other approaches leave large over-
laps or place modules out of core. It also optimizes module orien-
tations. This fully-automated methodology successfully competed
with a major commercial tool in 2002 and has been recently im-
proved by more judicious handling of whitespace [1]. Yet, the main
scalability bottleneck remains in the use of Simulated Annealing at
the top-level floorplanning stage. It affects both runtime and the
quality of wirelength optimization.

The multi-level placer mPG-MS [14] clusters the netlist bottom-
up to build a hierarchy. The top-level coarse netlist of approximately
500 clusters is placed using Simulated Annealing, after which the
netlist is gradually unclustered so as to improve the placement of
smaller clusters by incremental annealing. All intermediate cluster
placements in mPG-MS are non-overlapping, which is enforced with
specially-designed data structures and yet takes considerable com-
putational effort. This and the pervasive use of Simulated Annealing
make mPG very slow. While mPG finds better placements than those
reported in [1], even better placements have been produced recently
by the min-cut technique below, which is also much faster.

The work in [24] advocates a two-stage approach to mixed-size
placement. First, the min-cut placer FengShui [6] generates an ini-
tial placement for the mixed-size netlist without trying to prevent
all overlaps between modules. The placer only tracks the global
distribution of area during partitioning and uses the fractional cut
technique [6], which further relaxes book-keeping by not requiring
placement bins to align to cell rows. While giving min-cut partition-
ers more freedom, these relaxations prevent cells from being placed
in rows easily and require additional repair during detail placement.
This may particularly complicate the optimization of module orien-
tations, not considered in [24] (relevant benchmarks use only square
blocks with all pins placed in the centers).

The second stage consists of removing overlaps by a fast legal-
izer designed to handle large modules along with standard cells. The
legalizer is essentially greedy and attempts to shift all modules to-
wards the left edge of the chip (or to the right edge, if that produces
better results). In our experience, the implementation reported in
[24] leads to horizontal stacking of modules and sometimes yields
out-of-core placements, especially when several very large modules
are present (the benchmarks used in [24] contain numerous modules
of medium size). See Figure 5 for examples of this behavior. An-
other concern about packed placements is the harmful effect of such
a strategy on routability, explicitly shown in [31]. Overall, the work
in [24] demonstrates very good legal placements for common bench-
marks, but questions remain about the robustness and generality of
the proposed approach to mixed-size placement. We address these
questions with additional benchmarking in our work.

3. INTEGRATION OF PARTITIONING,
PLACEMENT AND FLOORPLANNING

In this section we introduce our correct-by-construction approach
to floorplacement, which does not rely on post-placement legaliza-
tion procedures for large modules.

3.1 Unified Placement and Floorplanning
We first observe that min-cut placers scale well in terms of runtime

and wirelength minimization, but cannot produce non-overlapping
placements of modules with a wide variety of sizes. On the other
hand, annealing-based floorplanners can handle vastly different mod-
ule shapes and sizes, but only for relatively few (100-200) modules at
a time. Otherwise, either solutions will be poor or optimization will
take too long to be practical. As explained in Section 2.3, the loose
integration of fixed-outline floorplanning and standard-cell place-
ment proposed in [2] suffers from a similar drawback because its
single top-level floorplanning step may have to operate on numer-
ous modules. Bottom-up clustering can improve the scalability of
annealing, but not sufficiently to make it competitive with other ap-
proaches. Therefore, in this work we apply min-cut placement as
much as possible and delay explicit floorplanning until it becomes
necessary. In particular, since min-cut placement generates a slic-
ing floorplan, we view it as an implicit floorplanning step, reserving
explicit floorplanning for “local” non-slicing block packing.



Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While (queue not empty)
2 Dequeue a bin
3 If (bin has large/many macros or is marked as merged)
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack

all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision. Merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else if (bin small enough)
12 Process end case
13 Else
14 Bi-partition the bin into smaller bins
15 Enqueue each child bin

Figure 2: Our floorplacement algorithm. Bold-faced lines 3-10 are
different from traditional min-cut placement.

