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Abstract

Quantum circuits currently constitute a dominant model for
quantum computation [14]. Our work addresses the prob-
lem of constructing quantum circuits to implement an ar-
bitrary given quantum computation, in the special case of
two qubits. We pursue circuits without ancilla qubits and
as small a number of elementary quantum gates [1, 9] as
possible. Our lower bound for worst-case optimal two-qubit
circuits calls for at least 17 gates: 15 one-qubit rotations
and 2CNOTs. To this end, we constructively prove a worst-
case upper bound of 23 elementary gates, of which at most 4
(CNOTs) entail multi-qubit interactions. Our analysis shows
that previously known synthesis algorithms, although more
general, entail much larger quantum circuits than ours in the
special case of two qubits. One such algorithm [4] has a
worst case of 61 gates of which 18 may beCNOTs.

Our techniques rely on theKAK decomposition from
Lie theory as well as the polar and spectral (symmetric Shur)
matrix decompositions from numerical analysis. They are
related to the canonical decomposition of a two-qubit gate
with respect to the “magic basis” of phase-shifted Bell states
[11, 12]. We extend this decomposition in terms of elemen-
tary gates for quantum computation.
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vey. B.2.2 Arithmetic and Logic Structures, Performance
Analysis and Design Aids, Worst-case Analysis. B.6.3
Logic Design, Design Aids, Automatic Synthesis and Op-
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1 Introduction

Quantum Computing gained popularity due to predictions
that Moore’s law will soon end, in that future improve-
ments in commercial semiconductors will be slower and
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less far-reaching. Indeed, quantum computation has been
demonstrated at much smaller scales than contemporary
semiconductor devices. In liquid NMR technologies [14],
demonstrated by IBM and MIT researchers, a small organic
molecule can store quantum information. Quantum com-
putation can be performed by a series of RF pulses. In
ion trap technologies developed at NIST and the Univer-
sity of Michigan, chains of ions suspended in a magnetic
field store quantum states, and quantum computation is per-
formed by laser pulses. Another technology, currently under
development at Michigan State and Los Alamos, exploits
single electrons floating over the surface of liquid helium.
Quantum interactions are initiated through electrodes that
terminate below a vessel containing liquid helium. Various
other technologies are being pursued, including (a) many
based on solid-state physics, some silicon-based, (b) opti-
cal, where photons carry quantum states, and (c) utilizing
quantized currents in superconductors. Quantum compu-
tations enabled by these technologies can be described by
a unified mathematical notation based on matrices. Indeed,
the axioms of Quantum Mechanics describe the dynamics of
quantum states in terms of linear operators on Hilbert space.
Matrices represent such linear operators.

We point out that quantum computers are not merely
miniaturized versions of classical computers. In order to
evaluate the power of quantum computation, one uses the
formalism of quantum circuit schematics that captures com-
putations possible with the implementation technologies
above. Currently quantum circuits are the dominant model
of quantum computation [14]. While being relevant to the
work in experimental physics, they also enable rigorous and
relevant results in mathematics and computer science. In
particular, it has been shown that some quantum algorithms
run asymptotically faster than their classical counterparts.
The most striking example is Shor’s number-factoring al-
gorithm [14], which can break the widely used RSA cryp-
tosystem in polynomial time. This is now infeasible using
the fastest modern computers.

Another reason to study quantum computing is its uni-
versality. Classical computation is commonly used to model
numerous aspects of the physical world — from sending
mail and reproducing paintings to simulating natural dis-
asters and armed conflicts. However, as first suggested
by Richard Feynman, classical computation is fundamen-
tally limited in its ability to simulate quantum-mechanical
effects. Nevertheless, performing such simulations is ex-
tremely important to advance our understanding theoretical
and astro-physics. Additionally, a number of important ap-
plications are driven by quantum effects, such as radioactive
decay, nuclear fusion and photosynthesis. Being able to effi-
ciently simulate those at the atomic and elementary-particle
scale may require quantum computers in the future.

Quantum effects have already been used in quantum
cryptography, which is based on the fact that a quantum



measurement of a secret transmission will alter the contents
of the transmission. By tracking check-sums, the intended
recipient will be aware of the breach and can close the com-
munication channel. A number of quantum key distribution
(QKD) protocols exploit this effect, starting with the famous
BB84 and BB92 [14]. Those protocols have been success-
fully implemented with support from DARPA and NSA, as
well as in Europe and Australia. Recent research in the field
shows that a powerful quantum computer could, in princi-
ple, break the security of such QKD protocols. This further
motivates research in quantum computing.

