
Random Stimulus Generation using Entropy and XOR Constraints
Stephen M. Plaza, Igor L. Markov, Valeria Bertacco

EECS Department, University of Michigan, Ann Arbor, MI 48109-2121
{splaza, imarkov, valeria}@umich.edu

Abstract

Despite the growing research effort in formal verifica-
tion, constraint-based random simulation remains an inte-
gral part of design validation, especially for large design
components where formal techniques do not scale. How-
ever, stimulating important aspects of a design to uncover
bugs often requires the construction of complex constraints
to guide stimulus generation. We propose Toggle, a stimulus
generation engine, which features (1) an entropy-based cov-
erage analysis to efficiently find portions of the design inad-
equately sensitized by simulation and (2) a novel strategy
to automatically stimulate these portions through a special-
ized SAT algorithm that uses small randomized XOR con-
straints. As our experimental results demonstrate, Toggle
requires minimal input from the verification engineer, and
significantly improves the coverage qualities of the gener-
ated stimuli when compared to plain random simulation.

1 Introduction

Today, verification costs are increasing rapidly due to the
shrinking time-to-market and growing design complexity,
which also limits usage of inherently unscalable formal ver-
ification tools. However, random simulation enables partial
validation of large designs even in situations when the error
conditions are sequentially deep. Despite this, determin-
ing when the validation effort has provided adequate veri-
fication coverage is an ongoing challenge. Industrial veri-
fication often relies on a constraint-based random simula-
tion methodology [1], where a set of constraints limits and
controls the input combinations that are sent to the design.
Note, however, that the use of constraints can create impor-
tant challenges. On the one hand, it requires the verifica-
tion team to have a thorough knowledge of the design. On
the other hand, it assumes powerful algorithms to identify
high-quality input stimuli that satisfy given constraints. The
latter concern is partially addressed in [14], with constraints
modeled as BDDs and simulation vectors obtained through
a random walk of the BDD. However, that approach still
requires complex constraint specifications and is limited in
the constraint complexity it could handle due to its depen-
dency on the BDD size.

In this work, we introduceToggle, a novel solution for
quantifying and improving simulation coverage, while at
the same time, decreasing the engineering effort. Toggle

Figure 1. Toggle framework that monitors
coverage and evenly stimulates the design.

provides an algorithmic solution that can evenly stimulate
each internal region of a design, hence boosting the gate-
level toggle coverage. Our contribution is based on an ef-
ficient and novel entropy-based coverage analysis, which
highlights the regions of the design that experience low cov-
erage. We then target those regions through a SAT-based
algorithm and create stimuli thoroughly exercising them.

The high-level flow of Toggle is illustrated in Figure
1. First, we perform low-effort synthesis on the behav-
ioral specification, so as to leverage efficient gate-level tools
available. We introduce an entropy-based coverage metric
to analyze the toggle activity of each signal to guide netlist
partitioning. This partitioning allows us to efficiently cap-
ture signal correlations within groups of internal wires. Our
analysis determines which partitions should be stimulateda
greater amount to achieve an even distribution of signal ac-
tivity throughout the design and expose corner-case behav-
ior. To stimulate a design uniformly, we generate small ran-
dom XOR constraints that involve inadequately stimulated
signals and derive stimuli with a SAT solver. Because the
XOR constraints necessary for evenly sensitizing a design
are small with respect to the size of the design, our SAT en-
gine experiences little performance degradation, compared
to techniques where large XOR constraints are added to a
SAT instance. Thus, our technique is flexible in that it can
evenly sensitize parts of the design while satisfying addi-
tional user-specified constraints.

We apply our analysis to commonly-used benchmark de-
signs and demonstrate that many of them experience very
low toggle coverage under random simulation. However,
our technique achieves higher simulation coverage, since
we can evenly sensitize a design without requiring user-
specified input constraints. Toggle is also orders of mag-
nitude faster compared to a directed simulation approach.

In Section 2, we review previous work in simulation and

refinement and constrained random simulation. In Section
3, we propose our solution for monitoring activity in a de-
sign using entropy. In Section 4, we propose our strategy
to re-simulate areas of a circuit to increase its toggling ac-
tivity. Finally, experimental results comparing Toggle to
constrained-random simulation are shown in Section 5.

