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Abstract

Transient faults are becoming an increasingly serious con-
cern for logic circuits. They can be caused by thermal neu-
trons, present at all altitudes, and by other types of ionizing
radiation, especially in aerospace applications and nuclear
engineering. In this paper we examine issues related to de-
tection of transient errors. The difficulty in testing for tran-
sient errors is that they are not always present. Test vectors
need to be repeated a number of times in order to detect a
fault. We show how to compute a measure for the detectabil-
ity of transient faults with respect to specific test vectors.
This is done using a matrix-based gate-fault model known
as the probabilistic transfer matrix model. Using this de-
tectability measure we derive methods to generate multisets
of tests to verify probability distributions of faults and de-
tect abnormalities in circuit behavior. Applications of this
method include detection of increased atmospheric radia-
tion in terms of its impact on circuits, and testing for pro-
cess variation that increases the susceptibility of a circuit to
transient errors.

1 Introduction

In VLSI circuits, transient errors, also known as soft errors,
occur due to external radiation or electrical noise. They are
of increasingly serious concern due to the downscaling of
device features and lowering of supply voltage. The suscep-
tibility to external radiation can be increased by certain man-
ufacturing defects such as abnormally large gate area, corro-
sion in the metal shield of a chip, thin wires, embedded dust
particles etc. New manufacturing processes can also lead to
new types of defects which indirectly affect susceptibility to
transient errors. For instance, immersion lithography is cur-
rently being used to get finer resolutions for smaller features
since water has refractive index greater than that of air [1].
However, water-induced defects due to air bubbles can cause
light to refract and this can affect features size as well.

It is difficult to test for transient errors since these er-
rors are not consistently present. Faults may not coincide
with the times when test vectors are applied to detect them.
Furthermore, even if we detect certain transient errors, it is
not clear how to interpret the results of such a test. Detec-
tion could signal an anomalous event, or it could indicate
a regular pattern. In this paper, we address these questions
by formulating the problem of transient error detection and
by recognizing that fault probabilities rather than the faults
themselves should be detected during such tests. Fault prob-
abilities can give us information about the error rate in given

circuits. Then we derive test sets which increase the prob-
ability of fault detection and facilitate the estimation of the
overall error rate.

Permanent stuck-at faults can be detected reliably by cer-
tain input vectors. On the other hand, transient faults can
only be detected with a probability that depends on the fre-
quency of their occurrence. Moreover, if multiple faults are
possible, the fault detection probability is not the same as
the occurrence probability. In this work, the probability of
detection is calculated using the PTM or probabilistic trans-
fer matrix model from [3, 7]. We also develop specialized
computational machinery for circuit test, which scales better
than the methods of [4], where testing was not considered.

We use previously validated formulas to estimate the
probability of occurrence of a fault accounting for environ-
mental factors such as altitude, neutron flux, and gate area
[6]. Then, based on this probability we derive a small num-
ber of repetitions for particular test vectors to enable fault
detection with sufficiently high probability. Repetitions of
tests can be used to ensure a desired level of fault toler-
ance. For instance, if the fault is detected more times than
expected, this can indicate an increase in the error rate.

The key contributions of this work are as follows:

e We propose a measure called the probabilistic de-
tectability of a transient fault with respect to a test vec-
tor to determine the likelihood with which a fault is
detected by each vector.

e Given a set of faults, we show how to derive multisets
of test vectors for various objectives (we call them mul-
titests). One objective is to minimize the test time, and
therefore the cardinality of the test set; another is to
achieve maximum fault detection with a limited bud-
get of tests.

Our work also suggests the possibility of comparing ex-
pected detection rates to actual detection rates. A change in
detection frequency can be caused by environmental condi-
tions or a violation of assumptions in the probability anal-
ysis such as the independence of gate faults. The results
produced by our techniques can be interpreted in such cir-
cumstances as well, and test vectors can be applied more
often to improve the detection rate.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses relevant prior work in this area, Section 3
shows how to derive fault detection probabilities and dis-
cusses computational issues. Section 4 gives various meth-
ods of test set derivation. Section 5 gives conclusions.



