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ABSTRACT
Recent improvements in design verification strive to automate the
error-detection process and greatly enhance engineers’ ability to
detect functional errors. However, the process of diagnosing the
cause of these errors and fixing them remains difficult and requires
significant ad-hoc manual effort. Our work proposes improvements
to this aspect of verification by presenting novel constructs and
algorithms to automate the error-repair process at the Register-
Transfer Level (RTL), where most development occurs. Our contri-
butions include a new RTL error model and scalable error-repair
algorithms. Empirical results show that our solution can diagnose
and correct errors in designs up to several thousand lines of RTL
code in minutes. This demonstrates the superior scalability and
efficiency of our approach compared to previous work.

1. INTRODUCTION
The dramatic increase in design complexity of modern electron-

ics challenges the ability of developers to ensure the functional cor-
rectness of a circuit. While improvements in verification allow en-
gineers to find a larger fraction of design errors more efficiently,
little effort has been devoted to fixing such errors. As a result, de-
bugging remains an expensive and challenging task. To address
this problem, researchers have proposed techniques that automate
the debugging process, by locating the error source within a design
and/or by suggesting possible corrections. Although these tech-
niques are successful to some extent, they mainly focus on the gate
level [7, 15, 21, 22, 23] or the transistor level [14]. However, most
debugging effort occurs in the Register-Transfer Level (RTL) de-
scription of a circuit, where design activities are carried out. The
lack of powerful and automatic tools for error diagnosis and cor-
rection at this level greatly reduces designers’ productivity when
fixing even very simple design errors. Leveraging gate-level diag-
nosis tools for the RTL, however, is difficult because synthesis tools
blur the mapping between the RTL code and the gate-level netlist.

To address this problem, techniques that work directly at the RTL
have been developed recently. The first group of techniques [11, 16,
18] employ a software analysis approach that implicitly uses mul-
tiplexers (MUXes) to identify statements in the RTL code that are
responsible for the errors. However, these techniques can return
large potential error sites. To address this problem, a recent work
by Staber et al. [20] explicitly inserts MUXes into the HDL code.
This approach allows the use of hardware analysis techniques and
greatly improves the accuracy of error diagnosis. The third group
of techniques, such as [6], use formal analysis of an HDL descrip-
tion and failed properties; because of that these techniques can only
be deployed in a formal verification framework, and cannot be ap-
plied in a simulation-based verification flow common in the indus-
try today. In addition, all three groups of techniques cannot repair
identified errors automatically. Finally, the work in [19] can diag-
nose and correct RTL design errors automatically, but it relies on
state-transition analysis and hence, it does not scale beyond tens
of state bits. In addition, this algorithm requires a correct formal
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Figure 1: REDIR framework. Inputs to the tool are an RTL de-
sign (which includes one or more errors), test vectors exposing
the bug(s), and correct output responses for those vectors ob-
tained from a high-level simulation. Outputs of the tool include
REDIR symptom core (a minimum cardinality set of RTL sig-
nals which need to be modified in order to correct the design),
as well as suggestions to fix the errors.

specification of the design, which is rarely available in today’s de-
sign environments, because its development is often as challenging
as the design process itself. In contrast, the most common type
of specification is a high-level model, often written in a high-level
language, which produces the correct I/O behavior of the system.

To develop a scalable and powerful RTL error diagnosis and
correction system, we adopt hardware analysis techniques that are
prevalent at the gate-level into the RTL. This approach is signifi-
cantly more accurate than previous software-based solutions in that
we can analyze designs rigorously using formal hardware verifi-
cation techniques. At the same time, it is considerably faster and
more scalable than gate-level diagnosis because errors are modeled
at a higher level. Similar to several successful gate-level methods
[2, 3, 7, 21, 23], it only requires test vectors and output responses,
making it more practical than existing formal analysis solutions.
Finally, the novel error model and increased accuracy of our ap-
proach allow our technique to provide insightful suggestions for
correcting diagnosed errors. Our main contributions include: (1)
a new RTL error model that explicitly inserts MUXes into RTL
code to model errors in RTL signals, as opposed to previous solu-
tions that use MUXes to model errors in RTL code statements; (2)
innovative error-diagnosis algorithms using synthesis or symbolic
simulation; and (3) a novel error-correction technique using signal
behaviors (signatures) that is especially suitable for the RTL. Our
empirical results show that these techniques allow us to provide
highly accurate diagnoses very quickly.

We implemented our techniques in a framework called REDIR
(RTL Error DIagnosis and Repair), highlighted in Figure 1. The
inputs to the framework include a design containing one or more
bugs, a set of test vectors exposing them, and the correct responses
for the primary outputs over the given test vectors (usually gener-
ated by a high-level behavioral model written in C, C++, SystemC,
etc). Note that we only require the correct responses at the primary



outputs of the high-level model and no internal values are required.
The output of the framework is a minimum cardinality set of RTL
signals that should be corrected in order to eliminate the erroneous
behavior. We call this set the symptom core. When multiple cores
exist, REDIR provides all of the possible minimal cardinality sets.
In addition, the framework suggests several possible fixes of the
signals in the symptom core to help a designer correct those signals.
Our empirical evaluation shows that REDIR can diagnose and cor-
rect multiple errors in design descriptions with thousands of lines of
Verilog code (or approximately 100K cells after synthesis), which
is approximately the size that an engineer actively works on. As
a result, REDIR can assist engineers in their everyday debugging
tasks and fundamentally accelerate the RTL design process.

