
ABSTRACT
The MINCE heuristic for variable-ordering [1] successfully reduces
the size of BDDs and can accelerate SAT-solving. Applications to
reachability analysis have also been successful [12]. The main
drawback of MINCE is its implementation complexity - the authors
used a pre-existing min-cut placer [6] that is several times larger
than any existing SAT solver. Tweaking MINCE is difficult.

In this work we propose a replacement heuristic, FORCE which is
easy to implement from scratch and tweak. It is dramatically faster
than MINCE in practice. While FORCE may produce seemingly
inferior variable orderings, the difference with MINCE orderings
does not affect subsequent SAT-solving.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Algorithms.

General Terms
Algorithms, Performance, Experimentation, Verification.

Keywords
BDDs, SAT, CNF, backtrack search, variable order, pre-processing,
hypergraph, partitioning, placement.

1 INTRODUCTION
Algorithms for electronic design automation (EDA) [15, 22],
including those for synthesis and verification, require efficient
manipulation of Boolean functions. Boolean satisfiability (SAT)
[14, 19] solvers and binary decision diagrams (BDDs) [5] have tra-
ditionally been used with such applications, but their worst-case
complexity remains exponential and can hardly be improved.

A key observation is that Boolean functions arising in EDA appli-
cations possess useful structural properties, e.g., related variables in
satisfiability typically participate in the same clauses. Uses of prob-
lem structure are known to improve the efficiency of the SAT and
BDD algorithms. For example, Prasad et al. [17] theoretically
showed that combinational circuits with small cuts yield easy
instances of automatic test pattern generation (ATPG), which are
essentially SAT instances. BDDs with smaller cuts tend to have
fewer edges and vertices, speeding up BDD manipulations [1, 3]. 

Based on these observations, the MINCE heuristic [1] reorders
Boolean variables to place ‘‘connected’’ variables close to each
other. The ordering relies on high-performance hypergraph parti-
tioning and placement to reduces the cut in the problem. MINCE is
executed as a preprocessing step and does not require the modifica-

tion of the application code. MINCE can accelerate SAT solving
and BDD manipulation, and reduce BDD memory consumption.
The use of the external black-box tool Capo [6], however, compli-
cates the process of integrating MINCE with other applications and
slows down the variable ordering process. 

In this paper, we propose a new domain-independent algorithm,
FORCE, for ordering variables of CNF formulas and BDDs.
FORCE does not rely on external black-box tools and can be imple-
mented of less than 500 lines of code in C. It can be easily inte-
grated into any application or used as a simple pre-processing tool.
FORCE is orders-of-magnitude faster than MINCE and shows
competitive performance in SAT and BDD applications. FORCE
can be used as an alternative to MINCE for applications that require
flexibility and multiple variable-ordering calls. 

The remainder of the paper is organized as follows. Section 2 cov-
ers the necessary background. It reviews SAT and BDDs, motivates
the use of hypergraph partitioning, and describes MINCE. It also
mentions main ideas behind force-directed placement. The FORCE
heuristic is described in Section 3. In Section 4, we present our
experimental results. The conclusions and future work are
described in Section 5.

2 BACKGROUND AND PREVIOUS WORK
Boolean satisfiability solvers and BDD operations are popular in in
formal verification, logic synthesis and other EDA fields.

Boolean Satisfiability. This problem involves finding an assign-
ment to a set of binary variables that satisfies a set of constraints in
conjunctive normal form (CNF), i.e., a conjunction of clauses, each
of which is a disjunction of literals. A literal is either a variable or
its negation. An example of a CNF formula is:

. 

Complete SAT search algorithms [14, 19] are often based on the
Davis-Logemann-Loveland (DLL) approach [9], i.e., a depth-first
search in the decision tree over the problem variables. Reordering
variable decisions can accelerate this algorithm, and decision heu-
ristics can be classified as static [1] (pre-processing) or dynamic
[14, 19]. For example, the GRASP SAT solver [19] is typically used
with the dynamic heuristic DLIS, which selects the literal that
appears in the maximum number of unresolved clauses. 

