
ABSTRACT
This paper describes a new algorithm for extracting unsatis-
fiable subformulas from a given unsatisfiable CNF formula.
Such unsatisfiable “cores” can be very helpful in diagnosing
the causes of infeasibility in large systems. Our algorithm is
unique in that it adapts the “learning process” of a modern
SAT solver to identify unsatisfiable subformulas rather than
search for satisfying assignments. Compared to existing
approaches, this method can be viewed as a bottom-up core
extraction procedure which can be very competitive when
the core sizes are much smaller than the original formula
size. Repeated runs of the algorithm with different branching
orders yield different cores. We present experimental results
on a suite of large automotive benchmarks showing the per-
formance of the algorithm and highlighting its ability to
locate not just one but several cores.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: Combinatorial Algorithms.

General Terms
Algorithms, Verification.

Keywords
Minimally-unsatisfiable subformula, (MUS), conjunctive nor-
mal form (CNF), Boolean satisfiability (SAT), diagnosis.

1 INTRODUCTION
Formulations of electronic design automation tasks as
instances of Boolean satisfiability (SAT) fall into two catego-
ries. In verification applications, a large Boolean function is
formed such that it is satisfiable when the object being veri-
fied contains bugs. SAT solving, then, reveals the existence of
bugs when the function is satisfiable or establishes their
absence when the function is unsatisfiable. An example of
this is the functional verification of hardware (equivalence or
property checking) [8]. In design applications, a large Bool-
ean function is formed such that a feasible design is obtained
when the function is satisfiable, and design infeasibility is
indicated when the function is unsatisfiable. An example of
this is the routing of signal wires in an FPGA [9]. Unlike the
verification scenario where unsatisfiability establishes a proof

of correctness, unsatisfiability in the design context implies a
negative result; without further analysis of the causes of
unsatisfiability, we have no clue as to how to relax the design
constraints in order to obtain a feasible design. The goal of
this paper is to analyze the causes of unsatisfiability in large
CNF formulas in order to provide useful diagnostic informa-
tion to designers pinpointing those design constraints that
must be modified.

Consider an unsatisfiable CNF formula . An unsatisfi-
able subformula (a US) of is a minimally-unsatisfiable sub-
formula (an MUS) if it becomes satisfiable whenever any of
its clauses is removed. An unsatisfiable CNF formula can
have one or more MUSes, and the set of all MUSes is referred
to as the formula’s clutter [2].
Theoretical work on minimal unsatisfiability. Papadimitriou
and Wolfe [10] showed minimal unsatisfiability to be DP-
complete, where DP is the class which can be described as
the difference between two NP problems. A DP-complete
problem is equivalent to solving a SAT-UNSAT problem
defined as: given two formulas and , in CNF, is it the
case that is satisfiable and is unsatisfiable? Minimally
unsatisfiable formulas always have positive deficiency [1, 3],
where deficiency is the difference between the number of
clauses and variables. Davydov et al. [3] gave an efficient
algorithm for recognizing minimally-unsatisfiable formulas
with deficiency 1. Kleine Buning [5] showed that, if k is a
fixed integer, then the recognition problem with deficiency k
is in NP, and suggested a polynomial time algorithm for for-
mulas with deficiency 2. Recently, it was shown that minimal
unsatisfiable formulas with deficiency k can be recognized in
time where n is the number of variables [4].
Experimental work on minimal unsatisfiability. Bruni and
Sassano [2] employ an “adaptive core search” procedure that
ranks clauses based on their hardness. The hardness of a
clause is defined as a weighted sum of how often the clause is
visited during a complete search algorithm and how often it
is involved in conflicts. Starting from a small initial set of
hard clauses, the unsatisfiable core is built by an iterative
process that expands or contracts the current core by a fixed
percentage of clauses (chosen based on hardness) until the
core becomes unsatisfiable. The process uses three parame-
ters: d, the number of branching steps used to obtain the ini-
tial core; b, the number of branching steps in subsequent
iterations; and c, the percentage of clauses used to expand or
contract the current core. Not surprisingly, the quality (i.e.,
size and minimality) of the unsatisfiable core produced by
this procedure is highly dependent on the particular settings
of these three parameters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’04, June 7-11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