The rest of the paper is organized as follows. In Section 2, we
describe the related work and provide the necessary background.
Section 3 and Section 4 describe our error diagnosis and correction
techniques, respectively. Empirical results are given in Section 5,
while Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
Our error-diagnosis algorithm converts the error-diagnosis prob-

lem into a Pseudo-Boolean (PB) problem, and then uses a PB solver
to perform the diagnosis and infer which design signals are respon-
sible for incorrect output behavior. In this section, we first define
Pseudo-Boolean problems, which are an extension of SATisifiabil-
ity problems. Next, we review gate-level diagnosis techniques,
which provide the foundation for our synthesis-based diagnosis,
and are used for comparison in our experimental results. Finally,
we show the basic idea behind symbolic simulation, which we use
as an alternative, compact way to formulate the PB problem.

2.1 Pseudo-Boolean Problems
PB problems, also called 0-1 integer linear programming prob-

lems, are an extension of SATisfiability problems. PB constraints
are specified as an inequality with a linear combination of Boolean
variables: C0 po +C1 p1 + ...+Cn−1 pn−1 ≥Cn, where the variables
pi are defined over the Boolean set {0, 1}. A PB problem allows
the use of an additional objective function, which is a linear ex-
pression that should be minimized or maximized under the given
constraints. A number of PB solvers have been developed recently
by extending existing SAT solvers (for instance, MiniSAT+ [10]).

2.2 Gate-level Error Diagnosis Techniques
Gate-level error diagnosis and correction techniques have been

studied extensively in the past. Early work often relies on specific
error models to simplify the problem, such as [1, 15]. Recently,
the power and effectiveness of gate-level error diagnosis have been
improved by the work of Smith et al. [21], which does not rely on
any error model. In Smith’s error-diagnosis technique, two types of
components are added to a given buggy netlist. These components
include (1) multiplexers, and (2) an error-cardinality constraint.
The purpose of the multiplexers is to model errors – when their
select lines are asserted, alternative sources drive the correspond-
ing internal wires to correct the output responses. The number of
asserted select lines is limited by the error-cardinality constraint,
which is implemented as an adder and a comparator: the adder
counts the number of asserted select lines, and its output is forced
to a value N using the comparator. The circuit is then converted
into Conjunctive Normal Form (CNF), and inputs and outputs are
subjected to additional constraints from input vectors and correct
output responses, obtained from a high-level model. Error diagno-
sis is then performed by iteratively solving the CNF using a SAT
solver with an increasing value for N, until a solution is found.

Note that Smith’s technique diagnoses errors in combinational
circuits only; to diagnose sequential circuits, Ali et al. [3] extended
Smith’s work by unrolling the circuit, before the CNF conversion
step, M times, where M is the sequential length of the given trace.
Similar approach is used in our synthesis-based diagnosis. As we
show in our experimental results, however, our algorithm runs sig-
nificantly faster and is more accurate than Ali’s techniques, since
we model errors at the RTL instead of the gate level.

2.3 Logic vs. Symbolic Simulation
Logic simulation models the behavior of a digital circuit by prop-

agating scalar Boolean values (0 and 1) from primary inputs to pri-
mary outputs. For example, when simulating 2-input AND with
both inputs set to 1, the output 1 is produced. On the other hand,
symbolic simulation uses symbols instead of scalar values and pro-
duces Boolean expressions at the outputs [4, 5]. As a result, simu-
lating a 2-input XOR with inputs a and b generates an expression “a
XOR b” instead of a scalar value. To improve scalability, modern
symbolic simulators employ several techniques, including approx-
imation, parameterization and on-the-fly logic simplification. For
example, with on-the-fly logic simplification, “0 XOR b” is sim-
plified to b thus reducing the complexity of the expression. Tra-
ditional symbolic simulators operate on a gate-level model of a
design; however, in recent years simulators operating on RTL de-
scriptions have been proposed [12, 13]. Symbolic simulation is an
alternative way to generate an instance of the Pseudo-Boolean con-
straint problem that we use in our error diagnosis framework.

3. RTL ERROR DIAGNOSIS
In this section, we describe our error-diagnosis techniques. First,

we explain our RTL error model, and then propose two diagnosis
methods that use either synthesis (Section 3.2) or symbolic simu-
lation (Section 3.3). Finally, we outline how hierarchical designs
should be handled.

3.1 Error Modeling
In our framework the error-diagnosis problem is represented with

(1) an RTL description containing one or more bugs that is com-
posed of variables (wire, registers, I/O) and operations on those
variables; (2) a set of test vectors exposing the bugs; and (3) the
correct output responses for the given test vectors, usually gener-
ated by a high-level behavioral model. The objective of the error
diagnosis is to identify a minimal number of variables in the RTL
description that are responsible for the design’s erroneous behavior.
Moreover, by modifying the logic of those variables, the design er-
rors can be corrected. Each signal found to affect the correctness
of the design is called a symptom variable. Without minimization,
the set of symptom variables reported would include the root cause
of the bug and the cone of logic emanating from it: correcting all
the symptom variables on any cut across this cone of logic would
eliminate the bug. Therefore, by forcing the PB solver to minimize
the number of symptom variables, we return a solution as close to
the root cause of the erroneous behavior as possible.