Our work is analogous to the development of algorithms
for automated synthesis of classical logic circuits [6], which
started in the 1960s. We focus on the synthesis of quantum
circuits from functional specifications.

Quantum computations can be described by unitary ma-
trices. In order to effect a quantum computation on a quan-
tum computer, one must decompose such a matrix into
a quantum circuit, which consists of elementary quantum
gates connected by Kronecker (tensor) and matrix prod-
ucts. Those connections are often represented using quan-
tum circuit schematics. The matrix and graph-based nota-
tions for quantum circuits are analogous to how classical
logic circuits are modeled by Boolean polynomials, e.g.,
during logic synthesis. Classical logic synthesis relies on
algorithms for factoring polynomials, and we observe that
quantum synthesis algorithms benefit from matrix factoriza-
tions. This is confirmed by our research, and motivates one
to take a deeper look at the algebraic theory behind matrix
factorizations (SVD, QR, polar and others) and possible ap-
plications to quantum circuit synthesis.

It is well-known that any one-qubit computation can be
implemented usingthreeone-qubit elementary gates (rota-
tions) or less [1]. Our work answers a similar question about
arbitrary two-qubit computations assuming thatCNOTgates
can be used in addition to single-qubit rotations, without
ancilla qubits. Our lower bound that calls for at leastsev-
enteenelementary gates:fifteenrotations andtwo CNOTs.
We also constructively prove thattwenty threeelementary
gates suffice to implement an arbitrary two-qubit computa-
tion. At mostfour of those areCNOTs and the rest are single-
qubit gates. In comparison, a previously known construction
[1, 4] impliessixty-onegates of whicheighteenareCNOTs.
While this construction is more general than ours, for two-
qubit computations our algorithm generates far fewer gates
in the worst (generic) case. The savings in the number of
multi-qubit gates (CNOTs) are particularly dramatic.

The techniques we developed rely on theKAK decom-
position from Lie theory [10] as well as the polar and spec-
tral (symmetric Shur) matrix decompositions from numeri-
cal analysis [7] and operator theory. They are related to the
canonical decomposition of a two-qubit gate with respect
to the “magic basis” of phase-shifted Bell states [11, 12].
We further extend this decomposition in terms of elemen-
tary gates for quantum computation.

Our work can be compared to the GQC online “quantum
compiler” [8].1 That program inputs a 4�4 unitaryU and
returns a “canonical decomposition” which is not, in a strict
sense, a circuit in terms of elementary gates. It also returns
a circuit that computes CNOT usingU and one-qubit gates.
WhenU is used only once, this easily yields a circuit de-
composition ofU in terms of elementary gates. However,

1We point out that the term “compiler” in classical computing means
“translator from a high-level description to a register-transfer level (RTL) de-
scription, e.g., machine codes”. The task of producing circuits with given
function is commonly referred to as “circuit synthesis”. In this context, digi-
tal circuits are called “logic circuits”.

Algorithm decomp. # elem. # CNOTs # var 1-qubit
gates gates

[4] QR 61 18 39
Our #1 u. KAK 23 4 19
Our #2 u. KAK 28 8 15(sharp)

Our lower bounds 17 2 15

Table 1: A summary of our quantum circuit decomposition re-
sults for two-qubit computations in terms of elementary gates.

not all input matrices can be processed successfully.2

Our research emphasizes several technical ideas for syn-
thesis of quantum circuits.

� Continued use of matrix decompositions from numer-
ical analysis and Lie theory:polar, spectralandKAK.

� Focus on matrix decompositions that are intrinsic to
unitary matrices, e.g.,KAK of SU(2n), and include
multiple non-trivial unitary factors.

� Using entanglement in the course of synthesis by
considering computations mapping unentangled ba-
sis states into highly entangled basis states, with the
purpose of recognizing quantum computations imple-
mentable with one-qubit gates only.

� Incremental reduction of existing quantum circuits by
local optimization; exploiting degrees of freedom in
circuit synthesis may be useful to expose additional
reductions.

These ideas are covered in more depth in the technical dis-
cussion below and lead to quantum circuit decompositions
for two-qubit computations summarized in Table 1.