2 Previous Work

Previous research related to transient fault testing in-
cludes estimating transient error probabilities in circuits, n-
detection test sets, and online tests for transient faults.

In [9] the authors discuss factors that cause transient er-
rors in combinational logic to be latched. There are three
possible masking mechanisms that can prevent a transient
error from being latched: logical masking, electrical mask-
ing and latching window masking. Electrical masking oc-
curs when the charge of the particle of external radiation is
not high enough for the signal value to flip. Transient errors
have to carry charge greater than Q.,;; or the critical charge
for the signal to change value. Latching window masking
occurs when the transient pulse occurs outside the part of
the clock cycle when flip-flops are latching. Logical mask-
ing occurs when the error does not propagate through the
circuit logic to any of the primary outputs. In [6] the soft
error susceptibility of a gate g with respect to a latch /, is
calculated by perror(g,1) = Rsev * Psense(8,1) * Prarchea(851)-
Here Rggy is the probability that an incident charged parti-
cle can produce an SEU; this takes into account the flux and
the gate area to determine if the total charge is greater than
Ocrit- Psense(g,1) is the probability that an input sensitizes a
particular gate. Pjucneq(8,!) is the probability that the error
occurs during the latching window of the clock cycle.

The concept of generating tests which detect a fault with
a high probability is related to the notion of n-detection test
sets, where each fault in a circuit is detected n times by the
test set. In [8] the authors adapt conventional algorithms
for generating compact test sets into n-detection algorithms.
One of their algorithms for generating a compact n-detection
test set proceeds by including every essential test and then
repeatedly selecting the additional test vector #; which has
the largest value of m(r). The function m() counts the to-
tal number of faults that ¢ detects which have not yet been
detected n times.

While the task of detecting a transient fault with a high
probability can be compared to detecting a fault n times,
there are key differences. In the n-detection framework, any
test can only detect a fault once; this imposes an added dis-
creteness to the problem. However, a particular test can de-
tect various transient faults with a spectrum of probabilities.
Therefore in our framework a measure such as m(t) would
need to be modified to sum the total probability with which
any fault, not yet detected with probability p can be detected.
Also each test vector is only repeated once in an n-detection
framework while a test vector can be repeated many times to
detect a transient fault. One seeks to use fewer tests (includ-
ing possible repetitions) while covering a given fault set.

The rate of transient errors may temporarily increase,
e.g., during a solar flare or due to noise in the power sup-
ply voltage. Therefore, mechanisms to embed tests for these
types of errors in chips are important, especially in mission
critical applications. Work has been done in the area of on-
line testing of transient faults for specialized circuit tech-
nologies. In [5], it was shown that Domino circuits can
be tested for transient faults using self-checking circuits be-
cause they do not cause bidirectional errors, but for tech-
nologies like FPGAs and FCMOS, new strategies are nec-
essary. Built-in tests are often generated using LFSRs that
feed patterns into scan chains. To this end, the work in [10]
modifies random LFSR patterns by a few bits to generate
complete test sets for a set of faults. Using such a scheme
one can alter an LFSR cycle so that it repeats the tests re-
quired for coverage by modifying redundant test bits.

3 Transient Fault Detectability

Transient errors can be detected by test vectors if they are
applied in the same cycle in which the transient error is
latched. Therefore, the probability of a test vector detecting
a transient fault is proportional to the probability of the tran-
sient fault occurring at any particular clock cycle. However,
when there are multiple transient errors (which may have a
single physical cause), or if there are unreliable circuit com-
ponents, the probability of a test vector detecting an error is
not the same as the probability of occurrence. The detec-
tion probability depends on the interaction of the multiple
errors and/or the observability of the errors under unreliable
component behavior.

In this section we develop a way to accurately determine
the detection probability of sets of independent transient er-
rors with respect to particular test vectors. We use the matrix
representation given in [7] to represent transient error prob-
abilities at gates and signals.