We start with a single placement bin representing the entire lay-
out region with all the placeable objects initialized at the center of
the placement bin. Using min-cut partitioning, the bin is split into
two bins of similar sizes, and during this process the cut-line is ad-
justed according to actial partition sizes. Applying this technique
recursively to bins (with terminal propagation) produces a series of
gradually refined slicing floorplans of the entire layout region, where
each room corresponds to a bin.1 In very small bins, all cells can be
placed by a branch-and-bound end-case placer [8]. However, this
scheme breaks down on modules that are greater than their bins.
When such a module appears in a bin, recursive bisection cannot
continue, or else will likely produce a placement with overlapping
modules. Indeed, the work in [24] continues bisection and resolves
resulting overlaps later. However, in this work we switch from re-
cursive bisection to “local” floorplanning where the fixed outline is
determined by the bin. This is done for two main reasons: (1) to
preserve wirelength [9], congestion [7] and delay [20] estimates that
may have been performed early during top-down placement, and (2)
avoid the need to legalize a placement with overlapping macros. In
particular, we are unconvinced that existing legalization algorithms
are robust enough to handle a wide variety of module shapes and
sizes in realistic netlists (see Figure 5). We also anticipate difficulty
ensuring routability while shifting macros and standard cells at the
same time.

While resorting to fixed-outline floorplanning is a natural step,
successful fixed-outline floorplanners have appeared only recently
[3]. Additionally, the floorplanner may fail to pack all modules
within the bin without overlaps. As with any constraint-satisfaction
problem, this can be for two reasons: either (i) the instance is unsat-
isfiable, or (ii) the solver is unable to find any of existing solutions.
In this case, we undo the previous partitioning step and merge the
failed bin with its sibling bin, whether the sibling has been processed
or not, then discard the two bins. The merged bin includes all mod-
ules contained in the two smaller bins, and its rectangular outline is
the union of the two rectangular outlines. This bin is floorplanned,
and in the case of failure can be merged with its sibling again. The
overall process is summarized in Figure 2.

It is typically easier to satisfy the outline of a merged bin because
circuit modules become relatively smaller. However, Simulated An-
nealing takes longer on larger bins and is less successful in mini-
mizing wirelength. Therefore, it is important to floorplan at just the
right time, and our algorithm determines this point by backtrack-

1If every cut-line is fixed apriori to the center of its bin, recursive
bisection generates a grid-like floorplan.

ing. Backtracking does incur some overhead in failed floorplan runs,
but this overhead is tolerable because merged bins take considerably
longer to floorplan. Furthermore, this overhead can be moderated
somewhat by careful prediction, as will be described later.

For a given bin, a floorplanning instance is constructed as fol-
lows. All connections between modules in the bin and other mod-
ules are propagated to fixed terminals at the periphery of the bin.
Similar terminal propagation schemes are commonly used in some
analytical placers [28]. As the bin may contain numerous standard
cells, we reduce the number of movable objects by conglomerating
standard cells into soft placeable blocks. This is accomplished by a
simple bottom-up connectivity-based clustering [22]. The existing
large modules in the bin are usually kept out of this clustering. To
further simplify floorplanning, we artificially downsize soft blocks
consisting of standard cells, as in [1], because standard cells will be
placed later anyway. The clustered netlist is then passed to the ran-
domized fixed-outline floorplanner Parquet, which sizes soft blocks
and optimizes block orientations. We allow at most five attempts
to find a non-overlapping placement of modules within the bin. If
the floorplanner is successful, the locations of all large modules are
returned to the top-down placer and considered fixed. The rows be-
low those modules are fractured and their sites are removed, i.e.,
the modules are treated as fixed obstacles. At this point, min-cut
placement resumes with a bin that has no large modules in it, but
has somewhat non-uniform row structure. When min-cut placement
is finished, large modules do not overlap by construction, but small
cells sometimes overlap in few places (typically below 0.01% by
area). Those overlaps are quickly detected and removed with lo-
cal changes using a row-based legalizer from the GSRC bookshelf
[11]. Detailed placement uses branch-and-bound placement in slid-
ing windows [8], but does not move the macros. Figure 1(b) shows
a sample placement produced by our tool.

