
Fixed-outline Floorplanning Through Better Local Search

Saurabh N. Adya and Igor L. Markov
Univ. of Michigan, EECS department, Ann Arbor, MI 48109-2122

fsadya,imarkovg@eecs.umich.edu

Abstract

Classical floorplanning minimizes a linear combina-
tion of area and wirelength. When Simulated Annealing
is used, e.g., with the Sequence Pair representation, the
typical choice of moves is fairly straightforward.

In this work, we study the fixed-outline floorplan for-
mulation that is more relevant to hierarchical design style
and is justified for very large ASICs and SOCs. We em-
pirically show that the fixed-outline floorplan problem in-
stances are significantly harder than the well-researched
instances without fixed outline. Furthermore, we suggest
new objective functions to drive simulated annealing and
new types of moves that better guide local search in the
new context. Our empirical evaluation is based on a new
floorplanner implementationParquet-1 that can operate
in both outline-free and fixed-outline modes.

Our proposed moves are based on the notion of floor-
plan slack. The proposed slack computation can be imple-
mented with all existing algorithms to evaluate sequence
pairs, of which we use the simplest, yet semantically in-
distinguishable from the fastest reported ([16]). A similar
slack computation is possible with many other floorplan
representations. In all cases, the slowdown is by a con-
stant factor — roughly 2x.

1 The Problem

We describe the classical floorplanning framework and
contrast it to the modern fixed-outline formulation.

1.1 Classical Outline-Free Floorplanning

A typical floorplanning formulation entailsa collection
of “blocks” , which can represent circuit partitions in ap-
plications. Each block is characterized byarea (typically
fixed) andshape-type, e.g., fixed rectangle, rectangle with
varying aspect ratio, an L-shape, a T-shape, or a more gen-
eral rectilinear polygon, etc (such shapes may optimize
layouts of special types of circuits, e.g., datapaths). A
solution to such a problem, i.e., afloorplan, specifies a
selection of block shapes and overlap-free placements of
blocks. Depending on shape constraints, a floorplanning
formulation can be discrete or continuous. For example,

if at least one block is allowed to assume any rectangu-
lar shape with fixed area and aspect ratio in the interval
[a;b] (wherea < b) the solution space is no longer finite
or discrete. Multiple aspect ratios can be implied by an
IP block available in several shapes as well as by a hier-
archical partitioning-driven design flow for ASICs [14, 9]
whereonly the number of standard cellsin a block (and
thus the total area) is known in advance. In many cases,
e.g., for row-based ASIC designs, there are only finetly
many allowed aspect ratios, but solution spaces contain-
ing a continuum are used anyways, primarily because ex-
isting computational methods cannot handle such a large
discrete solution space directly [9]. We point out that in
the classical floorplanning formulations, movable blocks
tend to have fixed aspect ratios, but the overall floorplan is
not constrained by an outline. While several recent works
allow for variable block aspect ratios, the more modern
fixed-outline formulation (see below) has not been ad-
dressed.

Objective functions not directly related to area typi-
cally involve a hypergraphthat connects given blocks.
While more involved hypergraph-based objective func-
tions have been proposed, the popularity of the HPWL
(half-perimeter wirelength) function is due to its simplic-
ity and relative accuracy, given that routes are not avail-
able. The HPWL objective became evenmore relevant
[9] with the wide use of multi-layer over-the-cell routing
in which more nets are routed with shortest paths.

A fundamental theorem for many floorplan representa-
tions, e.g., [10], says thatat least one area-minimal place-
ment can be represented. This does not hold for objectives
that include wirelength because none of the optimal solu-
tions may be “packed” which implies than more nets can
be routed with shortest paths.1

For the remaining part of this work, we will be deal-
ing with the area and HPWL objectives only, but even
this simplified setting impliesmulti-objective optimiza-
tion. Mathematically, best trade-offs are captured bythe
non-dominated frontier(NDF). Definition: a solution of a
multi-objective optimization problem belongs tothe non-

1A simple example: blocksB1 andB2, connected by two 2-pin nets
to fixed pinsP1 andP2. The blocks touch in no optimal solution if the
pins are sufficiently far from each other.

