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Abstract

Multilevel Fiduccia-Mattheyses (MLFM) hypergraph parti-
tioning [3, 22, 24] is a fundamental optimization in VLSI
CAD physical design. The leading implementation, hMetis
[23], has since 1997 proved itself substantially superior in
both runtime and solution quality to even very recent works
(e.g., [13, 17, 25]). In this work, we present two sets of re-
sults: (i) new techniques for 
at FM-based hypergraph par-
titioning (which is the core of multilevel implementations),
and (ii) a new multilevel implementation that o�ers leading-
edge performance.

Our new techniques for 
at partitioning con�rm the con-
jecture from [10], suggesting that specialized partitioning
heuristicsmay be able to actively exploit �xed nodes in parti-
tioning instances arising in the driving top-down placement
context. Our FM variant is competitive with traditional FM
on instances without terminals [1] and considerably superior
on instances with �xed nodes (i.e., arising during top-down
placement [8]).

Our multilevel FM variant avoids several complex heuris-
tics and non-trivial tunings that often lead to complex im-
plementations; it achieves trade-o�s between solution qual-
ity and run time that are comparable or better than those
achieved by hMetis-1.5.3 (the latest available version).
Following [6], we attempt to provide algorithm descriptions
that are as detailed and unambiguous as possible, to allow
replicability and speed improvements in future research.

1 Introduction

Hypergraph partitioning is important to many application
domains including data mining, job scheduling, hardware-
software partitioning, VLSI circuit layout and numerical lin-
ear algebra. Balanced partitioning typically represents the
\divide" step of \divide-and-conquer" algorithms and seeks
to assign the nodes of a [hyper]graph into groups of ap-
proximately equal total weight (i.e., satisfying balance con-
straints) while minimizing the number of [hyper]edges that
are cut (i.e., adjacent to nodes in di�erent groups).

In some applications (notably in top-down VLSI circuit
placement), problem instances have �xed nodes. These in-
stances are easier than the \free hypergraph" instances that
have dominated VLSI partitioning research in the past [10].
Therefore, in addition to the ISPD-98 \free hypergraph"
suite released by IBM [1], similar instances with �xed nodes
were released at ISPD-99 [8]. [10] suggested that special-
ized partitioning heuristics may be able to actively exploit
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�xed nodes, in contrast to common FM variants which sim-
ply tolerate �xed nodes. In our �rst set of contributions
we demonstrate such a technique with the additional prop-
erty of not incurring signi�cant overhead when there are no
terminals (cf. [10]).

Our second set of contributions is in multilevel parti-
tioning. This algorithm framework entails a clustering of
the original hypergraph so that clusters can be partitioned,
after which the clustered partitioning solution is re�ned in
many steps [22, 24]. The technique is used, e.g., by the
leading hypergraph partitioning tool for large hypergraphs,
hMetis [23]. hMetis has been successfully applied to VLSI
circuits, in data mining and in numerical analysis. However,
some of the algorithms critical to the performance of hMetis
require non-trivial tunings and have not been replicated in
other VLSI partitioning works; these include v-cycling, V-
cycling and hyperedge removal. Even recent partitioner im-
plementations have notable solution quality and/or runtime
de�ciencies relative to hMetis (e.g., [13, 25, 17]). Typically,
multilevel partitioner implementations used in VLSI place-
ment [7, 20] have employed much simpler techniques. A
lack of documented key implementation details in the liter-
ature (cf. [9]), and the implementation complexity of hMetis
techniques, may be factors contributing to the lack of inte-
gration of hMetis-quality partitioning methods in the VLSI
community.

Our proposed algorithms match results of hMetis-1.5.3
(the latest available as of July 1999) and can be implemented
without lengthy �ne-tuning; our main contributions are a
new simple clustering algorithm and a new simple technique
for managing tight balance constraints.

