Min-Max Placement For Large-Scale Timing Optimization

Andrew B. Kahngt, Stefanus Mantik' and Igor L. Markov*
t UCSD CSE and ECE Depts., La Jolla, CA 92093-0114
+ UCLA, Computer Science, Los Angeles, CA 90095-1596
+ Univ. of Michigan, EECS Department, Ann Arbor, Ml 48109-2122

abk@ucsd.edu, stefanus@cs.ucla.edu, imarkov@umich.edu

ABSTRACT sets of path delays without explicitly enumerating them. This is typi-
cally done by interleaving weighted wirelength-driven placement with
timing analysis that annotates individual cells, nets and timing edges
with timing information [5]. Such annotations are translated adge

or net weight421, 1, 25] for weighted wirelength-driven placement,
or into additional constraints for such placement, e.g., per-net delay
bounds in “delay budgeting” approaches [15, 23, 28, 20, 11]. Itera-
tions are repeated until they bring no improven/#s noted in [11,

26], “net re-weighting” algorithms are oftead hod and have poor
convergence theory, i.e., if delays along critical nets decrease, other
nets may become criticAlOn the other hand, “delay budgeting” may
overconstrain the placement problem and prevent good solutions from
being found. A unification of budgeting and placement is proposed in
) ) ] [26], but finding scalable algorithms for such a unification remains an
Categories and Subject Descriptors open problem.

While many published works focus on timing optimization alone,
placement instances arising in the design of state-of-the-art electron-
General Terms ics today are often difficult from the wirelength/congestion stand-
point alone. Therefore, a robust placement algorithm must have a
proven record in wirelength- and congestion-driven context without
1. INTRODUCTION timing. Motivated by this circumstance, recent works [13, 24] ad-

Timing-driven layout has recently emerged as a major design bot- vocate the use of top-down partitioning-driven placement with an-
tieneck, highlighting the difficulty of finding a feasible layout of a cir- ~ alytical elements for timing optimization. This provides a generic
cuit with prescribed cycle time and logic function. The significance of framework for large-scale placement with near-linear runtime, based
timing-driven layout increases with that of interconnect delays relative On the strong empirical record of min-cut algorithms in wirelength-
to device delays. While commercial placement engines can evaluate/congestion-driven placement [4]. _
increasingly accurate measures of path timing, simple models often The variability of results produced by commercial placers and the
lead to more efficient minimization. To first order, total (average) net attention given to timing-driven placement by industry leaders (e.g.,
length objectives correlate with congestion- and delay-related objec-Aart de Geus at ISPD 2000), suggest that the timing-driven placement
tives (since wirelength creates capacitative load BG@ddelay). To problem is far from solved. The problem becomesre difficultwith
bring the topology of timing constraints closer to placement, some More objects to place, andore criticalin the overall design flow,
works [17, 6, 14] minimize delays alorexplicitly enumerated paths, ~ With each successive technology node. Therefore, industrial and aca-
which becomes impractical when the number of signal paths under-demic researchers seek new and more effective approaches.
goes combinatorial explosion in large circufts. The contributions of this work are

Combinatorial explosion is not a problem for static timing anal-
ysis methods [16, 1] which can quickly determine whether delays
along implicitly defined paths satisfy given timing constraints. The
key challenge in timing-driven global placement is to optimize large ~ ® combining path-timing optimization with top-down placement;

At the 250nm technology node, interconnect delays account for over
40% of worst delays [12]. Transition to 130nm and below increases
this figure, and hence the relative importance of timing-driven place-
ment for VLSI. Our work introduces a novel minimization of maxi-
mal path delay that improves upon previously known algorithms for
timing-driven placement. Our placement algorithms have provable
properties and are fast in practice. Empirical validation is based on
extending a scalable min-cut placer with proven quality in wirelength-
and congestion-driven placement [4]. The CPU overhead of the timing
driven capability is within 50%. We placed industrial circuits and
evaluated the resulting layouts with a commercial static timing ana-
lyzer.

B.7.2 [Integrated Circuits]: Design Aids — Layout, Place and Route

Algorithms, Design

e ageneric continuous path-timing optimization that is the first to
avoidheuristicbudgeting and re-weighting;

1E.g., the authors of [5] estimated that explicitly storing all 245K

paths in their 5K-cell design requires 163Mb of disk space. Anequiv-  ® acompetitive implementation of a timing-driven placement based
alent compact representation took only 1.8Mb in human-readable on our earlier work on wirelength- and congestion-driven place-
ASCII format. ment[4]; and

2Combinations of net re-weighting and delay budgeting have also
been proposed (e.qg, in [27]).

3E._g., at each stage of recursive min-cut in [21], non-critical nets get
personal or classroom use is granted without fee provided that copies are Welghts |nve(sely pro_portlonal to their slacks, and critical connection
not made or distributed for profit or commercial advantage and that copies get slightly higher weights.

; : o ! ¢ 4 i ihting i ;
bear this notice and the full citation on the first page. To copy otherwise, to A reasonable mathematical framework for net re-weighting is avail-
republish, to post on servers or to redistribute to lists, requires prior specific able via Lagrangian relaxation, but such formulations are vulnerable

Permission to make digital or hard copies of all or part of this work for

permission and/or a fee. to combinatorial explosion and implinear convergence of numeri-
ISPD'02, April 7-10, 2002, San Diego, California, USA. cal methods versus quadratic convergence of more efficient Newton-
Copyright 2002 ACM 1-58113-460-6/02/000455.00. based methods.