ϕ
ϕ

ϕ ψ
ϕ ψ

nO k()

AMUSE: A Minimally-Unsatisfiable Subformula Extractor
Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A. Sakallah, Igor L. Markov

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122

{yoh, maherm, zandrawi, karem, imarkov}@eecs.umich.edu

Zhang and Malik [15] generate a resolution proof from the
SAT solver and use it to derive an unsatisfiable subformula.
A resolution proof is a DAG whose source vertices (i.e., verti-
ces with no incoming edges) correspond to the formula’s orig-
inal clauses. Each other vertex has exactly two predecessors
and corresponds to the consensus clause obtained from those
of its predecessors. The set of original clauses in the transi-
tive fan-in of the sink are returned as the unsatisfiable core.
The method works on very large instances (by storing the
resolution DAG on disk) but the returned core is not guaran-
teed to be an MUS. Smaller cores, though not necessarily
MUSes, can be obtained by repeated application of the above
procedure until no further reduction in size is obtained.

In this paper we propose a new approach to finding a set
of unsatisfiable subformulas from a given unsatisfiable for-
mula. The approach capitalizes on the conflict-driven learn-
ing of modern backtrack SAT solvers such as GRASP [7] and
zChaff [14] to identify unsatisfiable subformulas in a bottom-
up fashion during the search. The rest of the paper is orga-
nized as follows. In Section 2 we motivate the need to extract
MUSes using a small example. The main extraction algo-
rithm is described in Section 3. Empirical evaluation of the
algorithm on a set of large industrial automotive benchmarks
is given in Section 4, and the paper ends in Section 5 with
conclusions and some directions for future work.

2 A MOTIVATING EXAMPLE
Most previous work on minimally-unsatisfiable formulas was
concerned with either proving that an unsatisfiable formula
is minimal, or extracting a minimally (preferably the small-
est possible) unsatisfiable subformula from it. We argue here
that it is useful to extract not just one but several MUSes
from a given formula. Furthermore, we argue that larger
MUSes may sometimes be more useful for diagnostic pur-
poses than smaller ones.

Consider the small FPGA routing problem shown in
Figure 1(a). As indicated, there are five nets to be routed (a
through e) over an FPGA fabric that has two tracks (num-
bered 0 and 1) in each routing channel. A net x is modeled
by two binary variables and that indicate its track
assignment: indicates that net x is assigned to track i.
With this encoding, the routing requirements are now formu-
lated as a set of CNF clauses that fall into one of two catego-
ries [9]:
1. Liveness constraints to insure that each net is assigned to

at least one routing track. There are five such constraints,
one per net.

2. Exclusivity constraints to insure that each track is assigned
to at most one net. There are twelve such constraints, six
for routing channel 1 and six for routing channel 2.
The resulting (unsatisfiable) set of seventeen constraints

is indicated in Figure 1(b) along with four of its MUSes. The
smaller of these MUSes, MUS1 and MUS2, are clearly seen to
correspond to routing channels 1 and 2, respectively. As a
means of diagnosing the causes of unroutability, MUS1, for
instance, pinpoints the conflicting requirements of trying to
route three nets (a, b, and c) in a 2-track channel. Similarly,
MUS2 indicates the impossibility of routing nets c, d, and e
in channel 2. It is interesting, and perhaps not surprising,
that MUS1 and MUS2 are pigeon hole instances with 3
pigeons (nets) and 2 holes (tracks) each. In contrast, MUS3

and MUS4 are not pigeon hole instances. Rather than pin-
pointing a routing channel whose capacity is exceeded, these
MUSes seem to pinpoint a culprit net, namely c, that con-
tributes to the unroutability of both channels. This can be
seen by noting that the c variables occur more frequently in
these MUSes than do all other variables.