In what follows, Section 2 reviews previous work on
\
at" partitioning, introduces our new methods for exploit-
ing �xed terminals and presents relevant experimental data.
Section 3 reviews the multilevel partitioning framework, de-
scribes a baseline implementation, introduces our new tech-
niques and validates them empirically. Conclusions are given
in Section 4.

2 Techniques for partitioning with terminals

2.1 Previous work

Most modern hypergraph partitioning heuristics are based
on the iterative Fiduccia-Mattheyses(FM) algorithm [18]
whose neighborhood structure is induced by single-node,



partition-to-partition moves.1 FM starts with a possibly
random solution and changes the solution by a sequence of
moves which are organized as passes. At the beginning of a
pass, all nodes are free to move (unlocked), and each possi-
ble move is labeled with the immediate change in total cost
it would cause; this is called the gain of the move (positive
gains reduce solution cost, while negative gains increase it).
Iteratively, a move with highest gain is selected and exe-
cuted, and the moving node is locked, i.e., is not allowed
to move again during that pass. Since moving a node can
change gains of adjacent nodes, after a move is executed
all a�ected gains are updated. Selection and execution of a
best-gain move, followed by gain update, are repeated until
every node is locked. Then, the best solution seen during
the pass is adopted as the starting solution of the next pass.
The algorithm terminates when a pass fails to improve so-
lution quality.

To satisfy particular balance constraints, it is common
to generate an initial solution that satis�es the constraints
(is \legal") and require that all intermediate solutions be
legal as well. Thus moves leading to illegal solutions are
rejected regardless of the gain they provide. When the par-
titioning tolerance is small, many moves are rejected and
solution quality decreases. The work of [16] studied the per-
formance of the FM algorithm in such circumstances and
showed how to improve average-case solution quality at the
cost of signi�cantly increased run time.

The FM algorithm naturally accommodates nodes that
are �xed in certain partitions and cannot move. A back-
of-the envelope computation in [10] using Rent's rule shows
that partitioning instances arising in top-down placement
typically have many �xed nodes. [10] demonstrated nonlin-
ear e�ects of �xed vertices on the performance of the FM
algorithm and called for specialized heuristics that would
actively exploit �xed nodes rather than just tolerate them.
One particular challenge is that such methods must not be
inferior to FM when there are few or no terminals, since
there is presently no easy way to quantify the e�ects of
�xed nodes before partitioning.2 Partitioning benchmarks
representative of the top-down placement context have been
released at ISPD-99 [8].

2.2 New techniques

Our proposed techniques combine four easy modi�cations to
the FM algorithm and common implementation practices.

� Using an (illegal) initial solution that puts all movable
nodes into one partition | the VILE (\very illegal")
initial solution generator.

� Relaxing the acceptance criterion for legal moves | a
move is accepted if and only if it does not increase the
violation of balance constraints (rather than necessarily
result in a legal solution, cf. [16]).

� Randomization during gain computation at the begin-
ning of the pass. This is achieved by computing gains
of legal moves in a random order.

1A comprehensive survey of partitioning formulations and algo-
rithms, centered on VLSI applications is given in [4]. Implementation
trade-o�s in the classic FM algorithm are discussed, e.g., in [6, 21].

2All �xed nodes in a given partition can be collapsed into one
node, and the complete spectrum of e�ects reported in [10] can be
replicated with just two �xed nodes.

Algo 1 start 2 starts 4 starts 8 starts

IBM01D H 2%, 6139 movable, 2155 �xed, 7330 nets
FM 706.6(1.7) 648.8(3.4) 600.5(6.7) 566.3(13.4)
CLIP 654.7(5.4) 593.6(10.8) 537.2(21.7) 492.0(43.4)
VRW 624.2(1.7) 588.6(3.4) 570.6(6.7) 555.5(13.4)

IBM01D H 10%
FM 676.9(1.6) 612.3(3.2) 562.8(6.5) 504.2(12.9)
CLIP 482.4(6.0) 412.0(12.1) 368.3(24.2) 348.3(48.4)
VRW 419.9(1.4) 403.8(2.9) 395.9(5.8) 390.4(11.6)

