Constraint-Driven Floorplan Repair

Michael D. Moffitt; Aaron N. Ngj

Igor L. Markov]

Martha E. Pollack*

*Artificial Intelligence Laboratory / YAdvanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Ml 48109

{mmoffitt,aaronnn,imarkov,pollackm} @ eecs.umich.edu

ABSTRACT

Floorplanning algorithms have traditionally underperformed expe-
rienced designers, even when relatively simple interconnect met-
rics are concerned. However, the sheer scale of modern systems on
chip makes an all-manual design flow infeasible. In this paper, we
propose a new efficient automated approach to the floorplan repair
problem, where a set of violated design constraints are satisfied by
applying small changes to an existing rough floorplan. Such a floor-
plan can be produced by a human designer, by a scalable placement
algorithm, or result from engineering adjustments to a pre-existing
floorplan. In all cases, overlapping modules must be separated, and
in some instances, modules may need to be repositioned to satisfy
other requirements.

The algorithmic framework we propose is built upon an expres-
sive graph-based encoding of constraints. While capable of repre-
senting floorplans with or without overlapping modules, it can also
support the outline of the core area, fixed module locations, region
constraints, proximity and alignment constraints, etc. Instead of
applying randomized local search in the hope of satisfying these
constraints, we track all implications of imposed constraints and
resolve violations by invoking gradual modifications to the floor-
plan.

The primary focus of this paper is on a particularly efficient
conflict-directed algorithm for floorplan repair and legalization. It
is shown to completely eliminate overlaps from layouts produced
by Capo 9.4, Feng Shui 5.1 and APlace 2.01 on IBM-HB bench-
marks with hard blocks, typically requiring negligible runtime and
increasing interconnect length by only several percent. Further-
more, we are able to generate legal solutions for these instances
that surpass previously reported results in wirelength by an average
of roughly 7%.

Categories and Subject Descriptors: B.7.2 Integrated Circuits:
Design Aids—placement and routing; J.6 Computer-Aided Engi-
neering: Computer-Aided Design; G.4 Mathematical Software: Al-
gorithm Design and Analysis

General Terms: Design, Algorithms
Keywords: Floorplanning, Legalization, Constraints

1. INTRODUCTION

The significance and complexity of floorplanning is continually
increasing with the growth of systems-on-chip. With hundreds and
thousands of modules in modern floorplans, all-manual design is
simply too difficult. However, manual floorplanning has remained

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

dominant due to weaknesses of existing algorithms and their in-
ability to efficiently handle important design constraints. Despite
improvements in algorithms in both speed and capacity, even the
simplest constraint (requiring that modules do not overlap) is often
violated by recent floorplanners.

A similar challenge in standard-cell placement has been success-
fully addressed by decoupling global placement from legalization.
The former optimizes interconnect and is allowed to violate many
design constraints, which are later enforced by legalization. A great
deal of work on legalization in placement has been published [8, 4,
2], but much of it is inapplicable to floorplanning, where most mod-
ules have different shapes and do not need to be packed into rows.

In this paper, we propose a new efficient approach to floorplan
legalization. The tool we develop — named FLOORIST — performs
legalization and repair of existing floorplans, which may have been
produced by a variety of layout methodologies. In contrast to some
previous attempts at overlap removal in floorplanning [13], our al-
gorithm takes a conflict-directed approach to repair, modifying only
those features of the layout that are directly responsible for the vio-
lated constraints. As a result, the solutions produced by our imple-
mentation tend to preserve the qualities and characteristics of the
original layout by emulating its initial structure.

2. RELATED WORK

Techniques for ensuring that placed modules do not overlap can
be divided into two camps. The first of these includes those strate-
gies that ensure legalization at all steps of search, either by back-
tracking or by way of look-ahead. The alternative is to allow por-
tions of the layout to remain illegal during search, and afterward
perform legalization only as a postprocessing step. Although most
existing methods are restricted in scope to standard-cell placement,
it is worthwhile to explore how previous studies have attempted to
address these issues.

2.1 Correct-by-construction approaches

The mPG package [3] is one instance of a placement tool that
enforces legalization at every level of a cluster hierarchy for mul-
tiscale optimization. To achieve this, it employs simulated anneal-
ing on the sequence-pair representation, a process which can often
prove to be expensive. The benefit of this is that each layout pro-
duced by mPG is guaranteed to be legal.

Capo [17] is another popular tool which legalizes (or, at least
attempts to legalize) subproblems of recursive bipartitioning using
simulated annealing. If legalization succeeds, then modules are
placed accordingly after some further refinement. If legalization
fails, then subproblems are merged, and legalization is attempted
on the larger problem. Since no attempt is made to repartition the
modules, this failure may in fact propagate to the highest level of
search. As a result, Capo can generate infeasible instances if white
space is somewhat scarce.

A correct-by-construction framework is also used recently in [4]

for mixed-size placement. Here, every subproblem generated is
guaranteed to be legalizable, and thus the approach is better char-
acterized as “prelegalization.” This is achieved using an extremely
simple form of row-based block packing.

