
CAD Tool Development for Multi-Million Gate Designs

Jarrod A. Roy, David A. Papa, James F. Lu, Aaron N. Ng, Igor L. Markov
University of Michigan, EECS Department, Ann Arbor, MI 48109-2122

{royj,iamyou,jflu,aaronnn,imarkov}@umich.edu

ABSTRACT
Many groups in academia and industry are now extending their
tools to handle super-sized designs. In addition to scalable algo-
rithms, this requires software infrastructure and development poli-
cies to ensure and verify the robustness and scalability of imple-
mentations. Specific issues include programming for and execut-
ing programs in 32-bit and 64-bit memory models, modular tool
infrastructure, diagnostic visualization of super-sized designs, and
the use of simulation clusters for thorough evaluation of CAD tools.

1. INTRODUCTION
Recent academic work has demonstrated the ability to combine

partitioning, floorplanning and placement in one tool [4]. This
promises to significantly simplify SoC layout by essentially per-
forming flat placement with integrated block packing and other op-
timizations. While this approach requires more exploration before
reaching commercial toolchains, it is already clear that it leads to
optimization at a scale previously unseen. Indeed, modern aca-
demic tools can place 2.5M objects (10M gates) in 32-bit memory
space, and significantly more when compiled in 64-bit mode. Typ-
ical runtimes for designs with 2-3M objects, on modern worksta-
tions, are less than one day.

Recently IBM has sponsored a placement [8, 10] contest to gauge
the effectiveness of academic placers on modern multi-million gate
designs and has released eight new large benchmarks to foster de-
velopment in this area. General statistics for these designs are pre-
sented in Table 1. These benchmarks are quite interesting in that
they contain many fixed obstacles in the core region and a large
amount of whitespace. This is depicted for the design adaptec1
in Figure 1. Combined with the fact that they have many mov-
able objects, they are a challenge to state-of-the-art placers in terms
of robustness and scalability which is inherent when working with
multi-million gate designs.

In this note we discuss infrastructural issues associated with tool
development for multi-million gate designs such as the ISPD 2005
Placement Contest benchmark suite. We illustrate these issues us-
ing large-scale circuit placement, but the bulk of the discussion ap-
plies to EDA tool development at large.

.

Mov. # Fixed DesignCircuits
Objects Objects

Nets # Pins
Util.

adaptec1 210904 543 221142 944053 57.34%
adaptec2 254457 566 266009 1069482 44.32%
adaptec3 450927 723 466758 1875039 33.66%
adaptec4 494716 1329 515951 1912420 27.23%
bigblue1 277604 560 284479 1144691 44.67%
bigblue2 534782 23084 577235 2122282 37.94%
bigblue3 1095519 1293 1123170 3833218 56.68%
bigblue4 2169183 8170 2229886 8900078 44.35%

Table 1: Multi-million gate benchmarks from the ISPD 2005 Place-
ment Contest [10] . Images of adaptec1 can be found in Figure 1.

The remainder of the note is organized as follows. In Section
2 we outline basic issues arising when dealing with 64-bit execu-
tion modes. Section 3 emphasizes the need for rigorous simulation
infrastructure, including distributed clusters of workstations. Im-
plications for source code development are discussed in Section 4,
and Section 5 describes the requirements and the impact of detailed
diagnostics on the development process.

2. SCALING TO 64 BITS?
These days 64-bit hardware is more common and more power-

ful than ever before with a wide variety of platforms from which to
choose — Hewlett-Packard HP-PA, Sun Ultra-Sparc, AMD Opteron
and Intel Pentium4-Xeon EM64T for example. Many of these plat-
forms support both 32- and 64-bit execution, but usually give the
performance edge to 64-bit code (mainly due to the increased num-
ber of registers available). This combined with the ability to use
far greater quantities of memory than 32-bit machines make 64-
bit platforms very attractive, and in some cases essential, for EDA
tools.

Unfortunately this enhanced performance and expanded address-
able memory space comes at a cost: larger memory footprint. Point-
ers double in size when switching from 32 to 64 bits which can
dramatically increase memory use. Integers remain at 32 bits, so it
becomes more convenient to use indices instead of pointers where
possible. Indices require less memory, which contributes to bet-
ter memory locality and increased cache utilization, and allow for
range checking when necessary. Note that circuit hypergraphs are
not going to have two billion vertices any time soon so 32-bit in-
dices are safe in the foreseeable future.