The remainder of the paper is organized as follows. The
necessary background and relevant prior work are covered
in Section 2. Our contributions to two-qubit synthesis are
presented in Section 3, followed by an account of their em-
pirical validation in Section 4. Conclusions and ongoing
work are discussed in 5.

2 Background

Quantum states and quantum circuits are governed by
the laws of quantum mechanics:k-qubit states are 2k-
dimensional vectors, i.e., complex linear combinations of
0-1 bit-strings of lengthk. A quantum computation act-
ing on k qubits (k inputs andk outputs) is modelled by a
unitary 2k� 2k-matrix [14]. We denote such matrices by
U(2k) = fM 2 (2k�2k)-matricesjMM� = 1g. O(2k) repre-
sents those matrices fromU(2k) with real entries.SU(2k)

and SO(2k) are the respective subsets with determinant
one. Below, we will consider two generic elements of
SU(2): A=αE11+(�β)E12+ β̄E21+ᾱE22 andB= γE11+

(�δ)E12+ δ̄E21+ γ̄E22 with 1 = jαj2+ jβj2 = jγj2+ jδj2.
Such a parameterization ofSU(2) can be verified directly.
We largely ignore the effects of quantum measurement that
is typically performed after a quantum circuit is applied, but
we use the fact that any measurement is invariant under a
global phase change. In mathematical terms, this means that
any computation inU(2k) can be represented in normalized
form by a matrix fromSU(2k).

2As of December 2002, the quantum compiler [8] fails on
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2.1 Quantum circuits and elementary gates
for quantum computation

Our work focuses on combinational quantum circuits, which
are directed acyclic graphs where every vertex represents a
gate. An output of a gate can be connected to exactly one
input of another gate or one circuit output. A similar restric-
tion applies to gate inputs. Examples of quantum circuits
are shown in Figures 1 and 2.

Following [1], we attempt to express arbitrary computa-
tions using as small numbers of elementary gates as possi-
ble. In order to write matrix elements of particular gates,
we order the elements of the computational basis lexico-
graphically [14]. The computation implemented by several
gates acting independently on different qubits can be de-
scribed by the Kronecker (tensor) product
 of their ma-
trices. In the usual computational basisj00i; j01i; j10i; j11i
ordered in the dictionary order, the matrix inU(4) repre-
sentingA
B (for A andB defined above) is

(A
B) =

�
αB �βB
β̄B ᾱB

�
(1)

As an illustration of tensor product, consider the well-
known Hadamard gate, which transforms the computa-
tional basis statesj0i andj1i to superposition states(j0i+
j1i)=p2 and (j0i � j1i)=p2 respectively. It is given by

H =
p

2
2

�
1 1
1 �1

�
. Then in terms of the ordered two-

qubit computational basisj00i, j01i, j10i, andj11i, the two-
qubit computationH
H is given by

H
H =
1
2

0
B@

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1
CA (2)

Composition of multiple quantum computations is de-
scribed by the matrix product. However, as most circuit
diagrams are read left-to-right, the order in respective ma-
trix expressions is reversed. For example, the expression
(A
B)(C
D) corresponds to a two-qubit circuit whereC
acts on the top line andD on the bottom line, followed byA
acting on the top line andBon the bottom line. Since the two
lines do not interact, the same computation is performed by
AC acting on the top line andBD acting on the bottom line
independently, i.e.,(A
B)(C
D) = (AC
BD). Some-
times this identity allows one to simplify quantum circuits
and reduce their gate counts.

We distinguish two versions of theCNOT gate,
topCNOT andbotCNOT conditioned on the top and bot-
tom lines respectively: (i)botCNOT exchangesj01i $
j11i, i.e. CNOTcontrolled by the top line, and (ii)topCNOT
exchangesj10i $ j11i. Those gates can be represented by
matrices:

topCNOT=

0
B@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CA botCNOT=

0
B@

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1
CA

(3)
Gate library. If every gate in a circuit permutes elements
of the computational basis, the circuit performsclassical
computation [17, 15]. In order to achieve what cannot be
achieved by AND-OR-NOT circuits, some gates must cre-
ate superpositions. We consider the following library ofel-
ementaryone- and two-qubit gates [1]:

� Ry(θ) =
�

cosθ=2 sinθ=2
�sinθ=2 cosθ=2

�
for all 0� θ < 2π;

� Rz(α) =
�

e�iα=2 0
0 eiα=2

�
for all 0� α < 2π;

� The CNOT gate, conditioned on either line.