143



¢ an evaluation flow for large-scale timing-driven placement with  built using the pins of the circuit as its verticés= {v; }. Timing edges
a major commercial timing analyzer. E = {&; } that connect pins are constructed in two ways. Each signal
net is converted into a set of orientederconneckedges that connect
The remainder of this paper is organized as follows. Background each OUT-pin of the net to all IN-pins of the net. Each standard cell
is covered in Section 2, including top-down placement, signal delay or macro is represented by a set of orieritecacellular edges deter-
modeling and static timing analysis. Section 3 covers our new con- mined by the contents of the cell, with the exception that intracellular
tinuous path-delay minimization, which is embedded into a top-down edges of latches and flip-flops (storage elements) are ignored. We as-

in Section 5, and Section 6 concludes the paper. back-edges discovered during DFS traversals. The delay attributed to
a given timing edge is a function of vertex locations, including those
2. BACKGROUND of the edge source and sink. In our work on large-scale placement we

use areduced timing graphlwhere all pins on every placeable object

Timing-driven placement draws upon the two more intuitive ele- are clustered into a single vertex so that every vertex can be placed
ments of wirelength-driven placement and timing analysis. Delays in . 9 y P

large-scale layouts must be accurately yet quickly computed. Such alndependently. T_hus, i_ntracellular arcs are removed, gate delays are
tradeoff is provided by static timing analysis (STA) tuned to err on gﬂ{ngrgedegegsdnver pin and added to wire delays on the respective
the pessimistic side. STA relies on (i) models of signal delays in indi- going edges.

. - - — . . The primary objective of timing-driven layoutycle time is mod-
vidual gates and'W|res, and (i) (function-aware) path timing analysis eled by the maximal delay along a directed path between particular
based on gate/wire delays.

source and sink pairs (primary 1/0Os and 1/Os of store elements). The
2.1 TOp-dOWﬂ Placement _delaytn glong apathn=(g,j,,6,,j,,-..) isasum of edge de_Iayg';l(_: _
. . . i, j2 =13, ...). More generally, every path may come with a timing

Top-d_own algorlth_ms seek 1o decorr_1p_o_se a given placement_m- constraintcy, which is satisfied if and only if; < ¢r, corresponding to
stance into smaller instances by subdnwdmg the place_ment reg'on'“max-delay"setupconstraints?. Those timing constraints (i.e., up-
assigning m_odules to subregions, refo_rmulatmg constraints, and CUt'per bounds on path delays) are not given explicitly, but rather defined
ting the nedist " suc_:h that good so]utlons to sm"’!"‘:‘f instances (sub- via actual arrival times(AAT) andrequired arrival times(RAT) for
problems) combine into good solutions of the original problem. - In every driver-pin and primary output. The timing constraint for a path

[r)]ractlce, SECh a;_?_ecpmpick)]s;tlotr; IS a(t:cc:mpl_ls_he_d b¥th|t'|E\éel mnfn-cutjt tis then the difference betwe@AT@sink— AAT@source We do
ypergraph partitioning that attempts to minimize theé number of Nets |, priori restrict how the set of eligible paths is defined; rather, this

incident to nodes in multiple partitions. Each hypergraph partitioning ;g relegated to (i) generic static timing analysis based on path trac-
instance is induced from a rectangular reglonbtﬂck in the Igy- ... ing [16] described below, plus (ii) extensions to handle false paths,
out. Concept_ually, a block corr_esponds to (i) a placement region with multi-cycle paths, and variabilities (dynamic and statistical) that lead
allowed locations, (ii) a collection of modules to be placed in this re- to such phenomena as crosstalk- or supply-induced delay uncertainty.

gion, (iii) all nets incident to Fhe cont_ained modules_,, and (iv) locations Our own STA implementation has only the generic capability, but we
of all modules beyond the given region that are adjacent to some mod-aISO evaluate placements with an industry STA tool.

ules in the region (considered @sminalswith fixed locations). Cells Given delays of timing edges (e.g., computed from a placement)
|nS|c_1edthe %I%Ck arte r_ep_rdesetn:ed alT hyptehrgrballphknoc'i\lesd and hﬁeredges?atic timing analysis (STA) determines (i) whether all timing con-

are induced by nets incident to cetls in the blocks. Node WEIGNIS 18- oy pintg are satisfied, and (i) which directed paths violate their con-
resent c_eII areas. F_’a_1rt|t|on|ng solutions must appr(_)X|mate_Iy equallzes.traints. The key to computational efficiency of STA is the notion of

total weight in partitions to prevent more cells being assigned to a slack which allows us to avoid enumerating all paths [16].

block than can be placed inside without overlaps. Definition 1: The slack of a pathttis sy = ¢ —tr. The slack

The top-down placement_process can b.e viewed _as a sequence o& a timing edge (vertex) is the smallest path slack among the paths
passes where each pass refines every existing block into smaller BIOCk%bntaining this edge (vertex)

Igue:?hzr:ﬁ:f:)?oiﬁgsl l\;\ll'cl)lcckocljl%Ct“gec:{nzoggét“hneaéglrsei:‘agou.t aregl ans Lemma-Definition 2: In a given timing graph, the minimal vertex