To model errors in a design, we introduce a conditional assign-
ment for each RTL variable, as shown in the example in Figure 2.
Note that these conditional assignments are used for error diagnosis
only and should not appear in the final synthesized design. How-
ever, they allow the REDIR framework to locate sites of erroneous
behavior in RTL, as we illustrate using a half adder design shown
in Figure 2. Suppose that the output responses of the design are
incorrect because c should be driven by “a & b” instead of “a |
b”. Obviously, to produce the correct output that we obtain from
a high-level model, the behavior of c must be changed. To model
this situation, we insert a conditional assignment, “assign cn = csel



? c f : c”, into the code. Next, we replace all occurrences of c in
the code with cn, except when c is used on the left-hand-side of an
assignment. We call csel a select variable and c f a free variable
in this paper. Then, by asserting csel and using an alternative sig-
nal source, modeled by c f , we can force the circuit to behave as
desired. If we can identify the select variables that should be as-
serted and the correct signals that should drive the corresponding
free variables to produce correct circuit behavior, we can diagnose
and fix the errors in the design.

module half adder(a, b, s, c);
input a, b; output s, c;
assign s = a ˆ b;
assign c = a | b;

endmodule
module half adder MUX enriched(a, b, sn, cn,
ssel, csel, s f , c f);

input a, b, ssel, csel, s f , c f;
output sn, cn;
assign s = a ˆ b;
assign c = a | b;
assign sn = ssel ? s f : s;
assign cn = csel ? c f : c;

endmodule
Figure 2: An RTL error-modeling code example: mod-
ule half adder shows the original code, where c is erro-
neously driven by “a | b” instead of “a & b”; and module
half adder MUX enriched shows the MUX-enriched version.
The differences are marked in boldface.

The procedure to introduce a conditional assignment for a de-
sign variable v is called MUX-enrichment (since conditional as-
signments are conceptually multiplexers), and its pseudo-code is
shown in Figure 3. It should be performed on each internal sig-
nal, defined in the circuit, including registers. The primary inputs,
however, should not be MUX-enriched since by construction they
cannot have erroneous values. It also should be noted that for hi-
erarchical designs the primary inputs of a module may be driven
by the outputs of another module and, therefore, may assume er-
roneous values. To handle this situation, we insert conditional as-
signments into the hierarchical modules’ output ports.

procedure MUX enrichment(v)
1. create a new signal wire vn and new inputs v f and vsel ;
2. add conditional assignment “vn = vsel ? v f : v”;
3. replace all occurrences of v that appear on the right-hand-side of

assignments (including outputs, if/case conditions, etc.) with vn;
Figure 3: Procedure to insert a conditional assignment for a
signal in an RTL description for error-modeling.

Example 1. Using the half adder example shown in Figure 2. A
test vector that exposes the design error assigns 1 to a and 0 to
b. By simulation, s is 1 and c is 1. However, the correct output
responses for c should be 0 instead of 1. In other words, cn should
be 0. To satisfy the conditional assignments that we inserted during
MUX-enrichment, csel is forced to 1 and c f must be 0. That csel
is asserted means signal c is erroneous, which provides the correct
diagnosis. Techniques to determine the select variables that should
be asserted will be described in the following two sections.

3.2 Diagnosis with Synthesis
After the error-modeling constructs have been inserted into a de-

sign, error diagnosis identifies the minimal number of select vari-
ables that should be asserted along with the values of their corre-
sponding free variables to produce the correct output responses. In
this section we present an error diagnosis technique that uses syn-
thesis and circuit unrolling. In contrast with existing gate-level di-
agnosis techniques described in Section 2.2, our RTL error-modeling

constructs are synthesized with the design, which eliminates the
need to insert multiplexers at the gate level. In this way, the synthe-
sized netlist faithfully preserves the constructs inserted at the RTL,
enabling accurate RTL error diagnosis. This is significantly differ-
ent from diagnosing design errors at the gate level, since synthesis
is only used to generate Boolean expressions between RTL vari-
ables, and the synthesized netlist is not the target of the diagnosis.
As a result, our diagnosis method has a much smaller search space
and runs significantly faster than gate-level techniques, as we show
in our experimental results.

Procedure syn based diagnosis(designCNF,c, inputs,out puts);
1 CNF = unroll designCNF c times;
2 connect all select variables in CNF to those in the first cycle;
3 constrain PI/PO in CNF using inputs/out puts;
4 PBC = CNF , min( ∑ select variables);
5 return solution= PB-Solve(BPC);

Figure 4: Procedure to perform error diagnosis using synthesis
and circuit unrolling.

Figure 4 outlines the algorithm for synthesis-based error diagno-
sis. Before the procedure is called, the design is synthesized and its
combinational portion is converted to CNF format (designCNF).
Other inputs to the procedure include the length of the bug trace,
c, as well as the test vectors (inputs) and their correct output re-
sponses (out puts). To make sure that the diagnosis applies to all
simulation cycles, the algorithm connects the select variables for
each unrolled copy to the corresponding CNF variables in the first
copy. On the other hand, free variables for each unrolled copy of
the circuit are independent. When a solution is found, each asserted
select variables is a symptom variable, and the solution for its cor-
responding free variable is an alternative signal source that can fix
the design errors. Note that if state values over time are known,
they can be used to constrain the CNF at register boundaries, reduc-
ing the sequential error-diagnosis problem to combinational. The
constructed CNF, along with the objective to minimize the sum of
select variables, forms a Pseudo-Boolean Constraint (PBC). Error
diagnosis is then performed by solving the PBC.

3.3 Diagnosis with RTL Symbolic Simulation
In this section we propose an alternative error-diagnosis tech-

nique that potentially scales further than the synthesis-based tech-
nique. This is achieved by performing symbolic simulation directly
on the RTL representation and generating Boolean expressions at
the primary outputs for all simulated cycles. The outputs’ Boolean
expressions are used to build a Pseudo-Boolean problem’s instance,
that is then handed over to a PB solver for error diagnosis.

Although RTL symbolic simulators are not yet commonly avail-
able in the industry, effective solutions have been proposed in re-
cent years in the literature [12, 13]. Moreover, because of the scal-
ability advantages of performing symbolic simulation at the RTL
instead of the gate level, commercial-quality solutions are starting
to appear. For our empirical validation we used one such experi-
mental RTL symbolic simulator [24].