A given gate may, in principle, be applied to different
lines. We do not restrict to which lines the above gates may
be applied. Note that the gate library we use generatesU(4)
up to global phase [4]. The relative costs of different gates
depend on the implementation technology. In many tech-
nologies (solid- and liquid-state NMR) gates that involve
multiple qubits, such asCNOTs, are much more expensive
than one-qubit rotations. However, in other technologies
(ion traps) one-qubit rotations are significantly more expen-
sive thanCNOTs.

An arbitrary one-qubit quantum computation can be im-
plemented, up to phase, bythreeelementary gates using [1,
Lemma 4.1], which decomposes a 2�2 unitary into

U =

�
eiδ 0
0 eiδ

��
e�iα=2 0

0 eiα=2

�
�

�
cosθ=2 sinθ=2
�sinθ=2 cosθ=2

��
e�iβ=2 0

0 eiβ=2

�
(4)

Observe that the first matrix represents a global phase shift
and can be ignored. To recover the non-δ parameters, we
divide U by its determinant. The resulting matrix̃U has
δ = 0, and

Ũt
�

0 1
1 0

�
Ũ =

� �e�iβ sinθ cosθ
cosθ eiβ sinθ

�
(5)

The off-diagonal elements yield the value ofθ, and the value
of β can be computed subsequently. We routinely ignore
global phase because it does not affect the result of quan-
tum measurement, which is the last step in quantum algo-
rithms. A particular one-qubit computation, the Hadamard
gateH, can be implemented, up to global phase, using two
elementary gates as follows:

H =

p
2

2

�
1 1
1 �1

�
=

p
2

2

� �i 0
0 �i

��
i 0
0 �i

��
1 1
�1 1

�
(6)

Similarly, theNOTgate (also known as Pauli-X) costs two
elementary gates up to global phase:

X= NOT=

�
0 1
1 0

�
=

�
�i 0
0 �i

��
0 1
�1 0

��
i 0
0 �i

�

(7)

2.2 Prior Work

As shown above, quantum circuits can be modelled by ma-
trix formulas that decompose the overall computation (one
large unitary matrix) into matrix products and tensor prod-
ucts of elementary gates (smaller unitary matrices). This
suggests the use of matrix decomposition theorems from nu-
merical analysis and Lie theory [10]. Prior work as well as
our work use these decompositions:SVD, polar, symmetric
Shur (spectral), QR[7] and KAK [10]. Additionally, (i) a
block-2� 2 version of theSVDcalled theCSdecomposi-
tion [7, pp.77-79] was used for circuit synthesis in [16], and
(ii) the LU decomposition [7] was used to analyze CNOT-
based circuits. Most of those decompositions can be com-
puted with existing softareLAPACK, downloadable from
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Figure 1: Any 4�4 diagonal unitaryD= diag(z1;z2;z3;z4)
can be decomposed into up to five elementary gates. We set
e�iφ = z1z�1

2 z�1
3 z4 and defineW = diag(eiφ=4;e�iφ=4). The

two one-qubit unitaries on the right are diagonal. Since the
inverse of a diagonal matrix is also diagonal, the form of this
circuit can be reversed for any given matrix.

http://www.netlib.org . Lie group theory [10] of-
fers a number of more sophisticated decompositions that we
plan to study in the future.

The unitary matrix of a quantum computation can be
analogized with the truth table of a classical logic circuit.
Logic minimization aside [6], it is trivial to come up with a
classicalAND-OR-NOTcircuit implementing a given truth
table. Each line of the truth table is implemented usingAND
andNOTgates, then all lines are connected byORgates. The
algorithm proposed in [4] solves a quantum version of this
task.3 While careful gate counts are not given in [4], our
detailed analysis of this algorithm shows that 61 gates will
be required in the generic (worst) case, and 18 of those will
beCNOTs. Of course, it is desirable to improve gate counts.

A recent work [11] on time-optimal control of spin sys-
tems presents a holistic view of circuit-related optimiza-
tions, which is based on the Lie group theory. However,
their approach is not as detailed as previously published cir-
cuit synthesis algorithms, and comparisons in terms of gate
counts are not straightforward.