. Y : . given DIOCK - g1ack, minimal edge slack and minimal path slack are equal. This
may be tightly connected to external cellgr(mnals) located _close_ to . value is callectircuit slackand is a convex function of edge delays,
the_smalle_r blocks to be created. _Ignorlng s_L_Jch_ connections 'mp“eswhich are functions of cell locations.
a blgger dlscrepancy between gaudh-cutpartitioning solutlons_and Negative slack is indicative of violated timing constraints. There-
solutions that result in better placements. Yet, external terminals arefore, timing-driven layout aims to maximizeminimal slack over all

:(rrelievant to ”:jet classtl_(t:_ part(;tlonltngtgo_r rr;_ula(tjlortl ?S th:y cannot _be pathg, computed by STA, to improve cycle time. To compute min-
reely assigned 1o partiions due 1o their fixea status. A COMPromiSe gjaeiin linear time, two topological traversals propaga#eT and

is ac_hiev?d by an extende_d formulzition for “partiti”on?ng V\.’ith fixed a7 from sources and sinks to all vertices. Namely, one traversal
terminals”, where the terminals are “propagated to” (fixed in) one or computes theAAT at a vertexv when, for every directed edgev
more partitions and assigned zero areas [9]. Terminal propagation iSending atv, the AAT atu and the dela‘y ofiv are known. We write
typically driven by the relative geometric proximity of terminals to AAT, = maxu{delayuv) + AAT,}. Similarly, RAT, can be computed
subregions/partitions [3] and is essential to the success of min-cut re-when. for every directed edgevbeginning a{v delayvw) andRAT,

cursive bisection. is known. TherRAT, = minyw{RATy — delayvw)}. With AAT and
H HI ; RAT available at all vertices, slacks at individual vertices are com-
2.2 Static Tlr_nm_g AnalySIS ) puted asRAT — AAT, and similarly for edges [16]. If the minimum
A standard-cell circuit has cel&= {c} and signal netsl = {n;}. slack is negative, some paths must violate their constraints and have

Nets are connected to cells witing each of which can be either an

! L ) e i negative slacks on all of their edges.
IN-pin or an OUT-pin (directionality§. Thefull timing graph[16] is

SWhen recursive bisection is applied, careful choice of vertical versus
horizontal cut direction is important, — one rule of thumb is to keep
the aspect ratios of the blocks as close to a given constant (typically

1.0) as possible, for as long as possible. 7As in [28, 11], we leave “min-delayhold constraints to clock-tree
6Bidirectional pins can be captured using pairs of unidirectional pins tunings and local optimizations, e.g., buffer padding, sizing, snaking,
and constrained timing graph traversals. etc.

144



2.3 Gate and Wire Delay Modeling slack maximization is a special case of iinOur generic placement
When calculating the gate/edge delays on ezmftinuous place- algorithm for min® is a reduction to a simpler objective function.

ment iteration(see Section 5.1), we use four different delay models: R . . .

(i) linear, (ii) quadratic (iii) ElImore MSTand (iv)Elmore star In the 3.1 Minimization of o by re'Welghtlng

linear model, the delay between a source pin and a sink pin is calcu- Givenedge weights w > 0 on the timing graph, weninimizethe

lated by the Manhattan distance between them. The quadratic modefollowing MAX-based objective functiol

uses the square of the Manhattan distance. Both the linear model and

the quadratic model combine the gate delay and the edge delay into 0= mi]aXWiidij (Xi5X},¥i,Yj) 2

one model which is based on the length. The EImore MST model uses

a lumped-distributed RC gate and wire delay model that is calculated Defined;; = wijdij (i, X;,Vi,Yj) So thatd = max; &;;.

based on the MST for a given rfétThe Elmore star model uses the Our placement optimization @b starts from an initial solutioA?

same calculation with a star tree (instead of the MST tree) where eachThen we compute edge delays and perform Static Timing Analysis.

sink pin has a direct edge from the source pin. Thus, the load of a Based on slacks/criticalities and edge delays, we compytas out-

given sink pin only affects the interconnect delay of that particular jined below. After that, the current placement is changenhitimize

edge. the function given by Equation (2). The valuea@nddj; after place-
The Elmore delay calculation uses cell locations and the following

parameters (cf. [12]):
e 1 andc are per-unit resistance and capacitance of interconnect;
when routing assignments are unknown, statistical averages fro
typical placements are used,

ment at iteratiork are denoted bxﬁ(k), 65}() and di(jk) resp. We prove
that in this proces$ cannot increase, implying monotonic conver-
ence.
Lemma 4 Given (i) an arbitrary setsj > O with at least one non-

zero, and (ii) any minimum of the respective MAX-based objective,

* Riis the resistance of a given driver piandC; is the capaci- 3| edge delays cannot be improved simultaneously by another place-
tance of a given sink pin. ment. |.e., there is ne> 0 and new placement for which the delay of
Load-dependent gate delay at output pis computed a&; (Cint + every edges;j is di’j <djj—¢.
ZiCj) where the summation is over sinksandCirt is the total in- Proof by contradiction. Suppose we have foung 0 and a new
terconnect capacitance on the driven r@f; = cW, whereW is an placement witte-smaller edge delays. Then defi@e= max; di’j /dij

estimate of the total net length, e.g., the length of a Rectilinear Min- 5nd note tha€ < ma; (cj —€)/cij < 1. Since every edge delal}
imum Spanning Tree (RMST) or the total Iengthzof the edges in the in the new placement will be no longer thaxd;, the value of the
star tree’ Interconnect delays are computedres® whereL is the objective function for the new placement will ki2< 1 times of the

length of a timing edge. The delay calculation in the Elmore MST is yajue for the original placement. However, this is impossible, since
more expensive because it includes the construction and the traversaj,e original placement minimized the objective function.