This simple example brings out several interesting points
about MUSes and the role they might play in diagnosing and
eliminating the causes of infeasibility. “Small” MUSes, such
as MUS1 and MUS2, might be useful in identifying “local
infeasibility.” In this example, the local infeasibility identi-
fied by MUS1 is in channel 1; it can be eliminated by increas-
ing channel capacity or by re-routing one of the nets.
Symmetry, however, prevents MUS1 from providing any
guidance as to which net to re-route (MUS1 remains invari-
ant under any permutation of the three nets.) Thus, if a net

x0 x1
xi 1=

a b

c

d
a

bc

e

e
d

2 tracks

2 tracks

Routing
Channel 1

Routing
Channel 2

(a) A small FPGA routing problem. The square boxes
represent configurable logic blocks and the spaces
between them correspond to routing channels.

0 06 : ()C c d′ ′+

0 07 : ()C c e′ ′+

0 08 : ()C d e′ ′+

9 1 1: ()C c d′ ′+

10 1 1: ()C c e′ ′+

11 1 1: ()C d e′ ′+

0 012 : ()C a b′ ′+

0 013 : ()C a c′ ′+

0 014 : ()C b c′ ′+

15 1 1: ()C a b′ ′+

16 1 1: ()C a c′ ′+

17 1 1: ()C b c′ ′+

01 1: ()C a a+

02 1: ()C b b+

03 1: ()C c c+

04 1: ()C d d+

5 0 1: ()C e e+

Li
ve

ne
ss

C
on

st
ra

in
ts

C
ha

nn
el

 2
 E

xc
lu

si
vi

ty
C

on
st

ra
in

ts
C

ha
nn

el
 1

 E
xc

lu
si

vi
ty

C
on

st
ra

in
ts

MUS1 MUS2 MUS3 MUS4

(b) Routing constraints and corresponding MUSes

Figure 1: An FPGA routing example and four of its MUSes

other than c is chosen for re-routing, the problem would
remain infeasible as the other channel is still congested1. On
the other hand, “large” MUSes, such as MUS3 and MUS4,
require deeper analysis to identify the cause of infeasibility.
They are more global, though, and suggest corrective actions
that are more likely to eliminate infeasibility more efficiently;
in this case, re-routing net c solves the congestion in both
channels simultaneously. It is also interesting to note that
MUS3 and MUS4 are in some sense “equivalent” in that they
convey the same information (namely, that net c is problem-
atic.)

Clearly, further research is needed to understand the
exact relation between a formula’s MUSes and their effective-
ness in pinpointing the reasons for infeasibility as well as the
best corrective actions to eliminate it. Our concern in this
paper is to devise efficient algorithms for extracting several,
if not all, MUSes/USes from a given unsatisfiable formula.

3 THE AMUSE ALGORITHM
Consider an unsatisfiable formula . A systematic, albeit
expensive, algorithm for finding ’s clutter is to build a
search tree (the MUS tree) that enumerates ’s subformulas.
Each node in this tree corresponds to a subformula of ,
with the root corresponding to the entire formula. A node in
the MUS tree is expanded if its corresponding subformula is
unsatisfiable. Expansion of a node whose associated subfo-
mula is , denotes the creation of l child
nodes such that the i-th child corresponds to the subformula
obtained by removing clause from . The subformula at
a node is an MUS if the subformulas at all of the node’s chil-
dren are satisfiable.

Several enhancements to the above algorithm are possible.
For instance, the SAT checks at each node can be performed
incrementally [13] to allow the sharing of conflict clauses
among subformulas. In addition, redundant SAT checks can
be quickly identified and eliminated by caching techniques
(effectively transforming the tree into a DAG.) The multiple
satisfiability checks at the children of each node can also be
reduced to a single satisfiability check of a larger formula.
Finally, we may choose to expand the tree partially in order
to identify various subsets of the clutter. Despite all of these
enhancements, however, construction of the MUS tree is
infeasible except for very small formulas.