2 Previous Work

Successful verification methodologies [1, 2] often re-
quire detailed knowledge of a design and significant design-
specific effort. To reduce the demands on the engineering
team, automatic stimuli refinement can be used, often lead-
ing to improvement in the verification coverage. For ex-
ample, at the instruction-level, Markov models can be used
[13] to produce instruction sequences that effectively stim-
ulate certain parts of the design. However, explicit monitors
are necessary to guide this refinement, which still requires
detailed knowledge of the design. At the gate-level, simu-
lation can also be refined [11] to help distinguish nodes, but
this is primarily useful for equivalence checking. In Tog-
gle, we automatically identify parts of a circuit inadequately
stimulated and add constraints to guide stimulus generation
to expose corner-case behavior.

Deriving an even distribution of simulation vectors that
satisfy complex constraints is challenging because state-of-
the-art SAT solvers do not provide any guarantees on the
distribution of solutions generated. Using BDDs [14] may
require prohibitive amounts of memory. We observe that
these challenges can be addressed using techniques devel-
oped in the AI community where a SAT solver evenly sam-
ples the solution space [9, 3]. However, the SAT engines
they use are inefficient on EDA instances, and DPLL-based
solvers are incompatible with their techniques. This lim-
itation is partially addressed in [7], which uses randomly
generated XOR constraints to modify the SAT instance so
any SAT solver can sample its solution space more evenly.
At first sight, these techniques are not directly applicableto
IC verification since we desire to derive simulation vectors
that expose corner-case behavior in a circuit, but our work
provides several missing links to make this connection.

3 Finding Inactive Parts of a Circuit

In this section, we adapt the notion of Shannon’s entropy
to estimate verification coverage within a gate-level circuit
and propose its use to find inadequately stimulated regions.

3.1 Toggle Activity of a Signal

The toggle coverage for a particular signals in a circuit
C evaluates the distribution of 0s and 1s seen under input
stimuli. Capturing this distribution with two frequency val-
ues, we recall that Shannon’s entropyEs estimates the un-
certainty of the signal:

Figure 2. The entropy of each bit for an 8-bit
bidirectional counter after 100 random simu-
lation vectors are initially applied. After only
300guided simulation vectors, the entropy is
almost evenly distributed.

Es = −
nOnes

K
log2(

nOnes
K

)−
nZeroes

K
log2(

nZeroes
K

) (1)

wherenOnesis the number of times thats= 1 andK is the
number of simulation vectors examined. The formula gives
values that range from 0 to 1 where higher entropy indicates
greater activity,i.e., an even distribution of ones and zeroes.
We observe that the signal entropy can be trivially increased
by asserting the signal to a desired value and deriving satis-
fying input stimuli with a SAT solver.

As a practical example of guiding simulation with sig-
nal entropy, consider the impact of random simulation on
an 8-bit bidirectional counter, as shown in Figure 2a. The
results indicate that after many simulation vectors, random
stimuli do not adequately toggle the most significant bit.
We target the bit with the smallest entropy by deriving a se-
quence of counter operations that toggles this bit. Figure 2b
shows that the techniques described in this paper achieve an
even distribution of entropy after only 300 simulation vec-
tors. However, analysis of single wires does not account for
correlations between multiple bits.

3.2 Toggle Activity of Multiple Bits

We extend signal entropy to a set of signals that experi-
ence low activity when correlated to each other. We identify
these sets of signals as small cuts in the circuit (through au-
tomatic netlist partitioning) with respect to entropy-based
net weights. We then define a coverage metric to assess
the activity along the partition inputs that accounts for sig-
nal correlation. This allows us to explore activity at a finer
granularity than just at the primary inputs or latches.
Automatic circuit partitioning: Circuit partitioning has
been explored in physical placement applications where

net-cut minimization generally leads to smaller wirelength.
The Fiduccia-Mattheyses (FM) min-cut partitioning algo-
rithm [5] is commonly used and runs in linear time per pass.
Furthermore, multi-level extensions of this algorithm scale
near-linearly to very large designs. In our simulation flow,
we only partition the design once and hence the runtime is
amortized by verification costs, making it negligible.

