On Legalization of Row-Based Placements

Abstract

Cell overlaps and pin blockages by power stripes in the results
of global placement are guaranteed to prevent successful rout-
ing. However, common techniques for fixing these problems may
endanger routing in a different way — through increased wire-
length and congestion. We evaluate several such techniques with
routability of row-based placements in mind, and propose new
ones that, in conjunction with our detail placer, improve over-
all routability and routed wirelength. Our generic two-phase
approach for resolving illegal placements calls for (i) balancing
the numbers of cells in rows, (ii) removing overlaps within rows
through combinatorial optimization. Relevant objectives include
minimum total perturbation, minimum wirelength increase and
minimum maximum movement. Additionally, we trace cell over-
laps in min-cut placement to vertical cuts and show that, if bi-
section cut directions are varied, overlaps anti-correlate with im-
proved wirelength.

Empirical validation is performed using placers Capo and Ca-
dence QPlace, followed by various legalizers and detail placers,
with subsequent routing by Cadence WarpRoute. We use a pro-
prietary design and a number of IBMv2 benchmarks with routing
information. Our legalizer reduces both Capo and QPlace place-
ments’ wirelength by up to 4% compared to results of Capo le-
galized by Cadence’s QPlace in the ECO mode.

1 Introduction

With the advent of strong multi-level min-cut partitioners, recur-
sive min-cut placement (e.g., [9, 24]) has emerged as a power-
ful and scalable technique that quickly produces placements with
reasonable wirelength. Nevertheless, it often produces overlaps
between several percent of cells. These overlaps must be re-
solved by detail placement, potentially increasing wirelength and
impacting routability.

The origins of cell overlap in quadratic or analytical place-
ments can be traced to relaxations of non-overlapping/slot con-
straints [15, 11, 23, 14]. Resulting illegal placements often have
cells placed between rows, requiring a legalizer that can assign
cells to rows [16]. On the other hand, global min-cut placers au-
tomatically assign cells to rows through partitioning, confining
overlaps to same-row cells. In addition to overlapping cells, a
common show-stopper is related to cells placed so that their pins
are beneath power and ground stripes on the Metal2 layer (M2).
M2 stripes may block signal pins during routing — such conflicts
must be eliminated by a detail placer, or else routing cannot pos-
sibly succeed.

To formalize the legalization problem, we introduce the fol-
lowing notation. We assume a placement area composed of a set
of r rows {p1,p2,...,pr} and that for each row p;j, w(p;) is the
total row width and C; = {c1,Cy,...,cm}! is the set of cells that
are placed in pj, where c; is placed to the left of ¢ if j <Kk.
The horizontal cell position of cell ¢;j is given by x(cj), the ver-
tical location by y(cj) and the cell width by w(cj). A row-based
placement is called legal if and only if the placement meets the
following two constraints:

1C; should rather be written as {cil.ciz. e .,cim} to avoid ambiguity in describing

two different rows cells; nevertheless, we opt for the simpler notation in the text.

1. No row p;j is assigned more cells than its capacity, i.e.,
Ci
s Phwe)) < wl(pi).
2. No two distinct cells cj and ¢y in the same row overlap:
x(cj)+w(ej) <x(ck) ify(cj) =y(cr) and x(cj) < x(ck).

We measure cell width in terms of the number of sites it
occupies in a row. The amount of overlap in an illegal row-based
placement is quantified by counting the number of consecutive
cell pairs that overlap. Assuming that cells are sorted in their
respective rows by their horizontal positions, this takes O(n)
time for n cells. On the other hand, calculating all pairs of cells
that overlap takes O(n?). Several other metrics can be used to
quantify overlaps: the number of cells involved in overlaps, the
number of sites covered by at least two cells. Our preference
is motivated by what is reported by MetaPlacer/Capo8.7 [9, 5],
especially that this metric gives a good feel of how severe cell
overlaps are in a given placement. We informally capture the
overlap removal problem as follows:

Row-Based Placement Legalization Problem: Given a row-
based cell placement, alter the cell positions to meet constraints
(1) and (2) with minimum increase in wirelength or minimum
total perturbation of cell positions.

In this work, we (1) propose site-granular solutions to solve
the legalization problem, (2) examine the effect of cut-sequence
choice on the amount of overlap, (3) handle pin-placement prob-
lems beneath power stripes, and (4) propose an accurate legaliza-
tion procedure that optimizes a number of objectives while legal-
izing. These objectives include (min) Half-Perimeter Wirelength
(HPWL), (min) total cell movement and (min) max cell loca-
tion perturbation. The last two metrics are proposed as means
to preserve the freespace distribution and hence routability of
the design. We apply our legalizer to placements produced by
QPlace5.2 from Cadence and Capo8.7 [9, 5] to legalize and/or
improve wirelength by up to 4%.