2.2 Legalization by post-processing

The mixed-size placer Feng Shui [10] postpones legalization un-
til a complete global floorplan has been generated, making use of a
simple Tetris-like algorithm [8]. The analytical engine APlace [9]
does the same. In both tools, a greedy algorithm sorts cells by their
z-coordinates, and then operates on a cell-by-cell basis, placing
each cell into a row that minimizes its total displacement. Macros
are handled in a similar fashion.

Other post-placement legalization tools are described in [2] and
[16]. In the former, a network flows formulation is constructed to
minimize the total (squared) movement of standard cells necessary
to achieve legalization. However, the approach is limited, as it can-
not modify the position of modules that do not fit into a single cell
row. The latter employs diffusion-based legalization, based on a
discrete approximation of a continuous diffusion equation; again,
cells are presumed to fit into rows.

Perhaps the most relevant work to our problem of post-placement
floorplan repair are the approaches proposed in [13] and more re-
cently in [7]. In the former case, a given layout is converted into a
sequence-pair formulation, and is then manipulated by perturbing
the ordering of pairs of modules and by relocating individual mod-
ules. In the latter case, a constraint-graph formulation is used, in
which overlaps are removed in a preprocessing step that increases
the dimensions of the layout beyond the fixed outline. In both ap-
proaches, adjustments are performed to reduce the size of the re-
sulting floorplan. The key difference between these prior efforts
and ours is that they do not explicitly encode constraint violations.
As aresult, the changes made to the layout are not guided to resolve
the original violations, nor do the algorithms extend to the repair of
anything other than non-overlap constraints.

3. THE FLOORIST ALGORITHM

Our FLOORIST (“Floorplan Assistant”) legalizer begins with a
complete, global floorplan. The violated constraints in this layout
may have come from any number of sources, such as flaws induced
by the global floorplanner, or the re-sizing of blocks in a previ-
ously legal floorplan. This initial solution is then processed by a
three-stage procedure. The first stage constructs a pair of constraint
graphs from the fixed placements to represent the floorplan. The
second stage performs iterative repair on these constraint graphs;
this is essentially a greedy search, guided by conflicts extracted
from critical paths. Finally, the third stage translates the constraint
graphs back into a coordinate representation, placing modules as
close to their original locations as possible. In this section, we
explain these three stages in detail, using a simple example to illus-
trate our techniques.

3.1 Translation to Constraint Graphs

Once a global floorplanner or chip architect has produced a floor-
plan, each module has been given a particular location within the
fixed outline. In particular, the upper-left corner of any module
M; (having dimensions w; X h;) is assigned a coordinate (x;, ;)
indicating its absolute position. This representation, while express-
ing the floorplan in its entirety, is not particularly easy to operate
upon. Since flaws in the floorplan typically include overlaps be-
tween modules, it is more natural to create a structure that reflects
pairwise relationships rather than absolute positions.

As a result, we turn to the constraint graph representation of a
floorplan [11, 15], a formulation that has gained attention in recent
studies concerning area-minimization [12]. Here, a pair of graphs

1 2 '3 1 2 3
7
7
4+ s 6 4 5 6
(a) (b)

Figure 1: (a) A small floorplan in need of repair. (b) The floor-
plan after the repair procedure.

(Gy and G) is constructed, where each graph contains a node ¢
for every module M;. Furthermore, there exists a directed edge cor-
responding to every pair of modules M; and M. The direction of
this edge, and the graph that it is placed in, depends on the pairwise
relationship between modules M; and M. For instance, suppose
that module M; is to be placed to the left of module M}, reflecting
the condition z; + w; < x;. This would require an edge from node
i to node j in G with weight w,;. We will give this pairwise re-
lationship the label L(i,7) in order to facilitate further discussion
— the other three possible labels would be R(%, j), A(, 7), B(,)
(for right of, above, and below). This unified notation allows us
to refer to the set S of all pairwise relationships between modules.
As an illustration, the following set contains just some of the rela-
tionships that could be used to describe the (very small) floorplan
shown in Figure 1(a):

{L(1,2), A(1,4), R(3,4), L(5,7)} C §

However, notice that modules 2 and 3 overlap in this layout, as
do modules 4 and 5. The four relations we have introduced thus
far are not sufficient for relating a pair of modules that overlap.
Consequently, we propose the addition of a fifth ‘empty’ relation
— E(1,7) — to indicate the lack of any constraint between modules
M; and M;. The E(i,) relation can be regarded as the explicit
absence of an edge in either constraint graph.