3 Circuit Constructions and Synthesis Algorithms

3.1 Circuits for diagonal matrices

Figure 1 shows a circuit diagram with which we can imple-
ment any diagonal unitary 4x4-matrix. We have developed
an algorithm that, given such a matrix, computes required
parameters of the variable gates in Figure 1.

For a diagonal matrixD 2 U(4), we have D =
diag(z1;z2;z3;z4) with zi z̄i = 1; i = 1: : :4. The coordinates
or their product can be normalized by choosing the global
phase. In contrast, the quantityz1z�1

2 z�1
3 z4 is invariant.

Proposition: i) A diagonal matrixD = diag(z1;z2;z3;z4)
in U(4) may be written as a tensor product of diagonal el-
ements ofU(2) iff z1=z2 = z3=z4. ii) Any gate which is
diagonal when written in the computation basis may be im-
plemented up to phase in five elementary gates or less.
Proof: i) The identity diag(η1;η2) 
 diag(η3;η4) =
diag(η1η3;η1η4;η2η3;η2η4) implies the forward implica-
tion. For the reverse implication, we adjust the global phase
so thatz1=1 and assume thatη1=η3=1. Thusz2= z4=z3,
η4 = z4=z3, η2 = z3. The global phase can then be applied
to either one-qubit gate.

ii) Consider the computation of Figure 1. For a fixed
D = diag(z1;z2;z3;z4), put e�iφ = z1z�1

2 z�1
3 z4. Now note

the leftmost three gates enact8>><
>>:

j00i 7! eiφ=4j00i
j01i 7! e�iφ=4j01i
j10i 7! e�iφ=4j00i
j11i 7! eiφ=4j00i

(8)

3We note that the work in [4] to a large extent relies on results in [1].

Thus by Equation 8 and part one of the present proposition,
the difference betweenD and the leftmost three gates is a
pair of single elementary gates which are diagonal elements
of U(1)�U(1) on each line. �

3.2 Entanglers and disentanglers

The second type of simple circuits we designed implement
two specific rather than parameterized computations, which
can be thought of as complex gates. These are impor-
tant to our synthesis algorithms. Theentanglergate maps
the ordered computational basisj00i; j01i; j10i; j11i into the
“magic basis”, which we introduce below. Together with its
inverse — thedisentangler— the entangler gate is useful
for breaking down arbitrary two-qubit computations into el-
ementary gates. With such uses in mind, we implement the
entangler and disentangler by elementary gates.

The “magic basis” [12] provides an elegant way of
thinking about tensor products of one-qubit gates.4 The
magic basis of phase shifted Bell states is given by

8>><
>>:

jm1i = (j00i+ j11i)=p2
jm2i = (ij00i� ij11i)=p2
jm3i = (ij01i+ ij10i)=p2
jm4i = (j01i� j10i)=p2

(9)

Note that each state is maximally entangled.E has the fol-
lowing matrix:

E =

p
2

2

0
B@

1 i 0 0
0 0 i 1
0 0 i �1
1 �i 0 0

1
CA (10)

One finds thatE can be realized up to global phase by
seven elementary gates, as shown in Figure 2. This is most
easily verified by multiplying the appropriate 4�4 matrices.
In particular, Equation 3 writestopCNOT andbotCNOT as
permutation matrices. Then

E = botCNOT ÆtopCNOT Æ
p

2
2

0
B@

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

1
CAÆ

botCNOT Æ

0
B@

1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 i

1
CAÆbotCNOT (11)

Note that the circuit diagram in Figure 2 travels right to left,
so gate matrices are multiplied in reverse.S= diag(1; i)
is an elementary gate up to global phase e�iπ=4, and the
Hadamard gateH can be implemented, up to global phase,
with two elementary gates as shown in Equation 2.1.

In summary,E requires four CNOT gates and three one-
qubit rotations. Similarly,E� may be implemented in seven
elementary gates by writing the inverse of each gate of figure
2 in reverse order.

3.3 Arbitrary two-qubit computations

The main result of our work is an algorithm that synthesizes
a circuit for an arbitrary 2-qubit computation. On average,
our algorithm produces much better results than the algo-
rithm from [4].

4Stated in terms of the Lie algebra ofU(4), this involves the isomorphism
u(2)�u(2)�= o(4) [10, p. 370].