The MUS tree algorithm can be viewed as a top-down
solution to finding MUSes: an MUS is computed by mono-
tonically shrinking (i.e., removing clauses from) the original
formula. This algorithm exhibits its worst-case behavior
when the size of a formula (i.e., the number of its clauses) is
much larger than the sizes of its MUSes; such MUSes would
not be found until the MUS tree has been expanded to very
deep levels. In such cases, a bottom-up approach should per-
form better: starting from an empty formula, clauses are
added until a US is obtained. While such a process does not,
in general, guarantee the identification of an MUS, it can
leverage the learning power of a modern SAT solver to
increase the likelihood of including only relevant clauses in
the evolving US. This is the key idea behind the AMUSE
algorithm.

The algorithm extends a generic DLL-based SAT solver to
implicitly search for a US instead of a satisfying assignment.
This is achieved by introducing a set of auxiliary variables,
one per clause, that serve as clause selectors. Consider the
unsatisfiable formula
where , and define the following associ-
ated satisfiable formula:

where and . Note that by set-
ting , clause is activated or included, and by set-
ting clause is deactivated or excluded. Intuitively,

 implicitly encodes the entire set of ’s subfor-
mulas. Thus, the problem of finding a US of reduces to
finding a truth assignment such that is unsatis-
fiable.

1 It is interesting to note, though, that the intersection of
MUS1 and MUS2 is the liveness clause for net c.

ϕ
ϕ

ϕ
ϕ

1 2 lC C Cψ = ⋅ ⋅ ⋅"

iC ψ

1 2() () () ()kX C X C X C Xϕ = ⋅ ⋅ ⋅"

1 2{ , , , }nX x x x= …

1 1 2 2

1 1 2 2

ˆ(,) (()) (()) (())

(()) (()) (())
k k

k k

X Y y C X y C X y C X

y C X y C X y C X

ϕ = → ⋅ → →

′ ′ ′= + ⋅ + +

"

"

Figure 2: The AMUSE algorithm

Algorithm 1 AMUSE: A Minimally Unsatisfiable Subfor-
mula Extractor
bool yWasImplied;
stack xWasUnassigned;
DLLSearch() {

while (true)
if (Decide() == false)

return SATISFIABLE;
while (Deduce() == CONFLICT)

if (Diagnose() == CONFLICT)
return UNSATISFIABLE;}

Decide() {
if (no unassigned)

return false;
if (yWasImplied == true)

Find implied ;
assign to 1;
yWasImplied = false;

else if (xWasUnassigned != empty)
pop unassigned ;
assign ;

else
choose unassigned ;
assign ;

return true;}
Deduce() {

result = boolean_constraint_propagation();
if (yWasImplied)

return CONFLICT;
if (result == CONFLICT)

return CONFLICT;
return SUCCESS;}

Diagnose() {
if (yWasImplied)

find_ _to_unassign();
if (no such)

Record MUS solution;
else

Unassign ;
push onto xWasUnassigned;
return SUCCESS;

else
learn_conflict_clause();
if (!backtrack_until_no_conflict())