1

dominated frontieriff no other solution improves upon
one of the objective functions while preserving (or im-
proving) other objective functions.2 Of those works on
abstract floorplanning that address both objectives, most
minimize a linear combination [15, 12, 16] with arbitrar-
ily chosen coefficients. By a simple corollary of the def-
inition of NDF, this produces non-dominated solutions,
most likely different for different coefficients. Note, how-
ever, that area and wirelength have different dimensions.
Given that net lengths have the same order of magnitude
as thex andy dimensions of the floorplan itself, areas tend
to be several orders of magnitude larger than wirelengths
and path delays. Moreover, the difference depends on the
number of nets, number and size of blocks, etc. In our ex-
periments, area terms dominated wirelength terms unless
highly problem-specific coefficients were used. In other
words, it is difficult to fully automate a floorplanner
that explores non-dominated solutions with respect to
wirelength and area objectives.3

1.2 Modern Fixed-outline Floorplanning

The two mismatches in classical approaches to floor-
planning (troubled multi-objective optimization and rep-
resentations which may not capture any min-wirelength
solutions), are graciously resolved in the context of mod-
ern ASIC design. As pointed in [9, 2], modern hier-
archical ASIC design flows based on multi-layer over-
the-cell routing naturally implyfixed-die placement and
floorplanning rather than thevariable-die style, asso-
ciated with channel routing, two layers of metal and
feedthroughs. Each top-down step of such a flow may start
with a floorplan of prescribed aspect ratio, and with blocks
of bounded (but not fixed) aspect ratios. The objective is
to minimize wirelength subject to (i) the fixed floorplan
outlines, and, perhaps, additionally (ii) zero dead space.
Floorplans with no dead space are called “mosaic” in [6].
The constraint (i) implies that the dead space is no longer
an objective, but rather a constraint, because it can be
computed in advance. This modern floorplanning formu-
lation was proposed in [9], but has not yet been addressed
in any works known to us, partly due to the lack of bench-
marks. Our work addresses this formulation.

The modern floorplanning formulation proposed in [9]
is an inside-out version of the classical outline-free floor-
planning formulation — the aspect ratio of the floorplan is
fixed, but the aspect ratios of the blocks can vary. There-
fore, it is natural to ask which aspects of classical floor-
planning research are relevant to the new formulation. We
make the following observations:

2The design of optimization heuristics can be viewed as a problem
with at least two objective functions — runtime and solution quality [1].

3Additionally, when the balancing coefficients are found, the hard-to-
capture correlation between wirelength and area appears to create partic-
ularly difficult local minima for their linear combination.

1. The new formulation, via the zero dead-space re-
quirement, makes research on classical “block pack-
ing” more relevant. That is because all wirelength-
minimal solutions in this formulation can be captured
by compacted representations such as sequence pairs
[10], O-trees [12],B�-trees [3] and corner block lists
[6]. In fact, anyfloorplan with zero dead space can
be captured by known representatios, because it is
“compacted”.

2. Multi-objective minimization of area and wirelength,
— via linear combinations or otherwise — is no
longer an issue since dead-space is fixed.

3. Handling blocks with variable aspect ratios appears
increasingly important because there may be very
few or no floorplans with a given outline for any
given fixed configuration of aspect ratios. A num-
ber of works [7, 11, 4, 17] handle the floorplan siz-
ing problem, i.e., changes of aspect ratios without
reordering blocks, by methods of mathematical op-
timization (convex linear and non-linear program-
ming). However, such methods are difficult to com-
bine with combinatorial optimization and entail ex-
cessive runtimes, for example [17] cites runtime of
19.5 hours for the ami49 benchmark (other works
cite smaller runtime). Additionally, such approaches
entail a mix of two very different computational en-
gines. The implementation reported in [6] appears to
handle discrete variable aspect ratios by randomized
re-instantiation of blocks based on a set of 16 alter-
natives.