Translation of the existing layout to the constraint graph repre-
sentation is a fairly straightforward process. Pseudocode for the
conversion procedure is given in Figure 2. For every pair of mod-
ules that are relatively displaced in a certain direction, the corre-
sponding relation is added to the set .S of all pairwise relationships.
‘When multiple relationships are available to describe a given pair,
ties are broken based on the horizontal and vertical distances be-
tween the two modules. For instance, consider modules 1 and
7 in our small example. While edges corresponding to L(1,7)
and A(1,7) are both feasible choices, we prefer L(1,7), since
the horizontal displacement between these modules is much greater
than the vertical displacement. Any pairs of modules that overlap
are explicitly given the F(4, 7) relation. Once the set S has been
constructed, the constraint graphs can be built in O(N?) time by
adding the appropriate edges and computing single-source longest

Create-Graphs((z1,y1,..., N, YN), (W1, A1, ..., N, AN))
.50

2. Forj=1to N

3. Fori=1toj

(Of the choices below, keep one w/ smallest slack)
If (x; +w; <xj) S — SU{L(i,5)}

If (z; +wj < ;) S — SU{R(i,5)}

If (y; + hi < y;) S — SU{A(i,)}

If(y; +hj <y) S SU{B(,7)}

(If no choices, S «— S U{E(i,5)})

10. return G (S), Gy (S)

Figure 2: Translating the fixed placement into constraint
graphs

e

0

Iteratively-Repair(5)

T. While 3(E(,J) €)

2 // this first loop makes ‘trivial” assignments

3. Foreach E(i,j) € S

4. For each possible pairwise relation P (%, j)

5. If (consistent(S U { P(¢,5)} — {E(¢,5)}))
6.
7
8

// this second loop swaps existing assignments
Foreach E(i,j) € S

9. For each possible pairwise relation P(i, j)

10. C « Critical-Path()M;) U Critical-Path()/;)

11. For each P’ (i/,j') € C

12. For each P”(¢/, 5') such that P"" # P’

13. If (consistent(S U {P" (i', 5')} — {P'(i',5))}))
14. S — SULP"(, 5"} = [P'(7,)}

15. continue loop @ line 11 with next P’ (', j/)

Figure 3: Our iterative repair procedure

paths.

Of course, constraints other than those extracted from the fixed
placements can be added to these graphs. For instance, in most
cases there is a fixed outline; to encode this constraint, additional
nodes with fixed locations (called “poles”) can be added to the
graphs representing the walls of the layout, and edges can be im-
posed between these walls and the modules.

3.2 Conflict-Directed Iterative Repair

For any given set S of pairwise relationships, our objective is to
completely remove every empty relation E(z,7) in S, as each of
these corresponds to a non-overlap constraint violated in the orig-
inal layout. To accomplish this task, we would like to make rela-
tively few changes to the original solution, in order to preserve its
overall quality. We propose a greedy, backtrack-free iterative repair
algorithm, given as pseudocode in Figure 3.

Lines 2 through 6 of this algorithm attempt to replace those
E(i,7) relationships whenever one of the four constraining rela-
tionships is available. For instance, consider the F(2,3) relation
present in our example. We can see that module 3 can be shifted
toward the right wall to remove its overlap with module 2. This
information can be obtained directly from the constraint graphs,
which provide upper and lower bounds on the horizontal positions
of modules 2 and 3. As a result, we can instead invoke the relation
L(2,3) and update the horizontal constraint graph G by adding
the constraint 2 + w2 < x3. The total number of overlaps has
now been reduced from two to one.

Unfortunately, the relation E(4,5) cannot be resolved as eas-
ily; no other pairwise relationship between modules 4 and 5 can
be introduced without either violating some other non-overlap con-
straint, or extending the layout beyond the given fixed outline. In
other words, the edges corresponding to the relations in the set
{L(4,5), R(4,5), A(4,5), B(4,5)} are in conflict with the current
constraint graphs, and hence we must perform some modifications
before we can repair this particular violated constraint.

Again, by inspection, we can identify some possible alternatives
by examining Figure 1(a). In particular, we could place module
7 above module 6, rather than to its right. This would amount to
removing the relation L(6,7) (and its corresponding edge in G i)
and replacing it with B(6,7) and the constraint y7 + hr < ys
(adding the appropriate edge in Gv). After performing this mod-
ification, the last remaining overlap can be resolved by adding the
relation L(4, 5) and the constraint x4 +w4 < xs5. There exist other
relations that can be swapped in this example, but few would help
to resolve our violated constraint. For instance, we could reverse
the relationship between modules 1 and 2 by replacing L(1, 2) with
R(1,2), but such a modification would have no effect on the over-
lap between modules 4 and 5.

This scenario alludes to a conflict-directed approach to legaliza-
tion, and is the key concept in our approach to floorplan repair.
Specifically, for each of the four primary relations of a violated
non-overlap constraint, we can identify a set of culprits C' lead-
ing to its inapplicability by examining the edges along the criti-
cal paths' for modules M; and M; in the appropriate constraint
graph (lines 8 through 10 in Figure 3). If any of these edges can
be safely replaced with an alternative pairwise relationship (lines
11 through 13), then we perform this replacement (line 14).> Each
swap can be achieved in O(N?) time using the longest-path algo-
rithm (although performing incremental maintenance of the graph
when adding edges can help to improve efficiency). In the event
that some previously violated constraints can now be satisfied, these
will be caught during the first phase of the next step in iterative
repair. This process continues indefinitely until all violated con-
straints have been resolved.