of the tree. Definition 5 Givenk > 1 and a placement for which the objective
function (2) has value¥, we call an iteration of re-weighting and
3. MIN-MAX PLACEMENT placemen} successfulff a placement is found for whick(t1) <

Our continuous optimization assumes that some vertices of the tim-3K). Otherwise we say that the iteration has failed. Finding a true
ing graph are restricted to fixed locations or rectangles; thus, it can minimal value of the function (2) is not required. An iteratioririg-
be used in top-down placement. Thenimizationof the path-delay ially successfuif the re-weighted objective function has valge3*)
function ® below, over all pathsr, includes optimization of the worst ~ with respect to the previous placement.

slack as a special case: Lemma 6 All timing constraints are satisfied if
k+1) _ (k) (k)
t d d! <dy maxt,’ /¢,
® = max.™ — max2e<nte (1) s |:n'93j w/ w]
T Cpp T Cn

Here d: denotes the signal delay along edgef the timing graph Proof [ma>§1'9aj t;k)/cn] is the worst ratio between the delay of a

and can also be written s = dij (X, Yi,X;,y;j), making® a function path passing through;j and its constraint. Therefore by reducing
of vertex locations via convex delay models for individual edfes. every edge delay on pathby the resp. ratio, we will ensure that path
Common edge delay models can be based on linear or quadraticdelayty is within its constrainty

(squared) edge wirelength, or on Elmore delay (see Section 2.3).

Ob_servation 3. A placement satisfies all timing constraints if and tﬁ(k“) = Zajendi(jk+l) < Cﬂ(zajET[di(jk))/tT([k) =Cr
only if ® < 1.0.

® is amultiplicativegeneralization of the commoadditive slack O
objectiveS, since® < 1.0 < S> 0.0. We now determine multiplicative factors for re-weighting such that

When ¢ are identical, mi® is equivalent to the minimization after a successful iteration all timing constraints are satisfied accord-
of maximal path delay, and thus to n@Xsee Section 2.2). The ingtoLemma 6. Namely, for any pathand any edge;; < mwe seek
general ma$ problem with arbitrary path delays; determined by to ensure the left-most inequality in the following chain (the remain-
AAT sandRAT scan be reduced to the case of identicaby adding ing equality and inequality hold priori)

a super-source and a super-sink connected respectively by constant-

delay edges to all timing sources and sinks. Therefore, the ordinary di(ij) < di(jk)/ {maxtﬁ,k)/cn] 3)
- UELT

8This is generally selected for simplicity and speed. With a generic
STA implementation, more accurate models or black-box delay cal-
culators can be used when affordable in terms of runtime. (k) . (k) (k) (k)

=di’ | min ¢/t <d-7cn/t 4
9In addition, several other interconnect length estimations can be 1 { 8 /e i G/t @
used, such as a weighted half-perimeter wirelength [2], the length of
a minimum single-trunk Steiner tree or the length of a heuristic Rec-11The main difference from more commuutal (equiv. average) wire-

tilinear Steiner Minimum Tree (RSMT). lengthobjective is the use of max insteadXaf
1070 better model delays, the functiodg () could also depend on lo- 12Quadratic placements work well in practice and can be produced
cations of cells (topologically) adjacentitand j [18]. very quickly; faster/better approaches are possible.

145



To ensure inequality (4), we note tt‘q%kﬂ) < 6(k+1)/wi(jk+l) by 24.4-5]. We implemented a simpler algorithm that is extremely fast in

definition of6k+ andsk+1) < &k by definition of a successful iter- practice and easy to perform on the original circuit representation.

. . (k1) It traverses vertices in an arbitrary order and places them in locally-
ation. Therefore, our goal will be reached once we t&%{wij - optimal locations. Such a pass cannot increase the objective, implying

di(jk)/ [max,waj tr((k)/cﬂ which can be accomplished by re-weighting:  monotonic convergence. Given that most vertices are adjacent to very
few other vertices (netlist are sparse due to technology and library

® constraints), every pass has linear runtime. We continue the passes

Trg%xtn /Cn':| 5) until the objective improves by 0.1%. Few passes are required in

J

K+1 K
practice because critical paths have few stages of logic.

The max-terms in this formula are called “criticalities” and can be
computed using static timing analysis, which is especially efficient
when the main global objective is slack maximization.

Theorem ITC (Immediate Timing Convergence) All timing
constraints are satisfied after oseccessfuiteration if re-weighting
is performed according to Equation (5).