Figure 5 illustrates our novel procedure that uses symbolic sim-
ulation and PB solving. We assume that the registers are initialized
to known values before the procedure is invoked. We also assume
that the circuit contains n MUX-enriched signals named vi, where
i = {1..n}. Each vi has a corresponding select variable vi sel and a
free variable vi f . There are o primary outputs, named PO j, where
j = {1..o}. We use subscript “@” to prefix the cycle during which
the symbols are generated. For each primary output j and for each
cycle t we compute expression PO j@t by symbolically simulating
the given RTL design, and also obtain correct output value CPO j@t
from the high-level model. The inputs to the procedure are the RTL



design (design), the test vectors (test vectors), and the correct out-
put responses over time (CPO).

Procedure sim based diagnosis(design,test vectors,CPO);
1 ∀i,1 ≤ i ≤ n, vi sel= new symbol();
2 for t = 1 to c begin // Simulate c cycles
3 PI = test vector at cycle t;
4 ∀i,1 ≤ i ≤ n, vi f @t= new symbol();
5 PO@t = simulate(design);
6 end
7 PBC =

Vo
j=1

Vc
t=1(PO j@t= CPO j@t ), min(∑n

i=1vi sel );
8 return solution= PB Solve(PBC);

Figure 5: Procedure to perform error diagnosis using symbolic
simulation. The boldfaced variables are symbolic variables or
expressions, while all others are scalar values.

In the algorithm shown in Figure 5, a symbol is initially created
for each select variable (line 1). During the simulation, a new sym-
bol is created for each free variable in every cycle, and test vectors
are applied to primary inputs, as shown in lines 2-4. The reason for
creating only one symbol for each select variable is that a condi-
tional assignment should be either activated or inactivated through-
out the entire simulation, while each free variable requires a new
symbol at every cycle because the value of the variable may change.
As a result, the symbols for the select variables are assigned out-
side the simulation loop, while the symbols for the free variables
are assigned in the loop. The values of the free variables can be
used as the alternative signal source to produce the correct behav-
ior of the circuit. After simulating one cycle, a Boolean expression
for all of the primary outputs are created and saved in PO@t (line
5). After the simulation completes, the generated Boolean expres-
sions for all the primary outputs are constrained by their respective
correct output values and are ANDed to form a PBC problem as line
7 shows. In order to minimize the number of symptom variables,
we minimize the sum of select variables, which is also added to
the PBC as the objective function. A PB solver is then invoked to
solve the formulated PBC, as shown in line 8. In the solution, the
asserted select variables represent the symptom variables, and the
values of the free variables represent the alternative signal sources
that can be used to correct the erroneous output responses.

3.4 Handling Hierarchical Designs
Current designs often have hierarchical structures to allow the

circuit to be decomposed into smaller blocks and thus reduce its
complexity. In this subsection we discuss how the MUX-enriched
circuit should be instantiated if it is encapsulated as a module in
such a hierarchical design.

The algorithm to insert MUXes into a single module m is shown
in Figure 3. If m is instantiated inside of another module M, how-
ever, MUX-enrichment of M must include an extra step where new
inputs are added to all instantiations of m. Therefore, for hierar-
chical designs, the insertion of conditional assignments must be
performed bottom-up: MUX-enrichment in a module must be exe-
cuted before it is instantiated by another module. This is achieved
by analyzing the design hierarchy and performing MUX-enrichment
in a reverse-topological order.

It is important to note that in hierarchical designs, the select vari-
ables of instances of the same module should be shared, while the
free variables should not. This is because all instances of the same
module will have the same symptom variables. As a result, se-
lect variables should share the same signals. On the other hand,
each instance is allowed to have different values for their internal
signals; therefore, each free variable should have its own signal.
However, a bug may require fixing only one RTL instance while
other instances can be left intact. This situation requires generation
of new RTL modules and is currently not handled.

4. RTL ERROR CORRECTION
The RTL error-correction problem is formulated as follows: given

an erroneous RTL description of a digital design, find a variant de-
scription for one or more of the modules that compose it so that
the new design produces correct output responses for the given bug
traces. Although many error-repair techniques exist for gate-level
designs, very few studies focus on the RTL. One major reason is
the lack of logic representations that can support the logic manip-
ulation required during RTL error correction, especially for hier-
archical designs. For example, a variable in an RTL module that
is instantiated multiple times will possess many different functions
depending on where it is instantiated. Manipulating all the func-
tions simultaneously to find a correct fix is not an easy task.

In [7] we proposed a framework for gate-level error correction
using signatures, where a signature is a collection of a wire’s sim-
ulation values and is usually represented by a bit-vector. Since sig-
natures can be easily calculated via simulation, our techniques are
especially suitable for RTL error correction. However, techniques
in [7] could be applied only to combinational circuits and could
not handle design hierarchies. To support the error-correction re-
quirements at the RTL, where most designs contain hierarchies and
are sequential, we propose a new error-correction scheme based
on similar concepts. In this section, we first describe the baseline
error-correction technique that is easier to understand. Next, we
show how signatures should be generated at the RTL to handle hier-
archical and sequential designs. Finally, we provide some insights
that we obtained during the implementation of our system.