3.3 Translation to Fixed Locations

The final stage in our legalization procedure is the recreation of
a fixed placement solution. Recall that since the edges in our con-
straint graphs record only the relative positions of pairs of mod-
ules, any layout extracted from these graphs may differ signifi-
cantly from the initial solution. In the event that some modules ex-
hibit a great deal of slack, one would prefer to place such modules
as close to their original positions as possible, in order to preserve
qualities (such as wirelength) that the global floorplanner presum-
ably extended a considerable amount of effort to optimize.

The pseudocode given in Figure 4 shows how we perform this
emulation. For each module, we use the horizontal constraint graph
G to extract the lower and upper bounds on its final horizontal
position x;. From this, we can determine whether or not it can be
given its original horizontal coordinate (orig_x;). If it can, then
this is the assignment it receives. Otherwise, the module is slid as
far to the left or to the right as possible, depending on which side
of its original position it lies. A similar operation is performed to
determine the module’s vertical position. These fixed assignments
are propagated through the constraint graphs, and the next mod-
ule is processed. Since each call to Update-Constraint-Graphs
requires O(N?) time, the entire emulation procedure is O(N®).?
Although the modules can be examined in any order, we recom-
mend beginning with the largest modules first, since these will have
a greater impact on the final layout than smaller ones. The output
of the combined legalization and emulation process for our running
example is shown in Figure 1(b).

As explained in [1], a critical path is a path of blocks that constrain each
other in the same direction and are tightly packed.

ZWe currently choose these edges arbitrarily, but more intelligent heuristics
may lead to further improvements.

3While this process may seem expensive, it occurs only once, and can be
sped up if preserving initial locations is not important. In addition, while
©(N?3)-time complexity is usually considered prohibitive for layout algo-
rithms, we note that sequence-pair annealers are typically slower, perform-
ing N moves at each temperature value and at least N2 operations at each
move.

Create-Fixed-Placement(G 7, Gy/)
I. Fore=1to N
2. If (GHlb(:l‘7) > orig-Ti) T — GHlb($1)
Else If (G .ub(z;) < orig-x;) ;i « Gpr.ub(x;)
Else x; < orig-x;
If (Gy .lb(y;) > orig-y;:) yi < Gy .lb(y;)
Else If (Gv .ub(y;) < orig-y;) yi < Gv .ub(y;)
Else y; < orig_y;
8. Update-Constraint-Graphs(Gz,G'y)
Figure 4: The creation of a fixed placement from the constraint
graphs

Nk w

Previous APlace +
Circuit Macros Nets Best FLOORIST
HPWL [5] HPWL

ibm-HBOI 911 5829 3.10e+06 | 2.86e+06 | —7.6%
ibm-HB02 1471 8508 6.42e+06 | 6.37e+06 | -1.0%
ibm-HBO3 1289 10279 9.80e+06 | 8.98e+06 | -8.4%
ibm-HB04 1584 12456 11.0e+06 | 9.87e+06 | -10.%
ibm-HBOS 564 9171 14.6 e+06 13.8 e+06 | —5.4%
ibm-HB06 749 9963 8.83e+06 | 8.23e+06 | —6.8%
ibm-HBO7 1120 15047 17.0 e+06 15.9e+06 | —6.4%
ibm-HBOS8 1269 16075 18.8 e+06 16.8 e+06 | —10.%
ibm-HB09 1113 18913 18.7 e+06 18.4e+06 | -1.3%
ibm-HB10 1595 27508 53.9 e+06 n/a n/a
ibm-HB11 1497 27477 28.9e+06 | 27.8e+06 | -3.7%
ibm-HB12 1233 26320 58.6e+06 | 51.6e+06 | —12.%
ibm-HB13 954 27011 36.9e+06 | 354e+06 | 4.1%
ibm-HB 14 1635 43062 66.0e+06 | 60.0e+06 | -9.1%
ibm-HB15 1412 52779 90.4 e+06 | 82.5e+06 | -8.7%
ibm-HB16 1091 47821 103. e+06 | 91.3e+06 | —11.%
ibm-HB17 1442 56517 146. e+06 | 138.e+06 | —5.6%
ibm-HB18 943 42200 732e+06 | 68.7e+06 | —6.1%

Average Reduction | -6.9%

Table 1: The IBM-HB benchmarks

3.4 Repairing Other Constraint Types

As mentioned in [18], non-overlap constraints are just one of
many types of constraints that traditional constraint graphs can ex-
press. For instance, region constraints, proximity constraints, and
alignment constraints can all be represented by edges in the graph,
and similarly, their violation can be regarded as the absence of
such edges. Consequently, our conflict-directed approach can re-
pair these constraints just as easily by manipulating the critical
paths that render them infeasible.

To illustrate this ability, we present a series of images in Figure
5, showing how FLOORIST repairs a violated region constraint. The
initial solution is displayed in the leftmost layout; the green shaded
block currently violates a constraint that requires its center to be
aligned with the horizontal midsection of the floorplan. Second,
we show the movement of blocks as displacement vectors, to high-
light how the majority of the modules are largely unaffected by this
repair. In the third image we show the final layout after FLOORIST
has repaired this constraint.