3.2 Practical Issues
Empirical boundary between placement and floorplanning. By
identifying the characteristics of placement bins for which our al-
gorithm calls floorplanning, one can tabulate the empirical bound-
ary between placement and floorplanning. Formulating such ad hoc
thresholds in terms of dimensions of the largest module in the bin,
etc allows one to avoid unnecessary backtracking and decrease the
overhead of floorplanning calls that fail because they are issued too
late. In practice, issuing floorplanning calls too early (i.e., on larger
bins) increases final wirelength and sometimes runtime. To improve
wirelength, our ad hoc tests for large blocks in bins (that trigger
floorplanning) are deliberately conservative.

• At least one module does not fit into a potential child bin.
• The sum of the larger dimension of the largest module and the

smaller dimension of the second largest module exceeds the
smaller dimension of a potential child bin.

• There are ≤ 30 large modules in the bin, but their total area
exceeds 80% of the total area of cells and modules in the bin.

In our experience, these tests are good enough to ensure that at
most one level of backtracking (block-merging) is required to pre-
vent overlaps between large modules.
Side-effect: Narrow vertical slivers between large modules. Ad-
jacent large modules placed by the fixed-outline floorplanner may
have tall, narrow columns of empty sites between them. Fitting small
cells in such slivers may be non-trivial, e.g., consider a column with
four sites and a collection of cells that take two or three sites each.
In this case, every three-site cell implies the loss of one site, but
this loss is difficult to estimate during balanced min-cut partition-
ing. Therefore, a traditional min-cut placer that assigns cells to bins
based only on site area, may create cell overlaps in such cases. When



wide cells get assigned to narrow columns, they may end up overlap-
ping with macros. Since such overlaps are relatively rare, they can
be resolved by simple legalization with minimal movement, e.g., Ca-
dence Qplace in the ECO mode. One can also identify contiguous
site sequences (sub-rows) that are shorter than existing wide cells
and mark them as used when creating a new placement bin.

3.3 Wirelength-driven Floorplanning
Pure block-based designs. Since our floorplacer includes a state-

of-the-art floorplanner [3], it can natively handle pure block-based
designs. Unlike most algorithms designed for mixed-size place-
ment, it can pack blocks into a tight outline, optimize block orienta-
tions and aspect ratios of soft blocks. Indeed, when the number of
blocks is very small, our algorithm applies floorplanning right away.
However, when given a larger design, it may start with partition-
ing and then call fixed-outline floorplanning for separate bins. This
is demonstrated in Figure 1(a) which shows the block-based design
n300 placed using our floorplacer. The cuts made by the min-cut
partitioner are clearly seen making the resulting floorplan globally
slicing, but locally non-slicing. Since recusrive bisection scales well
and is more successful at minimizing wirelength than annealing-
based floorplanning, the proposed approach is scalable and effective
at minimizing wirelength. This expectation is fully confirmed by
empirical results in Section 4.
Free-shape rectilinear floorplanning. Some circuit modules, such
as embedded memories and pre-designed datapaths, have fixed rect-
angular shapes. However, when only the area of a module is esti-
mated, but its shape is unknown, there is often no a priori reason
to limit its shape to rectangles. Such limitations may be justified by
added efficiency in handling rectangular blocks, but can handicap
interconnect optimization. Non-rectangular floorplanning has been
popular in several design contexts, and existing work can be clas-
sified by whether the floorplanner is allowed to change the shape
type of modules. To this end, the work in [23] and [29] repre-
sents simple non-rectangular shapes with Sequence Pairs (SP) and
Bounded Slicing Grids (BSG) to pack such modules using the popu-
lar annealing-based framework. In contrast, the work in [18] solves a
specific floorplanning formulation proposed in [19], which assumes
desired locations of given rectangular modules and seeks to re-shape
the modules so as to avoid overlaps. The proposed algorithm is an
incremental detailed floorplanner that tends to generate fairly com-
plicated shapes, but does not account for interconnect. Below we
extend our global free-shape floorplanner to generate both locations
and shapes of soft modules so as to minimize interconnect. Empir-
ically, most of the modules are shaped as rectangles, but L-,T- and
U-shapes are sometimes created when this helps reducing intercon-
nect. Our algorithm is also capable of pin placement.