The organization of this paper is as follows. In Section 2
studies the effect of cut sequences on the amount of overlap and
wirelength. In Section 3, we develop an overlap removal proce-
dure and compare possible optimization objectives during legal-
ization. We implement our overlap procedure and compare the
various overlap objectives on the IBM benchmarks in Section 4.
Finally, Section 5 summarizes the main contributions of this work
and notes future directions for research.

2 Necessity of Overlap Removal for Min-Cut Placements

With any placement strategy, row-based global placements can
potentially have overlaps or other illegalities (e.g., M2 power
stripe blockage of M1 standard-cell pins). Though our present
methods apply to legalization of any row placement, the min-cut
context is of particular interest. In this section, we explain why
overlaps are inherent in (wirelength-driven) min-cut placement.
We examine the relationship between cut sequences, overlaps,
freespace, and wirelength. We start by introducing some notation.
Let the placement area be composed of r rows, and the total cell
area (weight) is equal to w, with maximum individual cell weight
of Wmax. We also assume that all cells have single-row heights

and that necessary condition for a placement with no overlaps -
that the total capacity of the r rows is at least w - is satisfied.

Consider the basic case where there exists only r = 2 rows.
For this case, the following fact is known ([19], page 268).

Fact 1. If the cells of total weight w are bisected into two halves
to be placed in r = 2 rows, then a sufficient condition for a place-
ment with no overlaps is that one row has area > w/2 4+ Wmax.

Fact 1 implies that in the worst case, one partition will
contain cells with total weight w/2 + wmax, While the other
partition will contain cells with total weight w/2 — Wmax. Since
rows are arranged in a parallel fashion within the placement area,
there is no way of simultaneously increasing the size of one row
and decreasing the size of the other. This leads to the following
lemma.

Lemma 1. For r = 2, a sufficient condition? a placement with
no overlaps is to have freespace > 2wmax, With each row having
> Wmax freespace. 0

On the other hand, if a single row is partitioned vertically
then no freespace is needed since the vertical cut line can be
shifted to adjust for the partition weights, thus avoiding overlaps
[1]. We can now generalize Lemma 1 to the case of r > 2 rows.
Without loss of generality, we assume that r = 2% for some
kezt.

Lemma 2. If cells of total weights w are recursively bisected to be
placed in r = 2% rows then a sufficient condition for a placement
with no overlaps is that each row has 2(1 — 1/r)wmax freespace,
for a total freespace of 2(r — 1)wmax freespace in the layout.
Proof. Omitted for space limitations. 0

Lemma 2 gives the amount of freespace sufficient to produce
a placement with no overlaps if the cells are recursively bisected
into r > 2 rows using only horizontal cuts. Note that vertical
cuts will follow the horizontal cuts once individual rows are at-
tained; however, in this case the vertical cuts produce no overlaps
as mentioned above in the discussion of Figure 1. In practice,
typical placers produce alternating H-V cut sequences. That is,
horizontal cuts (H) are followed by vertical cuts (V), and vertical
cuts are followed by horizontal cuts, and so forth. Some placers
use the block aspect ratio in determining the cut direction with
the resulting cut sequence typically alternating between horizon-
tal and vertical cuts unless the initial placement area is far from
being a square. The reason for such cut sequences is minimizing
wirelength [21, 9, 26].

We expect that such alternating sequences produce larger
number of overlaps since a vertical cut divides a set of n rows into
2n disconnected subrows. This is in contrast to a horizontal cut,
which does not increase the number of subrows. An alternating
H-V cut sequence stops making horizontal cuts after it has made
r cuts, during which time r vertical cuts are executed. Hence,
the total number of disconnected subrows is r2. This larger num-
ber of disconnected subrows leads to harder packing resulting in
increased overlap.

We empirically validate our arguments by examining the ef-
fect of vertical cuts, cut sequences and the freespace required for
a placement with no overlaps. We use Capo [9, 5] as our min-
cut placer. Given a benchmark, we gradually increase the amount
of freespace and examine the effect of the introduced freespace
on the amount of overlap. Figure 1 plots the overlap-freespace
relationship for both the all-H and H-V cut sequences. Clearly,
as available freespace increases, overlaps decrease. Furthermore,

2We assume a placer that will not introduce overlaps when it is not necessary
to do so. Typically, placers will re-partition blocks to best fit the partitioned cells
[9, 11.