return CONFLICT;
return SUCCESS;}

x X∈

yi
yi

xi
xi

xi X∈
xi

x
x

x
x

1 2{ , , , }kY y y y= " Y X∩ = ∅
1iy = iC
0iy = iC

ˆ(,)X Yϕ ()Xϕ
()Xϕ

*Y *ˆ(,)X Yϕ

The AMUSE algorithm operates on . Figure 2
summarizes its pseudo code, with the text in bold indicating
the extensions to a generic SAT solver. AMUSE distinguishes
between the X and Y variables and treats them differently
during the search. Specifically, the X variables are handled
normally, i.e., they are assigned electively (by the decision
process) or forcibly (by the deduction process), and unas-
signed during backtracking after conflicts. The Y variables,
however, are viewed as “meta variables” that act to identify
clauses that should be collected in order to generate a US.
The algorithm forces a Y variable to assume the value 1 to
indicate that the corresponding clause is a candidate for
inclusion in the evolving US. To understand how this is
accomplished, let and denote the set of
decided and implied X variables and let represent
the set of forced Y variables. Also, let the union of
and be denoted by . Initially, these sets are
empty. As the search progresses, the set is extended.
Since the formula is unsatisfiable, at some point we will have

 for some clause forcing the deduction
process (Boolean Constraint Propagation) to set in

. This indicates that clause must be deactivated
for the SAT solver to find a satisfying truth assignment for

 and identifies it as a potential candidate for the
evolving US. This is now done by unassigning a variable in

 that participated in the implication of to 0 and
forcing to 1 instead. At this point, the search resumes
normally until the combination of and
cause a conflict and result in the creation of a conflict-
induced clause . Because is satisfiable (trivially by
setting all of the Y variables to 0), is guaranteed to have
at least two negative Y literals. When the appropriate X
decision variable is unassigned, this clause allows the search
process to backtrack and to cause the implication of that
unassigned variable to the opposite value.

As the search continues, we are guaranteed, by the unsat-
isfiability of , to trigger the indirect implication of a Y
variable, , to 0 exclusively by a set of other Y variables,

. This implication can be recorded as the
clause which implicitly identifies a US.
Execution of the AMUSE algorithm on a sample formula is
illustrated in Figure 3.

It is instructive to note that different decision heuristics
on the X variables usually lead to the generation of different
USes. To generate a user-specified number of USes, we re-run
AMUSE by favoring variables that did not appear in previ-
ously-generated USes. This is achieved by storing priority
information for each variable. After a US is found, the prior-
ity of variables appearing in this US is decremented, and the
algorithm is run again. We can also optimize the algorithm
to increase the likelihood that the generated US is in fact an
MUS. One way of achieving this is for the decision process to
favor variables in activated clauses with the least number of
unassigned literals.

4 EXPERIMENTAL EVALUATION
We implemented the AMUSE algorithm on top of the Mini-
SAT solver [6] and tested it on a number of large unsatisfi-
able benchmarks for Automotive Product Configuration [11,
12]. These benchmarks model the configuration of options for
the DaimlerChrysler Mercedes car and truck lines. The
benchmark suite consists of 84 unsatisfiable instances that
range in size from 1608 variables and 4496 clauses to 2038
variables and 11,352 clauses. We conducted our experiments
on a 2.8 GHz Pentium IV PC with 1 GB of RAM running
the Linux operating system. Table 1 lists the results of run-
ning AMUSE and zCore, the zChaff core extractor [15], on
some of these benchmarks. For each benchmark, the table
lists its name (col. 1), the number of its variables and clauses
(cols. 2 and 3), and the results of running AMUSE and
zCore. For each of these extractors, the table lists the num-

ˆ(,)X Yϕ

decidedX impliedX

forcedY
decidedX

impliedX assignedX
assignedX

assigned() 0iC X = iC
0iy =

ˆ(,)X Yϕ iC

ˆ(,)X Yϕ

decidedX iy
iy

assignedX
forcedY

ω ˆ(,)X Yϕ
ω

()Xϕ
ijy

1 2 , 1, , ,i i i jy y y −"

1 2()iji iy y y′ ′ ′+ + +"