3

3

m
v

1

3
m
v

2
m
v

1

m
v

3

3

Figure 3: The decomposition of a generic 2-qubit quantum computation into up to 23 gates. Four generic one-
qubit rotations are marked with “3” as they require up to three elementary gates. Computations requiring two
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Figure 2: ImplementingE by elementary gates. HereS=
diag(1; i) counts as one elementary gate and the Hadamard
gateH counts as two.

First, we decompose an arbitrary 4x4-unitary into
U = (U1 
 U2) Æ botCNOT Æ topC�U3 Æ (1 
 U4) Æ
botCNOT Æ (U5
U6) whereU1; : : : ;U6 are one-qubit gates.
The algorithm relies on theKAK matrix decomposition
and also involves the spectral and the polar matrix de-
compositions. Algebraic details are available online at
http://xxx.lanl.gov/quant-ph/abs/0211002
and are not reproduced here due to space limitations.

The gate count yields:

� three elementary rotations for each of five one-qubit
gatesU1;U2;U3;U5 andU6,

� two botCNOT gates,

� eight elementary gates to implement thetopC�U4
gate, according to [4, Figure 7].

The total gate count of 25 can be further reduced, given the
structure of thetopC�V circuit proposed in [4]. Indeed,
that circuit can be written symbolically astopC�U3 = (1

C) Æ topCNOT Æ (1
B) Æ topCNOT Æ (D
A). C andD are
elementary gates up to phase, butA andB require up to two
elementary gates [4]. We outline the structure of circuits
produced and provide gate counts.

SincetopC�U3 is next to(1
U4) our structural de-
composition, we can reduce(D
A)Æ (1
U4) to (D
U7)
whereU7 = AU4. By merging the computationA with the
generic one-qubit computationU4 that may require up to
three elementary gates, one reduces the overall circuit by
two elementary gates.

The overall circuit decomposition can be described al-
gebraically as follows:

U = (U1
U2)ÆbotCNOT Æ (D
U7)ÆtopCNOT Æ (1
B)Æ
topCNOT Æ (1
C)ÆbotCNOT Æ (U5
U6) (12)

It is illustrated in Figure 3, where gate counts are shown.
Our circuit decomposition requires at most four CNOTs,

while other gates are elementary one-qubit rotations. Such
a small number of non-one-qubit gates may be desired
in practical implementations where multi-qubit interactions
are more difficult to implement.

It is understood that Figure 3 and our gate counts refer
to the worst case. Specific computations may require only
some of those gates. We have considered a number of exam-
ples and found that our algorithm produces reasonably-sized
circuits, even compared to best known circuits from the lit-
erature. In those examples, our algorithm is able to capture

the structure of the given quantum computation. Unlike pre-
viously known circuit synthesis algorithms, ours can always
implementA
B without usingCNOTgates.

For example, our algorithm synthesized a circuit
for 2-qubit Quantum Fourier Transform (QFT) that con-
sists of 14 elementary gates of which 4 areCNOTs (details in
http://xxx.lanl.gov/quant-ph/abs/0211002 ).
The standard circuit for QFT has 12 gates, but 5 of them
areCNOTs. Thus, the standard circuit is less desirable in
quantum implementation technologies whereCNOTgates
are more costly than one-qubit rotations.

Our algorithm can be viewed as a constructive proof that
any two-qubit quantum computation can be implemented
in 23 elementary gates (or fewer), of which at most 4 are
CNOTs and remaining gates are one-qubit rotations. We
also provide a non-constructive proof that there exists a
two-qubit computation such that any circuit implementing
it in terms of elementary gates consists of at least 17 gates.
In particular, 15 one-qubit rotations are required and two
CNOTs, and a geometric dimensionality argument imply that
almost every quantum computation will require at least 17
elementary gates.

Trying to close the gap between the upper and lower
bounds, we observe that the 19 non-constant one-qubit ro-
tations in Figure 3 seem redundant as only 15 rotations are
required for reasons of dimension. To this end, we offer an-
other generic gate decomposition for arbitrary 2-qubit com-
putations that entails no more than 15 non-constant one-
qubit rotations, at the price of some constant rotations and
significantly moreCNOTgates than used by our main de-
composition in Figure 3. It also stems from the structural
decomposition of 4x4 unitary matricesU = (U1
U2) Æ
(EDE�) Æ (U3
U4) whereU1; : : : ;U4 are one-qubit gates
andD is a diagonal unitary. In this context, we use circuit
decompositions forE, E� andD given earlier. The matrix
D is controlled by 3 real parameters (4 diagonal unitaries
modulo global phase). It is implemented in Figure 1 using 3
one-qubit rotations and 2CNOTs. The entanglerE and dis-
entanglerE� are fixed matrices and require no parameters.
The implementation ofE in Figure 2 requires 3 constant ro-
tations and 4CNOTs.