H-V Cut Sequence B

200
-H Cut Sequence

0 T e B N
(0] 5 10 15 20 25 30
FreeSpace Percentage

Figure 1: Relationship between available freespace and number
of overlaps for the All-H and (alternating) H-V cut sequences.

800 T
1%}
oo]
g
0600 - Wirelength q
5
Bs00 |- 1
£
S
£400 - b
53
S
S800 |
=
=y
=00 4
3 Overlaps
Li00 1
=

0 n L

0 20 20 60 80 100 120 140
Number of Vertical Cuts

Figure 2: Relationship between number of vertical cuts, total
wirelength and number of overlaps. Wirelength is reported in
units x10%.

the all-horizontal cut sequence requires less freespace to pro-
duce non-overlapping placements than the H-V sequence, e.g.,
for ibmO01 [4, 24] the all-H sequence produces non-overlapping
placement at a threshold of approximately 3.45% freespace,
while the H-V sequence requires around 22% freespace to elimi-
nate overlap. From Lemma 2 and the benchmark characteristics,
we calculate the freespace bounds. We find that for the all-H se-
quence, the calculated freespace bound using Lemma 2 is 3.7%
which appears close to the actual empirical value. We also see
that H-V cut sequences - in Capo8.7, the choice of the cut se-
quence depends on the block aspect ratio - produce a dramati-
cally larger number of overlaps and that overlaps cease to exist
after larger amount of freespace than the all-H cut sequence.

We also empirically study the relationship between cut
sequences, overlaps and total wirelength. In this experiment, we
control the number of vertical cuts executed during recursive
bisection before single rows are attained. As more vertical cuts
are allowed, we expect less total wirelength but more overlaps.
We introduce into Capo a parameter that limits the number of
vertical cuts taken. As we increase the threshold of vertical
cuts that are allowed to be executed, we record both the total
wirelength and number of overlaps from the placer’s built-in
reporting mechanisms. Figure 2 shows this relation for the
ibm01 benchmark. The horizontal axis represents the allowable
number of vertical cuts before individual rows are attained,
while the vertical axis gives both the total wirelength (x10%)
and the number of cells overlapping. The curves show that the
vertical cuts are a significant factor in producing overlaps yet are
essential for wirelength minimization. We conclude:

Conclusion: The cut sequences that produce minimum overlap
(all H- sequences) are exactly the cut sequences that produce
largest wirelength, and vice-versa. Furthermore, vertical cuts on
multiple rows (or subrows) are the reasons for a significant num-
ber of overlaps; nevertheless, they are essential for wirelength

minimization.

Overlaps are thus a natural consequence of min-cut place-
ment, and increasing freespace and allocating it in a uniform
manner [8] helps reduce the amount of overlap. While it is at-
tractive to produce legal placements from the start, our experi-
ments (cf. Figure 1 and 2) indicate that this would require cut se-
quences far from optimal from the wirelength perspective. In ad-
dition, re-partitioning techniques [1] may reduce overlaps result-
ing from vertical cuts at the expense of wirelength due to restric-
tions in partitioning tolerances. Also, re-partitioning never elim-
inate overlaps especially for large benchmarks. With this con-
clusion in mind, it is natural for placers like Capo [9] or Dragon
[24] to apply legalization during detailed placement (after global
placement). In the next section, we address this problem while
preserving important placement metrics such as wirelength and
routability.

3 Overlap Removal Solutions

We now develop an accurate overlap removal procedure and study
various objectives for overlap removal. We also develop exten-
sions to take care of special requirements such as avoiding pin
placement under power stripes. Our overlap solution is based on
a two-phase approach. In the first phase, row capacities are met,
and in the second phase, overlaps within all rows are removed.

3.1 Cell Juggling to Meet Row Capacity Constraints

In our first phase of overlap removal, we make sure that for each
row, the sum of row cell sizes does not exceed the total row ca-
pacity. We develop a simple heuristic to achieve this objective
with small impact on HPWL. We define cell juggling as moving
cells only in the vertical direction. Since HPWL is independent
for vertical and horizontal directions, cell juggling conserves the
total horizontal wirelength.