Now we show that small placement changes caused by the propose
iteration of re-weighting and placement also miniméee When the
current placement is perturbed only slight®f*) is approximately
constant, and so are the valmﬁ}a We can now rewrite the MAX-
based objective function as

3.4 Extensions
Since more accurate delay objectives do not fit into the linear min-
imization model described above, we extended the overall placement
algorithm to accommodate more general delay objectives. The main
idea is to perform numerical differentiation and locally minimize lin-
gar approximations of given objective functions. This can also be seen
as a variant of gradient minimization (in a multi-dimensional space).
For this, we first find the smallest height/width over all standard cells.
Then we choose aa> 0 by taking %10 of that number and con-
sider a vector that is applied to the current location of a given cell
® ) anq has_ lengtls > 0. _Vye then restrict the movements of eac_h cell to
masw b — maxé— tL d: ©) a direction that sensmze_s the _delay function. The_ tangent_llne to the
ijooa i gk ' graph of the delay function, with respect to that direction, is approx-
g imated as the unique straight line passing through the following two

{(® {(® points. The coordinates of the first point are the current placement and
~ 8% max 2 = 5K max-— ) the delay value, and the coordinates of the second point, are the cur-
UEETY ¢ n Cy rent placement shifted by tlevector and the delay computed for that

placement. This construction is applied to each movable object inde-

3.2 Interpretations of re-weighting and compar- pendently; it is straightforward to account for details such as constant

isons to known results pin offsets. The linear approximation can be solved as described ear-

lier. Of course, the MST and SMT length are not smooth and are not
convex functions. Currently, we do not know how to achieve global

minima for such tree-based objectives through differencing schemes.

Define thetiming criticality of an edge to be the timing criticality
of the most critical path passing through the edge, measured by its
(k) (k)

contribution to®, i.e.,Kij = MaXyse, ty /Crt. This can be viewed

as the multiplicative version of the traditional negative slack [16]. We 4. MIN-MAXPLACEMENTIN A TOP-DOWN

also defingelative edge delapi(]-k) = é(k)/éi(jk). Now Equation (5) can PLACEMENT FLOW

be interpreted as multiplying each WeigVH() by aweight adjustment Figure 1 extends the basic top-down placement framework described

K () (K. in Section 3. This combined algorithm attempts to improve cycle-time
factor oj;” = pjj "k;j~ which can be greater than, less than or equal 0 5ng HPWL simultaneously. It starts by a call to min-max placement
1.0. The main idea here is to force critical edges to shorten (decreaseit returns cell locations optimizing worst-slack, as well as actual

their delays)py only as much as they neticease being critical and  ¢g| glacks in that placement. This information is translated into pre-
allow non-critical edges to elongate (increase their delays) ongsby  gsignments for the subsequent partitioning runs. Intuitively, the cells
much as they cawithout becoming critical. _ with worst slacks should be selected and pre-assigned to the partitions

Intuitively, the re-weighting can be decomposed into two steps. At \here they were placed by the continuous formulation. Min-max
the first step every edge weight is multiplied by relative edge delay, pjacement optimizes slack, thus slack cannot improve during further
which does not change the value of the objective function on the cur- top-down placement as region constraints are added. Therefore, the
rent placement, but makes all edge terms ecpf@wi(;()di(jk) =K for cells with worst slacks can only become more critical in the future
anyi, j). Following that, new edge weights are multiplied by timing and should be pre-assigned to partitions in such a way that the worst
criticalities which will increase the objective thanks to timing-critical slack does not worsen.

edges (thus the iteration will never bvially successfyl Improving Selection of cells to be pre-assigned, based on locations and slacks,
the re-weighted objective improves critical edges and thus improvesis performed in two stages. In the first stage, a “goodness” score is
O] computed for each cell as a linear combination of cell slack and a

Multiplication by relative edge delays is somewhat counter-intuitive delay equivalent of the cell's distance to the cut-line in its block. Sub-
becauseshorter edgesn critical paths receivleavier weights than  tracting a weighted delay-equivalent from slack captures the deterio-
longer edge®n the same paths. However, the useful effect of multi- ration of slack in case the cell is assigned into a “wrong” partition.
plication by relative edge delays is that all edge terms attain the max- The lower (worse) the score, the more important it is to pre-assign
imum and the current placement becomes unimprovable (cf. Lemmathe cell into the partition containing its continuous location. Cells are
4). Loosely speaking, the work in [28] mentions thé&erm, but com- sorted in increasing order of scores, and those with positive scores are
putes it for vertices rather than edges. However, neither [28], nor considered “good enough” to not be pre-assigned before a partitioner
[11] have thep term, which makes their delay re-budgeting algorithms s called.

heuristic. We try not to pre-assign too many cells before calling a partitioner;
L . otherwise, half-perimeter wirelength and congestion of resulting place-
3.3 Lower-level minimization ment can increase. To this end, we introduce two parameters that fur-

The minimization of the MAX-based objective can be performed ther limit the number of cells selected to be assigned at any given
by linear or non-linear programming [19] depending on specific delay level. Both limits are in terms of movable cells; one applies to the
models. In fact, for the linear-wirelength delay objectives, the LP whole layout, and the other to individual blocks.
formulation is solvable in linear time using Bellman-Ford [8, Exercise ~ Once all movable cells in the layout are sorted by their scores, those