One must still be aware when transitioning to 64-bits that stan-
dard data structures, e.g. in the Standard Template Library (STL),
still must use pointers to some extent, therefore a 30-50% increase
in memory usage in 64-bit mode can be expected unless the code

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

adaptec1 HPWL=9.091e+07, #Cells=211447, #Nets=219794

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

adaptec1 HPWL= 8.666e+07, #Cells= 211447, #Nets= 219794

Figure 1: Sample placements produced by Capo [4] of the multi-million gate benchmark Adaptec1 from the IBM sponsored ISPD 2005 Placement
Contest [8] . These plots clearly illustrate the effects of using different whitespace allocation techniques.

explicitly manages memory allocation. In summary, if 4GB are not
enough for a process, the source code can be recompiled in 64-bit
mode, but one should then expect to use closer to 6GB memory,
perhaps, with a slight (10%) speed-up.

3. SIMULATION CLUSTERS
Evaluating and debugging tool runs on very large designs is an

extremely time-consuming process. Some bugs show up only after
many hours of runtime, and require very large datasets. This man-
dates the use of distributed computing clusters to evaluate every
significant change to core algorithms.

3.1 Sample infrastructure
In order to make the most efficient use of programmers’ time,

we have found it necessary to perform literally thousands of simu-
lations of our algorithms on various available benchmarks to keep
abreast of the performance impact of algorithmic changes as well
as catching programming errors that are inadvertently introduced.
Using benchmarks from several independent sources (for example
[3, 10, 13]) is crucial to fairly evaluate our tool [9]. To this end, we
use a cluster of over one hundred Pentium workstations dedicated
to validating the results of ongoing algorithm development.

3.2 Randomized testing and reproducibility
Several techniques useful to EDA tools include the use (or the

possibility for) randomization. Randomization can lead to improved
solution quality (the best of 20 runs is usually much better than the
average) and can improve the efficiency of testing (every indepen-
dent run may exercise different paths in the tool) but significantly
increases simulation load during testing as regressions must be de-
tected in terms of average quality.

There are ways to “stabilize” the end results of randomized al-
gorithms so that a designer can expect a certain solution even with
different random seeds if this is desirable [1]. Similarly, there is a
simple way to reproduce the results of randomized runs for debug-
ging purposes, as explained below.

Since random number generation can vary wildly between dif-
ferent platforms and operating systems, we have found it most ef-
ficient for purposes of reproducibility to create our own platform-
independent random number generation utilities. We override ran-
dom number generators that may be included with standard data
structures (as data structures from different packages may use dif-

ferent random number generators) so that all generated random se-
quences can be reproduced exactly at a later time with the knowl-
edge of the initial random seed.

4. MODULAR TOOL INFRASTRUCTURE
Due to the sheer size and complexity of code required to build

an efficient and robust EDA tool, it is often preferable to divide the
tool’s workload into well defined sub-problems that can potentially
be solved more easily. The tool becomes separated into solvers of
various problems and logic that drives the tool by constucting and
submitting instances to solvers, interpreting solutions and making
decisions about what to do next. These separations of labor make
it much easier to understand the flow of the tool and ensure that the
tool runs correctly.

4.1 Modular optimizers
The solvers described in the division of labor above should be

wholly self-contained so that they can be individually tested for
efficiency and correctness. Interfaces should be developed such
that solvers can be used as stand-alone applications as well as well
as parts of a tool with much larger scope.

Well defined input file formats for each component necessary
for individualized testing. Small instances with known solutions
aid greatly in the debugging process. Given that the overall task
of the main tool will be broken into smaller pieces which can be
solved more manageably, it is often very useful to save intermediate
problems for later study. For example, a min-cut partitioner can
save internally-created partitioning problems for use in debugging
and further algorithmic enhancements.

4.2 Internal consistency checkers
Modules must “sanity-check” their inputs as well as the solutions

they provide to detect problems as early as possible in development.
For example, a wirelength evaluator should not blindly return non-
sensical values such as infinite or negative length and array lookups
can be subject to bounds checking. These types of internal checks
can help identify and localize errors quickly. Runtime and memory
penalties are often associated with consistency checking, but can
usually be placed in non runtime critical areas of execution. Also
once code is deemed mature, many of these checks can be disabled
for the sake of efficiency.

5. DIAGNOSTICS
Given the extremely long runtimes on large designs and their

large memory footprints, it may be difficult or even infeasible to
debug interactively using popular IDEs. Therefore, successful ap-
proaches to debugging require articulate, automated and concise
diagnostics. Such diagnostics typically takes the form of (i) execu-
tion logs, with tunable level of detail, (ii) visualizations that can be
quickly adjusted to current needs, and (iii) error reporting.