Below we rely on techniques proposed in [2], where each large
module is pre-processed into a grid of fake cells and heavy fake
nets. Signal pins of a module are propagated to respective fake
cells. However, in our context there is no need to shred fixed-shape
blocks because they are already handled by our floorplacer. Thus, we
only shred soft blocks. As in [2], heavy weights on fake nets ensure
that shreds of the same module stay together during min-wirelength
placement. However, since we now allow non-rectangular shapes,
there is no need to average locations of fake cells and determine the
prevailing orientation as in [2]. We simply accept module shapes as-
sumed by fake grids during placement. Because of the relative rigid-
ity of fake grids and because we rely on min-cut placement, most
modules assume rectangular shapes, which is convenient from many
perspectives. Other shapes are generated only when this reduces
interconnect, and they remain relatively simple. This is demon-
strated in Figure 3(a) where modules are color-coded. The plot is

ami33 shredded HPWL=46071.9, #Cells=12116

Type→ Rectangular Free-shape

Circuit Parquet 2.0 Capo 9.0 Avg%
↓ HPWL HPWL Impr

ami33 76987 46072 40.1
ami49 895560 469476 47.5
n50 202240 87957 56.5

n100 350593 157548 55.0

Figure 3: Figure on left shows a free-shape floorplan of the ami33
benchmark. Our floorplacer determines both locations and shapes
of individual modules to minimize wirelength. Traditional rectangu-
lar floorplanning with Parquet is compared to our free-shape non-
rectangular floorplacement on the right.

produced by our floorplacer using fake-net weights of 500. An addi-
tional benefit of our approach is its scalability, e.g., if no hard blocks
are present, everything is accomplished without Simulated Anneal-
ing. Figure 3(b) reports the improvement in runtime and wirelength
over traditional rectangular floorplanning with Parquet on a mix of
MCNC and GSRC floorplanning benchmarks. For larger designs,
wirelength is reduced by more than 50%. We expect that this new
type of free-shape floorplanning can be useful before logic synthe-
sis to determine relative locations of large modules and enable early
estimates of signal delays in global interconnect.

4. EMPIRICAL VALIDATION
In earlier sections we demonstrate the effectiveness of our pro-

posed floorplacer in large-scale congestion-driven standard cell place-
ment and free-shape floorplacement. Below we validate our tool on
designs with hard blocks and on mixed-size placement instances.

4.1 Results on Floorplanning Instances
Table 3 compares our proposed floorplacer with the annealing-

based tool Parquet using GSRC floorplanning benchmarks [11]. Com-
parisons of other floorplanners to Parquet can be found in recent
literature on floorplanning. We first convert the benchmarks to the
GSRC bookshelf format for placement using an internal converter
and generate square fixed-die layouts with 20% whitespace. Since
area minimization is not an objective as long as we fit within the
fixed-outline constraints, we only report half-perimeter wirelength
(HPWL) and runtimes. For the smallest three benchmarks n10,
n30 and n50 the two approaches perform similarly, as the floor-
placer resorts to floorplanning. However, the larger the designs, the
more partitioning calls are made by the floorplacer. This results in
faster and more powerful interconnect optimization compared to the
annealing-based Parquet tool. The improvements should be even
more pronounced for larger block-based designs.

4.2 Validation in Mixed-size Placement
Faraday Benchmarks. To validate the routability of placements
produced by Capo 9.0, we use the new benchmarks introduced in
the Appendix. We compare our approach with Cadence Qplace (part

Circuit #Blocks Parquet Capo (Mixed-size)
HPWL Time HPWL Time # Min-cut

sec sec Levels

n10 10 5.58 0.27 5.57 0.37 0
n30 30 17.38 2.35 16.93 1.89 1
n50 50 20.77 8.16 20.34 5.3 1
n100 100 34.53 50.12 32.39 10.5 2
n200 200 62.28 240.61 56.82 27.42 3
n300 300 75.69 433.92 63.62 25.21 3

Table 3: Floorplannning versus floorplacement. The last column “Lev-
els” lists the number of min-cut levels executed before the first floorplan-
ning step. All data are averaged over 10 independent runs.