Using the notation introduced in Section 1, we define the row
surplus S(-) of some row p; as the difference between the to-

tal row cell width Z‘J ‘lw(cj), and the row capacity w(pj), i

S(pi) = ZJ 1w(c,) (pi). We measure cell width accordmg to
the number of sites occupied in a row. In the first step we calcu-
late the surplus of all rows and rank the rows according to their
surplus in a non-increasing order. Then for each row p; with sur-
plus S(pi) > 0, we try to find a cell ¢j € Cj such that juggling c;
to some row pyx with S(py) < 0 and w(cj) < |S(pk)| introduces
the minimum increase in the wirelength. We note that juggling is
possible since we assume that the total cell area of the design is
less than the total design area. We also note that for this phase we
neglect any overlap resulting from juggling some cell ¢ to row
pk since the second phase guarantees overlap removal within a
row. The complete procedure for cell juggling is given in Figure
3.

3.2 Row legalization

In this subsection, we develop an accurate procedure that
guarantees removal of cell overlaps within a row. We consider
each row as set of ordered sites S = {s1,s2,...,5n}. For each
row pj, our goal is to place its set of cells C; with no overlap,
i.e., for any two cells ¢j and cj11, X(cj) +w(cj) < X(Cj+1),
where x(.) indicates the leftmost site occupied by a cell. To
produce a placement with no overlaps, we construct a directed
acyclic graph G = (V,E) as shown in Figure 4 with vertex set
V ={0,...,n} x{0,...,m}, and edge set

E={(J,k=1)—(J.k
(Jk+w(cj) [0<j<m,1
The set of edges E is composed of the union of horizontal edges
and diagonal edges in G. We denote each edge by its start
(tail) and end (head) point. A legal non-overlapping placement
corresponds to finding a directed path from the origin vertex
(0,0) to the final vertex (m,n). While any such path produces
a legal placement, it is highly desirable to minimize the impact
on placement metrics. We now introduce and compare three
objectives.

1. Minimum Perturbation (minPERB): We seek to legalize
a row using the minimum total cell displacements from the
original locations. In this case, we label each diagonal edge
by the difference between its start position (j—1 k) in the
graph and the actual cell posmon x(cj) in the row i.e., the
cost of edge (j—1,k) — (j,k-+~w(cj)) is [x(cj) —K|.

2. Minimum HPWL (mlnHPWL) V\)e seek to Ijegallze arow
using the minimum increase in HPWL. In this case, we label
each diagonal edge starting at (j — 1,k) by the difference in
HWPL from placing a cell c;j in position k rather than its
current location of x(cj). We note that methods as [18, 6]
also minimize HPWL using dynamic programming but not
in the site-granular way that we do but rather using piece-
wise linear properties of HPWL.

3. Minimum Maximum Perturbation (minMAX): We seek
to legalize a row minimizing the maximum displacement
from the original locations. We label the diagonal edges as
in the minPERB case.

We label all horizontal edges by zero for all metrics. Real-
izing the objectives then corresponds to calculating the shortest
path in G (except minMAX which corresponds to a path with the
minimum max edge cost). Since G is directed-acyclic graph, the
shortest path can be calculated using topological traversal of G in
O(mn) steps as given in Figure 5.

While certainly applying one of the aforementioned objec-
tives over all rows in a placement will legalize the placement, we
note that the minHPWL objective can be applied iteratively to
further optimize the wirelength while retaining the legality of the
placement. We refer to this iterative version of minHPWL by
minHPWLit. Using this objective, legalization is repeatedly it-
erated over the whole chip until the improvement in wirelength
drops below 0.1%. In general, we have found that iterating un-
til there is no further improvement only enhances the solution
quality by about 0.17% with respect to the solution quality of the
stopping criterion of 0.1%. This improvement comes at the ex-
pense of additional CPU time, hence we opt to stop iterating if the
improvement between the last two iterations is less than 0.1%.

As explained earlier, our overlap procedure is based on a de-
tailed site by site consideration, nevertheless, we will see that run-
times are not of concern since legal placements are produced in

Cell 1

Cell 2 [

Cell 3

Cellm

Figure 4: Shortest path computation for legalizing a row place-
ment.

Input: An overlapped placement where row capacitances are not met.
Output: An overlapped placement where row capacitances are met.

1. for each i = 1tor: caculate the surplus of row p; asfollows S(p;) = z‘jc‘z'llw(cj) —w(pPi).