Binary Decision Diagrams. BDDs [5] provide a canonnical and
compact representation of Boolean functions. They are directed
acyclic graphs produced by compacting decision trees of Boolean
functions. The size of BDDs, can still be exponential in the number
of variables in the problem, and a good variable ordering is essen-
tial to keep the size of BDDs manageable. Proposed variable order-
ing heuristics can also classified as being static [11, 13] and
dynamic [16, 18]. Sifting [16, 18] is one of the most popular
dynamic techniques, but has a high runtime overhead.

Since variable ordering is not a problem in itself, it is important that
the search for good orderings do not consume more resources than
the implied speed-up to particular applications.
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Problem Partitioning. A key idea behind existing algorithms for
variable ordering is to order “connected” variables next to each
other. E.g., in Boolean satisfiability, decisions on variables that
share common constraints are often made within a short time inter-
val. If decisions follow the order of variables, ordering connected
variables next to each other may speed satisfiability solvers. In
terms of BDDs, partitioning the problem, yields a BDD with a
smaller cut which implies fewer edges. Since a vertex is a source of
two edges, this leads to a smaller number of BDD vertices.

MINCE [1] analyzes the structure of Boolean formulae to find a
good variable ordering for SAT and BDDs. It views a CNF formula
as a hypergraph whose vertices correspond to the formula’s vari-
ables and whose hyperedges correspond to its clauses. One-dimen-
sional min-cut linear placement then produces an ordering vertices.
This ordering is translated back into an ordering of variables, and
the original formula is reordered (see example in Figure 1). For a
given variable ordering, we define the span of a clause as the differ-
ence between the smallest and greatest variables in the clause. The
cut for variable  is the number of clauses that include variables
with indices both less than and greater than . The cut of a
formula is the max cut over all variables.

The use of min-cut linear placement leads to smaller “half-perime-
ter wire-length”, which is equivalent to a smaller average clause
span in CNF formulas. The average clause span is related to the
average cut as follows.

Lemma 2.1 [1] Consider a CNF formula with  variables and
 clauses. The average variable cut is equal to the product of the

average clause span and .

Since the total number of variables and clauses are fixed, the aver-
age clause span is proportional to the average cut. Therefore, the
two objectives can be minimized using the same algorithm.

To solve the linear placement problem, MINCE uses the hyper-
graph placer Capo [6] based on recursive min-cut bisection to opti-
mize cuts and average clause span. MINCE has best- and worst-
case complexity of , where  is the size of the input.

Force-directed placement. The MINCE heuristic capitalizes on 30
years of progress in min-cut placement, but other placement algo-
rithms may also be useful for SAT and BDD. Wood and Rutenbar
used spectral placement techniques for BDD ordering [23], but
those algorithms are slow, difficult to implement and cannot acco-
modate important constraints. Since our work seeks easy-to-imple-
ment algorithms, we focus on force-directed placement [8]. A key
idea behind such algorithms is to analogize interconnect between
placeable objects with springs that exert forces according to the
Hooke’s law. Starting from an arbitrary, e.g., random, initial solu-

tion, we compute the forces acting on each object and displace
objects in the direction of the forces. Such an iteration is very fast,
and is typically repeated until a given objective function stops
decreasing. The main difficulty in force-directed methods is to pre-
vent overlaps and enforce slot assignments. In terms of variable
ordering this means that variable locals are integer and no two vari-
ables share the same location. Sometimes overlaps are removed by
introducing “repelling forces” between objects, in addition to
“attracting forces” that correspond to interconnect. We observe that
force-directed placement is greatly simplified if performed in one
dimension because slot constraints can be enforced by sorting. In
practice force-directed VLSI placement is not as good as min-cut
placement in minimizing average net length (clause span) or cut-
based objectives. However, it is often used in commercial place-
ment products because it is fast, easy to implement and amenable to
additional objectives and constraints.