3.1 The PTM Model

The PTM framework was first introduced in [7], but the un-
derlying concept can be traced back to [3]. The probabilis-
tic behavior of a gate is described by a matrix M, where
the (j,k)th entry represents the probability of output sig-
nals O = 0g,01,...0, having value k given that input signals
I =ip,ij...im have value j. This is denoted p(O = k|I = j).
Here the row and column indices j and k are thought of
as bit vectors whose entries represent the values of the sig-
nals that form the input and output. For convenience we
omit the signal names and write this as p(k|j). For instance
p(1,1]1,0) represents the probability that the two output
variables (O, Oy ) have value (1,1) given that the two input
variables (I,,;) have value (1,0). Probability p(1,1|1,0)
can be alternately written as p(3]2).

Definition 1 The matrix M where the (j,k)th entry repre-
sents the probability of output value k given input value j,
i.e., p(k|j), is called a probabilistic transfer matrix (PTM).
A fault-free circuit has an ideal transfer matrix (ITM), i.e.,
the correct value of the output occurs with probability 1.
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Figure 1: The ITM and a PTM for a NAND gate.

Similarly, an input vector v is a row vector representing
the joint probability distribution of the input signals. The ith
entry of v denoted v(i) gives the probability that the input
signals have values represented by the bit vector i. The out-
put probability distribution after input vector v is evaluated
on gate g with PTM P, is given by vPg. (See Figure 2)
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Figure 2: Test vector evaluation at a faulty NAND gate.

PTMs can be used to model transient errors .05 .95
by inserting error probabilities into their en- .05.95
tries. For instance, if a NAND gate has out- .05 .95

put stuck-at-0 with probability 0.05 then the o0



10
00
X
00

(1000 ]
0001

Figure 3: ITMs of a wire swap and a fanout network.

corresponding PTM is given by the matrix on the right.

In this matrix, entries where the correct output value is 0, are
left unchanged while entries with correct output value 1 have
an error of 0.95. In this way we can introduce independent
transient errors simultaneously into several gates.

Starting with gate PTMs, we can calculate the PTM of
an entire circuit, using a few construction rules in terms of
matrix multiplications and tensor products. Since the latter
has not often been used in this context, we define it formally.

Definition 2 Given two matrices My and M, with dimen-
sions m X n and o X p respectively, the tensor product of M
and M3, denoted M| ® M3 is an mo X np matrix whose en-
tries are given by p(k|j) = p(ki|j1)p(kz2j2)-

The combination rules for PTMs are as follows:

e [f two gates g1 and g, with PTMs P; and P, are con-
nected in series then their combined PTM is by P} P.

e [f two gates g1 and g, with PTMs P; and P, are con-
nected in parallel then their combined PTM is P} ® P».

Wiring subnetworks can be treated as a special class of
gates and represented by ITMs just like other gates; wire
permutations form a special class of permutations which we
call variable permutations. Variable permutation matrices
are induced by permuting bits of row indices and column
indices (these bits are known as row variables and column
variables) of the identity matrix. The wire swap matrix for
two adjacent wires is shown in Figure 3. Similarly, a fanout
can be represented by an ITM of the kind also shown in Fig-
ure 3.

Definition 3 For a matrix A consider a permutation o( )
on the row variables. A row of A with index igiy...i, in
binary is mapped to the row with index c(ip)o(iy) . ..o (in)
in binary. This defines a row variable permutation of A with
respect to 6, which we denote as rperm(A,G).

3.2 Detectability

Combining gate PTMs into circuit PTMs is useful because
the latter can provide information about the detectability of
various faults in a circuit. A detectable fault in a gate causes
an erroneous gate output. Therefore, the detectability of a
fault can be thought of as a measure of the effect of the fault
on the primary output.

Definition 4 The  detectability of a fault set
F = {f1,f2,---fu} in circuit C with PTM Mp and
ITM M is defined as the total probability that the output is
erroneous given that faults f; exist with probability p;. Let
My XM be the entry-wise product of M with My. The total
probability of output error is given by the sum of the entries
of %Mf Xe M.