4. Perhaps, the greatest shortcoming of known ap-
proaches to floorplanning with respect to the new
formulation is the lack of appropriate neighborhood
structures, i.e., incremental changes (“moves”) that
preserve the fixed outline of the floorplan. No-
tably, every floorplan encoded by the corner block
list(CBL) representation [6] has zero dead-space (is
“mosaic”), but CBL based moves can change the
floorplan’s aspect ratio considerably.

5. Given that the new floorplanning formulation is
more constrained, we see increased relevance of
research on accomodating application-specific con-
straints, such as alignment, abutment, order, regions
[16], symmetry [13], etc.

We conclude that classical floorplanning is largely rele-
vant to the new floorplanning formulation proposed in [9],
however the new formulation may be addressable through
other ways than novel representations.Existing repre-
sentations and manipulation algorithms do not allow
effective traversals of the solution space without violat-
ing specific constraints, including the new fixed-outline
floorplan constraint. Alternatively, temporary violations

2

could be tolerated or fixed. For example, not every corner
block list [6] yields a valid floorplan, but the feasibility
constraint is clearly stated in [6] and tolerated by the re-
ported implementation.

In this work, we study neighborhood structures for the
well-known sequence pair representation. Our proposed
slack-based movesare more likey to reduce the floorplan
span in a given direction (H or V) than random pair-wise
swaps and block rotations used in most works based on
sequence pairs.

2 Existing Methods

An overwhelming majority of floorplanners rely on the
Simulated Annealing framework [14] but differ by inter-
nal floorplan representations.

The sequence pair representation for classical floor-
plans ofN blocks has been proposed in [10]. Unlike most
new graph-based representations, it consists of two per-
mutations (orderings) of theN blocks. The two permu-
tations capture geometric relations between each pair of
blocks. Recall that since blocks cannot overlap, one of
them must be to the left or below from the other, or both.
In sequence pair

(< :: : ;a; : : : ;b; : : : >;< :: : ;a; : : : ;b; : : : >)) a is to the left ofb
(1)

(< :: : ;a; : : : ;b; : : : >;< :: : ;b; : : : ;a; : : : >)) a is aboveb (2)

In other words, every two blocks constrain each other in
either vertical or horizontal direction. The sequence pair
representation is shift-invariant since it only encodes pair-
wise relative placements. Therefore, placements produced
from sequence pairs must be aligned to given horizontal
and vertical axes, e.g.,x= 0 andy= 0. Multiple sequence
pairs may encode the same block placement, e.g., for
three identical square blocks, both(< a;c;b>;< c;a;b>)
and(< a;c;b>;< c;b;a>) encode the placement witha
straight on top ofc andb aligned withc on the right.

The original work on sequence pair [10] proposed an
algorithm to compute placements from a sequence pair by
constructing the horizontal (H) and vertical (V) constraint
graphs. The H and V graphs haveN+2 vertices each —
one for each ofN block, plus “the source” and “the sink”.
For every pair of blocksa andb there is a directed edge
a! b in the H graph if a is to the left fromb accord-
ing to the sequence pair (Formula 1). Similarly there is
a directed edgea! b in theV graph if a is aboveb ac-
cording to the sequence pair (Formula 2) — exactly one
of the two cases must take place. Vertices that do not have
outgoing edges are connected to the sink, and vertices that
do not have incoming edges are connected to the source.
Both graphs are considered vertex-weighted, the weights
in the H graph represent horizontal sizes of blocks, and the
weights in the V graph represent vertical sizes of blocks.
Sources and sinks have zero weights.

B C

A

CB

A
<ABC>,<BCA>

<ABC>,<BAC>

Figure 1. Two sequence pairs with edges of the hori-
zontal (dashed) and vertical (solid) constraint graphs.