Circuit SEUltra - Qplace(v5.4.126) Capo9.0 -feedback FengShui 2.6 06/17/04
Place Route Place Route Place Route

HPWL Time WL Time Viol HPWL Time WL Time Viol HPWL Time WL Time Viol
(e8) (min) (e8) (min) (e8) (min) (e8) (min) (e8) (min) (e8) (min)

DMA 4.79 1 6.37 3 0 4.41 2 5.74 3 0 4.60 6 6.33 3 0
DSP1 10.54 5 12.77 5 0 9.82 24 11.76 5 1 10.75 14 14.17 8 0

RISC1 16.72 7 21.69 11 3 15.75 21 21.50 16 0 19.98/OC 30 OC OC OC
DSP2 9.98 4 12.09 6 0 9.23 9 11.12 5 0 9.28 10 11.66 6 0

RISC2 15.63 8 20.74 30 333 16.30 19 21.38 11 5 209.8/OC 25 OC OC OC

Table 4: Routing results on Faraday benchmarks. Routed WL is in database units. OC means that a large number of cells and macros were
placed outside the core area. Best results are bold-faced. All routing as well as Qplace runs are performed on a 750MHz Sun Blade workstation
with 2GB RAM running Solaris. Capo and FengShui runs are on a somewhat faster 2.4GHz Linux workstation with 1GB RAM. Capo is used
in the -feedback mode, which is several times slower than the default mode. Also note that Capo performs local annealing-based floorplanning.

of SEUltra) and FengShui 2.6, using Cadence WarpRoute for routing
in all cases. The results are presented in Table 4. For SEUltra, we
use the Cadence-recommended flow for placing mixed-size designs
as explained in the Appendix. The placements produced by Capo
are generally routable on all benchmarks, sometimes with a small
number of violations. For the Capo results in Table 5 legalization
by Qplace ECO was not needed, but may be necessary rarely. Feng-
Shui 2.6 produces legal placements of benchmarks DMA, DSP1 and
DSP2, but places many cells in RISC1 and RISC2 outside the core
area as shown in Figure 5. Only with considerable effort Qplace
ECO legalized these placements, but WarpRoute did not complete.
IBM Netlists. The IBM Mixed-Size (IBM-MS) placement bench-
marks released at ISPD 2002 [2] are derived from the well-known
netlists made public by IBM in 1998. These benchmarks have been
consistently used in the recent literature on mixed-size placement,
but have two important drawbacks: (i) all large modules are square,
(ii) all pins in such modules are in the center. Therefore these bench-
marks give no incentive to optimize block orientations and cannot
be extended with routing information. To this end, the majority of
published mixed-size placers do not attempt to optimize module ori-
entations. While the IBM-MS benchmarks served well to compare
entry-level mixed-size placers, we seek more realistic evaluation.

We derive a new set of benchmarks termed IBM-MSwPins from
the IBM-MS placement benchmarks. Aspect ratios of large modules
are chosen randomly between 0.5 and 2.0. Pins of all cells and large
modules are distributed evenly through the periphery. To determine
pin locations for individual cells and large modules, we first perform
placement with all pins centered. For every net, we determine its
center by averaging the locations of incident cells. Then, for each
cell and large module, pins are ordered on the periphery by the cen-
ters of their incident nets. The new IBM-MSwPins benchmarks are
available in the public domain [4].