The detectability of a fault can be calculated by obtain-
ing the circuit PTM when the gate g has error probability p,
finding the total probability of error, and then multiplying by
1/p. The detectability of a fault with respect to a test vec-
tor is the probability with which the fault is exposed in the
output for a particular test vector. For a test vector ¢, this is
given by

pdet(fat) :th XeM

Table 1 illustrates the detectability of multiple faults in
the circuit C17 of Figure 5 where there is an error proba-
bility of 0.05 associated with every gate input. Note that
if there is only one probabilistic stuck-at fault in a circuit,
and this fault occurs with probability p, then any vector that
detects the fault also detects it with probability p. Therefore
the PTM formulation in this case provides information about
whether or not the fault is detectable. In the case where there
are multiple errors, the detection probability is generally dif-
ferent from the occurrence probability of an individual fault.
Undetectable faults have detectability zero for each test vec-
tor.

3.3 Computational Method

Earlier we showed how to calculate circuit PTMs and then
extract detectability information for particular vectors. A
computational method for this process is given in [4]. How-
ever, the entire circuit PTMs do not need to be computed in
order to evaluate particular test vectors. Therefore we pro-
pose an alternate, more scalable method for evaluating the
test vectors. As before, we represent gate faults by a PTM.
Then, for each input vector t we compute the output vector
by evaluating in topological order the output of each gate
and then feeding these outputs into new inputs in turn. The
final output vector oy, is then be compared to the ideal out-
put vector oy, in order to calculate pex,(f,1).

Pexp(f11) = 014 X e 01,,, (i)

Calculating in this way avoids some unnecessary compu-
tation. This is because circuit PTMs include output informa-
tion for all possible input combinations, but each test vector
corresponds to a single row in the circuit PTM. The pro-
posed technique scales test vector evaluation to much larger
circuits than the complete PTM evaluation method described
in [4]. The topological ordering ensures that each gate is
only evaluated after its inputs are ready. Before a gate is
evaluated, its inputs are tensored together so that one input
vector is multiplied with the gate. A complication occurs
when the input distributions of two signals are coupled. As
shown in Example 1 a fanout gate has two or more outputs
but the output signals are highly correlated with each other.
Therefore, when we have 2-output gates, it is possible that
their input distributions cannot be separated since there is a
possibility that the joint probabilities of the signals are cor-
related. While individual signal probabilities can always be
combined to form a joint probability vector, the converse is
not always true. There are cases where the joint probability
vector cannot be split into two or more individual probabil-
ity vectors because the distribution of signals can be coupled
with a high correlation as shown in the example below.

Example 1 When input vector i = [0.50.5] is multiplied
by the fanout PTM shown in Figure 3, the output vector
is 0 =1[0.5000.5]. However, if we abstract the two out-
put variables and express their states separately we get



store input signals
topologically sort circuit
for each gate
{
current_inputs = NULL
for each gate input
if entangled

{

for each entangled signal

add signal to carrent_inputs vector
add signal to gate_outputs
gate_PTM = gate_PTM Q Ildentity

}
}

permute gate to match current_inputs order

tensor signals in current_inputs order for gate_input
gate_outputs = gate_input x gate_PTM

Store gate_outputs as entangled signals

Existentially abstract any out put signals without sinks

}

Figure 4: Procedure for evaluating detectability of a fault
with respect to a test vector.

09 = [0.5 0.5] and o1 = [0.5 0.5]. This corresponds to a
Jjoint distribution of [0.25 0.25 0.25 0.25] which is not the
original joint distribution.

In order to avoid the foregoing situation, we keep track
of potentially correlated signals from the same source gate,
in tensored form. If only one of these signals is an input for
a certain gate g, then g is modified to take in both signals as
input. The gate g also outputs the extraneous signal, and its
PTM can be computed by tensoring the PTM of g with an
identity matrix, as shown below.

Example 2 In the context of Example 1, suppose gate g with
PTM M receives input o1, and another input oy, and outputs
z. Since 01 and oy have correlated probability distributions,
the PTM for g needs to be modified to take the joint distribu-
tion of og an o1 as input. This is done by tensoring M with a
2 X 2 identity matrix.