IBM01D V 2%
FM 664.3(2.1) 600.0(4.2) 557.8(8.3) 521.9(16.6)
CLIP 587.7(5.5) 536.8(11.1) 499.0(22.2) 471.2(44.4)
VRW 535.6(1.8) 508.3(3.7) 489.4(7.4) 480.1(14.8)

IBM01D V 10%
FM 623.9(1.8) 582.2(3.51) 551.3(7.0) 528.9(14.1)
CLIP 559.4(5.6) 521.3(11.2) 488.3(22.4) 465.2(44.8)
VRW 519.8(1.4) 494.6(2.8) 474.6(5.5) 461.9(11.1)

IBM06D H 2%, 10314 movable, 7553 �xed, 12438 nets
FM 1386(1.8) 1120(3.5) 900.8(7.0) 822.0(14.0)
CLIP 1354(14.9) 1074(29.8) 853.9(59.7) 777.2(119)
VRW 817.8(2.5) 799.7(5.1) 791.2(10.1) 785.0(20.3)

IBM06D H 10%
FM 1392(2.1) 1122(4.2) 911(8.3) 823(16.5)
CLIP 1344(17.2) 1057(34.4) 842(68.7) 770(137.5)
VRW 781(2.3) 772.8(4.7) 766(9.3) 764(18.7)

IBM06D V 2%
FM 1715(1.9) 1577(3.7) 1450(7.4) 1388(14.9)
CLIP 1679(15.7) 1519(31.3) 1382(62.8) 1301(125)
VRW 1639(2.3) 1478(4.8) 1333(9.4) 1274(18.7)

IBM06D V 10%
FM 1707(1.8) 1562(3.7) 1417(7.4) 1332(14.7)
CLIP 1697(17.0) 1531(34.0) 1376(68.1) 1274(136.1)
VRW 1559(2.0) 1384(4.1) 1194(8.2) 1150(16.4)

Table 1: FM and CLIP compared to our VRW algorithm
on IBM01D and IBM06D series from the ISPD-99 benchmark
suite. Non-dominated con�gurations and winning algo-
rithms are boldfaced.

� Preferential placement at the heads of gain buckets of
nodes adjacent to �xed nodes. This is accomplished
by moving the �xed nodes back and forth (\wiggling")
after the initial gain computation at the beginning of a
pass in conjunction with the use of now common LIFO
FM implementation [21].

We know from [16] that partitioning quality may degrade
when all intermediate solutions must be legal. That is be-
cause large nodes become immobile, while often having high
associated gains (large cells in VLSI circuits tend to have
many inputs). Using the VILE initial solution generator to-
gether with a relaxed move acceptance criterion makes all
nodes mobile at the �rst pass, particularly, this quickly re-
sults in favorable assignments of high-gain nodes. Our FM
variant typically reaches a legal solution in the �rst pass.3

VILE removes all randomization from the traditional FM
algorithm and, while the results are good on average (over
many circuits), the produced solutions are sometimes very
poor. Randomized initial gain computation at the �rst pass
improves upon that and, if applied at every pass, may also
help escape local minima (even when applied to the tradi-
tional FM).4

3The best solution in a pass is determined as either the best legal
solution or (if no legal solutions exist) an illegal solution with the
smallest cost among solutions with the smallest violation.

4A similar random re-indexing procedure can be found in the
source code of the multilevel graph partitioner metis-3.0 where it
is performed between levels. Also, somewhat related is the methodol-
ogy of [5] that ensures statistical signi�cance of experiments through



Finally, we expect that a good partitioning solution as-
signs an average movable node adjacent to a �xed node to
the same partition as the �xed node. By \wiggling" �xed
nodes, we encourage preferential movement of their adja-
cent nodes. The sooner all such assignments are imple-
mented, the faster FM will converge to a good solution. We
found \wiggling" helpful only at the �rst pass, but it pro-
vides strong improvement when used with the other three
modi�cations.

We denote the combination of the above techniques by
the abbreviation VRW (VILE + randomization + \wig-
gling" �xed nodes).