146



Top-Down Timing-Driven Placement Flow
Variables:
B,B1,B2 — placement blocks (aka “bins”)
Al andA2 — stacks of placement blocks
P — cell locations (placement)
N — the circuit netlist
a, % — trades off timing- and wirelength
Initialization: single block inAl representing
the original placement instance
A2 — empty;P — arbitrary
o — from 0% (WL-driven) to 50%t(driven)
Output: P — global placement
Algorithm:
while (Al not empty )
{ - find continuous locationP that minimize
signal delay irN subject to block constraints
- find critical paths
- mark cells that lie on critical paths
- while (Al not empty )
{ pop B from Al
if ( B small enough X process end-case; continyie
prepare to partitiol8 into B1 andB2
(terminal propagation, etc.)
assign marked cells iB to B1 andB2
according tdP and fix them
call hypergraph partitioner
finalize B1 andB2; push B1 andB2 ontoA2

}
- copy A2 to Al; clear A2

Figure 1: Pseudocode of proposed timing-
driven placement framework.

as functions of placement is made available. Fixed-delay edges (e.g.,
between fixed cells/pads) and storage elements are marked in the tim-
ing graph. The directed graph is traversed by a depth-first search, and
back-edges that cause purely combinational cycles are removed. STA
performs classical static analysis with two topological traversals and
slack computations, as described in Subsection 2.2. It also computes
criticalities from slacks, assuming that all AATs are the same and all
RATSs are the same (we also implemented the general case, but have
not used it in this work).

After STA is constructed, TDplace is instantiated, using the loca-
tions of fixed vertices and optional initial locations of movable ver-
tices. There is an optional array of bounding boxes, one per vertex,
that constrain the possible locations of respective vertices. The first
continuous placement is performed subject to every movable object
being inside the layout bounding box, with initial location at the ge-
ometric center. Then, CapoT reads placement solutions and vertex
slacks, as well as various status information such as the worst slack.
The cell locations and slacks reported by TDplace are used by CapoT
to pre-assign hypergraph nodes before multi-level partitioning, as ex-
plained below. After every round of min-cut partitioning, the array
of bounding boxes in TDplace is changed by CapoT according to
the partitioning results. Subsequently TDplace is called to perform
a continuous-variable placement subject to hew bounding-box con-
straints. The cell locations and slacks are used at the next round
of partitioning, and this top-down placement process continues until
reaching end-cases (see Figure 1).

While performing continuous placement, TDplazatesgate and
edge delay calculations along the lines of Subsection 2.3, calls to STA,
and min-max-weighted-delay placement until a convergence criterion

cells are traversed in the order of increasing goodness and marked (ats met. The min-max-weighted-delay placement is performed by a
pre- assigned), with their areas accumuldf&d@his traversal goes on nested iteration. This iteration attempts to improve a previously ex-
until the total area of marked cells reaches a global area limit (% of isting solution by linear passes in which every vertex is placed opti-
the total area of all movable cells). Later, when a block is about to mally. Due to the proven monotonic convergence, termination criteria
be partitioned, its cells marked for pre-assignment are traversed agairire fairly straightforward — each iteration is stopped when its objec-
in order of increasing scores and pre-assigned to partitions based orive function changes by less than 0.1%.
their continuous locations. This traversal continues until the total area  We validate our placer by checking the “sanity” of its behavior with
of pre-assigned cells reaches the area limit for the block. respect to the internal optimization objective. For each industry test
We also reuse the continuous cell locations for more accurate ter-case (see Table 1) we drive the placer with four edge delay models
minal propagation. In many cases, this improves both half-perimeter (linear, quadratic, Elmore MST and Elmore star), and both the stan-
wirelength and cycle time. dard delay objective and the extended delay objective described above
(denoted bytd and-td1 respectively). Thus, for every test case eight
separate placements are obtained (and for each delay model as well,
eight separate placements are obtained). All placement results are
evaluated by our STA timing evaluator, with respect to all four de-

5. EMPIRICAL VALIDATION

Our implementation CapoT is based on the Capo placer [4].

The general architecturg _Name | # Cells #Nets Clk Period lay models. According to each delay model, we rank the placements
is similar to the “slack- | DesignA | 6390 8033 12.3ns . . . .

! ) | DesignB | 20449 21230  11.1ns from one to eight in order of decreasing slack. We then find the rank
graph” technique [3], W'th_ DesignC | 40349 42487  16.6ns achieved when the placer was actually driven by this specific delay
its separation of cONCeM$ pegignD | 58987 59922  68.0ns modell* Table 2 reports these ranks, averaged over all four test cases.

between delay calculatior
STA and placement. We  Table 1: Test case parameters.

additionally separate continuous min-max placement from top-down
placement.