M=I1M

The modified gate has oy and o1 as inputs and oy and 7 as
outputs. Essentially, it leaves oy unchanged and causes the
signals og and 7 to be correlated. If oy has no sinks left, then
it can be abstracted out.

A test vector evaluation method must take correlated sig-
nals into account by storing the appropriate signals jointly
and making the appropriate modification when evaluating
sink-gates of correlated signals. It is necessary to permute
the inputs of gate g to change the order of the input wires,
before tensoring with the identity so that the correlated sig-
nals form adjacent variables in cases where the original cor-
related input occurs in the middle of the gate. Figure 4 gives
the pseudo-code for the algorithm used to evaluate test vec-
tors.

Table 2 shows the average runtime and memory require-
ments for evaluating the output probabilities for various in-
put vectors on standard benchmark circuits from the ISCAS-
85 suite. These simulations were conducted on a Linux
workstation with Intel Xeon CPU 2.0GHz processor and
cache size 512 KB. Table 2 shows two sets of results. The

c .

Figure 5: The small ISCAS-85 circuit C17.

Test vector | Detectability
00000 225
11111 185
11110 .186
11101 205
11011 215
10111 215
01111 .186

Table 1: Detectability of a multiple fault in the circuit in
Figure 5, with respect to various test vectors.

first includes runtime and memory for computations with
ideal circuits, i.e., all gates having error probability zero.
The second set shows the corresponding results for circuits
with all gates having error probability .05 at every input.
Faults at the input pins demonstrate the worst case time com-
plexity for evaluating a test vector. This is because faults at
the input cause multiple paths to be evaluated starting at the
beginning of the evaluation rather than after an erroneous
gate at a later level of the circuit.

The first set of run times are generally smaller because
no errors are present and the computation involves only Os
and 1s. Similarly, the PTM representing any gate has a sin-
gle non-0 entry per row. Our results show that the runtime
and memory usage for circuits with ideal gates vary with
the number of gates in the circuit. In the case of faulty
gates, these parameters can vary further depending on the
input vector under evaluation. Some input vectors cause
probabilistic outputs that represent the occurrence and non-
occurrence of gate faults. This leads to multiple paths in the
circuit that contribute to the probability of the same output
combination. Our techniques perform such summations im-
plicitly, but runtime generally depends on the total number
of paths present.

4 Test Set Generation

In the previous section, we showed how to compute the de-
tectability of transient errors for particular test vectors based
on transient fault probabilities. Using this information, we
can derive multitests, i.e. test sets with repetition, to increase
the likelihood of detecting or confirming a fault probability.
Suppose, a transient error f occurs with probability p ac-
cording to previously validated estimates. If ¢ detects the
error with probability ¢ = pge(f,?), then ¢ is a binomial
random variable. If we repeat the test ¢ twice, the probabilit

of obtaining one detection is ¢> +2g(1 —q) = 1 — (1 —qg)°.
Therefore if we want to confirm the estimated probabil-
ity for fault f we can repeat the test n times such that



Circuit Characteristics Ideal circuits Erroneous Circuits
inputs | outputs | gates || time,s | memory, MB || time, s | memory, MB
C432 36 7 160 0.28 0.7 0.73 0.8
C499 41 32 | 202 0.30 0.2 0.36 1.2
C880 60 26 | 383 0.47 0.4 52.50 124.0
C1355 41 32 | 546 1.44 0.1 0.22 0.6
C1908 33 25 880 0.76 1.1 11.70 422
C3540 50 22 | 1669 1.48 2.2 || 131.50 547.1
C6288 32 32 | 2416 2.12 33 50.90 44.8

Table 2: Runtime and memory usage for the detectability evaluation for benchmark circuits

with all gates having error probability O in the ideal case and .05 in the erroneous case.