4. EXPERIMENTAL RESULTS

In order to evaluate the efficacy of our constraint-driven approach
to floorplan repair, we ran three global floorplanners — Capo 9.4
[17], Feng Shui 5.1 [10], and APlace 2.01 [9] — on the IBM-HB
benchmarks described in [5]. A summary of these benchmarks,
along with the wirelength of the best known solutions, is provided
in Table 1 for reference (the final two columns will be discussed
later). Since the latter two tools do not support soft blocks, we con-
vert all soft blocks to hard blocks with an aspect ratio of 1.0. For
both Feng Shui and APlace we used the default amount of 20%
whitespace, which consistently produced layouts with overlapping
modules. However, Capo often solved these instances without need
for legalization, and so we reduce whitespace to 15% for its in-
stances in order to generate solutions that do contain overlapping
modules. Importantly, this means that the quality of its initial place-
ments (particularly with respect to wirelength) are incomparable to
the other floorplanning packages, especially since Capo’s perfor-
mance improves significantly with increased whitespace.*

We then ran three legalizers on the output produced by the global
floorplanners. The first is part of the Feng Shui package, and (as
mentioned earlier) is a variation on the Tetris [8] algorithm.’ The

“The recent release of Capol0 [14] performs much better than Capo9.4;
however, we use the older version because (a) Capol0 places the IBM-HB
variants with 15% whitespace legally without overlaps, (b) while Floorist
succeeded on all variants with 10% whitespace, Feng Shui’s legalizer failed
in all cases.

SWe have decoupled the global floorplanner in Feng Shui 5.1 from its stand-

second legalizer is Parquet4.5 [1], an annealer used in Capo for
solving end-cases in subproblem recursion. Although it was not
originally intended for legalization, it can be used for this purpose
by setting the annealing temperature at a relatively low value, and
establishing a termination criterion in area-minimization mode so
that it stops whenever its solution can fit within the outline. The
final legalizer is our FLOORIST algorithm. A timeout of 120 seconds
was enforced on all problems.

Table 2 displays the results of these experiments. The table is
divided into three sections, one for each global floorplanner. The
leftmost four columns of the table give the name of the instance
and report the initial solutions produced by the global floorplan-
ner, displaying overlap as a percentage of layout area, the half-
perimeter wirelength, and runtime. The remaining columns give
similar statistics for each of the three legalizers. We also report the
relative increase in wirelength of the legalized solutions over the
original floorplan. Since overlapping modules contribute to shorter
wirelength, a high percentage may indicate a particularly illegal
initial solution, and thus one should use these percentages only to
compare legalizers to each other, and to compare initial placements
to each other. We have also plotted some of the layouts produced
by the global floorplanners and legalizers in Figure 6. For each
legalized solution, we have added displacement vectors, showing
how each module has moved from its original location.

Of all three legalizers, we find that the tool provided in the Feng
Shui 5.1 release is by far the most unreliable, crashing on the major-
ity of instances. Furthermore, in those cases where it does generate
a solution, it often increases the amount of overlap (especially for
Capo’s solutions, and some of APlace’s layouts). It also tends to
violate the fixed outline constraint, placing modules out of core.
In fact, there are no instances where it successfully legalizes the
layout completely.

Parquet, on the other hand, removes overlaps from all floorplans,
and does this rather quickly in many cases. However, on some of
Capo’s and Feng Shui’s initial solutions, it cannot satisfy the fixed
outline constraint within the time limit, and so these solutions are
not legal. In addition, the wirelengths of its solutions are often
twice or three times as large as those of the initial placement. This
may be due to the fact that it operates on a sequence-pair formu-
lation, in which a small perturbation may cause a module to be
moved significantly from its original position.

In contrast, FLOORIST achieves legality and 0% overlap on all in-
stances, preserving the length of most individual wires (and thus
global interconnect length) far better than the other legalizers while
remaining competitive in runtime. For Capo’s layouts, it typically
requires roughly 0% increase in wirelength; this is largely due to
the fact that the overlaps in Capo’s layouts are often very small,
occuring only faintly on the border of neighboring modules. On
the layouts produced by Feng Shui’s global floorplanner, the in-
crease in wirelength is more pronounced; however, the blame for
this can likely be attributed to the considerably high amount of
overlap present in Feng Shui’s initial placements. Finally, we find
that the results produced by using FLOORIST on APlace’s initial so-
lutions are each superior in wirelength to the best legal solutions
known previously for these instances. As shown in Table 1, the av-
erage reduction in wirelength is calculated to be roughly 7%. What
makes these results particularly interesting is that we are working
with hard blocks having fixed square dimensions, whereas the pre-
vious solutions were obtained by allowing blocks to be soft.