We compare our proposed floorplacement approach to Cadence
Qplace (part of SEUltra), a Capo-Parquet-Capo methodology [1],
Capo followed by an incremental run of Kraftwerk (data from [2]),
mPG-MS [14] and FengShui 2.6 [24] using the two sets of IBM
mixed-size benchmarks. Relative performance is reported in Table 6.
Detailed results for the newer IBM-MSwPins benchmarks are pre-
sented in Table 7. Given that some tools are only available on the Sun
Solaris platform and others only on Intel-compatible Linux worksta-
tions, runtimes are not directly comparable. However, we list the

Circuit # Nodes # Nets # IOs Row-Util % # Macros % M Area

DMA 11734 13256 948 95.43 0 0
DSP1 26299 28447 844 90.66 2 21.98
RISC1 32615 34034 627 93.94 7 41.99
DSP2 26279 28431 844 90.05 2 6.96
RISC2 32615 34034 627 94.09 7 37.31

Table 5: Faraday benchmarks synthesized and laid out with a standard
ASIC flow using IBM Artisan 0.13µm libraries. %M Area represents the
area of embedded memories in percent of the total cell area.

hardware platform for each tool. For SEUltra, we use the Cadence-
recommended flow for mixed-size designs, which produces com-
pletely legal placements, unlike those reported in [2] for the 2002
version of the same tool. Also note that the wirelengths achieved by
the latest version of SEUltra are much better than those reported in
[2]. Clearly, Cadence tools have greatly improved since 2002.

On the older IBM-MS benchmarks, placements produced by our
floorplacer Capo 9.0 (with option -feedback) are on average 12.09%
better than Cadence SEUltra, 19.61% better than the C-P-C flow,
14.56% better than Capo-Kraftwerk ECO flow, 13.99% better than
mPG-MS and 8.09% worse than FengShui 2.6. Using the best of
two runs of Capo 9.0 improves solution quality by 1.66%. On the
newer IBM-MSwPins benchmarks, in terms of HPWL, on average,
the placements produced by our floorplacer are 13.74% better than
Cadence SEUltra, 19.59% better than the Capo-Parquet-Capo flow,
17.83% better than Capo-Kraftwerk ECO flow and 5.14% worse
than FengShui 2.6. Choosing the best of two Capo 9.0 runs results in
a 1.55% improvement. Note that FengShui shifts all cells to the left
(or right) edge of the chip, thus lowering wirelength compared to a
placement spread around the core area. However, according to Table
2, this strategy is not always successful in the presence of large mod-
ules. Comparing results of FengShui 2.6 on two sets of benchmarks
in Table 6, we conclude that the relative advantage of FengShui 2.6
decreases in the presence of rectangular blocks with non-trivial pin
offsets, as it does not optimize module orientations.

5. CONCLUSIONS
Our work originates from the realization that min-cut placers im-

plicitly perform floorplanning, in addition to partitioning. There-
fore, separate partitioning and floorplanning steps traditionally used
in VLSI design can be subsumed by a min-cut placer. Such a uni-
fication can lead to simpler, more consistent, more controllable and
more successful EDA tools and tool chains. For example, while the
field of floorplanning has been very active in academia for twenty
years, there are relatively few successful commercial floorplanners.
While this is partly due to integration difficulties and to the fact
that experienced designers perform floorplanning by hand, our re-
sults suggest that common floorplanners based purely on Simulated
Annealing tend to produce very sub-optimal solutions. To a large
extent this is not a matter of EDA tools’ lacking intangible designer
intuition, but rather the poor quality of existing algorithms with re-
spect to closed-form optimization objectives. Interconnect optimiza-
tion is also handicapped by the popular limitation that all modules
be laid out as rectangles. To this end, our work shows that unify-
ing partitioning, floorplanning and placement in a single algorithm
leads to better layouts and facilitates new layout optimizations, such
as free-shape floorplanning that simultaneously determines the lo-
cations and shapes of modules so as to optimize interconnect. Em-
pirical validation uses a unified floorplacer tool, that can be used as



Benchmark Suite SEUltra SEUltra Capo+ Capo+ mPG FengShui[24] Capo v9.0 Capo v9.0
v5.1.67 v5.4.126 Parquet+ Kraftwerk [14] v2.6 06/17/04 -feedback -feedback
(2002) (2004) Capo[2] ECO[2] best-of-2

IBM-MS (ISPD 2002) 92.71% 12.09% 19.61% 14.56% 13.99% -8.09% 0% -1.66%
IBM-MS wPins (new) - 13.74% 19.59% 17.83% - -5.14% 0% -1.55%