2. Rank the rows in anon-increasing order according to the surplus.

3. for each row p; wherethe S(p;) > 0

4. whileS(p;) >0
5. Initialize dpeg = .
6. for each cell ¢j € Gi:
7. for eachk=1tor:
8.if §(k) < 0and |S(k)| > w(c;j) then

9. measure the increase in HPWL dxpw. if ¢j isjuggled to row py.
10. if SHpwL < Opegt then Spes = SHPWL, Pbes = Pk, A Cpegt = Cj.
11. Movethe cell cpeg t0 row ppeg, and update the surplus values of rows py and p;.

Figure 3: The juggling procedure to meet row capacity constraints.

Input: Row pj, Set of cellsC; = {c1,Cz,...,Cm} ordered from left to right.Placement objective.
Output: An non-overlapped placement of C; attaining the input objective.

2. for j=1tom
3. for k=1ton—w(cj)

5. return cost(m,n)

1. Tnitidize cost(0,0) = 0. for j = 1tom: cost(],0) = . for k=1ton: cost(0,k) =0

4. if objective is minPERB, minHPWL then cost(j,k) = min(cost(j,k—1),cost(j —1,k—w(cj)))
5. if objective isminMAX then cogt(j,k) = min(cost(j,k— 1), max(cost(j —1,k—w(cj)), [k —w(cj) — Xg; |)

Figure 5: Topological shortest path calculation for achieving various objectives.

practical runtimes. On the other hand, such detailed handling of-
fers an advantage in optimizing metrics such as minMAX or min-
PERB. Also, it automatically solves a number of other practical
issues such as:

1. Automatic handling of subrows in the placement area.
These subrows may exist from placement of core compo-
nents. These can be automatically handled by disallowing
any diagonal edges in the sites of the rows that intersect
with such core blocks. For example, if a core block occu-
pies from sites s; to s, width and rows from some row pj
to row py, then in legalizing any of these rows, we remove
all the diagonal edges originating from any site k, where
$1 <k < sy (These edges can be removed by simply setting
their weight to o).

2. Avoiding pin blockagesdueto power and ground stripes.
The typical presence of power stripes may render cell pins
placed beneath such stripes blocked during routing. Such
blockage is due to vias connecting the power and ground
stripes to their destination pins, and hence may obstruct
routing paths to any pins placed beneath the stripes. Our
objective is preventing placements that may lead to non-
routability by avoiding placing cell pins beneath the power
stripes. In this case, if a cell cj occupies w(cj) sites and
it has a pin at site p, < w(cj) relative to its first site and a
power strip occurs at site s; then we remove the diagonal
edge (j—1,t—k) — (j,t —k+w(cj)).

3.3 Céll Order Polishing

While the objective of this paper is solving the overlap problem,
we also add to our formulation an extra degree of freedom by ex-
ploiting cell re-ordering within rows while legalization. We apply
an old heuristic [20, 3] that was first suggested in the context of
PCB (Printed Circuit Board) layout. In our approach, for each

row we select an independent set of cells, where an independent
set of cells is defined as a set of cells that reside in the same row
and share no common nets. We select such set by first calculating
a random cell order, and then process the cells according to this
order, selecting a cell if non of its adjacent cells is selected. We
have found that on the average about 30-40% of the cells in a row
are independent. Selection of an independent set eliminates the
problem of assignment cost dependency typically encountered in
approaches such as [13, 10]. After selecting an independent set of
cells, we remove the cells from their locations and re-embed op-
timally using minimum-weight independent-set matching. Since
the cells are independent, their assignment costs can be calcu-
lated independently. Considering that cell sizes might be differ-
ent, re-embedding might introduce overlaps, and hence we follow
re-ordering by a legalization step. We refer to this cell re-ordering
heuristic by polishing. We examine the effect of such polishing
step in the next subsection.

3.4 Experimental Results

We implement the proposed overlap removal strategy within
Capo8.7 (the latest open-source version of Capo as of October,
18 2003). We use a binary built in the MetaPlacer package of
the UCLApack distribution [5], which is a wrapper around Capo
that invokes a legalizer and a simple detail placer. Capo’s detail
placer Rowlroning is used in some experiments and turned off in
others (-noRowlroning) — normally it optimizes a legal place-
ment by selecting groups of 7-8 consecutive cells in each row
and independently re-placing them using an optimal branch-and-
bound procedure [7]. Such “optimization windows” are system-
atically moved through each row with a small step (2-3 cells). All
reported HPWL values for Capo and QPlace are produced by the
HPWL evaluator in from the GSRC bookshelf and closely agree

3The internal legalizer in MetaPlacer/Capo8.7 has been turned off by default due
to a trivial coding bug, which we fixed for our experiments.

with QPlace reports. To find minimum-weight independent sets,
we use Rohe’s matching code [12].