4.1 Baseline Error Correction Technique
For a flattened combinational design, error correction is performed

as follows: (1) signatures of RTL variables are generated using sim-
ulation; (2) error diagnosis is performed to find a symptom core;
(3) signatures of the symptom variables in the symptom core are re-
placed by the values of their corresponding free variables; (4) par-
tial truth-tables are built using the signatures of the symptom vari-
ables and other variables in the module, where the terms not appear
in the truth-tables are all don’t-cares; and (5) the partial truth-tables
are synthesized to find logic expressions that can generate the sig-
natures of the symptom variables. By replacing the expressions that
generate the functions of the symptom variables with those new ex-
pressions, design errors can be corrected.
Example 2. Using the same circuit as Example 1. Two test vectors
are applied, where (a,b)= (0, 1) and (1, 1). According to the error-
correction procedure: (1) The signatures for a, b, s and c are 10,
11, 01, 11, respectively (the least-significant bits are the simulation
values of the first vector). (2) Error diagnosis asserts csel ; therefore,
the symptom core contains one variable, c. (3) The signature of c is
replaced by the values returned in c f for the two applied test vec-
tors, which becomes 10. (4) A partial truth-table is built as follows
(note that the bits in the signatures are written vertically), where the
minterms that do not appear are all don’t-cares:

a b c
1 1 1
0 1 0

(5) The truth-table is synthesized by a synthesis tool, which returns
“ c= a”, “c=a&b”, etc. Note that although the correct fix is returned,
the fix is not unique. In general, longer traces containing various
test vectors will identify the error with higher precision and suggest
better fixes than short ones.

4.2 Hierarchical and Sequential Designs
In a flattened design, each RTL variable represents exactly one

logic function. In a hierarchical design, however, each variable may
represent more than one logic function. Therefore, we devise the



Benchmark Description #Cells #FFs Trace type #Lines #Assign
Pipe Part of PicoJava pipeline control unit 55 2 Constrained-random 264 31
Pre norm Part of FPU 1877 71 Constrained-random 270 43
MD5 MD5 full chip 13311 910 Direct test 438 37
MiniRISC MiniRISC full chip 6402 887 Direct test 2013 43
CF FFT Part of the CF FFT chip 126532 16638 Constrained-random 998 223
DLX 5-stage pipeline CPU running MIPS-Lite ISA 14725 2062 Constrained-random 1225 84
Alpha 5-stage pipeline CPU running Alpha ISA 38299 2917 Constrained-random 1841 134

Table 1: Characteristics of benchmarks. “#Cells” is the cell count of the synthesized netlist, “#FFs” is the number of flip-flops,
“#Lines” is the number of lines of RTL code in a design, and “#Assign” is the number of inserted conditional assignments.
following techniques to construct the signatures of RTL variables.
For clarity, we call a variable in an RTL module a module variable
and a variable in an instance generated by the module an instance
variable. A module variable may generate multiple instance vari-
ables if the module is instantiated several times.

In RTL error correction, we modify the source code of the mod-
ules in order to correct the design’s behavior. Since changing an
RTL module will affect all the instances produced by the module,
we concatenate the simulation values of the instance variables de-
rived from the same module variable to produce the signature for
the module variable. This way, we can guarantee that a change in
a module will affect instances in the same way. Similarly, we con-
catenate the signatures of the module variable at different cycles
for sequential error correction. A signature-construction example
is given in Figure 6. Note that to ensure the correctness of error
repair, the same instance and cycle orders must be used during the
concatenation of signatures for all module variables.

Design:
module top;

half adder c1(), c2();
endmodule

Simulation values:
Cycle 0: top.c1.a = 0, top.c2.a = 0, top.c1.b = 1, top.c2.b = 0
Cycle 1: top.c1.a = 1, top.c2.a = 0, top.c1.b = 1, top.c2.b = 1

Constructed signature for RTL error correction:

half adder.a =

c1.a
︷︸︸︷

1

c2.a
︷︸︸︷

0
︸ ︷︷ ︸

cycle 1

c1.a
︷︸︸︷

0

c2.a
︷︸︸︷

0
︸ ︷︷ ︸

cycle 0

half adder.b =

c1.b
︷︸︸︷

1

c2.b
︷︸︸︷

1
︸ ︷︷ ︸

cycle 1

c1.b
︷︸︸︷

1

c2.b
︷︸︸︷

0
︸ ︷︷ ︸

cycle 0

Figure 6: Signature-construction example. Simulation values
of variables created from the same RTL variable at all cycles
should be concatenated for error correction.

4.3 Identifying Erroneous Code Statements
Several existing error-diagnosis techniques are able to identify

the RTL code statements that may be responsible for the design
errors [11, 16, 18, 20]. Unlike these techniques, REDIR returns the
RTL variables that are responsible for the errors instead. Since one
variable may be affected by multiple statements, the search space
of the errors modeled by these techniques tend to be larger than
REDIR, making REDIR more efficient in error diagnosis. On the
other hand, being able to identify erroneous statements may further
localize the errors and make debugging easier. To achieve this goal,
we observe that in correctly designed RTL code, the value of a
variable should be affected by at most one statement at each cycle.
Otherwise, a multiple-driven error will exist in the design. Based
on this observation, we design the following procedure to identify
the erroneous code statements using our error-diagnosis results.

Given a symptom variable, we first record the cycles at which the
values of its free variables are different from its simulated values.
Next, we identify the code statements that assign new values to the
symptom variable for those cycles: these code statements are re-
sponsible for the errors. Since many modern logic simulators pro-
vide the capability to identify the executed code statements (e.g.,
full-trace mode in Cadence Verilog-XL), erroneous statements can

be pinpointed easily by replaying the bug traces used for error di-
agnosis. After erroneous statements are identified, signatures for
error-correction can be generated using only the cycles when the
statements are executed. In this way, we can produce corrections
specifically for the erroneous statements.

4.4 Implementation Insights
Fixing errors involving multi-bit variables is more difficult than

fixing errors involving only one-bit variables because different bits
in the variable may be generated differently. To solve this prob-
lem, we allow the user to insert a conditional assignment for each
bit in the variable. Alternatively, REDIR can also be configured to
consider only the least-significant bit when performing error cor-
rection. This is useful when the variable is considered as a whole.

In synthesis-based error diagnosis, we observe that it is difficult
to identify the wires derived from the same RTL variable in a syn-
thesized netlist. To overcome this problem, we add the outputs of
inserted conditional statements to the primary outputs of the MUX-
enriched modules to obtain the simulated values of the RTL vari-
ables. To improve our error-correction quality, we utilize observ-
ability don’t-cares in our synthesis-based approach by simulating
the complement signatures of symptom variables and observe the
changes at primary outputs (including inputs to registers).