Table 6: Average mixed-size placement results on two suites of mixed-size benchmarks derived from ISPD-1998 circuit netlists. IBM-MS
is the original suite of benchmarks released in ISPD-02. IBM-MSwPins is the new suite of benchmarks with non-trivial macro aspect ratios
and pins spread around the periphery of all cells and macros. A positive percentage indicates an approach produces placements with that
much greater HPWL than Capo 9.0 on average. FengShui 2.6 placements are packed to an edge of the core, and in practical applications
they may have to be spread to ensure routability. Since Capo placements are already spread, the difference in wirelengths will be reduced.

Circuit Cadence SEUltra Capo+Parquet+Capo [2] Capo+Kraftwerk ECO [2] FengShui v2.6 Capo v9.0
Block-Place+QPlace (Low-Temp. Annealing) 06/17/04 -feedback

Sun-Blade1000,750MHz Linux/Pentium,2GHz Linux/Pentium,2GHz Linux/Pentium,2.4GHz Linux/Pentium,2.4GHz
I II III V VI

HPWL Time HPWL Time HPWL Time % HPWL Time HPWL Time
(e6) (min) (e6) (min) (e6) (min) Overlap (e6) (min) (e6) (min)

ibm01 3.25 12 3.23 18 2.96 5 1.22 2.56 3 2.67 4
ibm02 7.17 31 7.91 12 6.84 13 0.25 6.05 5 5.54 9
ibm03 9.06 28 10.08 57 9.45 13 0.18 8.77 6 8.67 13
ibm04 10.28 31 11.01 12 10.09 15 0.74 8.38 7 9.79 18
ibm05 11.55 24 11.03 5 11.46 5 0 9.94 8 10.82 8
ibm06 8.33 32 8.70 19 9.22 19 0.25 6.99 9 7.35 12
ibm07 13.79 41 14.34 22 14.34 57 0.24 11.37 12 12.30 25
ibm08 17.36 50 17.01 26 17.63 22 1.80 13.51 15 16.02 36
ibm09 16.91 56 19.53 29 21.04 32 0.35 14.12 14 15.51 31
ibm10 43.71 86 53.34 119 49.52 72 4.34 41.96 22 34.98 59
ibm11 24.98 71 25.51 43 25.48 42 0.76 21.19 21 22.31 36
ibm12 46.38 87 54.82 97 61.48 53 0.63 40.84 22 40.78 42
ibm13 33.06 91 34.30 54 32.37 73 0.12 25.45 25 28.70 65
ibm14 45.74 148 48.66 145 47.63 117 0.07 39.93 52 40.97 71
ibm15 68.63 206 70.68 208 62.63 124 0.09 51.96 67 59.19 116
ibm16 75.94 248 75.27 154 78.47 166 2.03 62.77 70 67.00 115
ibm17 92.41 288 87.81 204 85.40 132 0.13 69.38 79 78.78 94
ibm18 57.04 190 54.66 115 57.47 162 0.02 45.59 87 50.39 85
Avg 13.74% 19.59% 17.83% -5.14% 0%

Table 7: Mixed-size placement results on the new IBM-MSwPins mixed-size benchmarks. A positive percentage in the last row indicates
an approach produces placements with that much greater HPWL than Capo 9.0 on average. Cadence SEUltra places designs ibm09 and
ibm14 illegally with overlaps between macros or macros outside the core area. FengShui 2.6 returns core placements packed to core edges.

a partitioner, a large-scale cell placer, a floorplanner and a mixed-
size placer. Our implementation scales well, is competitive with the
state of the art in all of its areas of applicability, and in some cases
produces better wirelengths than any previously reported methods.

We show that for sufficiently large floorplanning and mixed-size
placement instances, min-cut techniques are more successful in min-
imizing wirelength than simulated annealing. However, for small
layout instances with modules of different sizes, the use of anneal-
ing seems required to pack modules well. In the process of tuning
the performance of our implementation, we empirically tabulate the
boundary between placement and floorplanning by identifying more
successful optimizations in various cases. A representative thresh-
old for floorplanning is currently at 30 blocks, which means that the
use of flat annealing on larger instances is not justified. In the future,
as floorplanners improve at satisfying fixed-outline constraints while
minimizing wirelength, this boundary can be lowered even further.