Block locations are the locations of block’s lower left
corners. Thex locations are computed from theH graph,
andy locations are computed from theV graphindepen-
dently. Therefore, we will only look at the computation of
thex locations. One starts by assigning locationx= 0 to
the source. Then, theH graph is traversed in a topological
order. To find the location of a vertex, one iterates over all
incoming edges and maximizes the sum of the source lo-
cation and source width. Figure 1 illustrates the algorithm
on two examples. The worst-case and average-case com-
plexity of this algorithm isΘ(n2), since the two graphs,
together, have a fixedΘ(n2) number of edges, and topo-
logical traversals take linear time in the number of edges.

We say that a block placement is “representable” (or
“can be captured”) by sequence pair,iff there exists a se-
quence pair which encodes that placement. A fundamen-
tal theorem from [10] implies that at least one minimal-
area placement is representable with sequence pair (in
fact, there are many). Therefore, sequence pair is justi-
fied for area minimization.

Sequence pairs can be used to floorplan hard rectangu-
lar blocks by Simulated Annealing [10, 11, 15, 16]. The
moves are (i) random swaps of blocks in one of the two
sequence pairs, and (ii) rotations of single blocks. Se-
quence pairs are modified in constant time, but need to
be re-evaluated after each move. No incremental evalua-
tion algorithms have been reported, therefore, the annealer
spends most of the time evaluating sequence pairs.

The sequence pair representation and necessary algo-
rithms have been extended to handle fixed blocks [11] as
well as arbitrary convex and concave rectilinear blocks
[5]. Recently, the originalO(n2)-time evaluation algo-
rithm [10], has been simplified and sped up toO(nlog(n))
in [15], and then toO(nlog(log(n))) [16]. Importantly,
those algorithms do not change the semantics of evalu-
ation — they only improved runtime, and lead to better
solution quality by enabling a larger number of iterations
during the same period of time. WhileO-trees [12] and
corner block lists [6] can be evaluated in linear time, the
difference in complexity is dwarfed by implementation
variations and tuning, e.g., the annealing schedule. The
implementation reported in [16] seems to outperform most
known implementations, suggesting that the sequence pair
is a competitive floorplan representation.

3

In our experiments, the simpleO(n2) evaluation algo-
rithm from [15] performed faster than theO(nlog(n))-
time algorithm from the same paper. This is primar-
ily due to the simplicity of data structures used by the
O(n2)-time algorithm and their much lower implemen-
tation overhead. A more recent paper [16] claims that
their advancedO(nlog(log(n)))-time algorithm outper-
forms the quadratic algorithm in practice. Given that it is
considerably more involved, but based on the same prin-
ciples, we chose to base our work on the quadratic algo-
rithm, leaving out a potential speed up.

All three algorithms are based on the following the-
orem [15]: Thex-span of the floorplan to which se-
quence pair(S1;S2) evaluates, equals to the length of
the longest common weighted subsequence ofS1 andS2,
where weights are copied from block widths. Analogous
statement about they-span deals with the longest common
subsequence ofSR

1 andS2 , whereR stands for “reversed”
and weights are copied from block heights. Moreover, the
computations ofx andy locations of all blocks can be in-
tegrated into the longest common subsequence computa-
tions.

3 Better Local Search

We propose several ideas for improved move selection
in Simulated Annealing and greedy floorplan optimiza-
tion. While we detail these ideas for the sequence pair
representation, they can potentially be applied with other
floorplan representations.

3.1 Slack computation

Our first idea can be used with any of above mentioned
sequence pair evaluation algorithms and is based on the
following series of observations

� x andy locations are computed independently;

� in each dimension, the floorplan is constrained by
one or more “critical paths” in respective constraint
graphs. A critical path is a path of blocks that con-
strain each other in the same direction and are tightly
packed so that any change in block location must pro-
duce overlaps or increase the span of the floorplan;

� in each dimension, the computation of block loca-
tions based on the constraint graphs is mathemat-
ically identical to the propagation of arrival times
in Static Timing Analysis. Formally, STA is per-
formed on an edge-weighted graph, while the con-
straint graphs are vertex-weighted, However, this dif-
ference is superficial since a vertex-weighted graph
can be trivially transformed into an edge-weighted
graph, e.g., by distributing vertex weights to incident
edges, or otherwise;

� after thex-spanX of the floorplan andx-locations
of blocks are known, one can perform a symmet-
ric computation of locations in right-to-left direction,
assigning locationX to thesinkvertex. This will be
analogous to the back-propagation of required arrival
times in Static Timing Analysis;

� by analogy with Static Timing Analysis, the differ-
ence between the two locations computed for each
block — slack — related to the “most critical path”
on which this block lies. In particular, zero slacks
are always associated with paths that constrain the
floorplan. Negative slacks are impossible as long as
blocks do not overlap.