Adding the gate counts, we see thatU1; : : : ;U4 may re-
quire up to 12 elementary gates altogether.D counts for 5,
while E andE� count for 7 each, for a total of 31. How-
ever, upon inspection of the Figures 1 and 2, one notes that
the circuitEDE� has two cancelingbotCNOT gates. More-
over, since the inverse ofD is also a diagonal unitary matrix,
we can flip the asymmetric circuit forD in Figure 1. This
allows us to merge a constant rotations fromE with a vari-
able rotation fromD. The resulting circuit decomposition is
shown in Figure 4 and requires up to 28 elementary gates,
of which 15 are variable one-qubit rotations, 5 are constant
rotations and 8 areCNOTs. The slight asymmetry in Figure
4 is explained by the asymmetric circuit forD in Figure 1.
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Figure 4: The overall structure entailed by our circuit decomposition #2. Four generic one-qubit rotations are
marked with “3” because they are worth up to three elementary gates. Two Hadamard gates are marked with
“2” because they are worth two elementary gates. Constant gates are in bold.

4 Empirical Validation

We implemented our twenty-three gate synthesis algorithm
in C++without the use of numerical or matrix libraries, and
tested it on various quantum computations. Synthesis run-
times are negligibly small on aPCand are not reported. Al-
gebraic primitives used by our implementation include find-
ing all eigenvalues and real eigenvectors of a given matrix,
computing matrix square-roots and exponentials, etc.

The first experiment tests the synthesis algorithm on ar-
bitrary twenty-three qubit matrices, which were generated
as follows. A random number generator produces an arbi-
trary 4�4 complex Hermitian matrixH so that computing
exp(iH ) produces a unitary matrix which may be interpreted
as a quantum computation. For simplicity, (1) the entries
of H are chosen to have real and complex part no greater
than five, and (2) we exponentiateiH by adding 70 terms
of the Taylor series. After applying our synthesis algorithm
to such unitary matrices, we verify the result by multiplying
out the gates and comparing the result to the original ma-
trix. The purpose of this experiment is to check that generic
circuits could be correctly synthesized with no more than
twenty-three gates. This is indeed the case.

5 Conclusions and Ongoing Work

The main result of our work is a technique for implementing
an arbitrary two-qubit computation in 23 gates or less. We
observe that it always produces an even number ofCNOTs.
Thus, an interesting problem is to find non-trivial quan-
tum computations such that the smallest possible number
of CNOTs in their implementations is odd. The line-swap is
a likely candidate as it can be implemented in threeCNOTs
and requires at least three elementary gates.

Our on-going work indicates that 18 elementary gates
are actually required for worst-case two-qubit computa-
tions, and yet 18 gates are sufficient. Of those at most
3 are CNOTs. In particular, we found smaller entangler
circuits. More details will be posted in a pre-print at
http://xxx.lanl.org/find/quant-ph

The reported constructive methods for quantum circuit
synthesis can be analogized with library-less synthesis and
technology mapping in classical logic-synthesis. Matrix de-
compositions represent library-less synthesis and are appli-
cable with a variety of gate libraries. In the quantum tech-
nology mapping step, one synthesizes matrices of the vari-
ous matrix factors in a given gate library.

Generalizing our techniques toN-qubit computations is
a significant challenge. This seems to require more sophisti-
cated techniques from Lie theory and more subtle algorith-
mic optimizations. From the physics perspective, a better
understanding of entanglement is needed. Having formu-
lated these grand challenges, we already made the first step
of synthesizing asymptotically optimal circuits for arbitrary
N-qubit diagonal computations [3].

Possible generalizations of our work to three qubits echo
recent work in physics. In particular, there have been at-
tempts to describeSU(8)=
3

1 SU(2) geometrically. The

studies of “maximal” entanglement on three qubits repre-
sented by the so-calledjGHZi states is also relatively new
[13]. More generally, the concept of “entanglement type”
was proposed and seems relevant to our work [5].
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