1—(1—¢g)" > py, to increase the probability of detection to
some threshold probability. If there are no detections after
repeating the test n times, then we can be fairly certain that
the probability of transient error does not exceed the esti-
mate. For m detections, we can calculate the probability with
which n repetitions yield m detections as (/')g™(1—q)" ™.
Depending on this probability we can decide if the circuit is
experiencing more transient errors than normal

Similarly, given a set of test vectors for a set of multiple
faults, we can derive a multitest to compare the fault prob-
abilities to a given upper bound. Different test vector sets
can be developed for different practical objectives. We first
discuss a method for generating a small multitest to detect
a set of faults with a desired detection probability. This fest
vector repetition algorithm first calculates pge(fi,t), as de-
scribed earlier. Given a desired detection probability p,;(f;)
we calculate d( f;) for each fault f;, which can be thought of
as the probability with which fault f; is already detected. We
then rank each test vector ¢ in descending order by the value
r(t), where

r(t) = max(paer (fi,t) ¥d(fi), 1 = pun (/i)

all i:d(f;)>pm

Initially we set d(f;) = 1 for all i. Then we calculate a “rep-
etition list” which gives the number of times to repeat each
vector ¢ .

1. Initialize the repetition list to O for all vectors ¢ in the
test set.

2. Calculate r(t) for all 7.

3. If for all f;, d(f;) < pu(fi) then the procedure termi-
nates, and the repetition list is the desired multitest.

4. Select item #; with minimum value of r(;) and incre-
ment its value in the repetition list.

5. Forall f;, set d(fi) = d(f;) * pae: (fi,1).

6. Recalculate r(t) = Y, d(fi) * paer (fis1)-
7. Return to step 3.

Example 3 Consider again the circuit C17 in Figure 5.
For the set of faults consisting of all primary inputs
stuck at 1 with probability .05 each, the multitest is
{00111(28),01011(28), 01110(28),01101(28)}, with rep-
etitions given in parenthesis. For the set of faults con-
sisting of primary outputs stuck at O with probability .05
each, the multiset is {11111(28)}. For the set of faults
consisting of primary inputs stuck at 1 with probabilities
0.05, 0.1, 0.15, 0.25, from top to bottom (see Figure 5), the
multitest is {00111(14),01011(9), 01110(7),01101(28)}.

The above method yields a compact multitest because
at each step we select the vector that probabilistically cov-
ers the largest percent of uncovered faults. Since we never
remove vectors under consideration, repetition occurs auto-
matically. Adding a test vector (or an extra repetition of an
existing vector) never causes the probability of detection to
decrease. In our experiments, we used test vectors generated
by the ATALANTA program [2]. Table 3 shows the total
number of test vectors required by various circuits for stuck-
at-0 faults at input signals with probability 0.05. The rep-
etition algorithm shows significant improvement over ran-
dom test vector selection from a complete set of test vectors.
The desired probabilities of detection are shown in the ta-
ble. We can further decrease the runtime by identifying test
vectors ¢ which are essential for certain faults, i.e., such that
Ddet(fi,v) = 0 for some fault f;, for all v # ¢. Such test vec-
tors ¢ will need to be repeated

logpdet (firt) ( 1— Pth (fl))

times. Similarly, an upper bound on the number of repeti-
tions of any test vector can be derived in terms of the small-
est value of pge (fi,v).
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Figure 6: The number of distinct test vectors generated by
our techniques as a function of the required detection prob-
ability pyp.

Table 3 also shows that the number of vectors required
increases rapidly from a threshold of .95 to .99. The general
trend in the number of vectors required mirrors the growth
in case of a fault with one test vector detecting it. Figure 6
shows how many distinct vectors are generated by our tech-
niques for various required detection thresholds p;,. The
increased variety of test vectors with growing pyj, indicates
that the our technique is not equivalent to simple repetition
of a compact set of test vectors.