Slacks can be computed with any sequence pair eval-
uation algorithm that can work in left-to-right and right-
to-left modes, which includes all algorithms we are aware
of. Figure 2 annotates blocks in a given floorplan with
horizontal (x) and vertical (y) slacks.

3.2 Slack-based moves

Once slacks are known, they can be used in move se-
lection. Both thetiming analysisinterpretation above and
the common subsequenceinterpretation from [15] imply
that if a move (such as pairwise swap) does not involve
at least one block with zero slack in a given dimension,
then the floorplan span in that dimension cannot decrease
after the move. This is because such a move cannot not
improve critical paths or, equivalently, longest common
subsequences. Therefore we bias move selection towards
blocks having zero slack in at least one dimension. Of
those blocks, the ones with large slack in the other di-
rection are potentially good candidates for single-block
moves, such as rotations and more gradual aspect ratio
changes, — discrete or continuous — can be chosen ef-
ficiently. Blocks with two zero slacks, especially small
blocks, are good candidates for a new type of move, in
which a block is moved simultaneously in both sequence
pairs to become a neighbor of another block (in both se-
quence pairs, and, thus in placement). Namely, we at-
tempt to move a critical blockC next to a blockL with
as large slacks as possible, since large slacks imply that
white space can be created aroundL (more precise con-
ditions can be written, but will still be heuristic). Figure
2 illustrates such a move. In addition to changing the se-
quence pair, our implementation changes block orienta-
tion and aspect ratio based on current slacks.

We observe that [8] already suggested the analogy with
static timing analysis in the context of FPGA placement.
However, their algorithms are rather different and explic-
itly rely on H and V constraint graphs (our proposed algo-
rithms do not).

4

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 before move: area=1.07e+07

clkc

clkd

cmp1

cmp2
cmp3

cntd

cntu

npd

nps

ppd

pps

x 0%

y 0%

x 0%

y 0%

x 0%

y 0%

x 0%

y 0%

x 0%

y 0.04%

x 0%

y 14.31%

x 5.22%
y 14.31%

x 5.22%

y 14.31%

x 7.71%

y 17.91%

x 7.71%

y 17.91%

x 16.59%

y 21.45%

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

 after the move: area=1.02e+07

clkc
clkd

cmp1

cmp2 cmp3
cntd

cntu

npd

nps

ppd

pps

x 0%

y 0%

x 0%

y 0%

x 0%
y 0%

x 0%

y 0%

x 0%

y 0.05%

x 0%

y 4.12%

x 0%

y 4.13%

x 14.44%

y 4.20%

x 14.44%

y 4.20%

x 16.68%

y 8.34%

x 16.68%

y 25.02%

Figure 2. A slack-based move in a highly suboptimal floorplan of hp.x and y slacks are shown
in percents of the respective spans of the floorplan. Modulecmp3 — the smallest with zeroy slack
— is moved next to the moduleclkd , which has the highesty slack. This move improves vertical
span and slightly worsens the horizontal span, but the floorplan area is reduced.

3.3 Fixed-outline Constraints

Fixed-outline floorplans enable top-down design of
very large scale ASICs and SOCs. Figure 3 shows the
result of a floorplan with pure area minimization without
any fixed outline constraints. The dead space achieved
was 7.75% with an aspect ratio of 3.22:1. However this
floorplan can be completely useless for a situation where
1:1 aspect ratio is imposed by a higher-level floorplan.