2.3 Empirical validation

We use several ISPD-99 benchmarks [8] (movable nodes have
non-unit weights), which re
ect the speci�cs of �xed nodes
in top-down placement. [5] recommends the use of sev-
eral similar variants of each benchmark along with a rea-
sonable pool of di�erent benchmarks to ensure statistical
signi�cance and replicability of results. We also follow a re-
porting methodology proposed in [9] that allows tracking of
non-dominated con�gurations (the dominance relation is de-
�ned as simultaneous superiority in average CPU time and
solution quality).

Table 1 presents \average best of" 1, 2, 4 and 8 starts.
Averaging is performed over a sample of 100 independent
starts and average CPU time on a Sun Ultra-1/140MHz
is given in parenthesis. Results are representative of re-
sults on other benchmarks from the ISPD-99 suite. Non-
dominated con�gurations are boldfaced and typically belong
to VRW. In other words, given the same amount of CPU
time, VRW �nds better solutions on average than CLIP or
FM; it also �nds solutions with similar cost faster. Several
FM con�gurations are non-dominated due to small CPU
time used, while their solution quality is rather poor (e.g.,
for IBM06D H and IBM06D V). Several CLIP con�gurations
are non-dominated due to marginally better solution qual-
ity, but use disproportionately large amounts of CPU time
(e.g., for IBM01D V 2% and IBM06D H 2%). These con�gu-
rations are not practical and are known side-e�ects of the
reporting methodology.5

Results were somewhat unusual on the IBM09D series of
benchmarks. One average start of VRW (approx. 6.5 sec)
produced better solutions than eight starts of CLIP (approx.
170 sec) or FM (approx. 4.5 sec); the improvement in quality
provided by eight starts of any partitioner compared to one
was on the order of 0:1%. CLIP and FM produced almost
identical costs, while VRW was at least 2/3% better and
only 1/2% away from the \best seen" solution reported in
[8]. One start of hMetis-1.5.3 took 27-47 sec depending on
the con�guration.

We explain such results by a very large number of �xed
nodes in the IBM09D series of benchmarks and nets incident
to them.

Results for the IBM01A and IBM06A series from the ISPD-
99 suite are not as strong because they have very few �xed
nodes. While VRW con�dently dominates on IBM01A in-
stances, it typically loses to both CLIP and FM on IBM06A

instances.
1,2,4 and 8 starts of VRW performed generally well on

\free hypergraph" benchmarks from the ISPD-98 suite (see

multiple repetitions with hypergraph nodes randomly permuted.
5In particular, more starts of VRW are likely to dominate these

CLIP con�gurations.

[1] and Table 2). However, the results are somewhat er-
ratic, e.g., all con�gurations of VRW on IBM03 10% are
non-dominated, VRW is twice as fast and twice as good as
CLIP and FM on IBM05 10%. It owns approximately half of
the non-dominated con�gurations on IBM06 10% and loses
to LIFO on IBM06 2% by only a small margin (both on
speed and quality). In general, we can recommend VRW
on free hypergraphs when the number of starts is limited to
two or four (e.g., in top-down circuit placement algorithms).
This is because the relative lack of randomization in VRW
(to due having the same initial solution at each start) limits
the impact of multiple starts.

Classic FM and CLIP methods can be combined with our
proposed VRW to achieve more robust performance, e.g., by
running starts of several methods and taking the best. One
can also establish time-out for slower starts relative to faster
starts in order to address instances where VRW is much
faster than FM and/or CLIP.

3 Techniques for multilevel partitioning

The multilevel hypergraph partitioning framework was suc-
cessfully veri�ed in 1997 by [3, 22] and has been conducive
to the best known known partitioning results ever since. It
consists of three main components: clustering, top-level par-
titioning and re�nement or uncoarsening. During clustering,
hypergraph nodes are combined into clusters based on the
connectivity, leading to a smaller, clustered hypergraph. This
step is repeated until there are only several hundred clus-
ters, culminating in a hierarchy of clustered hypergraphs.
The smallest (top-level) hypergraph is partitioned, e.g., us-
ing the FM algorithm, and the resulting solutions can be
interpreted as solutions for the next hypergraph in the hier-
archy. During the re�nement stage, solutions are projected
from one level to the next and iteratively improved, e.g., by
the FM algorithm.