We perform recursive bisection,i.e., make multiple cuts
until the circuit is partitioned to a desired granularity, either
specified by the user or dynamically derived. The goal of
this procedure is to minimize the total number of connec-
tions between partitions while ensuring that partitions have
similar sizes. This objective leads to the generation of large
partitions with few input signals, which allows us to exam-
ine only a few signals that control a large section of logic.

To identify input cuts that experience low activity, we
use the signal entropy defined in Equation 1 to guide the
partitioning objective function. We note that the entropyEF

of a set of signalsF is upper-bounded by:∑s∈F Es. After
assigningEs as a net weight to nets, we can employ netlist
partitioning to find cuts with small entropy. This creates
partitions with inputs of smaller accumulated entropy and
exposes parts of the circuit that are inadequately sensitized.
Estimating cut activity and biasing through entropy:
The cuts can be analyzed for activity to assess the amount
of coverage in each partition. Consider the following metric
for cut activity:

Ac
F = numdiff vecs(< F1, · · · ,Fm >) (2)

wherenum diff vecs is the number of different simu-
lation patterns on partitionF ’s m-input cut. We observe
that this formula does not consider the frequency of certain
simulation vectors — it only provides the number of dif-
ferent simulation vectors. For example, when considering
two different partitions together, we prefer to have an even
distribution of simulation vectors for each partition while
maximizing the number of different vectors and minimiz-
ing correlations in vectors seen at each partition.

To improve this coverage metric, we can also measure
the amount of information (entropy) associated with the
signals along a partition’s inputs underK simulation vec-
tors. This measure accounts for multiple observed simula-
tion vectors along the cut and captures simulation bias. We
compute the entropy ofF as:

EK
F = − ∑

vec:occ(vec) 6=0

occ(vec)
K

log2(
occ(vec)

K
) (3)

whereocc is the number of occurrences of a particular vec-
tor vecalong the input cut, which is represented by an in-
teger value. In this formulation, the entropy is high when
there is an even distribution across different simulation vec-
tors. This measure is effective for most of the partition cuts
that we examine because the number of possible vectors
along the cut is much larger than the number of simulation
vectors applied.

4 Targeted Re-simulation

Toggle uses the entropy measure previously described to
find parts of the design with low activity. We now introduce
a SAT-based strategy that uses random XOR constraints to
produce an even distribution of simulation vectors along a
partition cut with low activity. The motivation for producing
an even distribution is to find corner-case behavior, which
couldn’t be exposed previously without detailed knowledge
of the design and the generation of complex constraints.

4.1 Random Simulation with SAT

To evenly simulate a design, we first introduce the theo-
retical underpinnings of our approach, and then we propose
an efficient approach that applies these concepts on a circuit
while satisfying any additional specified constraints.
Theoretical background: Consider a SAT instance with
N > 1 solutions. According to [12], it can be reduced to an
instance that admits only one of thoseN solutions. The al-
gorithm is randomized and adds a limited number of XOR
constraints. It succeeds with probability≥ 1/4. Below, we
discuss an aspect of this result relevant to our work, which
states that adding a random XOR constraint reduces the so-
lution space roughly in half with high probability.

Assume a SAT instancef with variablesx1,x2, ...,xn that
has solutionsv∈ {0,1}n. To reduce the solution space, we
randomly pick an assignmentw1 ∈ {0,1}n and add the fol-
lowing constraint tof : v•w1 = 0 in base-2 arithmetic. This
can be expressed as follows:

f ∧ (xi1 ⊕xi2 ⊕·· ·⊕xi j ⊕1) (4)
where i j represents the indices ofxi wherew1 is 1. This
results in an XOR constraint whereby an even polarity ofxi j

determined byw1 need to be assigned to 1. Alternatively, a
CNF representation can be given as:

f ∧ (y1 ⇔ xi1 ⊕xi2)∧ (y2 ⇔ y1⊕xi3)∧·· ·

∧(y j−1 ⇔ y j−2⊕xi j)∧ (y j−1⊕1) (5)

Example 1 Consider the SAT CNF(a+b+c′)(b′+d)(a′+
d′). This solution space{0001,0101,0111,1000,1010}can
be reduced by generating an XOR clause for the randomly
generated w1 : a = 0,b = 1,c = 1,d = 0. The resulting
CNF would be(a+b+c′)(b+d′)(a′+d)(y⇔ b⊕c)(y⊕1)
where only3 solutions remain{0001,0111,1000}.