The following notation will be used in our floorplan-
ning formulations. For a given collection of blocks with
total areaA and givenmaximum percent of dead-spaceγ,
we construct a fixed outline with aspect ratioα� 1.4

H� =
p

(1+ γ)Aα W� =
p

(1+ γ)A=α

Aside from driving the annealer by area minimization,
we consider the following objective functions: (i) the sum
of the excessive length and width of the floorplan, (ii) the
greater of the two. Denoting the current height and width
of the floorplan byH andW, we define these functions as

(i) maxfH�H�;0g+maxfW�W�;0g (ii) maxfH�H�;W�W�g

The choice of these functions is explained by the fact
that the fixed-outline constraint is satisfied when and only
when each of those functions takes value 0.0 or less. For
this reason we cannot consider the product of fixed outline
violations.

Our experiments have shown that a classic annealer-
based floorplanner was practically unable to satisfy the
fixed-outline constraint. Therefore we additionally bias
the selection of moves as follows. At regular time inter-
vals during the simulated annealing the current aspect ra-
tio is compared to the aspect ratio of the fixed outline.
If the two are different, then the slack-based moves de-
scribed earlier are applied to change the current aspect

4The restriction ofα� 1 is imposed without loss of generality since
our floorplanner can change orientations of individual blocks.

ratio in the needed direction. For example, if the width
needs to be reduced then we chose the blocks in the floor-
plan with smallest slack in thex direction and insert them
above or below the blocks with largest slack in they di-
rection. These moves have better chances of reducing the
area and improving the aspect ratio of the current floor-
plan at the same time. Through these repeated moves
during the simulated annealing the structure of the floor-
plan is biased towards the aspect ratio of the fixed outline.
As shown in the following section, our implementation
was successful in satisfying a variety of fixed-outline con-
straints.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

n100 area= 194586 WS= 7.75% AR= 3.22 time= 45.91s

Figure 3. A floorplan with 100 blocks, generated w/o
a contraining outline, has aspect ratio 3.22:1.

4 Empirical Validation

We implemented a floorplanner based on Simulated
Annealing, Parquet-1, that mostly follows a geomet-
ric cooling schedule. For a design withN blocks, the
temperature is decreased by a factor ofα every 1:5N
blocks. At certain deterministically defined tempera-
tures,α varies. Runtimes are measured (in seconds) on
a 800MHz PC/Intel system that runs Linux. Implementa-
tions are in C++ and compiled withg++ 2.95.2 -O3 .

5

Circuit Enh. O-Tree[12] TCG[18] CBL[6] FastSP[16] SP(Parquet-1)
area time area time area time area time min/avg area min/avg deadspace avg time

(mm2) (sec) (mm2) (sec) (mm2) (sec) (mm2) (sec) (mm2) (%) (sec)

apte 46.92 11 46.92 1 NA NA 46.92 1 47.07/48.14 1.08/3.28 4
xerox 20.21 38 19.83 18 20.96 30 19.80 14 19.83/20.73 2.42/6.65 3

hp 9.16 19 8.94 20 NA NA 8.94 6 9.14/9.49 3.39/6.95 4
ami33 1.24 118 1.20 306 1.20 36 1.20 20 1.19/1.23 2.85/6.01 9
ami49 37.73 406 36.77 434 38.58 65 36.50 31 37.27/38.01 4.91/6.76 16

Table 1. Outline-free area minimization results for Enhanced O-Tree(on Sun Ultra60), TCG(on Sun
Ultra60, CBL(on Sun Sparc 20, Fast-SP(on Sun Ultra 1) and Parquet-1(on 800MHz PC/Intel system).
Averages and minima for Parquet-1 are over 100 independent starts.

4.1 Classical (min-area) floorplanning context

Table 1 comparesParquet-1 to leading-edge floor-
planning results on standard MCNC benchmarks in the
area-only minimization context with no fixed-outline con-
straints. According to those results, our floorplanner is
competitive with published implementations both in terms
of final area and runtimes. We note, however, that all
recently reported floorplanners easily achieve dead-space
well below 10%, therefore leaving very little possible
improvement. Simultaneous minimization of wirelength
and area is known to be a more challenging optimization
problem. In the following, we are going to show that,
even without wirelength minimization considered, fixed-
outline floorplanning is significantly harder than outline-
free floorplanning.