Force y3
Imply x2

x1 1=
x2 0=

y3 1=

Unassign x2Snapshot 2: Snapshot 1: Assign x1
Assign x2
Imply y3

x1 1=
y3 0=

x2 1=

Snapshot 3: Assign x3
Imply y5

x3 1=

x1 1=
x2 0=

y3 1=
y5 0=

Snapshot 4:

y5 1=

x1 1=
x2 0=

y3 1=
x3 0=

y4 0=

Force y5
Imply x3

Unassign x3

Imply y4

54 1()y y x′ ′ ′+ +

Snapshot 5:

y4 1=

y3 1=
x2 0=

y5 1=
x3 0=

Force y4

Imply conflict

Unassign x1

Learn

x1 1=

Assign x1

Snapshot 6:

y4 1=

y3 1=

y2 0=
y5 1=

x1 0=

x2 1=

Imply x1

Backtrack

Assign x2
Imply y2

No X variable to unassign

Snapshot 7:

y4 1=

y3 1=

x2 0=
y5 1=

x1 0=

y2 1=

y1 0=

Force y2
Imply x2

Unassign x2

Imply y1

Found MUS C1 C2 C4 C5, , ,{ }=

Figure 3: Execution snapshots of the AMUSE algorithm on a sample formula
51 1 2 2 1 2 3 1 2 4 1 3 1 3ˆ(,) ()()()()()X Y y x x y x x y x x y x x y x xϕ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + + + + +

Table 1: Unsatisfiable Subformula Results for the DaimlerChrysler Product Configuration Benchmarks

Benchmark AMUSE zCore
Name #V #C #I #V #C Time, sec. MUS? #I #V #C Time, sec MUS?

C168_FW_UT_851 1909 7491 1 7 8 0.01 Y 2 9 10 0.07 Y
C168_FW_UT_852 1909 7489 1 7 8 0 Y 2 9 10 0.07 Y
C168_FW_UT_854 1909 7486 1 7 8 0 Y 2 9 10 0.05 Y
C168_FW_UT_855 1909 7485 1 7 8 0.01 Y 2 9 10 0.06 Y
C208_FA_RZ_43 1608 5297 1 6 8 0 Y 1 8 9 0.04 Y
C202_FW_SZ_98 1799 8689 1 6 9 0.01 Y 1 6 8 0.06 Y
C168_FW_UT_714 1909 7487 1 6 9 0.01 Y 1 6 9 0.04 Y
C220_FV_RZ_13 1728 4509 1 9 10 0 Y 1 9 10 0.04 Y
C220_FV_RZ_12 1728 4512 1 10 11 0.01 Y 1 10 11 0.02 Y
C220_FV_RZ_14 1728 4508 1 10 11 0 Y 1 10 11 0.03 Y
C208_FC_RZ_65 1654 5591 1 11 12 0 Y 2 13 15 0.05 Y
C210_FS_SZ_107 1755 5762 2 11 15 0.01 Y 2 11 15 0.04 Y
C220_FV_SZ_46 1728 4498 1 16 17 0 Y 1 16 17 0.02 Y
C208_FA_SZ_87 1608 5299 1 17 18 0.01 Y 1 17 20 0.03 Y
C210_FW_SZ_111 1789 7404 1 13 18 0 Y 2 11 15 0.06 Y
C202_FS_RZ_44 1750 6199 2 14 20 0 Y 2 12 19 0.04 N
C202_FS_SZ_121 1750 6181 1 21 23 0 Y 1 20 22 0.04 Y
C210_FW_SZ_128 1789 7412 2 12 23 0 Y 2 14 23 0.06 Y
C220_FV_SZ_65 1728 4496 1 18 23 0.01 Y 1 24 30 0.03 N
C202_FS_SZ_95 1750 6184 2 20 26 0 Y 1 12 14 0.04 Y
C202_FS_SZ_104 1750 6201 2 23 28 0 Y 1 29 34 0.04 Y