If SF is the set of all solutions ofF , then the addition
of constraints fromk randomwk vectors probabilistically
reduces the solution space to∼ 2−k|SF |.
Random simulation with SAT: Consequently, through
XOR-based reductions to U-SAT, any particular solution
can be generated, ignoring the all-0s solution, which is the
basis for our approach for deriving an even distribution of
simulation vectors. Based on the results in [12], we can es-
timate that addingn XOR constraints for a circuitC with n
inputs will produce a randomized U-SAT instance. We can

add multiple sets ofn different XOR constraints to derive
an even distribution of U-SAT instances. Since the solution
space of the circuit is controlled by the primary inputs of
the circuit, adding larger XOR constraints involving inter-
nal signals is unnecessary, and any SAT solver can be used
on the modified SAT instance in principle.

While our approach does not always produce instances
with a unique solution, according to [12], we expect the
generation of U-SAT instances. Using a SAT solver, we can
derive an even distribution of simulation vectors as shown
in Section 5. However, if, for example, only 64 evenly
distributed input vectors are desired for circuitC where
2n > 64, a more efficient procedure can be used that re-
quires the addition of fewer constraints and minimizes the
number of unsatisfiable instances produced. In this case, 6
XOR constraints can be added to approximately reduce the
solution space to1

64 of the original size. By adding differ-
ent random sets of 6XORconstraints 64 times, we can still
achieve an even distribution of solutions for the number of
solution vectors desired, with faster simulation runtimesas
shown in Section 5. In general, if we seekK simulation
vectors, we solveK SAT instances each with different sets
of log2(K) XOR constraints.

The addition of engineer-specified constraints does not
affect the XOR formulation previously described. There-
fore, an even distribution of simulation vectors can be de-
rived that satisfies them. Consider a circuitC with |SC|
solutions and a constrained circuitC∗ with |SC∗ | solutions.
When|SC∗ | << |SC|, random solutionsSCi may rarely exist
in SC∗ as illustrated in Figure 3a. By addinglog2(K) XOR
constraints, we can deriveK vectorsSC∗

i
that are evenly

distributed. If numerous UNSAT instances occur, imply-
ing thatK > |SC∗ |, then one can alternatively exhaustively
enumerate all the solutions.

Figure 3. a) A sparse solution space from
adding constraints to C. b) Stimulating
component A within C.

4.2 Partition-Targeted Simulation
We now propose an approach to automatically stimulate

internal partitions while satisfying input constraints.
Stimulating a component within a design: Evenly stim-
ulating an inadequately sensitized component from the pri-

mary inputs of the design is not straightforward, because
the relationship between the distribution of stimuli on the
primary inputs and on the component is often complex. In
Figure 3b, we show a componentA with m input signals that
we desire to stimulate that is many logic levels from the pri-
mary inputs of circuitC. We denote the solution space of
A with respect to the input constraints asSAC, and asSA

not considering the input constraints. By applying random
vectors to themsignals and checking whether the input con-
straints are satisfied, we can evenly stimulateA. However,
limited controllability could mean that the input constraints
are rarely satisfied leading to prohibitive runtimes as shown
in Section 5. To this end, we propose a new SAT-based
methodology that expands upon our circuit simulation strat-
egy in Section 4.1. For circuitC and its subcircuitA, we
observe the following relation between CNF formulae:

CNF(C) = CNF(C/A)∧CNF(A) where SC → SA (6)

Therefore a solution toC implies a solution toA. Since the
m signals uniquely determine every legal simulation vector
to A, we can probabilistically reduce the solution space of
SA and subsequentlySAC by adding XOR constraints involv-
ing the variablesm:

CNF(C/A)∧CNF(A)∧ (mi1 ⊕mi2 ⊕·· ·⊕mi j ⊕1) (7)

This formulation probabilistically reducesSA in half, and
since the input constraints are accounted for by the con-
straintCNF(C/A), subsequently reducesSAC in half. Al-
though manySCi may map to oneSAi , we are concerned
with the reduction of theSAC solution space to achieve an
even distribution of simulation along the partition.
Algorithm: Functionpartition sim, shown in Fig-
ure 4, generates an even distribution of simulation vec-
tors by adding multiple random XOR constraints ac-
cording to Equation 7. The number of random XOR
constraints added is determined by the number of sim-
ulation vectors (num sims) desired. After construct-
ing the CNF, engineer-specified constraints can be added
(add additional constrs). Then, we add different
sets of XOR constraints for each pass of the while loop
by functionadd xor constrs. When large XOR con-
straints are added, the high performance of the SAT solver
can be maintained by (easily) adding specialized data struc-
tures and decision procedures. However, our experiments
indicate that small XOR constraints added in our context do
not slow down the SAT solver appreciably and do not justify
solver extensions as in [6].

If the instance is satisfiable, we add the new simula-
tion vector and decrementnum sims. One could also add
blocking clausesto prevent re-deriving a simulation vector.
However, since the solution space that we consider is typ-
ically much larger than the number of simulation vectors
that we desire, re-derivation should occur infrequently. If
many unsatisfiable instances are produced, we can reduce

void partition sim(Partition part, Circuit C, int numsims){
num xor = log2(num sims);
CNF = constructcnf(C);
addadditionalconstrs(CNF);
while(num sims){
addxor constrs(numxor, part, CNF);
if(Solve(CNF, solution)){
addvector(solution);
num sims–;
}
removexor constraints(part, CNF);

} }

Figure 4. Partition simulation algorithm.

the number of XOR constraints added. We again expect
this to occur infrequently as there are generally many more
possible solutions thannum sims.
Controllability Estimation with XORs: To maximize the
effectiveness of our SAT-based simulation, we seek to tar-
get poorly-sensitized regions where the number of possible
vectors is also sufficiently greater than the number seen so
far. Otherwise our SAT-based simulation will fail to gen-
erate many new vectors. However, ensuring this requires
estimating the number of solutions for partitionA with re-
spect to the input constraints,|SAC|.

Using XOR constraints, we can estimate that|SAC| >
(1+ ∆) ∗ numdiff vecs, where we consider∆ = 1 in this
work, so that less than 50% of the possible vectors have
been seen. We use the result from [8] to estimate the num-
ber of SAT solutions with random XOR constraints. On
average, if the addition ofx different XOR constraints does
not produce an UNSAT result, we can estimate that the so-
lution space is of size≥ 2x. By examining multiple sets of
different XOR constraints, we can obtain bounds with high-
accuracy as in [8]. Since we desire a lower-bound compu-
tation and need XOR constraints that only involve the parti-
tion inputs, we can improve the efficiency of [8] for our spe-
cific circuit environment. Thus, our strategy will typically
generate an even distribution ofnewsimulation vectors.

5 Empirical Validation

We show that adding XOR constraints can evenly stimu-
late a design and that Toggle can improve activity for poorly
stimulated partitions, while being considerably more effi-
cient than directed random simulation. We use MiniSAT [4]
to derive simulation vectors and hMetis [10] to perform cir-
cuit partitioning. We examine circuits from the IWLS 2005
suite [15] and consider only their combinational portions.
Simulation with SAT: In Table 1, we show the entropy
and number of different simulation vectors (diff sim)
generated along the primary inputs using SAT-based sim-
ulation for circuitalu4 with the runtime given in seconds
(s). For the results underSAT-based, we add 14 ran-
dom XOR constraints many times to probabilistically gen-
erate U-SAT instances and derive#sims simulation vec-
tors. We compare this approach with random simulation
and achieve competitively high entropy. Since many of
the reductions using 14 XOR constraints produce UNSAT