Additionally, the hMetis partitioning program [23] in-
troduced several new heuristics that are incorporated into
their multilevel partitioning implementation and are report-
edly performance-critical. One is hyperedge removal during
re�nement, which is analogous to FM, except that a single
move \uncuts" a hyperedge by reassigning as many nodes as
needed. Another heuristic is V-cycling, a repetition of the
clustering-partitioning-re�nement process that uses a solu-
tion produced by a previous execution of this process |
nodes in di�erent partitions cannot be clustered. A simi-
lar technique employed is v-cycling, in which the re�nement
stage may stop before the lowest-level hypergraph is reached
and clustering resumed (starting from a solution for a clus-
tered hypergraph). Similarly, clustering may be stopped
earlier than it would normally be, and re�nement resumed.

According to [22] and more detailed technical reports,
the above heuristics are performance-critical, but require
non-trivial �ne-tuning. From our experience, implementing
a number of other aspects of the hMetis algorithm requires
careful experimentation, as they are highly interdependent.
Finally, we are not aware of a detailed experimental account
of improvements since hMetis 1.0 and up to hMetis 1.5.3.
This motivates our search for an MLFM variant that is easy
to describe and implement, yet competitive with hMetis.

3.1 A baseline implementation

In our baseline implementation, we employ the linear-
time clustering strategy EC (edge coarsening) proposed in



[3, 22]. Our baseline EC implementation has the following
attributes:

� the netlist is updated continuously as the clustering
occurs, i.e., the next pair of merged clusters is selected
with the knowledge of the last merged pair.

� no cluster can be merged with another if its weight is
more than 4:5 times the average cluster weight at the
current level.

� edge weights are additionally divided by the square root
of the sum of cluster weights in order to discourage
merging large clusters

� clustering ratio used is 1:3, unclustering ratio is 2:5.6

� clustering stops the clustered hypergraph has 200 clus-
ters or fewer.

Top-level partitioning requires initial solution genera-
tion. Unlike [22], we use one rather simple generator, \ran-
domized engineering method". It assigns nodes to partitions
in decreasing order of size using biased random selection
(\spinning a roulette wheel" such that each outcome has
a prescribed probability). Until all partitions reach mini-
mal required amount of cell area, assignment probabilities
are proportional to hypothetical area slacks after assigning
a given cell to partitions. This keeps slacks approximately
equal, yet provides a good degree of randomness. Once all
partitions reach their minimal required cell area, slacks are
computed relative to the maximal allowed areas.

Top-level partitioning is performed by CLIP-FM [15]
with the tolerance that is requested for the original parti-
tioning problem, and the best of three independent starts is
further re�ned (on the less-clustered hypergraph) by LIFO-
FM [21]. The slower CLIP-FM produces better solutions,
while much faster LIFO-FM ensures good trade-o� between
solution quality and runtime.7

The con�guration that we describe provides good speed
and reasonable, though not leading-edge, solution quality.
We next present a sequence of new techniques that can be
applied to this \vanilla" multilevel partitioner to meet or
exceed the best previously reported results.

3.2 New techniques

Even when the nodes of original (\
at") hypergraph have
similar weights, cluster weights may considerably di�er.
Even in 
at hypergraphs, heaviest nodes may reach over
10% of the total weight (e.g., in the IBM02 benchmark in
[1]). Therefore, top-level partitioning with small tolerance
is di�cult if all intermediate solutions are required to be le-
gal [16]. While it is possible to enforce stricter limits on the
size of newly produced clusters, this will prevent tightly con-
nected clusters from merging and adversely a�ect clustering
quality.