5. EXPERIMENTAL RESULTS
In our experiments, we evaluated the performance of the tech-

niques described in this paper with a range of Verilog benchmarks.
We used a proprietary Perl-based Verilog parser to insert condi-
tional assignments into RTL code. Synthesis-based diagnosis was
implemented using OpenAccess 2.2 and OAGear 0.96 [26] with
RTL Compiler v4.10 from Cadence as the synthesis tool. For simu-
lation-based diagnosis, we adopted an experimental RTL symbolic
simulator, Insight 1.4, from Avery Design Systems [24]. For effi-
ciency, we implemented the techniques described in [10] to con-
vert PB problems to SAT problems and adopted MiniSAT as our
SAT solver [9]. All the experiments were conducted on an AMD
Opteron 880 (2.4GHz) Linux workstation with 16GB memory. The
designs under test included several circuits selected from Open-
Cores [25] (Pre norm, MD5, MiniRISC, and CF FFT), the picoJava-
II microprocessor (Pipe), DLX, and Alpha. Bugs (described in Ta-
ble 2) were injected into these benchmarks, with the exception of
DLX and Alpha, which already included bugs. We used constrained-
random simulation to generate bug traces for Pipe, Pre norm, and
CF FFT, while the bug traces for the rest of the benchmarks were
generated using the verification environment shipped with the de-
signs. Traces to expose bugs in DLX and Alpha were given by
the verification engineer and were generated using a constrained-
random simulation tool. The characteristics of these benchmarks
are summarized in Table 1.
5.1 Synthesis-based Error Diagnosis

In this experiment, we performed combinational and sequential
error diagnosis using the synthesis-based techniques described in
Section 3.2. The results are summarized in Table 3. Recall that



Benchmark Bug #Traces #Cycles Combinational Sequential
ID Errors found Runtime Errors found Runtime

#Symp. #Cores (sec) #Symp. #Cores. (sec)
Pipe A 32 200 1 1 6.0 1 1 6.0
Pre norm A 32 20 1 1 13.2 1 1 13.2

B 32 20 1 1 11.4 1 2 13.4
C 32 20 1 1 11.4 1 1 11.4
D 32 20 2 1 12.4 2 2 13.8
E 32 20 3 2 13.9 3 4 17.4

MD5 A 1 200 1 1 83.3 1 3 173.2
B 1 200 1 1 42.9 1 2 110.1
C 1 50 1 1 14.1 1 6 49.8

MRISC A 1 500 States unavailable 1 2 32.0
CF FFT A 32 15 1 4 364.8 Trace unavailable
DLX A 1 150 1 1 41.2 1 3 220.8

B 1 68 (178) 1 4 54.8 1 17 1886.3
C 1 47 (142) 1 5 15.8 1 11 104.0
D 1 77 (798) 1 3 27.5 1 9 2765.1
E 1 49 (143) 1 4 19.1 1 12 105.2
F 1 188 1 2 67.8 1 2 457.4
G 1 30 (1080) 1 1 11.3 Trace unavailable

Alpha A 1 70(256) 1 5 127.4 1 9 525.3
B 1 83(1433) 1 5 111.6 1 5 368.9
C 1 150(9950) 1 3 122.3 1 3 250.5

Table 3: Synthesis-based error-diagnosis results. “#Symp.” is the number of symptom variables in each core, and ‘#Cores” is the total
number of symptom cores. Bug traces for several DLX/Alpha benchmarks have been minimized before diagnosis, and their original
lengths are shown in parentheses.

Bench- Bug Description
mark ID
Pipe A One signal inverted
Pre A Reduced OR replaced by reduced AND
norm B One signal inverted

C One 26-bit bus MUX select line inverted
D Bug A + Bug B
E Bug A + Bug B + Bug C

MD5 A Incorrect operand for a 32-bit addition
B Incorrect state transition
C Bug B with a shorter trace

MRISC A Incorrect RHS for a 11-bit value assignment
CF FFT A One signal inverted
DLX A SLL inst. does shift the wrong way

B SLTIU inst. selects the wrong ALU operation
C JAL inst. leads to incorrect bypass from MEM stage
D Incorrect forwarding for ALU+IMM inst.
E Does not write to reg31
F RT reads lower 30 bits only
G If RT = 7 memory write is incorrect

Alpha A Write to zero-reg succeeds if rdb idx = 5
B Forwarding through zero reg on rb
C Squash if source of MEM/WB = dest. of ID/EX and

instr. in ID is not a branch
Table 2: Description of bugs in benchmarks. DLX and Alpha
include native bugs, while the others were manually injected.
a symptom core suggests a possible set of signals to modify for
correcting the design, and it includes one or more symptom vari-
ables. In all our experiments, we found that the reported symptom
cores included the root causes of errors for all benchmarks. In other
words, REDIR accurately pointed out the signals that exhibited in-
correct behavior.
Comparison between combinational and sequential diagnosis:
the difference between combinational and sequential diagnosis is
that sequential diagnosis only uses output responses for constraints,
while combinational is allowed to use state values. As Table 3
shows, the runtime of combinational diagnosis is typically shorter,
and the number of symptom cores is often smaller. In DLX(D),
for example, the combinational technique runs significantly faster
than sequential, and returns only three cores, while sequential re-
turns nine. The reason is that combinational diagnosis allows the

use of state values, which provide additional constraints to the PB
instance. As a result, the PB solver can find solutions faster, and the
additional constraints further localize the bugs. Being able to uti-
lize state values is especially important for designs with very deep
pipelines, where an error may be observed hundred cycles later. For
example, the error injected into CF FFT requires more than 40 cy-
cles to propagate to any primary output, making the use of sequen-
tial diagnosis difficult. In addition, bugs that are observed in design
states can only be diagnosed when state values are available, such
as DLX(G). On the other hand, sequential diagnosis is important
when state values are unavailable. For example, the bug injected
into the MiniRISC processor changed the state registers, damag-
ing correct state values. In practice, it is also common that only
responses at primary outputs are known. Therefore, being able to
diagnose errors in combinational and sequential circuits is equally
important, and both are supported by REDIR.