5. CONCLUSION

In this paper, we have developed a new efficient approach to
post-placement floorplan repair. Our FLOORIST algorithm legalizes
existing floorplans using constraint-driven, conflict-directed mod-

alone legalizer in our experiments, in order to evaluate them independently.

Table 2: Performance of legalizers on output from Capo 9.4, Feng Shui 5.1, and APlace 2.01

white- Capo 9.4 Solution FS 5.T’s “Tetris” legalizer Parquet4.5 Froorist (our work)
space ovlp HPWL | time ovlp HPWL Teg.time ovlp HPWL Teg.time || ovIp HPWL Teg.time
15% (%) (e+06) | (sec.) (%) (e+06) (sec.) (%) (e+06) (sec.) (%) (e+06) (sec.)
HBOT 0.16 357 988 0.89Toc | 4.01 129 159 0.00 414 +16%) 6.17 0.00 3.57 (+0.0%) 1.89
HBO02 0.21 16.5 2659 ——— seg fault —— — 0.000c | 21.1 279%) 120. 0.00 16.5 (+0.0%) 9.91
HBO03 0.07 17.1 2404 ——— seg fault — — — 0.00 19.5 14%) 11.3 0.00 17.1 0.0%) 4.51
HBO04 0.17 11.6 3404 ———seg fault — — — 0.00 13.3 (+15%) 13.0 0.00 11.6 +0.0%) 10.9
HBO05 0.24 14.6 757 ———seg fault — — — 0.00 14.6 +0%) 3.35 0.00 14.6 +0.0%) 0.56
HBO06 0.13 9.32 462 ———seg fault — —— 0.00 11.4 229 5.12 0.00 9.32 (+0.0%) 1.59
HBO7 0.16 17.8 577 0.8730c | 19.2 wis% | 7.02 0.00 17.7 1% 8.52 0.00 17.9 0.6%) 5.22
HBOS8 0.12 22.6 1257 ——— seg fault —— — 0.00 23.6 (+4%) 9.75 0.00 22.6 (+0.0%) 5.61
HB09 0.20 35.8 2684 — ——seg fault ——— 0.000c | 47.1 329 120. 0.00 35.8 +0.0%) 4.71
HBI10 0.26 72.9 5185 ———seg fault — — — 0.000c | 117. @60%) 120. 0.00 74.0 +1.4%) 20.9
HBI11 0.06 69.4 6479 ———seg fault — —— 0.000c | 77.5 «12%) 120. 0.00 69.4 (+0.0%) 6.28
HBI12 0.03 93.1 4408 ———seg fault — —— 0.000c | 102. +9%) 120. 0.00 93.1 (+0.0%) 2.71
HB13 0.08 45.6 960 ———seg fault — — — 0.00 52.5 «15%) 7.02 0.00 45.6 +0.0%) 2.27
HB14 0.13 65.6 1329 ———seg fault — — — 0.00 65.0 1% 14.7 0.00 65.6 (+0.0%) 10.9
HB15 0.09 98.1 5752 ———seg fault — — — 0.000c | 116. 18%) 120. 0.00 98.1 (+0.0%) 7.59
HBI16 0.12 149. 3690 ———seg fault — — — 0.00 159. 7% 18.1 0.00 149. +0.0%) 2.78
HB17 0.07 153. 2149 ———seg fault — —— 0.000c | 176. «+15%) 120. 0.00 153. +0.0%) 5.94
HB18 0.10 74.2 1390 5.6960c | 88.3 9% | 90.6 0.000c | 119. 60%) 120. 0.00 T4.2 (+0.0%) 2.48
Avg. 0.12 539 2585 Insufficient Data 0.00oc | +181% 58.7 0.00 +0.1% 5.93
white- FS 5.1 w/o legalization FS 5.1’s “Tetris” legalizer Parquet4.5 Froorist (our work)
space ovlp HPWL | time ovlp HPWL Teg.time ovlp HPWL Teg.time [[ovIp HPWL Teg.time
20% (%) (e+06) | (sec.) (%) (e+06) (sec.) (%) (e+06) (sec.) (%) (e+06) (sec.)
HBOI 10.20c 2.94 20.8 0.840c | 3.76 2% 341 0.00 9.04 (+207%) 3538 0.00 32T +o%) 1.9
HBO2 ———crashes — —— n/a n/a n/a n/a n/a n/a n/a n/a n/a
HBO3 | 7.980c 9.05 39.9 ———seg fault ——— 0.00 27.3 (+202%) 58.3 0.00 10.1 129 65.1
HBO04 | 7.090c 10.4 48.6 — ——seg fault ——— 0.00 31.9 +208%) 48.8 0.00 11.5 ¢11%) 494
HBO05 ———crashes — — — nfa | n/a | n/a n/a n/a n/a n/a n/a n/a
HBO6 | 6.23oc | 8.16 | 36.0 ———seg fault ——— 0.00 28.0 (+243%) 9.16 0.00 8.85 (+8%) 20.2
HBO07 ———crashes ——— nfa | n/a | n/a n/a n/a n/a n/a n/a n/a