#sim Dir.Rand SAT-based approx SAT-based
diff entr (s) diff entr (s) #xor diff entr (s)
sim sim sim

64 64 1.00 <1 63 0.99 2 6 58 0.97 <1
128 128 1.00 <1 128 1.00 4 7 119 0.98 1
256 253 1.00 <1 256 1.00 6 8 240 0.98 1
512 499 0.99 <1 499 0.99 13 9 485 0.99 2

1024 991 0.99 <1 989 0.99 26 10 968 0.99 5

Table 1. Generating even stimuli through ran-
dom XOR constraints for alu4 with 14 inputs.
We normalize the entropy by log2(#sim), so
that 1.0 is the highest entropy possible.

circuit #gates avg wrst (Guide+32) (Rand+32)
entr entr new comb new comb

spi 3010 9.5 6.4 +26.2 +1.6
systemcdes 3196 9.1 5.6 +15.0 +14.0
tv80 6847 8.9 1.6 +18.6 +0.8
systemcaes 7453 9.7 5.2 +26.6 +12.4
ac97ctrl 10284 10.0 9.5 +24.8 +21.8
usbfunct 11889 9.9 7.4 +26.4 +12.2
aescore 20277 7.5 4.1 +17.0 +4.6
wb conmax 28409 8.8 6.2 +25.2 +3.6
ethernet 37634 9.9 1.6 +26.2 +1.4
desperf 94002 9.1 5.0 +13.4 +5.0

Table 2. Entropy analysis on partitioned cir-
cuits and the number of new input combina-
tions found after adding 32 guided input vec-
tors versus 32 random ones.

instances, this formulation is computationally expensive.
Therefore, we show, underaprox SAT-based in Ta-
ble 1, that by adding fewer XOR constraints determined by
log2(#sims), we can significantly improve the runtime of
the previous SAT-based formulation with nominal degrada-
tion to the entropy. Although random simulation is suffi-
cient for this simple example, we now show that even dis-
tributions of simulation can be efficiently generated for in-
ternal signals while satisfying input constraints.
Improving Activity with Toggle: In Table 2, we show cir-
cuits ordered by their number of#gates that are parti-
tioned using the signal-entropy weighting objective so that
each partition is∼ 100 gates in size. We find this size to ef-
fectively tradeoff our desire for examining the coverage of
large parts of the circuit while minimizing the number of the
signals considered for entropy analysis and re-simulation.
Our results are averaged over many runs.

We show the average (avg entr) and worst entropy
(wrst entr) for the set of partitions derived under 1024
random input vectors, where 10.0 is the maximum entropy.
The results indicate that, while the average entropy for each
circuit is close to 10.0, there is usually at least one partition
that is considerably lower as intv80. We can then perform
simulation mainly over these few poorly covered partitions.

In the next part of Table 2, we assess the improvement
of our SAT-based targeted re-simulation on a partition with
low entropy and a sufficiently large solution space by de-
riving 32 additional simulation vectors. Our guided simu-
lation is compared with generating 32 more random vec-

circuit our guided+32 sim rand guided+32 sim entropy
time(s) time(s) time(s)

spi 1 210 <1
systemcdes 1 110 <1
tv80 1 time-out <1
systemcaes 1 110 1
ac97ctrl 1 2 <1
usb funct 1 18 <1
aescore 2 time-out 1
wb conmax 4 232 1
ethernet 10 107 2
desperf 20 23 2

Table 3. Comparing SAT-based re-simulation
with random re-simulation over a partition for
generating 32 vectors. The time-out is 10000
seconds. The runtime is also shown for the
entropy analysis performed.

tors. We report the number of new combinations seen
at the partition inputs averaged over many runs bynew
comb. Our approach outperforms random simulation on
almost every circuit. Random simulation performs poorly,
e.g., forethernet andtv80, indicating strong bias un-
der random simulation. Our approach can still re-derive
some previously seen vectors, but we minimize these oc-
currences by our estimation of the partition’s solution space
size, which prevents re-simulation on partitions with limited
controllability. Even forac97, which is evenly sensitized
under random simulation, we see some improvements be-
cause the worst-case entropy for the partition targeted for
re-simulation is not the maximum value of 10.0.