5.1 Visualization
Visualizing intermediate steps in the running of a tool is ex-

tremely important as it can provide much more information about
the working of the tool than a single output number such as to-
tal power or circuit delay. Displaying something as simple as the
placement of cells in a layout is no simple task for multi-million
gate designs due to the sheer volume of data. One can use com-
mercially available solutions based on OpenGL, but these gener-
ally require specialized graphics hardware for performance and are
difficult to customize. For this reason, we emply rasterization tech-
niques to cut down on image size. We assume a reasonable screen
resolution for current workstations and coalesce multiple objects
into single horizontal and vertical segments when the objects them-
selves would not be distinguishable due to pixel size. This tech-
nique is exhibited in the images in Figure 1 where the benchmark
has several hundred thousand small cells which would indistin-
guishable no matter how accurately drawn given the resolution of
the image.

The core area of modern SoC designs is determined largely by
pin count when area array I/Os are used. These types of pins are
generally large and require significant area resources. For designs
to be routable, they must also have sufficient routing resources
which inevitably leads to increased area and increased whitespace.
The ISPD Placement Contest benchmarks [10] are consistent with
these statements. With such a large number of movable objects
and relatively low utilization (which equates to high amounts of
whitespace), whitespace allocation has a dramatic effect on wire-
length, which becomes readily apparent from Figure 1. Two dra-
matically different whitespace allocation schemes were used pro-
duce the pictured placements. The pictures show exactly where
whitespace is allocated and can give clues as to where futher algo-
rithmic improvement is possible.

The choice of format for representations is also important for
quick and easy visualization. In our development we have found
the freely available plotting tool Gnuplot [7] invaluable for produc-
ing pictures of our work as it has a very simple interface and allows
to easily overlay several different data sets at once. The input for-
mat of Gnuplot is also extremely convenient because it can easily
be altered by hand or by scripts after being produced, unlike most
image formats. For example, using Gnuplot we regularly plot the
cut line decisions (see Figure 2 left) and the outlines of areas of
local block packing (see Figure 2 right) of our min-cut floorplacer
Capo [4] on various benchmarks to see if techniques are working
as expected and what decision making processes may need to be
altered for better solution quality.

5.2 Memory usage
Memory usage and scalability are paramount concerns when work-

ing with multi-million gate designs. Tools should take care to ac-
count for their own memory usage and report statistics to aid tool
development and use. Figure 3 illustrates some of the useful mem-
ory statistics that can be gathered such as page faults (useful to
detect thrashing), resident memory, peak memory, and a place in
the code responsible for the most memory use. High memory us-

age can lead to artificially poor performance due to poor cache
coherency or heavy swapping in the extreme case when available
memory is exhausted. Average memory usage will allow the user
to better match hardware with software and determine the feasibil-
ity of running larger designs based on extrapolations from smaller
ones. Peak memory usage, in addition to the sections of code that
consume it, will help tool developers identify areas of the tool for
further refinement. Detecting and reporting thrashing due to heavy
swapping can also save valuable time since thrashing often nullifies
the efficiency of a tool and makes the thrasing system unresponsive.

5.3 Runtime reporting
Like recording and reporting memory usage, keeping internal ac-

counts of runtime for the major components of the tool is necessary
for targetting algorithmic refinement. They also provide a sanity
check for the tool and a way to predict the runtime of larger tasks.
There is a subtlety to measuring both memory and runtime usage:
the granularity must not be so coarse as to provide inaccurate in-
formation but not so fine as to detrementally impact the overall
efficiency of the tool. Figure 3 offers a sample runtime breakdown
automatically generated by our tool Capo [4].

CapoPlacer took: 144.506sec
Breakdown by component -
Fidducia-Matheyses Partitioner: 8.99sec (6.22%)
Multi-Level FMPartitioner: 64.34sec (44.52%)
Optimal End Case Partitioner: 4.15sec (2.87%)
Partitioning Problem Setup: 4.78sec (3.31%)
Optimal End Case Placer: 10.47sec (7.24%)
End Case Placement Problem Setup: 0.17sec (0.12%)
Level Statistics: 0.43sec (0.30%)
Feedback Processing: 0.49sec (0.34%)
Block Packing: 49.28sec (34.10%)

Block Packing Clustering: 0.07sec (0.05%)
Block Packing Annealing: 44.34sec (30.68%)
Number of Block Packing Instances: 97
(successful: 84, failed: 13)

The largest Block Packing instance had 9 macros.
The largest failed Block Packing
instance had 3 macros.