Alternatively, if we have a limited budget of n test vec-
tors we might like to choose the vectors such that the tar-
get faults are detected with as high a probability as possible.



pin =05 Prn =15 pin = -85 Prn =95 Pin=-99
Circuit | # faults time alg | rand time alg | rand time alg | rand time alg rand time alg rand
c6288 32 0.01 56 3717 0.01 112 782 0.01 148 | 1034 0.01 236 1266 0.02 360 1998
c1908 33 0.04 974 | T/O 0.04 | 1337 | T/O 0.04 | 1585 | T/O 0.10 | 2161 T/O 0.12 2991 T/0
c432 36 0.03 462 731 0.67 924 | 1415 0.90 | 1221 | 1771 1.43 | 1947 2696 2.17 2970 3797
c499 41 0.05 518 | 1643 0.05 | 1036 | 2723 0.06 | 1369 | 3085 0.10 | 2183 4448 0.13 3330 8157
c3540 50 0.05 411 907 0.06 817 | 1665 0.06 | 1078 | 2256 0.14 | 1716 3589 0.17 2615 4975
c5315 178 0.64 854 | 2669 || 14.90 | 1708 | 4691 || 19.96 | 2557 | 6531 32.20 | 3599 8961 50.39 5490 | 13359
c7552 207 1.68 | 1680 | 3729 || 51.33 | 3364 | 6824 | 68.32 | 4445 | 8352 || 110.60 | 7082 | 12210 || 170.75 | 10805 | 18314
c2670 233 0.97 884 | 3650 || 22.95 | 1770 | 5699 || 30.21 | 2339 | 7755 49.45 | 3729 | 11104 76.36 5682 | 15961

Table 3: Number of test vectors (with repetition) required to detect input signal faults with various threshold probabilities with
our method denoted alg. Columns marked rand give the average number of vectors needed with randomly chosen test vectors.

The maximum runtime was one hour.

A naive approach would be to initially evaluate r(¢) as be-
fore and simply repeat the vector with the lowest r(¢) value
n times. However, this approach would only detect certain
faults and not others. The following method gives roughly
equal chances of detecting any of the faults regardless of
their occurrence probabilities.

1. Execute the test vector repetition algorithm with p;;, =
.5 to obtain the multitest S. Set the variable inc = .25.

2. If |S| > 1.05n, then py, = pyy, — inc.

3. If S < m, then p,, = pyy, +inc.

4. Setinc =inc*.5.

5. If n < S < 1.05n, then remove 5% of the vectors and
return S and pyy,

6. Rerun the test vector repetition algorithm.

7. Return to step 2.

This algorithm uses binary search to detect the desired
threshold level that can be met for all the faults without ex-
ceeding a test budget.
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Figure 7: Detection probabilities achievable using 500 and

1000 test vectors. Dips in the graph correspond to faults with

low detectability.
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Figure 7 shows the optimal threshold of detection for
budgets of 500 and 1000 test vectors. As in the case of the
circuit with 200 faults, we observe that certain faults with ex-
tremely low detectabilities dominate the number of vectors
required. Therefore, the elimination of extremely rare faults
can considerably increase the optimal detection threshold.

Consider an n-vector subset T = {t1,1; ...t } of a multi-
test S. The probability of vectors in T detecting errors can
be estimated using the individual detection probabilities of
the test vectors. This can be done by calculating pges(F,#)
where F' consists of all faults under consideration, as in Sec-
tion 3. Then the probability of n detections will be

Puder = Wyer [Paer (Fo 1) 1y es—-7 [1 = paer (Fy1))]

This measure can tell whether the circuit is experiencing a
higher error rate than originally expected.

5 Conclusion

Probabilities of transient faults in logic gates can be esti-
mated using gate and environmental parameters. Based on
such estimates, we designed test sets to compare the error
rate of a combinational circuit to a given threshold. The set
of test vectors starts from a complete set of deterministic
test vectors intended to detect single stuck-at faults, and is
extended to a multitest by a greedy algorithm that repeats
some of the test vectors.

‘We modeled simultaneous multiple faults using a matrix
formalism known as probabilistic transfer matrices (PTM).
As our results show, the probability of detecting multiple
faults is not the same as the probability of the faults occur-
ring, due to logic masking. However, this effect is automati-
cally considered in the process of computing output vectors
with PTMs. Our results show that the PTM test vector eval-
uation method scales well to realistic circuits.

Ongoing work seeks to model correlated faults, such as
bridging faults, using the PTM technique. We are also inter-
ested in potential applications of transient-fault detection to
online testing.
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