3 THE FORCE ALGORITHM
The proposed heuristic FORCE performs one-dimensional place-
ment of a given hypergraph, and outputs a new vertex order that
tends to put connected vertices close to each other. The pseudo-
code of the algorithm is shown in Figure 2. If no initial ordering is
given, FORCE randomly generates an initial ordering. The remain-
ing part of the algorithm is a loop that performs iterations. In each
iteration, the algorithm begins by traversing all hyperedges and
computing the center of gravity  of each hyperedge :

(3.1)

where  and  denote the location of vertex  under the given
linear ordering and the number of vertices connected to hyperedge

, respectively. Next, the algorithm traverses all vertices and com-
putes their tentative new locations (not necessarily integers!) using
the following heuristic. Denoting with  the new tentative location
of vertex  and with  the hyperedges connected to vertex : 

(3.2)

This averages centers of gravity of all hyperedge conected to vertex
. The iteration is finalized by sorting tentative locations and

assigning integer indices to them. Iterations continue until a given
mtric of ordering, e.g. total span, stops improving. We additionally
bound the number of iterations by , where  is a constant
and  is the total number of vertices. Each traversal takes worst-
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Figure 1: Example of a CNF to hypergraph conversion using (a)
original variable ordering (b) improved variable ordering
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Figure 2: The FORCE heuristic.

Procedure: FORCE {
1 randomly generate an initial order of vertices;
2 repeat limit times or until total span stops decreasing
3 for each hyperedge 
4 compute center of gravity of ;
5 for each vertex 
6 compute tentative new location of  based on
centers of gravity of hyperedges;
7 sort tentative vertex locations;
8 assign integer indices to the vertices;
9 }
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case linear time in , and sorting takes  time.
Hence, FORCE has a worst case performance of

 (we assume the average degree of
hyperedges and the average degree of vertices are limited by a con-
stant. This compares favorably with many SAT and BDD algo-
rithms that have exponential worst-case performance. Since best-
case time for some SAT-solving algorithms (e.g., DLL [9]) is linear
in the size of the input, FORCE is more competitive on hard
instances. In practice, the computational overhead of FORCE is
often so low, that it can compete with linear-time algorithms.

An additional post-processing step can “slide a small window”,
e.g., of size 4, along the final ordering returned by FORCE and
exhaustively enumerate all permutations of variables in the win-
dow. The variables in the window are re-ordered in the best possi-
ble way, and a new window is considered. Such algorithms have
been explored in VLSI placement [7]. 

Figure 3 shows cut-profiles of a pigeon-hole CNF instance using
the original and FORCE variable orderings (the latter is similar to
MINCE). The better ordering reduces cut and reveals structure.

4 EXPERIMENTAL RESULTS
Improvements obtained using FORCE are shown in two experi-
ments - (i) faster SAT solving, and (ii) faster and more memory-
efficient BDD operations. 

We used the SAT solver Chaff, and the BDD package CUDD [20].
The SAT experimental results are given for instances from the

pigeon-hole [10], FPGA routing (fpga and chnl) [15], xor-chains,
randomized Urquhart [21], global routing (grout) [2], and micro-
processor verification benchmarks (pipe) [22]. The BDD experi-
mental results are given for the circsuit consistency functions of the
ISCAS89 [4] circuit benchmarks, expressed in CNF format. We
used a Linux workstation with a 333 Mhz Pentium-II processor.
Runtime and memory limits were 1,000 seconds and 500 MB, resp.

We compared the performance of Chaff using three decision heuris-
tics: static MINCE [1], static FORCE, and the dynamic variable
state independent decaying sum (VSIDS) [14]. VSIDS selects the
variable that appears in the highest number of clauses and gives
some priority to variables that appear in recent conflict-induced
clauses. Random restarts was disabled in Chaff.