To address this problem, we perform two partitioning
calls at the top level | the �rst partitioning arti�cially
increases the original tolerance to twice the largest node

6Average numbers of children of a cluster during clustering and
re�nement stages. See [3, 22] for additional discussions of these pa-
rameters.

7In particular, the top-level partitioning is critical to the overall
solution quality, while lower, less clustered levels, take longer to par-
tition. Using the slower and more e�ective CLIP-FM technique on
only the top-level takes maximum advantage of these e�ects.

weight if the latter is greater, ensuring mobility of all nodes.
The resulting partitioning is used as the initial solution to
a second partitioning operation performed with the original
tolerance.

Our second improvement is a modi�cation to the EC
clustering algorithm, which computes the weight of two po-
tentially matched clusters as a summation over shared hy-
peredges

P
e

1
deg(e)

. Our new clustering algorithm, PinEC,

changes the contribution of hyperedges of degree two to two
and the contribution of larger hyperedges to one. This corre-
sponds to the number of pins8 that would be removed from
the hyperedge if the two nodes are clustered. We further
divide edge weights by the sum of cluster weights to dis-
courage merging large clusters. For a comparison, the latest
paper [24] by the authors of hMetis mentions three very dif-
ferent clustering algorithms | EC [3, 22, 25, 12] (edge coars-
ening, similar to EC), HEC (\hyperedge coarsening") and
FirstChoice [19]. Combining all of them in hMetis further
lifts the barrier to the replication of hMetis performance.

Test # nodes # hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152777
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 2: ISPD-98 benchmarks used in our experiments.

We apply a single V-cycle to the best of several complete
solutions produced by the multilevel partitioner. For this
V-cycle, we use the clustering algorithm from the baseline
implementation. We have observed better results when ap-
plying di�erent clustering algorithms during V-cycling and
the main clustering/top-level partitioning/re�nement proce-
dure and V-cycling.9 Notably, hMetis can perform multiple
V -cycles, which requires additional �ne-tuning of \conver-
gence criteria" to the rest of the implementation.

Further improving a solution that is \best of several
starts" results in starts which are not independent, i.e.,
four such starts will take less time than four starts per-
formed by di�erent instances of the executable. Since V -
cycling is a relatively cheap operation (it requires less time
than a partitioning which begins with a random solution),

8A \pin" is a connection between a node and a hyperedge.
9Note that during V-cycling only a single top-level partitioning

is performed. V-cycling re�nes an existing solution, and FM-based
partitioners are deterministic given an initial solution, making mul-
tiple starts useless. In all other aspects, the V-cycling re�nement
stage is exactly the same as the main clustering/top-level partition-
ing/re�nement procedure.



Test Algo 10% con�gurations
ibm# 1 2 3 4

01 hM 255(5.3) 252(7.3) 247(11) 237(18)
OUR 238(4.6) 233(6.9) 223(12) 220(21)

02 hM 279(11) 279(14) 279(19) 278(31)
OUR 291(8.2) 291(13) 272(21) 268(37)

03 hM 779(15) 776(18) 768(27) 759(43)
OUR 802(11) 783(16) 732(30) 705(52)

04 hM 506(19) 510(20) 492(29) 478(51)
OUR 535(12) 512(19) 482(32) 468(56)

05 hM 1759(25) 1740(28) 1731(42) 1725(67)
OUR 1773(17) 1726(26) 1728(43) 1716(77)

06 hM 402(24) 383(26) 374(35) 370(55)
OUR 465(14) 433(22) 394(34) 375(61)

07 hM 809(40) 806(46) 796(63) 764(102)
OUR 790(20) 786(32) 760(52) 747(93)

08 hM 1166(43) 1162(51) 1161(75) 1159(123)
OUR 1348(25) 1330(40) 1195(66) 1168(113)

09 hM 664(33) 540(42) 528(59) 525(96)
OUR 572(21) 560(34) 556(55) 527(90)

10 hM 842(57) 830(72) 798(102) 779(169)
OUR 1196(35) 1132(55) 1023(91) 938(161)