HBO8 | 7.840c 17.6 62.3 ———seg fault ——— 0.00 55.0 @213%) 34.7 0.00 19.4 +10%) 27.3
HB09 | 6.530c 17.2 47.5 1.840c | 19.2 119 6.42 0.000c | 76.2 +342%) 120. 0.00 18.8 (+9%) 14.3
HB10 ———crashes — —— n/a n/a n/a n/a n/a n/a n/a n/a n/a
HBI11 | 7.900c 27.7 69.1 1.640c | 32.0 +15%) 104 0.00 95.0 +243%) 51.0 0.00 29.9 +8%) 45.0
HB12 | 4.8loc 54.9 48.5 ———seg fault —— — 0.00 88.0 (+60%) 9.80 0.00 59.3 (+8%) 9.16
HBI13 | 7.1loc 37.3 57.1 0.1830c | 45.5 ¢2%) | 3.62 0.00 100. (+169%) 23.6 0.00 40.4 8% 10.2
HB14 | 6.670c 60.2 110. ———seg fault —— — 0.000c | 155. 1579%) 120. 0.00 65.0 +8%) 585
HB15 5.71oc 82.8 117. 2.1690c | 103. (+24%) 5.61 0.00 221. (+166%) 68.7 0.00 89.5 (+8%) 40.1
HB16 | 6.360c 97.1 84.2 0.0040c | 108. «11%) 3.89 0.00 265. +173%) 249 0.00 106. +9%) 16.2
HB17 | 8.39c 140. 118. — ——seg fault ——— 0.000c | 263. «+ss3%) 120. 0.00 152. +8%) 81.7
HBI18 | 7.200c 69.3 90.1 — ——seg fault — — — 0.00 169. (+144%) 35.7 0.00 75.1 +8%) 22.1
Avg. 7.140c 39.77 67.8 Insufficient Data 0.000c + 187% 54.3 0.00 +8.9% 32.8
white- APlace 2.01 Solution FS 5.1’s "Tetris” legalizer Parquet4.5 Froorist (our work)
space ovlp HPWL | time ovlp HPWL Teg.time ovlp HPWL Teg.time || ovIp HPWL Teg.time
20 % (%) (e+06) | (sec.) (%) (e+06) (sec.) (%) (e+06) (sec.) (%) (e+06) (sec.)
HBOT 2.73 2.66 66.83 0.931 318 (+20%) 2.30 0.00 6.32 (+138%) 10.6 0.00 | 2.86 8% v 4.67
HB02 2.62 5.63 126.5 ———seg fault —— — 0.00 17.9 @218%) 17.2 0.00 | 6.37 +13%) v 44.1
HBO03 2.13 8.18 130.5 ———seg fault — — — 0.00 16.8 (+105%) 10.6 0.00 | 8.98 (+10%) v/ 134
HB04 2.84 9.08 127.2 ———seg fault — — — 0.00 23.1 (+154%) 18.9 0.00 | 9.87 9% v 28.9
HBO5 | 0.5490c 13.8 502.1 ———seg fault — — — 0.00 14.5 +5%) 3.64 0.00 | 13.8 0% v 0.89
HBO06 1.64 7.94 94.39 ———seg fault — — — 0.00 15.5 (+95%) 5.36 0.00 | 8.23 (+4%) v/ 2.49
HBO7 1.37 154 314.1 7.9960¢ | 17.4 +13%) 12.2 0.00 30.4 +98%) 9.00 0.00 | 159 4% v 7.97
HBO8 1.130c 16.5 340.3 1.7280c | 19.2 (+16%) 19.5 0.00 31.0 +87%) 10.9 0.00 | 16.8 +2% v 9.38
HB09 | 1.130c 17.7 222.3 — ——seg fault ——— 0.00 42.6 +141%) 9.03 0.00 | 18.4 (+4%) v 7.54
HB10 | ———program hangs — —— nfa | n/a | n/a n/a n/a n/a n/a n/a n/a
HBI11 1.02 27.4 4442 — ——seg fault ——— 0.00 52.9 +93%) 14.21 0.00 | 27.8 1% v 14.7
HBI12 0.19 51.6 301.1 0.0010c | 54.9 w79 | 4.49 0.00 71.3 (+38%) 11.2 0.00 | 51.6 0% v 3.37
HB13 0.55 352 276.7 ———seg fault ——— 0.00 53.1 «s1%) 7.64 0.00 | 354 1% v 2.25
HB14 1.07 58.5 542.6 ———seg fault — —— 0.00 94.1 +61%) 16.8 0.00 | 60.0 +3% v 18.0
HB15 0.78 81.6 633.9 — ——seg fault ——— 0.00 117. «43%) 13.7 0.00 | 82.5x1% v 11.7
HB16 0.34 91.2 736.5 ———seg fault ——— 0.00 128. (+40%) 8.75 0.00 | 91.3 0% v 4.37
HB17 | 0.530c 138. 938.2 ||| 0.0220c | 150. 9% | 13.4 0.00 181. +32%) 134 0.00 | 138. om v 5.09
HBI18 0.57 68.0 456.7 ———seg fault —— — 0.00 111. ¢+ 64%) 8.52 0.00 | 68.7 +1%) v 3.15
Avg. 1.25 38.1 367.9 Insufficient Data 0.00 +86% 11.1 0.00 +3.5% 10.7
\ V'indicates a new best known Iegal solution. An ‘oc” indicates an out-of-core solution.