4.2 Fixed-outline floorplanning

The standard version of the floorplanner without any
of the slack based moves could not solve a single instance
within the fixed outline, although it gave competitive area
results. This confirms the inadequacy of the classical
min-area floorplanning formulation and algorithms in the
fixed-outline context.

To achieve fixed-outline floorplan, we consider three
objectives in terms of excessive height and width as de-
scribed earlier (the sum of and the greater of) and the area.
We stop the annealer as soon as it finds a solution satisfy-
ing a given fixed outline. If the current outline is smaller,
its aspect ratio can be different from the aspect ratio of the
fixed outline. If the annealer’s temperature schedule runs
out and no satisfying solution is found, we deem this a
failure.

We constrained our final solutions to have a maximum
deadspace of 15% and tried to achieve floorplans satisfy-
ing different fixed-outlines. Experiments were performed
on ami49 MCNC benchmark and the results were aver-
aged for 50 runs for each aspect ratio. Figure 4 shows
plots of (i) the probability of successof satisfying the fixed
outline constraint vs desired aspect ratio of the fixed out-
line, and (ii) the average runtimes for all runsvs the de-

sired aspect ratio of fixed outline. The plots reflect the
difficulty in satisfying fixed-outline floorplans with given
aspect ratios, which highly depends on the dimensions of
the blocks. As seen from the plots, our simulated annealer
fairly often failed to satisfy the given outline, however,
the probability of success was typically over 30%, i.e., at
least three in ten starts were successful. This consistent
rate of success suggests that our slack-based moves indeed
improve local search (simulated annealing without slack-
based moves was never able to satisfy the fixed outline).
Also note that in most of the unsuccessful attempts the fi-
nal solutions were within 1-2% from the desired outline,
yetwe regard them as failures.

Out of the three objective functions we tried, minimiz-
ing the sum of excessive width and height and minimizing
the area was more successful by far. Finding an explana-
tion of this empirical result remains an open problem.

When we decreasedγ in our experiments, some fixed
outlines were never satisfied, which may be due to the
absence of solutions with a given aspect ratio and very
small dead-space. As expected, increasingγ improves
both the probability of success and the runtime of success-
ful runs. Our experiments with other publicly available
benchmarks (n50, n100, etc) produced consistent results.

5 Conclusions

Our work points out that a non-standard floorplanning
formulation — fixed-outline floorplanning is significantly
harder than classic min-area outline-free floorplanning,
even if wirelength minimization is ignored. We imple-
ment an annealing-based floorplannerParquet-1that uses
a recently discovered [15] sequence pair evaluation algo-
rithm and study its performance both in the fixed-outline
and outline-free contexts. For the standard formulation,
our floorplanner is competitive, both in terms of runtime
and solution quality, with other leading-edge implemen-
tations and represents current state-of-the-art. However,
our implementation experiences serious difficulties in the
fixed-outline context until the algorithm is modified. In
particular, more relative deadspace is required to satisfy
an outline of a given area when its aspect ratio is fixed.

6

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4

P
r
o
b
a
b
i
l
i
t
y

o
f

s
u
c
c
e
s
s

Aspect Ratio of Fixed Outline

Probablity(success) vs Aspect Ratio

obj fn: area
obj fn: max(x-viol,y-viol)

obj fn: x-viol+y-viol

6

6.5

7

7.5

8

8.5

9

1 1.5 2 2.5 3 3.5 4

R
u
n
t
i
m
e
s
(
s
e
c
)

Aspect Ratio of Fixed Outline

Runtimes vs Aspect Ratio

obj fn: area
obj fn: max(x-viol,y-viol)

obj fn: x-viol+y-viol

Figure 4. Probabilities of success and average runtimes for fixed-outline floorplan ami49
performed by annealing with three alternative objective functions and slack-based moves.
In order to remove noise we plotted average of 50 runs for each aspect ratio.