Table 1 shows instance sizes, Chaff runtimes, ordering runtimes,
and the average variable cut for three orderings. We observe:

1. For the pigeon-hole and FPGA routing instances, both MINCE
and FORCE yield the best search runtimes.

2. For the xor-chain and Urquhart instances, FORCE wins.

3. For the global routing instances, VSIDS leads to the best search
runtimes. These instances have large average variable cuts.

4. The results are mixed for the microprocessor verification
instances. The use of MINCE leads to the best search runtimes,
but FORCE’s search runtimes are better than VSIDS.

5. MINCE and FORCE always significantly reduce variable cuts. 

6. Ordering runtimes are correlated with the size of the instance.
FORCE is orders-of-magnitude faster than MINCE. 

Our approach is more effective on highly-structured problems, such
as the pigeon-hole or FPGA routing instances, which consist of
multiple partitions. On these problems, MINCE and FORCE cap-
ture problem structure, speeding up SAT solvers.

The dynamic decision heuristic VSIDS outperforms static heuris-
tics on general structured EDA instances, e.g., the global routing
instances. This is partly because the VSIDS decision heuristic
accounts for the added conflict-induced clauses, which may
increase cutwidth and eliminate the advantage of static ordering. 

While the worst-case complexity of Chaff is exponential, FORCE
runs in near-linear time, and the implementation constant (in the
leading term of asymptotic complexity) is much smaller than that of
MINCE. FORCE can be integrated into dynamic ordering heuris-
tics, so as to account for conflict-induced clauses and can also be
called periodically within backtrack SAT solvers. 
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Figure 3: The “cutwidth profiles” for the Hole-7 SAT instance (56
variables, 204 clauses). The vertical axis here represents the number
of clauses (hyperedges) that cross a given variable. The profile in (a)
is for the original ordering and has cutwidth over 100. The profile in
(b) is for FORCE ordering and much lower max-cut (less than 25). 

(a) (b)

Table 1: Chaff runtimes (in seconds) for CNF-SAT instances using various decision heuristics. 

Instance #V #C VSIDS MINCE FORCE Average Variable Cut
Solve Order Solve Total Order Solve Total Orig MINCE FORCE

hole10 110 561 874 0.84 81.6 82.5 0.01 85.5 85.5 201 30 30
hole11 132 738 1000 0.86 919 920 0.01 738 738 263 35 35
fpga10_8 120 448 281 0.71 46.8 47.5 0.03 68.9 68.9 117 31 35
fpga10_9 135 549 476 0.87 344 345 0.03 5.09 5.12 141 37 40
chnl9_11 198 1012 205 1.37 18.2 19.5 0.01 16 16 181 35 30
chnl9_12 216 1212 519 1.96 35 37 0.01 30.4 30.4 215 35 35
xor1_32 94 250 1000 0.48 174 175 0.01 116 116 90 33 42
xor1_36 106 282 803 0.57 1000 1000 0.02 229 229 106 33 47
Urq3_1 43 334 1000 0.5 663.5 664 0.01 485 485 220 96 119
Urq3_9 37 236 25.3 0.37 6.93 7.3 0.01 3.97 3.98 162 65 81
2pipe_1_ooo 834 7026 7.16 31.7 1.18 32.8 1.28 5.19 6.47 2517 791 1048
2pipe_2_ooo 925 8212 10.55 32.4 2.04 34.4 1.37 2.17 3.54 3054 895 1241
2pipe 861 6695 7.57 22.4 0.94 23.4 0.6 1.14 1.74 2187 734 930
grout3.3-8 912 8356 2.43 22.6 10.9 33.5 0.33 143.4 143.7 2082 259 380
grout3.3-10 1056 10.8k 19.4 52.1 7.06 59.2 0.41 525.8 526.2 2707 304 448
Total 6230 170 3311 3481 4 2456 2460 14243 3413 4541