The comparison between MD5(B) and MD5(C) shows that there
is a trade-off between diagnosis runtime and quality: MD5(C) uses
a shorter trace and thus requires shorter diagnosis runtime; how-
ever, the number of symptom cores is larger than that returned by
MD5(B), showing that the results are less accurate. The reason
is that longer traces usually contain more information; therefore,
they can better localize design errors. One way to obtain short yet
high-quality traces is to perform bug trace minimization before er-
ror diagnosis. Such minimization techniques can remove redundant
information from the bug trace and greatly facilitate error diagno-
sis. We adopted one such technique [8] to minimize the traces for
DLX and Alpha, and the length of the original traces is shown in
parentheses. In general, one trace is enough to localize the errors
to a small number of symptom cores, while additional traces may
further reduce this number.
Comparison between RTL and gate-level error diagnosis: for
comparison with previous work, we also synthesized part of the
larger benchmarks and performed gate-level error diagnosis using
Ali’s [3] sequential error-diagnosis techniques described in Section
2.2, and the results are summarized in Table 4. This comparison
clearly indicates that diagnosing functional errors at the RTL has
significant advantages over the gate level: shorter runtime and more



Bench- Bug Errors found Runtime
mark ID #Sites #Cores (sec)
MRISC A Time-out (48 hours)
DLX A Out of memory

B Out of memory
C 1 170 34,829
D 1 6 49,787
E 1 193 19,621
F Out of memory

Alpha A Time-out (48 hours)
B Time-out (48 hours)
C Out of memory

Table 4: Gate-level error-diagnosis results. “#Sites” is the num-
ber of error sites reported in each core, and “#Cores” is the total
number of symptom cores.
accurate diagnoses. As Table 3 shows, most errors can be diag-
nosed using our techniques within a few minutes, while Table 4
shows that identifying the same errors at the gate level takes more
than 48 hours in many cases. One major reason for this is that the
number of possible symptom variables (error sites), i.e., internal
netlist signals responsible for the bug, is significantly smaller in
RTL diagnosis. This is due to the fact that one simple RTL state-
ment may be synthesized into a complex netlist, which proliferates
the number of error sites. For example, a statement like “a = b +
c” creates only one symptom variable at the RTL. Its synthesized
netlist, however, may contain hundreds of error sites, depending
on the implementation of the adder and the bit-width of the sig-
nals. The small number of potential symptom variables at the RTL
significantly reduces the search space for PB or SAT solvers and
provides very short diagnosis runtime. These results clearly indi-
cate that adopting gate-level techniques into RTL is the correct ap-
proach: it provides excellent accuracy because formal analysis can
be performed, yet it does not have any drawback common in gate-
level analysis in that it is still highly scalable and efficient. This
is achieved by our new constructs that model errors at the RTL in-
stead of the gate level. These results also demonstrate that trying to
diagnose RTL errors at the gate level and mapping the results back
to RTL is ineffective and inefficient, not to mention the fact that
such a mapping is usually difficult to find.
Case study: we use DLX(D) as an example to show the power of
our error-diagnosis techniques. Its RTL code is shown below:

always@(memstage or exstage or idstage or rs3rd or rs3rt or
rs4rd or rs4rt or rsr31)
casex ({memstage,exstage,idstage,rs3rd,rs3rt,rs4rd,rs4rt,rsr31})
{‘ALUimm, ‘dc3, ‘dc3,‘dc,‘dc, ‘dc, ‘true,‘dc}:
RSsel = ‘select stage3 bypass; // Buggy

......
In this example, the buggy code selects stage3 bypass, while the
correct implementation should select stage4. Error diagnosis re-
turns two symptom cores: RSsel and ALUout. Obviously, RSsel is
the correct diagnosis. However, ALUout is also a correct diagnosis
because if the ALU can generate correct outputs even though the
control signal is incorrect, then the bug can also be fixed. However,
this is not a desirable fix. This case study shows that REDIR can
suggest various ways to repair the same error, allowing the designer
to consider different possibilities in order to choose the best fix.

5.2 Simulation-based Error Diagnosis
In this experiment, we performed simulation-based diagnosis us-

ing the algorithm described in Section 3.3 with Insight, an experi-
mental RTL symbolic simulator from [24]. Benchmarks Pipe and
CF FFT were used in this experiment. Simulation took 23.8 and
162.9 seconds to generate SAT instances for these benchmarks, re-
spectively. The SAT solver included in Insight then solved the in-

stances in 1 and 723 seconds respectively, and it successfully iden-
tified the design errors. Note that currently, the SAT solver only
returns one, instead of all possible symptom cores. Although the
runtime of simulation-based approach is longer than the synthesis-
based method, it does not require the design to be synthesized in
advance, thus saving the synthesizer runtime.