5.1 Our Placer Implementation

The ranks for the combination efd and-td1 can range between 1.5
and 7.5; the ranks for either objective alone can range between 1 and
4. The results indicate that our algorithm is better able to optimize
with respect to the linear delay model than with respect to EImore-
based delay models. This may partly explain why timing optimization
o ) ) . can return worse results than timing-oblivious wirelength minimiza-
In the timing-driven regime, CapoT calls our min-max placer TD- {jon: our algorithm targets simpler delay models and does not take
place, which interfaces with our Static Timing Analyzer (STA). (Re- jnto account the subtleties of non-linear and topology-sensitive delay
call from above that STA is a generic path-tracer.) Thus, TDplace in- podels.
fluences the construction of partitioning instances in CapoT (see Sec-
tion 4). TDplace and STA are instantiated at the beginning of the top- 5.2 Experimental Results

down placement and construct a timing graph from the netlist, such e report half-perimeter WL (HPWL) and timing slack results for
that vertices correspond to movable objects. Timing edges are createcb|oba| timing-driven placement based on the linear, the quadratic and
from every source in a given hyperedge to every sink on that same hy

peredge. All information necessary to compute gate and edge delay'If the placer “behaves perfectly” then the, e.g., quadratic-driven
placements would have ranks 1 and 2 among all eight placements eval-

13This O(Nlog(N)) sorting-based computation can be sped up by a uated by the quadratic delay model. On the other hand, if these ranks

linear-time weighted-median computation, but its share in total run- are around 4.5 (or higher), then driving the placer with the given de-

time is already negligible, and therefore we simply salit()  from
the Standard Template Library.

147

lay model achieves no better (or, worse) results than driving it with a
random other delay model.



doptidondl '—2'29735’ le’ag;g“c E'm°4re5MST Elrr;o;SStar placement; without a detailed placer, we were able to demonstrate
t a_r:d t 175 155 55 55 competitive results on several industrial benchmarks. The proposed
4d1 1 175 275 205 algorithms are flexible and can be adapted to many placement frame-

works, especially those based on quadratic placement.

Our empirical results justify the pursuit of simple global objectives
for timing-driven placement and show that minimizing a simple ob-
the Elmore MST delay models. Both the linear model and the quadratigective well may be more useful than minimizing a very accurate ob-
model are technology-blind (results are independent of interconnectjective poorly. We believe that the utility of our approaches should

Table 2: Evaluation of placer’s behavior on its internal objective.

parasitics). The MST model is used with technology parameters (cal-increase with future scaling of VLSI technologies.

ibration and correlation of our internal STA, library and tech file mod-
eling, timing constraints definition, etc. required significant effort but 7,
details are beyond space limitations). We applied the two options [y
for timing-driven placement described earlier in the text (-td and -
td1). Table 3 compares CapoT with an industrial placer in a flow with ~ [2]
black-box industry STA timing analysis. Non-timing-driven results
are marked witmtd. We used the industry placer in both timing-
driven (industry-td) and non-timing-driven (industry-ntd) configura-
tions. CapoT was called by a “meta-placer” that applied branch-and-
bound placement improvement in sliding windows and removed cell
occasional cell overlaps by a naive greedy heuristic. The meta-placer
also greedily optimized cell orientations within the constraints given
by the input LEF/DEF files. Note that we do not have a detailed

K]

4]

timing-driven placement capability, while the industry placer does. [6]
[ Placer/Config] HPWL [ slack ]| HPWL | slack | 7
Design A | Design B
industry-ntd | 6.74e5| 0.44 || 2.73e6| 0.49
industry-td 6.58e5| 0.06 || 2.59e6| 0.55 [8]
mp-ntd 8.89e5| -0.01 || 2.49e6| 0.66
mp-td-lin 9.40e5| 0.08 || 2.73e6| 0.28 19
mp-td-mst 8.93e5| -0.14 || 2.78e6| 0.42
mp-td-quad | 9.19e5 | -0.09 || 2.69e6| 0.48 (10]
mp-td1-lin 9.07e5| 0.08 || 2.68e6| 0.62 [11]
mp-td1-mst 9.16e5| -0.38 || 2.81e6| 0.64
mp-tdl-quad | 8.94e5| 0.15 || 2.80e6| 0.62 [12]
DesignC DesignD
industry-ntd | 3.56e6 | -5.70 || 2.39e7 | -3.47
industry-td 3.41e6 | -5.66 | 2.20e7| -4.98 [13]
mp-ntd 3.20e6 | -5.62 || 1.97e7| 0.65 [14]
mp-td-lin 3.41e6| -5.64 || 2.14e7| -3.36
mp-td-mst 3.30e6 | -5.74 || 2.17e7| -14.57
mp-td-quad 3.34e6 | -5.69 || 2.21e7| -4.43 [15]
mp-td1-lin 3.40e6 | -5.88 || 2.12e7| 1.30
mp-tdl-mst | 3.34e6 | -5.75 || 2.09e7 | -0.55 [16]
mp-tdl-quad | 3.34e6 | -5.75 || 2.08e7 | -1.37
[17]

Table 3: Timing-driven placement results.

The experimental results (test case C is essentially non-probative) 18]
show that our implementation performs competitively. Currently, the
linear star delay model outperforms Elmore type models. Also, in
several cases, WL-driven versions of both our implementation and the [19]
industry tool outperformed td versions. We stress that the evaluations 120]
were performed by an industrial static timing analyzer, independent of
the placer implementations. Thus, our conclusions may have depen- [21]
dencies on instance size, technology scaling, library characterization

(since our delay modeling and calculation is abstracted from standard (2]
.lib models), and mis-correlations between the industry STA and our [23]
STA capability (we drive our placer with internal STA calculations).
We conclude that formulating a more precise delay objective and min- [24]
imizing it by a reasonable algorithm does not necessarily yield better [25]
results.