Total measured runtime: 143.09sec (99.02%)

Minor page faults: 164649 Major page faults: 0
Current resident memory: 19.5078MB
Peak process memory: 29.168MB
Peak process memory observed in
"Multi-Level FMPartitioner after clustering"

Figure 3: Runtime breakdown and memory usage reported by the
Capo [4] placer for the benchmark IBM01 pictured in Figure 2.

5.4 Assertions and error reporting
Catching errors early and exiting gracefully is always more ben-

eficial than a hard crash such as a segmentation fault, but it is often
not enough. When an imbedded code assertion is tripped, it should
provide as much information as possible so that the problem can
be reliably reproduced as well as accurate information as to what
the tool was doing when it encountered the error. These pieces of
information are essential to tracking down and removing errors that
may not surface often in a potentially huge codebase. A code base
that can also annotate its current activities with useful information
upon request can also make a nontrivial difference.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL= 2.491e+06, #Cells= 12752, #Nets= 14111

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL= 2.491e+06, #Cells= 12752, #Nets= 14111

Figure 2: The use of visualization tools can be extremely effective in identifying possible errors and areas for improvement. Intermediate images
offer more insight into the workings of the tool than simple summary numbers produced at the end of a run. The plot on the left shows the cut lines
chosen by our min-cut placer Capo [4] for the first 6 layers of bisection on the mixed-size design IBM01 from [3] . The plot on the right shows the
same placement instance but highlights the areas of local block packing.

6. CONCLUSIONS
Developing efficient tools that can handle multi-million gate de-

signs and beyond requires scalable algorithms as a base, but often
much more. Any and all mistakes and inefficiencies in a tool are
amplified when run on designs of this magnitude. Thus it is neces-
sary to be vigilant when developing a tool to certify that it is up to
the task. Doing so requires careful data structure design and imple-
mentation while at the same time considering choice of hardware
platform, rigorous testing, ease of debugging and informative di-
agnostics. In this note we have touched upon a few of the areas
that we have found to be extremely important while developing our
min-cut floorplacer Capo [4] and described some of the techniques
we employ to deal with these important issues.

7. REFERENCES
[1] S. N. Adya, I. L. Markov and P. G. Villarrubia, “On Whitespace and

Stability in Mixed-Size Placement,” in Proc. Intl. Conf. on
Computer-Aided Design(ICCAD) (.pdf), San Jose, November 2003,
pp. 311-318.

[2] S. N. Adya et al., “Benchmarking for Large-Scale Placement and
Beyond,” IEEE Trans. on CAD 23(4), pp. 472-488, 2004.

[3] S. N. Adya, S. Chaturvedi and I. L. Markov, “ICCAD’04 Mixed-size
Placement Benchmarks,” in GSRC Bookshelf,
http://vlsicad.eecs.umich.edu/BK/ICCAD04bench

[4] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, I. L.
Markov,“Unification of Partitioning, Placement and Floorplanning,”
ICCAD, 2004, pp. 550-557.

[5] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Design and
Implementation of Move-Based Heuristics for VLSI Hypergraph
Partitioning,” ACM J. on Experimental Algorithms, vol. 5, 2000.

[6] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Hierarchical
Whitespace Allocation in Top-down Placement,” IEEE Transactions
on CAD 22(11), Nov, 2003, pp. 716-724.

[7] Gnuplot, http://www.gnuplot.info
[8] ISPD 2005 Placement Contest,

http://ispd.cc/contest.htm
[9] P. H. Madden, “Reporting of Standard Cell Placement Results,”

ISPD 2001, pp. 30-35.
[10] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and M. Yildiz,

“The ISPD2005 Placement Contest and Benchmark Suite,” to appear
ISPD 2005.

[11] D. A. Papa, S. N. Adya, I. L. Markov, “Constructive Benchmarking
for Placement,” GLSVLSI 2004, pp. 113-118.
http://vlsicad.eecs.umich.edu/BK/FEATURE/

[12] X. Tang, R. Tian, M. D.F. Wong, “Optimal Redistribution of White
Space for Wire Length Minimization,” ASPDAC 2005, p. 412.

[13] X. Yang, B.-K. Choi, M. Sarrafzadeh, “Routability Driven White
Space Allocation for Fixed-Die Standard-Cell Placement,” ISPD
2002, pp. 42-50.