(b) Movement

Figure 5: Imposing a region constraint on the green block in the above HB12 instance
forces it (and blocks beneath it) to move down.

Initial Solution

a

1

.
B mE |

e
R

Capo’s HB18 Solution

FLOORIST (our work)

e

J e

Ll

e

-

Feng Shui’s HB09 Solution
[

APlace’s HBO7 Solution

|SRESEERS RS}

/e 1) 31) s

Figure 6: Initial Solutions and Outputs of Legalizers (Red regions indicate overlap and violations of the fixed outline constraint; blue
vectors indicate movement of modules). All initial solutions have numerous overlaps. Feng Shui’s legalizer produces solutions that
contain overlapping modules and modules out-of-core. Parquet removes all overlaps, but two solutions violate the outline constraint,
and all placements require extensive movement of modules. FLOORIST’s solutions are entirely legal, and require relatively little

module movement.

ifications. In contrast to previous attempts at overlap removal in
floorplanning, our algorithm modifies only those features of the
layout that are directly responsible for the violated constraints, and
thus preserves the qualities and characteristics of the original layout
by emulating its initial structure. The versatility of this approach
makes it useful for a number of applications, allowing one to post-
process the outputs of global floorplanners, fix overlaps introduced
by the re-sizing of modules in existing floorplans, and to legalize
rough floorplans sketched by chip architects.

6. REFERENCES

[1] S.N. Adya and I. L. Markov. Fixed-outline Floorplanning: Enabling
Hierarchical Design. In IEEE Trans. on VLSI Systems, vol. 11(6),
pages 1120-1135, 2003.

[2] U. Brenner, A. Pauli, and J. Vygen. Almost optimum placement
legalization by minimum cost flow and dynamic programming. In
Proc. of ISPD 04, pages 2-9, 2004.

[3] C.Chang,J. Cong, and X. Yuan. Multi-level placement for large-scale
mixed-size ic designs. In Proc. of ASP-DAC 03, pages 325-330, 2003.

[4] J. Cong, M. Romesis, and J. R. Shinnerl. Robust mixed-size placement
under tight white-space constraints. In Proc. of ICCAD 05, pages
165-172, 2005.

[5] J. Cong, M. Romesis, and J. Shinnerl. Fast floorplanning by
look-ahead enabled recursive bipartitioning. Technical Report
TR040043, Computer Science Dept., UCLA, 2004.

[6] J. Cong, M. Romesis, and J. Shinnerl. Fast floorplanning by
look-ahead enabled recursive bipartitioning. In Proc. of ASP-DAC 05,
pages 1119-1122, 2005.

[7] J. Cong and M. Xie. A Robust Detailed Placement for Mixed-Size IC
Designs. In Proc. of ASP-DAC 06, pages 188—194, 2006.

[8] D. Hill. Method and system for high speed detailed placement of cells
within an integrated circuit design, US Patent 6370673, April 2002.

[9] A.B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high
quality, large-scale analytical placer. In Proc. of ICCAD ’05, 2005.

[10] A. Khatkhate, et. al. Recursive bisection based mixed block
placement. In Proc. of ISPD '04, pages 84-89, 2004.

[11] Y. Liao and C. K. Wong. An algorithm to compact a VLSI symbolic
layout with mixed constraints. In IEEE Transactions on CAD, Vol. 2,
No. 2, 1983.

[12] M. D. Moffitt and M. E. Pollack. Optimal rectangle packing: a
meta-CSP approach. To appear in Proc. of ICAPS 06, 2006.

[13] S. Nag and K. Chaudhary. Post-Placement Residual-Overlap
Removal with Minimal Movement. In Proc. of DATE ’99, pages
581-586, 1999.

[14] A.N.Ng, I. L. Markov, R. Aggarwal and V. Ramachandran. Solving
Hard Instances of Floorplacement. In Proc. of ISPD ’06, pages
170-177, 2006.

[15] H. Onodera, Y. Taniguchi, and K. Tamaru. Branch-and-bound
placement for building block layout. In Proc. of DAC "91, pages
433-439, 1991.

[16] H.Ren, D.Z. Pan, C.J. Alpert, and P. Villarrubia. Diffusion-based
placement migration. In Proc. of DAC "05, pages 515-520, 2005.

[17] J. A. Roy, et. al. Capo: robust and scalable open-source min-cut
floorplacer. In Proc. of ISPD ’05, pages 224-226, 2005.

[18] E. Young, M.L. Ho, and C. Chu. A Unified Method to Handle
Different Kinds of Placement Constraints in Floorplan Design. In
Proc. of ASP-DAC 02, pages 661-670, 2002.