C208_FA_RZ_64 1608 5279 1 29 212 0.01 Y 1 29 212 0.03 Y
C208_FC_RZ_70 1654 5543 1 29 212 0.01 Y 2 29 212 0.04 Y
C202_FW_RZ_57 1799 8685 1 30 213 0 Y 1 30 213 0.05 Y
C202_FW_SZ_96 1799 8849 1 218 223 0 Y 2 210 215 0.08 Y
C202_FS_SZ_84 1750 6273 1 207 226 0.01 Y 1 206 221 0.05 Y
C170_FR_RZ_32 1659 4956 1 30 227 0 Y 2 30 227 0.06 Y
C210_FW_SZ_129 1789 7606 2 62 234 0.01 Y 1 49 176 0.04 Y
C210_FW_SZ_90 1789 7994 2 228 294 0.05 N 1 221 284 0.09 Y
C210_FW_SZ_91 1789 7721 2 212 299 0.06 N 1 225 288 0.08 Y
C220_FV_SZ_114 1728 4777 2 66 323 0.03 N 1 47 132 0.03 Y
C220_FV_SZ_55 1728 5753 2 237 394 0.03 N 2 246 312 0.15 N
C202_FW_SZ_87 1799 8946 3 246 416 0.05 N 2 247 385 0.08 N

Figure 4: Distribution of MUS sizes for the DaimlerChrysler Product Configuration Benchmarks

0

5

10

15

20

25

30

35

1-
10

21
-3

0

41
-5

0

61
-7

0

81
-9

0

10
1-

11
0

12
1-

13
0

14
1-

15
0

16
1-

17
0

18
1-

19
0

20
1-

21
0

22
1-

23
0

24
1-

25
0

26
1-

27
0

28
1-

29
0

30
1-

31
0

32
1-

33
0

34
1-

35
0

36
1-

37
0

38
1-

39
0

MUS Size (Number of Clauses)

Fr
eq

ue
nc

y

ber of iterations needed to yield the smallest possible US, the
size of the US (its number of variables and clauses), the
extraction time, and whether the returned US is an MUS.
The table is sorted by the size of the US returned by
AMUSE, and we only show the first 30 and last 12 bench-
marks due to space limitations. These data suggest that
AMUSE is generally able to extract small MUSes in one or
two iterations; for larger unsatisfiable cores AMUSE is less
successful in extracting MUSes. In all cases, AMUSE seems
to run several times faster than zCore.

To illustrate AMUSE’s capability of identifying several
USes/MUSes from a given formula, we employed the tech-
nique described at the end of Section 3 to generate up to four
MUSes from each benchmark formula. The size distribution
of these MUSes is shown in Figure 3. Except for a small clus-
ter of MUSes with sizes between 200 and 220, most MUSes
are less than 70 clauses in size. The most common MUS size
is between 31 and 40 clauses (recall that these benchmarks
have thousands of clauses.)

5 CONCLUSIONS AND FUTURE
WORK

With the increasing use of SAT solvers in design automation
flows, there is an emerging need for diagnosing and explain-
ing the causes of failure. The AMUSE algorithm adapts the
learning process of a modern SAT solver to identify unsatisfi-
able subformulas in a bottom-up fashion during the search.
We anticipate active research in this area for the next few
years as we strive to understand the “structure” of unsatisfi-
ability and how it maps back to various application domains.
Some of the issues that will be interesting to explore include:

Developing a better understanding of the relation between
MUSes, which are manifestations of infeasibility, and their
relation to the causes of infeasibility. This will help pin-
point the minimal changes that need to be made in a
system to restore feasibility and will involve studying pos-
sible covering relations among MUSes.
Computationally, the AMUSE algorithm does not scale
well for large formulas as it has to add a y variable to each
clause. This can be addressed in a number of ways such as
using a resolution-based core extractor [15] as a front end,
or ranking the clauses based on their difficulty as in [2] and
adding y variables to a certain number of difficult clauses.
In addition, recent work on symmetry detection and break-
ing may be applicable as a way to a) speed up the search
for MUSes, and b) reduce the number of extracted MUSes
by collapsing “equivalent” MUSes (equivalence being
informally related to their diagnostic abilities). Finally,
structural decomposition of large formulas, using tech-
niques from hypergraph partitioning, might be helpful in
further scaling the applicability of AMUSE.
Another interesting feature of the AMUSE algorithm is its
ability to prove unsatisfiability. Checking a large instance
for unsatisfiability might be infeasible for a SAT solver.
However, if the instance has small MUSes, AMUSE can
prove unsatisfiability if it can find such MUSes quickly.