[26]
6. CONCLUSIONS [27]

We have proposed a new global timing-driven placement algorithm
and evaluated it on a set of recent industrial circuit benchmarks. Cir-
cuit delay was evaluated by a commercial static timing analyzer (i) af-
ter placement by our placer, and (ii) after placement by a commercial
placer. The main contribution of this paper is to global timing-driven

[28]

148

REFERENCES

M. Burstein, “Timing Influenced Layout DesignRroc. Design Automation

Conf, 1985, pp. 124-130.

A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “On
Wirelength Estimations for Row-Based PlacemelEEE Trans. on CAD18(9),
Sept. 1999, pp. 1265-1278.

A. E. Caldwell, A. B. Kahng and I. L. Markov, “Optimal Partitioning and
End-Case Placement for Standard-Cell LayolEEE Trans. on CAD19(11),

Nov. 2000, pp. 1304-1313.

A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone
Produce Routable PlacementsRfoc. Design Automation ConR000, pp.
477-482.

C.-C. Chang, J. Lee, M. Stabenfeldt and R.-S. Tsay, “A Practical All-Path
Timing-Driven Place and Route Design Systefoc. Asia-Pacific Conf. on
Circuits and System4994, pp. 560-563.

A. H. Chao, E. M. Nequist and T. D. Vuong, “Direct Solutions of Performance
Constraints During Placemenfroc. Custom Integrated Circuits Cont990, pp.
27.2.1-27.2.4.

Y.-C. Chou and Y.-L. Lin, “A Performance-Driven Standard-Cell Placer Based on
a Modified Force-Directed AlgorithmProc. Intl. Symp. on Physical Design
2001, pp. 24-29.

T.H. Cormen, C. E. Leiserson, R. L. Rivest and C. Sthitroduction to

Algorithms 2nd ed., MIT Press, 2001.

A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard Cell
VLSI Circuits”, IEEE Trans. on CADBY(1), 1985, pp. 92-98.

H. Eisenmann and F. Johaness, “Generic Global Placement and Floorplanning”,
Proc. Design Automation Confl998, pp. 269-274.

J. Frankle, “Iterative and Adaptive Slack Allocation for Performance-Driven
Layout and FPGA Routing’Proc. Design Automation Confl992, pp. 539-542.

P. Gopalakrishnan, A. Obasioglu, L. Pileggi and S. Raje, “Overcoming Wireload
Model Uncertainty During Physical DesigrProc. Intl. Symp. on Physical

Design 2001, pp. 182-189.

B. Halpin, C. Y. Roger Chen and N. Sehgal, “Timing-Driven Placement Using
Physical Net ConstraintsRroc. Design Automation ConR001, pp. 780-783.

T. Hamada, C. K. Cheng and P. M. Chau, “Prime: A Timing-Driven Placement
Tool Using a Piecewise Linear Resistive Network Approaéhtic. Design
Automation Conf.1991, pp. 531-536.

P. S. Hauge, R. Nair and E. J. Yoffa, “Circuit Placement for Predictable
Performance”Proc. Intl. Conf. on Computer-Aided Desidgi987, pp. 88-91.

R. B. Hitchcock, Sr., G. L. Smith and D. D. Cheng, “Timing Analysis of
Computer Hardware'lBM J. Res. Develo26(1), 1982, pp. 100-108.

M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “A Fast Algorithm for
Performance-Driven PlacemenProc. Intl. Conf. on Computer-Aided Design

pp. 328-331.

T. Koide, M. Ono, S. Wakabayashi and Y. Nishimaru, “Par-POPINS: A
Timing-Driven Parallel Placement Method with the EImore Delay Model for Row
Based VLSIs" Proc. Asia and South Pacific Design Automation Cat97, pp.
133-140.

D. G. Luenberget, inear and Nonlinear Programmin@nd ed., Addison Wesley,
1984.

W. K. Luk, “A Fast Physical Constraint Generator for Timing Driven Layout”,
Proc. Design Automation Confl991, pp. 626-631.

M. Marek-Sadowska and S. P. Lin, “Timing-Driven Layout of Cell-Based ICs”,
VLSI Systems Desighay 1986, pp.63-73.

M. Marek-Sadowska and S. P. Lin, “Timing Driven PlacemeRtgc. Intl. Conf.

on Computer-Aided Desigi989, pp. 94-97.

R. Nair, C. L. Berman, P. S. Hauge and E. J. Yoffa, “Generation of Performance
Constraints for Layout’|EEE Trans. on CADB(8), Aug. 1989, pp. 860-874.

S.-L. Ou and M. Pedram, “Timing-Driven Placement Based on Partitioning With
Dynamic Cut-Net Control”Proc. Design Automation Con000, pp. 472-476.

B. M. Riess and G. G. Ettelt, “Speed: Fast and Efficient Timing Driven
Placement”Proc. Intl. Symp. on Circuits And Systerh895, pp. 377-380.

M. Sarrafzadeh, D. Knol and G. Tellez, “Unification of Budgeting and
Placement”Proc. Design Automation Confl997, pp. 758-761.

R. S. Tsay and J. Koehl, “An Analytical Net Weighting Approach for Performance
Optimization in Circuit PlacementRroc. Design Automation Confl991, pp.
620-625.

H. Youssef, R.-B. Lin and E. Shragowitz, “Bounds on Net Delays for VLSI
Circuits”, IEEE Trans. on Circuits and Systen39(11), Nov. 1992, pp. 815-824.