We propose new objectives that more successfully
drive our annealing-based floorplanner to satisfy fixed-
outline constraints. We also propose new types of moves
that may be applicable to most floorplanner implemen-
tations based on simulated annealing, and provide better
control of thex andy dimensions of the floorplan.

Our experiments show that classical methods fail for
fixed-outline instances constructed from standard MCNC
benchmarks, but when new objectives and slack-based
moves are added to ourParquet-1 implementation, it
finds acceptable fixed-outline floorplans for a variety of
aspect ratios. We also conclude that minimizing the sum
of excessive width and height is a more successful ap-
proach than minimizing the greater of the two.

In our on-going research we are extending the pro-
posed methods to fixed-outline floorplanning with wire-
length minimization and related applications to standard-
cell placement with large macro cells.

References

[1] A. E. Caldwell, A. B. Kahng, A. A. Kennings and I.
L. Markov, “Hypergraph Partitioning for VLSI CAD:
Methodology for Reporting, and New Results”,DAC ‘99,
pp. 349-354.

[2] A. E. Caldwell, A. B. Kahng and I. Markov, “Can Re-
cursive Bisection Alone Produce Routable Placements?”,
DAC 2000, pp. 477-482.

[3] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, “B�-
Trees: A New Representation for Non-Slicing Floorplans”,
DAC 2000, pp. 458-463.

[4] P. Chen and E. S. Kuh, “Floorplan Sizing by Linear Pro-
gramming Approximation”,DAC 2000, pp. 468-471.

[5] K. Fujuyoshi and H. Murata, “Arbitrary Convex and Con-
cave Rectilinear Block Packing Using Sequence Pair”,
ISPD ‘99, pp. 103-110.

[6] Xianlong Hong et al., “Corner Block List: An Effective
and Efficient Topological Representation of Non-Slicing
Floorplan”,ICCAD 2000, pp. 8-13.

[7] T.-S. Moh, T-S. Chang and S. L. Hakimi, “Globally Op-
timal Floorplanning for a Layout Problem”,IEEE Trans.
on Circuits and Systems - I, vol 43, no. 9, pp. 713-720,
September 1996.

[8] S. Nag and K. Chaudhary, “Post-Placement Residual-
Overlap Removal with Minimal Movement”,DATE ‘99,
pp. 581-586,

[9] A. B. Kahng, “Classical Floorplanning Harmful?”,ISPD
2000, pp. 207-213.

[10] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani,
“VLSI module placement based on rectangle-packing by
the sequence pair”,IEEE Trans. on CAD, vol 15(12), pp.
1518-1524, 1996

[11] H. Murata and E. S. Kuh, “Sequence-Pair Based Placement
Methods for Hard/Soft/Pre-placed Modules”,Proc. ISPD
‘98, pp. 167-172.

[12] Y. Pang, C.-K. Cheng and T. Yoshimura, “An Enhanced
Perturbing Algorithm for Floorplan Design Using the O-
tree Representation”,ISPD 2000, pp. 168-173.

[13] Y. Pang, F. Balasa, K. Lampaert and C.-K. Chang, “Block
Placement with Symmetry Constraint Based on the O-Tree
Non-Slicing Representation”,DAC 2000, pp. 464-468.

[14] N. Sherwani, “Algorithms For VLSI Design Automation”,
Kluwer, 3rd ed. 1999.

[15] X. Tang, R. Tian and and D. F. Wong, “Fast Evaluation
of Sequence Pair in Block Placement by Longest Common
Subsequence Computation”,DATE 2000, pp. 106-111.

[16] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for
Block Placement Based on Sequence Pair”,ASPDAC 2001.

[17] F. Y. Young, C. C. N. Chu, W. S. Luk and Y. C. Wong,
“Floorplan Area Minimization Using Lagrangian Relax-
ation”, ISPD 2000, pp. 174-179.

[18] Jai-Ming Lin and Yao-Wen Chang, “TCG: A Transi-
tive Closure Graph Based Representation for Non-Slicing
Floorplans”,DAC 2001, pp. 764-769.

7