In Table 3, we show that evenly simulating a partition
by randomly assigning values to its inputs and checking
whether the primary input constraints are satisfied, is often
much slower than using SAT-guided simulation. The results
indicate that the SAT-based simulation scales well for larger
circuits, in part, because the size of the XOR constraints re-
quired are typically small compared to the size of the circuit.
Also, our SAT-based simulation often achieves orders of
magnitude runtime improvement over random simulation,
such as forwb conmax andethernet. Some bench-
marks time-out at 10000 seconds, such as fortv80 and
aes core. These results indicate that the solution space
of the partition stimulated is sparse with respect to the in-
put constraints. We expect that our technique will perform
even better when additional engineer-specified constraints
are added, which would further reduce the size of the so-
lution space. For completeness, the last column shows the
runtime of the entropy calculation in Equation 3. Clearly,
this calculation is fast and scales to large designs.

6 Conclusion

Traditional simulation-driven verification has been
ratherad hocand has avoided rigorous theory for efficiency
reasons. However, our work shows that certain theoretical
results, not used in verification previously, hold the poten-
tial to significantly improve simulation coverage through

careful feedback on coverage and biasing of input vectors
to better stimulate poorly-sensitized parts of the circuit. To
achieve these goals, we have introduced 1) an entropy met-
ric to characterize the verification coverage of internal sig-
nals and 2) a novel simulation framework using XOR con-
straints to generate even distributions of stimuli while sat-
isfying complex constraints. Our coverage metric reveals
circuit regions that are inadequately stimulated under ran-
dom simulation. We also show that adding only a few XOR
constraints is often sufficient to evenly sensitize a design.
Finally, our results indicate that guided simulation is use-
ful for bypassing coverage biases, and outperforms purely
random simulation in quality and runtime.

References
[1] “Constrained-random test generation and functional cover-

age with Vera”,Technical report, Synopsys, Inc, Feb, 2003.
[2] Specman elite — testbench automation, 2004.

(http://www.verisity.com/products/specman.html)
[3] R. Dechter, K. Kask, E. Bin, R. Emek, “Generating ran-

dom solutions for constraint satisfaction problems”,AAAI,
pp. 15-21, 2002.

[4] N. Een and N. Sorensson, “An extensible SAT-solver”,SAT
’03.
(http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/).

[5] C. Fiduccia and R. Mattheyses, “A linear-time heuristicfor
improving network partitions”,DAC, pp. 175-181, 1982.

[6] C. Gomes, W. Hoeve, A. Sabharwal, B. Selman, “Counting
CSP solutions using generalized xor constraints”,AAAI, pp.
204-209, 2007.

[7] C. Gomes, A. Sabharwal, B. Selman, “Near-uniform sam-
pling of combinatorial spaces using xor constraints”,NIPS,
pp. 481-488, 2006.

[8] C. Gomes, A. Sabharwal, B. Selman, “Model counting: a
new strategy for obtaining good bounds”,AAAI, pp. 54-61,
2006.

[9] W. Jordan, “Towards efficient sampling: exploiting random
walk strategies”,AAAI, pp. 670-676, 2004.

[10] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, “Mul-
tilevel hypergraph partitioning: applications in VLSI do-
main”, IEEE TVLSI, pp. 69-79, 1999.

[11] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton,
“FRAIGs: A unifying representation for logic synthe-
sis and verification”, ERL Technical Report, Berkeley.
http://www.eecs.berkeley.edu/
∼alanmi/publications/.

[12] L. Valiant and V. Vazirani. “NP is as easy as detecting unique
solutions”,Theor. Comput. Sci., pp. 85-93, 1986.

[13] I. Wagner, V. Bertacco, T. Austin, “StressTest: an automatic
approach to test generation via activity monitors”,DAC, pp.
783-788, 2005.

[14] J. Yuan, K. Albin, A. Aziz, Carl Pixley, “Simplifying
Boolean constraint solving for random simulation-vector
generation”,IEEE TCAD, pp. 412-420, 2004.

[15] http://www.opencores.com/