ACKNOWLEDGMENTS
This work was funded in part by the DARPA/MARCO
Gigascale Systems Research Center, and in part by the

National Science Foundation under ITR grant No. 0205288.
The authors would also like to acknowledge Fadi Aloul for
his help in the early stages of this project.

REFERENCES
[1] R. Aharoni and N. Linial, “Minimal Non-Two-Colorable

Hypergraphs and Minimal Unsatisfiable Formulas,” in J.
Combinatorial Theory, Series A, vol. 43, 1986.

[2] R. Bruni and A. Sassano, “Restoring Satisfiability or
Maintaining Unsatisfiability by finding small Unsatisfi-
able Subformulae,” in Electronic Notes in Discrete
Mathematics, vol. 9, 2001.

[3] G. Davydov, I. Davydova, and H. K. Buning, “An Effi-
cient Algorithm for the Minimal Unsatisfiability Prob-
lem for a Subclass of CNF,” in Annals of Mathematics
and Artificial Intelligence, vol. 23, pp. 229-245, 1998.

[4] H. Fleischner, O. Kullmann, and S. Szeider. “Polyno-
mial-Time Recognition of Minimal Unsatisfiable Formu-
las with Fixed Clause-Variable Difference,” in
Theoretical Computer Science, 289(1), pp.503-516, 2002.

[5] H. Kleine Buning, “On Subclasses of Minimal Unsatisfi-
able Formulas,” in Discrete Applied Mathematics, 197(1-
3), pp. 83-98, 2000.

[6] N. Eén, and N. Sörensson, “An Extensible SAT-solver,”
in Sixth International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT), 2003.

[7] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A
Search Algorithm for Propositional Satisfiability,” in
IEEE Transactions on Computers, vol. 48, 1999.

[8] K. L. McMillan, Symbolic Model Checking: An Approach
to the State Explosion Problem, Kluwer Academic Pub-
lishers, 1993.

[9] G. Nam, F. A. Aloul, K. A. Sakallah, and R. A. Ruten-
bar, “A Comparative Study of Two Boolean Formula-
tions of FPGA Detailed Routing Constraints,” in
Proceedings of the ISPD 2001.

[10] C. H. Papadimitriou, and D. Wolfe, “The Complexity of
Facets Resolved,” in J. Computer and System Sciences,
vol. 37, pp. 2-13, 1988.

[11] SAT benchmarks from Automotive Product Configura-
tion,
http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/

[12] C. Sinz, A. Kaiser, and W. Küchlin, “Formal Methods
for the Validation of Automotive Product Configuration
Data,” in Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 17(1), pp. 75-97, January
2003.

[13] J. Whittemore, J. Kim, and K. A. Sakallah, “SATIRE:
A New Incremental Satisfiability Engine,” in Proc. 38th
IEEE/ACM Design Automation Conference (DAC), pp.
542-545, June 2001, Las Vegas, Nevada

[14] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik,
“Efficient Conflict Driven Learning in a Boolean Satisfi-
ability Solver,” in Proceedings of the International Con-
ference on Computer-Aided Design, pp. 279-285, 2001.

[15] L. Zhang and S. Malik, “Extracting Small Unsatisfiable
Cores from Unsatisfiable Boolean Formula,” presented
at Sixth International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT 2003), S. Margher-
ita Ligure - Portofino, Italy, 2003.