A floorplacer of the type described in out work can place objects
with very different semantics — standard cells, macros, datapaths,
memories, etc. Extensions to free-shape floorplanning can be used
with unsynthesized modules to better estimate global interconnect
delays before synthesis. However, to fully exploit these novel ca-
pabilities, new VLSI methodologies are required. Our hope is that
such future methodologies and methodology studies will confirm the
potential of floorplacement.

Appendix: Embedded-Memory Benchmarks
The Faraday Corporation recently released three circuits [17], origi-
nally intended for comparisons between structured and conventional

ASICs. We apply to these benchmarks a standard ASIC design flow
to generate five mixed-size designs. Faraday benchmarks include
three commonly-used functional blocks: (I) a 16-bit DSP, (II) a
32-bit RISC CPU, and (III) a DMA controller — see Table 5 for
statistics. Other details on these benchmarks, such as the EDA tools
recommended by Faraday and tool settings, can be found in [17]. To
minimize the impact of routing on the results of the accounted place-
ment approaches, we avoid clock-tree generation and power routing
in our flows. However, both clock-trees and power rails can be built
on our benchmarks. Below we describe our ASIC flow for generat-
ing the mixed-size benchmarks from the original netlists.

Faraday benchmarks come with behavioral Verilog descriptions,
timing constraints and scripts for synthesis. We use Artisan’s 0.13
micron libraries in IBM technology for synthesizing these designs
under worst-case process conditions, with the same timing constraints
as specified in the Faraday design documents. Synopsys Design
Compiler (v2003.03-2) is used for synthesis, and Artisan Memory
Generator to instantiate embedded memories. Artisan limits the size
of its SRAM memories to a minimum word-length of 128 for dual-
port memories and to 256 for single-port memories. This requires a
change in the behavioral descriptions of Faraday designs to account
for larger word-lengths. In a variation of the original design, we built
register files in place of memories for smaller word-lengths and thus
came up with two flavors each for DSP and RISC — one uses only
memories and the other uses both memories and register files.

The gate-level netlists obtained after synthesis are taken through
the automatic place and route (APR) flow using Cadence Silicon
Ensemble Ultra (v5.4.126). We follow the Cadence recommended
flow for placing mixed-size designs and first use the “Qplace No-



(a) DMA (b) DSP1 (c) DSP2 (d) RISC1 (e) RISC2

Figure 4: Faraday benchmarks placed by the Capo 9.0 floorplacer. Note that Capo tends to align large blocks, which may simplify the
routing in their vicinity, as well as the routing of busses connecting those blocks. The discrepancies in wirelength versus Table 4 for the same
benchmarks represent variability in Capo results. To show block orientations, north-west corners of memories are marked with diagonal lines.

config Block” command to place embedded memories. Then the
locations of embedded memories are fixed, the affected cell sites are
removed, and the remaining standard cells are placed using the com-
mand “Qplace Noconfig”. To find good locations of I/O pads, we
perform concurrent pin and cell placement in Qplace. This improves
routability compared to a random I/O placement during floorplan-
ning. When routing with Cadence WarpRoute, we found that Arti-
san memory pins are not aligned to the same routing grid as pins in
random logic. Fixing this required manual intervention. The new
Faraday-MS benchmarks are the first mixed-size placement bench-
marks in the public domain [4] to provide non-square modules with
realistic pin offsets and routing information.
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(a) RISC1 (b) RISC2

Figure 5: Faraday benchmarks RISC1 and RISC2 placed by FengShui
2.6. All large modules have default orientations. FengShui places many
standard cells beyond the left boundaries of core regions, shown by thin
vertical lines. FengShui 2.5 exhibits similar behavior on DSP1 and DSP2
benchmarks, which the authors attribute to bugs fixed in FengShui 2.6.