11 hM 828(59) 744(71) 717(103) 710(155)
OUR 788(30) 779(48) 745(77) 728(124)

12 hM 2326(83) 2165(108) 2135(153) 2047(238)
OUR 2349(38) 2304(57) 2261(102) 2206(176)

13 hM 1045(97) 999(104) 940(129) 902(197)
OUR 1095(38) 1058(61) 1027(99) 963(176)

14 hM 1894(212) 1776(250) 1682(351) 1599(565)
OUR 1759(67) 1727(104) 1638(167) 1590(300)

15 hM 2073(264) 2032(301) 1910(402) 1866(564)
OUR 2244(83) 2029(133) 2035(221) 1975(385)

16 hM 1942(232) 1754(311) 1829(327) 1721(709)
OUR 1976(102) 1915(155) 1752(257) 1714(460)

17 hM 2417(408) 2372(467) 2337(635) 2311(987)
OUR 2316(105) 2294(170) 2264(290) 2239(385)

18 hM 1632(306) 1617(357) 1561(601) 1536(836)
OUR 1976(104) 1955(160) 1666(365) 1595(612)

Table 3: Comparison of our partitioner and hMetis1.5.3 on
instances with actual cell areas. Solutions are constrained to
be within 10% of bisection (partitions must contain between
45% and 55% of total cell area). Average CPU time in sec-
onds is given in parenthesis. Non-dominated con�gurations
and winning implementations are boldfaced.

the runtime statistics of our starts are not very di�erent
from independent starts. hMetis uses an additional \prun-
ing" heuristic, that may stop the re�ning stage half-way
through because the current solution was deemed unpromis-
ing. Judging from our experiments (below), this heuristic is
�ne-tuned in a rather aggressive way | on some bench-
marks hMetis' \four starts" take only twice longer than
\one start". The V-cycling and pruning techniques both
result in runtime/solution-quality pro�les that can not be
sampled. That is, the expected result for, say, 4-starts of
either partitioner can not be determined by sampling a pool
of 2-start results. For this reason each entry in tables 3
and 4 is the average of at least 50 independent runs with
the given con�guration. This accounts for the occasional
non-monotonicity of the results.

3.3 Empirical validation

To demonstrate the e�ectiveness of our multilevel parti-
tioner Tables 3 and 4 present a comparison with hMetis

on a set of standard benchmarks [1] derived from VLSI cir-
cuits at IBM. These instances, presented �rst at ISPD-98,
range from 12506 nodes in IBM01 to more than two hundred
thousand nodes in IBM18 (see Table 2). Our reporting style

Test Algo 2% con�gurations
ibm# 1 2 3 4

01 hM 267(5.2) 265(7.2) 253(11) 245(19)
OUR 250(4.4) 238(6.7) 231(11) 227(20)

02 hM 320(10) 314(14) 302(20) 299(33)
OUR 348(8.0) 335(12) 313(22) 294(40)

03 hM 885(16) 869(20) 859(28) 855(45)
OUR 903(10) 883(15) 847(27) 818(48)

04 hM 550(13) 543(18) 535(28) 534(45)
OUR 592(12) 575(18) 546(34) 531(60)

05 hM 1777(22) 1749(27) 1744(41) 1741(69)
OUR 1841(17) 1810(26) 1759(44) 1750(79)

06 hM 728(24) 679(30) 637(41) 605(65)
OUR 696(14) 664(22) 633(37) 564(65)

07 hM 855(42.2) 859(54.5) 824(63.5) 794(101)
OUR 846(20) 840(31) 812(53) 793(94)

08 hM 1246(52) 1216(57) 1211(74) 1208(130)
OUR 1354(25) 1342(39) 1238(65) 1206(112)

09 hM 591 (33) 530 (42) 527 (62) 524 (98)
OUR 555(22) 534(35) 528(56) 527(91)

10 hM 1310(78) 1273(97) 1215(126) 1193(192)
OUR 1419(33) 1397(53) 1322(90) 1211(157)