We run Capo on 2.4 GHz Pentium Xeon Linux workstation

with 2 GB memory, while Cadence QPlace is run on Sun Ultra
10 machines with 1 GB memory (NOTE THAT RUNTIMES ARE
NOT DIRECTLY COMPARABLE!). We empirically validate the re-
sults of previous sections with the following four experiments on
a proprietary industrial circuit, as well as on “easy” versions of
IBM version 2 benchmarks [25].
Experiment 1 applies the proposed overlap removal procedure to
Capo’s placements of IBMv2 benchmarks. For comparison, we
legalize Capo placements using either Capo’s legalizer or QPlace
(version 5.2) in ECO mode (QP -ECO).

Results are reported in Table 1 for the easy instances. For
space limitations, we do not tabulate results for hard instances.
We observe that

e Capo’s internal legalizer sometimes fails to completely re-
move overlaps, e.g., for ibm09 and ibm10 “hard” (not tabu-
lated due to space limitations).

e minHPWL.t (+ polishing) gives the best improvement in
HPWL but at the cost of runtime

e Both QPlace -ECO and our codes legalize all placements

e Our legalization and detail placement reduces HPWL by up
to 4% compared to QPlace -ECO

e Polishing reduces HPWL by a further 0.5-1.0%.

Experiment 2 estimates the impact of legalization on routabil-
ity by trying to route alternate placements of the ibm01 bench-
mark with Cadence’s WRoute (version 2.3). Table 2 reports three
relevant routability metrics. and suggests that wirelength mini-
mization increases routing violations by up to 7.35% compared
to the minPERB and minMAX objectives. Our experience indi-
cates that such routing violations do not occur when the original
placement was legal as we will shortly see in Experiment 4.
Experiment 3 examines the impact of power/ground stripes in an
industrial layout on the legality of cell placements. Our testcase
contains 34061 cells, 34938 nets, 777 fixed 1/O pins, 10 ground
and 10 power stripes. It was synthesized using a 0.18um TSMC
library. Capo8.7 is used as a global placer, followed by its own
legalizer. All resulting placements are overlap-free, 286 cells in
a representative placement are beneath the power stripes. Using
techniques from Section 3.2, we move those cells elsewhere and
reduce HPWL by 3.36% with minHPWL.it.

Experiment 4 compares our legalizers and detailed placers to ex-
isting tools: (i) QPlace in the -ECO mode, (ii) Capo’s detail placer
Rowlroning [9] which optimally orders small groups of cells in
rows. QPlace -ECO removes all overlaps, but our minHPWL.it
optimization further improves wirelength by up to 2.3%, accord-
ing to results in Table 3. Routed wirelengths and the number of
routing violations, measured after WRoute, indicate that minHP-
WL.it does not impact routability. The additional use of Rowlron-
ing further improves HPWL by 2% (for a total of about 5%), but
increases the number of routing violations so much that WRoute
aborts. This is consistent with experiments in [9] which do not
use Rowlroning.

4 Conclusions

Global top-down row-based placers typically produce a small
number of overlapping cells, that we trace to cuts perpendicular
to rows. As naive legalization increases wirelength and can im-
pact routability, we propose and evaluate several techniques for
legalization and detailed placement. A particular issue that has
not been addressed in the literature is that improving wirelength
during detailed placement can be detrimental to routability.
Our contributions can be summarized as follows:

o \We tabulate the influence of freespace and bisection cut se-
quence on wirelength improvement and the number of over-

laps, showing that the latter two anti-correlate.
e \We contribute an overlap remover based on a shortest-path

computation.) o)
e We empirically compare several possible legalization objec-

tives, including their effect on routability.]
e We describe how power stripes may block signal pins, mak-

ing a placement unroutable, and address this issue with an

additional optimization.)))
e We couple our legalizers with a simple detailed placer

which reduces the wirelength of Capo and QPlace place-
ments by up to 4% compared to legalizing by QPlace in the
-ECO mode.

References

[1] S. Adya, I. Markov and P. Villarrubia, “On Whitespace and Stability in
Mixed-Size Placement,” in IEEE Proc. of Intl. Conf. on Computer-Aided De-
sign, 2003, p. to appear.

[2] S. N. Adya et al., “Benchmarking for Large-Scale Placement and Beyond,”
ACM/IEEE Intl. Symp. Phys. Design, 2003, pp. 95-103.