5.3 Error Correction
In our error-correction experiment, we applied the techniques de-

scribed in Section 4 to fix the errors diagnosed in Table 3. We used
combinational diagnosis in this experiment, and corrected the error
location using the synthesis tool in [7]. We summarized the results
in Table 5 where we indicate which of the two synthesis techniques
in [7] we used, either GDS or EGS. GDS involves an exhaustive
search of the solution space, and finds solutions with minimal num-
ber of logic operations; while EGS is approximate but faster. Note
that the resynthesis tool can be replaced easily by other tools, such
as Espresso or MVSIS. In the table, “#Cores fixed” is the number
of symptom cores that can be corrected using our error-correction
techniques, and “#Fixes” is the number of ways to fix the errors.
We applied GDS first in the experiment, and observed that GDS of-
ten returns a large number of valid fixes that can correct the design
errors. One reason is that GDS performs exhaustive search to find
new logic expressions; therefore, it may find many different ways
to produce the same signal. For example, “A ·B” and “A · (A⊕B)”
are both returned even though they are equivalent. Another rea-
son is that we only diagnosed short bug traces, which may produce
spurious fixes: signatures of different variables are the same even
though their functions are different. As a result, we only report
the first 100 fixes in our implementation, where the fixes are sorted
so that those with smaller number of logic operations are returned
first. Due to the exhaustive-search nature of GDS, memory usage
of GDS may be high during the search, as are the cases for bench-
marks DLX (C-F) and Alpha. In these benchmarks, GDS ran out
of memory, and we relied on EGS to find fixes that can correct the
errors. Since EGS only returns one logic expression when fixing an
error, the number of possible fixes is significantly smaller.

Benchmark Bug #Cores Resyn. #Fixes Runtime
ID fixed method (sec)

Pipe A 1 GDS 2214 1.0
Pre norm A 1 GDS 4091 1.1

B 1 GDS 4947 2.4
C 1 GDS 68416 5.6
D 2 GDS 79358 7.1
E 3 GDS 548037 41.6

MD5 A 1 GDS 33625 4.1
B 0 GDS 0 3.86

CF FFT A 3 GDS 214800 141.6
DLX A 0 GDS 0 1.3

B 3 GDS 5319430 111.2
C 5 EGS 5 1.6
D 3 EGS 3 1.6
E 4 EGS 4 1.4
F 2 EGS 2 2.9
G 1 GDS 51330 0.7

Alpha A 5 EGS 5 7.9
B 4 EGS 4 10.4
C 3 EGS 3 8.5

Table 5: Error correction results. Combinational diagnosis is
used in this experiment.

Table 5 shows that we could not find valid fixes for benchmarks
MD5(B) and DLX(A). The reason is that the bugs in these bench-
marks involve multi-bit variables. For example, bug MD5(b) is
an incorrect state transition for a 3-bit state register. Since in this



experiment we only consider the least-significant bits of such vari-
ables during error correction, we could not find a valid fix. This
problem can be solved by inserting a conditional assignment for
every bit in a multi-bit variable.

5.4 Discussion of Experimental Results
The error-diagnosis results show that our error-modeling con-

struct and diagnosis techniques can effectively localize design er-
rors to a small number of symptom variables. On the other hand,
our error-correction results suggest that options to repair the diag-
nosed errors abound. The reason is that the search space of error
correction is much larger than error diagnosis: there are various
ways to synthesize a logic function. As a result, finding high-
quality fixes for a bug requires much more information than pro-
viding high-quality diagnoses. Although this can be achieved by
diagnosing longer or more numerous bug traces, the runtime of
REDIR will also increase.

This observation shows that automatic error correction is a much
more difficult problem than automatic error diagnosis. In practice,
however, engineers often find error diagnosis more difficult than
error correction. It is common that engineers need to spend days or
weeks finding the cause of a bug. However, once the bug is iden-
tified, fixing it may only take a few hours. To this end, our error-
correction technique can also be used to facilitate manual error re-
pair, and it works as follows: (1) the engineer fixes the RTL code
manually to provide new logic functions for the symptom cores
identified by error diagnosis; and (2) REDIR simulates the new
functions to check whether the signatures of symptom cores can be
generated correctly using the new functions. If the signatures can-
not be generated by the new functions, then the fix is invalid. In
this way, engineers can check the correctness of their fixes before
running verification, which can accelerate the manual error-repair
process significantly.

The synthesis-based results show that our techniques can effec-
tively handle designs as large as 2000 lines of RTL code, which is
approximately the size that an engineer actively works on. Since
synthesis tools are available in most companies, REDIR can be
used by engineers everyday to facilitate their debugging process.
On the other hand, the simulation-based results suggest that our
techniques are promising. Once RTL symbolic simulators become
accessible to most companies, REDIR can automatically exploit
their simulation power to handle even larger designs.

In our experiments we present results using designs as large as
127K cells with traces that can be hundred-cycles long, which are
more than 10X larger than the benchmarks reported in other RTL
error-diagnosis literature [11, 16, 18, 19, 20]. In addition, we eval-
uated REDIR using designs with real bugs and successfully identi-
fied the RTL signals responsible for the bugs. These results show
that our techniques can be applied to more realistic designs that
may not be handled by existing solutions.

6. CONCLUSIONS
In this paper we proposed several constructs and algorithms that

provide a new way to diagnose and correct errors at the RTL, in-
cluding: (1) an RTL error modeling construct; (2) scalable error-
diagnosis algorithms using Pseudo-Boolean constraints, synthesis,
and simulation; and (3) a novel error-correction technique using
signatures. To empirically validate our proposed techniques, we de-
veloped a novel verification framework, called REDIR. To this end,
our experiments with industrial designs demonstrate that REDIR
is efficient and scalable. In particular, designs up to a few thou-
sand lines of code (or 100K cells after synthesis) can be diagnosed
within minutes with high accuracy. Since our methods only rely on

correct output responses and support both combinational and se-
quential circuits, they can be applied to various designs in all main-
stream verification flows. The superior scalability, efficiency and
accuracy ensure that REDIR can be used by engineers in their ev-
eryday debugging tasks, which can fundamentally change the RTL
debugging process.
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