FORCE is also applicable as a variable ordering heuristic for BDDs
and leads to significantly smaller BDDs. Table 2 shows runtimes in
seconds, average cut and the maximum number of nodes (in thou-
sands) seen during the construction of the BDDs, where clauses are
processed in order of decreasing indices of their smallest literals.
We report all results with and without sifting. FORCE and MINCE
clearly outperform the original ordering and dynamic sifting (which
is also very slow). While MINCE outperforms FORCE in many
instances, the overall runtimes are often better when FORCE is
used because the two produce very similar solutions and BDD/SAT
applications are not very sensitive to the difference..

5 CONCLUSIONS
We proposed the FORCE heuristic for ordering variables for SAT-
solvers and BDD algorithms. It is much faster and easier to imple-
ment than the existing MINCE heuristic, but yields comparable
improvements in runtime of SAT solvers and BDD algorithms.
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Table 2: Statistics for constructing the BDDs of the ISCAS89 CNF Benchmarks [4].
(nodes = maximum number of BDD nodes seen during the construction of the BDD, in thousands)

Circuit
Without sifting With sifting Order Time Average Var Cut

Original MINCE FORCE Original MINCE FORCE MINCE FORCE Orig MINCE FORCE
time nodes time nodes time nodes time nodes time nodes time nodes

s27 0.08 0.2 0.09 0.08 0.08 0.07 0.07 0.2 0.08 0.08 0.07 0.07 0.23 0 11 4 6
s208.1 time-out 0.18 1.2 1.34 22 24 8 0.19 1.2 0.42 3 0.65 0.02 104 17 23
s298 mem-out 1.34 13.5 2.97 31 563 294 4.54 4 13.6 9.2 0.69 0.06 157 28 36
s344 mem-out 1.15 12.2 16 145 mem-out 6.17 10 28 24 1.01 0.04 137 17 28
s349 mem-out 0.8 10.7 4.81 31 5509 789 8.01 6.4 23 17.7 1.06 0.08 149 18 28
s382 mem-out 1.12 13.7 3.09 22 273 118 10 11 15.3 9 0.85 0.06 176 25 33
s400 mem-out 1.14 14.4 3.03 22 330 68 5.41 7.5 10.2 7.2 1.21 0.04 182 26 32
s386 mem-out 12.8 83 3.06 26 403 131 38 20 17.9 9.6 1.09 0.06 172 55 60
s444 mem-out 0.65 6.8 17 85 mem-out 4.05 4.2 25 15 1.39 0.05 192 26 39
s420 mem-out 0.99 7.2 13 86 1175 142 7.94 6.7 46 20 1.06 0.13 182 19 30
s510 mem-out 13 91 151 1.1K mem-out 60 31 139 26 3.28 0.14 224 69 79
s526 mem-out 8.63 38 9.13 60 mem-out 17 12 33 15 1.34 0.11 271 42 49
s526n mem-out 4.15 25 9.62 63 mem-out 15.5 12 38.6 19 1.55 0.06 262 41 48
s641 mem-out 30 125 time-out time-out 150 67 time-out 1.7 0.12 190 23 39
s713 mem-out 26.7 108 909 2.8K mem-out 113 59 time-out 1.79 0.22 216 27 41
s832 mem-out time-out time-out time-out mem-out time-out 5.64 0.13 432 156 162
s838 mem-out 5.73 31 881 7.8K time-out 104 27 743 105 2.03 0.4 366 29 42
s953 mem-out 369 1.1K time-out mem-out time-out mem-out 2.87 0.28 369 85 104
s838.1 mem-out 4.56 19 140 608 mem-out 55 15.7 342 32 2.62 0.62 419 29 47
Total 0.08 0.2 482 1700 2164 12901 8277 1550 599 295 1475 312 32 2.6 4211 734 926
#Built 1 18 16 8 17 15