11 hM 914(67) 883(77) 845(100) 813(150)
OUR 926(32) 908(50) 862(79) 842(136)

12 hM 2304(99) 2180(126) 2150(154) 2131(241)
OUR 2676(32) 2578(55) 2498(88) 2353(153)

13 hM 1110(103) 1009(107) 956(134) 931(208)
OUR 1247(41) 1200(63) 1140(103) 1036(180)

14 hM 2092(211) 1992(258) 1910(369) 1865(607)
OUR 2043(80) 2035(121) 1917(205) 1860(316)

15 hM 2435(270) 2418(323) 2366(399) 2221(597)
OUR 2486(85) 2464(138) 2378(225) 2243(397)

16 hM 2165(292) 1829(327) 1732(451) 1713(695)
OUR 2040(104) 1983(163) 1869(263) 1853(455)

17 hM 2610(426) 2521(471) 2491(645) 2460(996)
OUR 2437(113) 2413(173) 2382(303) 2353(544)

18 hM 1833(334) 1836(439) 1754(640) 1706(1064)
OUR 2002(128) 1976(190) 1823(399) 1737(612)

Table 4: Comparison of our partitioner and hMetis1.5.3 on
instances with actual cell areas. Solutions are constrained to
be within 2% of bisection (partitions must contain between
49% and 51% of total cell area). Average CPU time in sec-
onds is given in parenthesis. Non-dominated con�gurations
and winning implementations are boldfaced.

is that proposed in [9] and emphasizes the trade-o� between
solution quality and speed rather then just average solution
quality. For hMetis, con�gurations 1 through 4 represent
the average best produced in 1, 2, 4 and 8 starts, respec-
tively. Default hMetis con�gurations were used. For our
partitioner, con�guration 1 contains the average best of 1
start, and con�gurations 2 to 4 the average best of 1, 2 or 4
starts followed by a single V-cycle on the best solution.

As can be seen in Tables 3 and 4, for an equivalent
amount of runtime our partitioner produces comparable or
better results than hMetis overall. In particular, with a
2% balance tolerance our partitioner is clearly superior to
hMetis on 8 of the 18 testcases presented (including four of
the largest 5) and produces equivalent results (sharing most
of the non-dominated front) on 4 of the remaining testcases.
When a 10% tolerance is used, our partitioner dominates
hMetis on 9 testcases (including 5 of the largest 6), and
again ties on 4 testcases. Further, for larger examples it is
able to produce a single-start result much quicker, allow-
ing our implementation to be used in situations with tight
runtime constraints.

Our implementation of multilevel FM partitioning is
available on the Web at [11], together with the latest per-
formance results.



4 Conclusions

We have presented new techniques for 
at partitioning which
speci�cally address the presence of �xed terminals. The
new initial solution generator, VILE, when combined with
randomization and terminal \wiggling", produces signi�-
cantly better solutions when su�cient �xed terminals are
present. Our experiments on ISPD-99 benchmarks validate
these techniques for instances with �xed nodes arising in
the top-down placement process and show their superiority
when su�ciently many nodes are �xed.

The multilevel FM variant that we describe produces
leading-edge results while avoiding complex heuristics and
non-trivial tunings. The proposed new clustering algorithm
PinEC is simple to implement and yet e�ective, while the
tolerance relaxation technique used on the must clustered
hypergraphs requires only calling the partitioner a second
time. Finally, our implementation scales very well with in-
creasing problem size, allowing us to produce useful parti-
tionings of even the largest available testcase (IBM18 con-
tains 210,341 vertices) in under two minutes.

Open issues include exploiting �xed terminals in cluster-
ing algorithms and multilevel partitioners, and a careful elu-
cidation of the small, medium and large partitioning regimes
to �nd the most e�ective techniques for each.

New information relevant to leading-edge multilevel par-
titioning, including benchmarks, format descriptions, imple-
mentations and performance results will be maintained on
the Web at [11].
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