[3] S.Akers, “On the Use of the Linear Assignment Algorithm in Module Place-
ment,” in ACM/IEEE Proc. of Design Autom. Conf., 1981, pp. 13-144.

[4] C. J. Alpert, “The ISPD98 Circuit Benchmark Suite,” in ACM/IEEE Intl.
Symp. on Physical Design, 1998, pp. 18-25.

[5] UCLA Physical Design Tools, “http://visicad.cs.ucla.edu/software/PDtools,”

[6] U.Brennerand J. Vygen, “Faster Optimal Single-Row Placement with Fixed
Ordering,” in Design, Autom. and Test in Europe, 2000, pp. 117-122.

[7] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Optimal Partitioners and
End-case Placers for Standard-cell Layout,” IEEE Trans. on Computer-Aided
Des., vol. 19(11), pp. 1304-13, 2000.

[8] A. Caldwell, I. Markov, and A. Kahng, “Hierarchical Whitespace Alloca-
tion in Top-down Placement,” IEEE Trans. on Computer-Aided Design , vol.
22(11), 2003.

[9] A.E. Caldwell, A. B. Kahng, and I. L. Markov, “Can Recursive Bisection
Alone Produce Routable Placements?” in ACM/IEEE Proc. of Design Autom.
Conf., 2000, pp. 477-482.

[10] T.ChanandJ. Congand T. Kong nd J. Shinnerl, “Multilevel Optimization for
Large-Scale Circuit Placement,” in IEEE Proc. of Intl. Conf. on Computer-
Aided Design, 200, pp. 171-176.

[11] C.K.Chengand E. S. Kuh, “Module Placement Based on Resistive Network
Optimization,” IEEE Trans. on Computer-Aided Design, vol. 4, pp. 115-122,
July 1984.

[12] W. Cook and A. Rohe, “Computing Minimum Weight Perfect Matchings,
http://www.or.uni-bonn.de/home/rohe/matching.html,” INFORMS J. Com-
puting, vol. 11, pp. 38-148, 1999.

[13] K. Doll, F. Johannes, and K. Antreich, “Iterative Placement Improvement
by Network Flow Methods,” IEEE Trans. on Computer-Aided Design, vol.
13(10), pp. 1189-1200, 1994.

[14] H. Eisenmann and F. M. Johannes, “Generic Global Placement and Floor-
planning,” in ACM/IEEE Proc. of Design Autom. Conf., 1998, pp. 269-274.

[15] K. M. Hall, “An r-Dimensional Quadratic Placement Algorithm,” Manage-
ment Science, vol. 17, pp. 219-229, 1970.

[16] D. Hill, “Method and System for High Speed Detailed Placement of Cells
Within an Integrated Circuit Design,” US Patent 6370673, 2001.

[17] S. W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell
Placement,” in IEEE Proc. of Intl. Conf. on Computer Aided Design, 2000,
pp. 165-170.

[18] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of Linear Place-
ments for Wirelength Minimization with Free Sites,” in Asia and South Pa-
cific Design Autom. Conf., 1999, pp. 241-244.

[19] T.Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, 1st ed.
John Wiley & Sons, 1990.

[20] L. Steinberg, “The Backboard Wiring Problem: A Placement Algorithm,”
SIAM Review, vol. 3(1), pp. 37-50, 1961.

[21] K. Takahashi and K. Nakajima and M. Terai and K. Sato, “Min-Cut Place-
ment With Global Objective Functions for Large Scale Sea-Of-Gates Ar-
rays,” in IEEE Trans. on Computer-Aided Design, vol. 14(4), 1995, pp. 434—
446.

[22] J.Vygen, “Algorithms for Detailed Placement of Standard Cells,” in Design,
Autom. and Test in Europe, 1998, pp. 321-324.

[23] J. Vygen, “Algorithms for Large-Scale Flat Placement,” in ACM/IEEE Proc.
of Design Autom. Conf., 1997, pp. 746-751.

[24] M. Wang, X. Yang, and M. Sarrafzadeh, “DRAGON2000: Standard-Cell
Placement Tool for Large Industry Circuits,” in IEEE Proc. of Intl. Conf. on
Computer-Aided Design, 2001, pp. 260-263.

[25] X. Yan, B. K. Choi, and M. Sarrafzadeh, “Routabtility Driven White Space
Allocation for Fixed-Die Standard-Cell Placement,” in ACM/IEEE Intl.
Symp. on Physical Design, 2002, pp. 42-47.

[26] M. C. Yildiz and P. H. Madden, “Improved Cut Sequences for Partitioning
Based Placement,” in ACM/IEEE Proc. of Design Autom. Conf., 2001, pp.
776-779.

Circuit Mode Status overlaps | HPWL | CPU (s) Improv (%)
ibmO1le Capo raw illegal 964 5517 -
Capo leg legal 0 5.586 -
QP -ECO legal 0| 5639 1.0

minHPWL Tegal 0 5519 6.9 2.13%

minPERB legal 0 5.623 13 0.28%

minMAX legal 0 5.699 13 -1.06%

minHPWL.it legal 0 5.462 39.1 3.14%

+ polish legal 0 5.429 57.4 3.72%
ibm02e Capo raw illegal 1502 1.599 -
Capo leg legal 0 1.602 -
QP -ECO legal 0 1.624 12.0

minHPWL Tegal 0 1.579 15.2 2.77%

minPERB legal 0 1.604 2.1 1.23%

minMAX legal 0 1.607 2.2 1.05%

minHPWLit | legal 0 1.560 76.3 3.94%

+ polish legal 0 1.554 98.0 4.31%
ibm07e Capo raw illegal 2816 3.706 -
Capo leg legal 0 3.718 -
QP -ECO legal 0 3.756 29.0

minHPWL Tegal 0 3.695 375 1.62%

minPERB legal 0 3.730 8.5 0.69%

minMAX legal 0 3.760 8.1 -0.11%

minHPWLit | legal 0 3.674 198.1 2.18%

+ polish legal 0 3.659 313.9 2.58%
ibm08e Capo raw illegal 3304 3.903 -
Capo leg legal 0 3.912 -
QP -ECO legal 0| 3944 34.0

minHPWL Tegal 0 3.886 55.0 1.47%

minPERB legal 0 3.917 4.7 0.58%

minMAX legal 0 3.935 5.2 0.23%

minHPWL.it legal 0 3.862 235.7 2.08%

+ polish legal 0 3.845 590.7 2.51%
ibm09e Capo raw illegal 3575 3.253 -
Capo leg legal 0 3.275 -
QP -ECO legal 0 3.311 34.0

minHPWL Tegal 0 3.251 3738 1.81%

minPERB legal 0 3.285 4.8 0.79%

minMAX legal 0 3.321 7.3 -0.30%

minHPWLit | legal 0 3.237 139.3 2.23%

+ polish legal 0 3.223 323.6 2.66%
ibm10e Capo raw illegal 8811 6.222 -
Capo leg legal 0 6.306 -
QP -ECO legal 0| 6.349 51.0

minHPWL Tegal 0 6.246 324.2 1.62%

minPERB legal 0 6.312 286.5 0.58%

minMAX legal 0 6.434 291.5 -1.34%

minHPWLit | legal 0 6.226 3715 1.94%

+ polish legal 0 6.170 915.7 2.82%

Table 1: Overlap removal results for IBM benchmarks (easy instances). Mode is the legalizer mode. Capo raw is Capo’s initial
overlapping placement. Capo leg is Capo’s legalizer. QP -ECO is Cadence QPlace legalizer. minHPWL is the proposed legalizer
with min HPWL movement. minPERB is the proposed legalizer with min displacement. minM AX is the proposed legalizer with with
minimum maximum displacement. minHPWL it is an iterated version of the minHPWL legalizer. + polish is the results of minHPWL it
followed by a polishing cell re-ordering step. CPU is the total legalizing time in seconds. HPWL values for ibm01 is x107, and HPWL

values for ibm02-ibm10 is x108.

benchmark Objective HPWL Global Routing Metrics Detailed Routing
Overtrack | OverCapacity violations
ibm01 minPERB 5.773 4489 3755 11743
minMAX 5.846 4489 3755 11743
minHPWL.it 5.625 4616 3799 12602

Table 2: Effect of legalizing objective on routability of Capo’s placements. For space limitations, we give results for only one benchmark;

data from other benchmarks show similar trends.

benchmark QPLACE OUR Improv(%)
wirelength | violations | wirelength | violations

ibm01 (12%) 840769 0 820245 0 2.3%

ibm02 (10%) 2098289 0 2113935 0 -0.56%
ibm07 (10%) 4694388 0 4668722 0 0.63%
ibm08 (10%) 5320330 0 5277750 0 0.93%
ibm09 (10%) 3872250 0 3824083 0 1.29%
ibm10 (10%) 7420895 0 7333763 0 1.21%

Table 3: Effect of legalizer on routability on wirelength and routability of Cadence’s QPlace placements on IBM easy instances.

