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Abstract

We illustrate how technical contributions in the VLSI CAD parti-
tioning literature can fail to provide one or more of: (i) reproducible
results and descriptions, (ii) an enabling account of the key under-
standing or insight behind a given contribution, and (iii) experimen-
tal evidence that is not only contrasted with the state-of-the-art, but
also meaningful in light of the driving application. Such failings
can lead to reporting of spurious and misguided conclusions. For
example, new ideas may appear promising in the context of a weak
experimental testbed, but in reality do not advance the state of the
art. The resulting inefficiencies can be detrimental to the entire re-
search community. We draw on several models (chiefly from the
metaheuristics community) [5] for experimental research and re-
porting in the area of heuristics for hard problems, and suggest that
such practices can be adopted within the VLSI CAD community.
Our focus is on hypergraph partitioning.

1 Introduction

It is well-recognized that a contribution to the experimental liter-
ature should include (i) reproducible results and descriptions, (ii)
an account of the key understanding or insight behind the contribu-
tion, and (iii) supporting evidence that is not only contrasted with
the leading edge of knowledge, but also meaningful in light of the
driving application. These precepts are, quite literally, at the heart
of scientific discourse and discovery.

In the VLSI CAD context, where most research is application-
driven and addresses metaheuristics for hard problems, failure to
observe the above precepts can easily lead to reporting of erroneous
or misleading conclusions. For example, a new algorithm idea may
appear promising in the context of a weak experimental design or
incomplete comparisons to previous work, but in reality does not
advance the state of the art. On the other hand, useful ideas may be
dropped due to the same causes. Inadequate descriptions can lead
to irreproducible results, and tremendous amounts of wasted time.
The resulting inefficiencies can be detrimental to the VLSI CAD
community as a whole.

This paper centers on two intertwined issues: improved prac-
tices for experimental research in algorithms, and improved prac-
tices for scientific reporting in this domain. Our goal is to raise
awareness of research and reporting methodologies by which “art”
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in experimental algorithms research can become more like “sci-
ence”. In what follows, Section 2 highlights three aspects ofre-
search practice: (i) correct abstraction of the application context
and use model, (ii) achieving a robust testbed that supports cor-
rect experimental conclusions, and (iii) correct experimental de-
sign. We provide experimental evidence illustrating the magnitude
of pitfalls inherent in the latter two aspects. Section 3 focuses on
two aspects ofreporting practice, namely, (i) reproducible descrip-
tions of innovations and experiments, and (ii) experimental com-
parison of metaheuristics. Section 4 concludes the paper with open
directions for future work. Throughout, we attempt to relate our
ideas to those of several key works on experimental research and
reporting for optimization heuristics (chiefly from the metaheuris-
tics literature). While the benefits of principled research and re-
porting methodologies can never be formally justified, we believe
that the supporting experimental evidence can be compelling.

Hypergraph Partitioning in VLSI CAD

Our discussion will be grounded in the context of thehypergraph
partitioning problem, which is formalized as follows. Given a
hyperedge- and vertex-weighted hypergraphH = (V;E), a k-way
partitioning of V assigns the vertices tok disjoint nonempty parti-
tions. Thek-way partitioning problemseeks to minimize a given
objective functionc(Pk) whose arguments are partitionings. A
standard objective function iscut size, i.e., the number of hyper-
edges whose vertices are not all in a single partition; other objec-
tives such as ratio-cut [37], scaled cost [11], absorption cut [36],
etc. have also been proposed.

Constraints are typically imposed on the partitioning solution,
and make the problem difficult. For example, the total vertex
weight in each partition may be limited (balance constraints),
which results in an NP-hard formulation [18]. Moreover, certain
vertices can be fixed in particular partitions (fixed constraints). To
achieve flexibility and speed in addressing various formulations,
move-based heuristics are typically used, notably the Fiduccia-
Mattheyses (FM) heuristic [17].1 In this work, we address only
FM-based 2-way partitioners.

2 Methodology for Research and Experiment Design

2.1 Abstracting the Context and Use Model

A seminal work from the metaheuristics literature, that of Barr et
al. [5], notes the ways in which a heuristic method “makes a con-
tribution”. In particular, such a heuristic should be fast, accurate,
robust, simple, high-impact (“solving a new or important problem
faster and more accurately than other approaches”), generalizeable,

1Effective move-based heuristics fork-way hypergraph partitioning have been pi-
oneered in such works as [29, 17, 8], with refinements given by [30, 32, 21, 31, 15, 3,
12, 20, 25, 16] and many others. A comprehensive survey of VLSI partitioning for-
mulations and algorithms is given in [4]; a recent update on balanced partitioning in
VLSI physical design is given by [22].



and/or innovative [5]. High-impact research in heuristics must nec-
essarily address a problem that abstracts or otherwise reflects some
real-world application. In this light, it is interesting to note a diver-
gence between the VLSI CAD hypergraph partitioning literature
and one of its (historically) most important driving applications.

Application: Top-Down Placement

A key driver for hypergraph partitioning research in VLSI CAD
has been the top-down global placement of standard-cell designs.
In this application, scalability, speed and solution quality are all
important objectives. Careful consideration of these issues with
respect to the type of instances typically encountered, as well as the
use model, helps bound the space of useful algorithmic solutions.

Nature of instances. Depending on the specific VLSI
design application, a partitioning instance may have directed
or undirected hyperedges, weighted or unweighted vertices,
etc. Reporting has centered on the ACM/SIGDA benchmarks
(www.cbl.ncsu.edu/benchmarks). Alpert [2] noted that many of
these circuits no longer reflect the complexity of modern parti-
tioning instances, particularly in VLSI physical design; 18 larger
benchmarks arising in the layout flow of internal IBM designs were
released in early 1998 [1]. Salient attributes of real-world inputs:

� size: number of vertices up to one million or more (all in-
stance sizes equally important)

� sparsity: number of hyperedges very close to the number of
vertices; average vertex degrees typically between 3 and 5 for
device-, gate- and cell-level instances, with higher averages
in block-level design

� average net sizes typically between 3 and 5

� small number of extremely large nets (e.g., clock, reset).

� wide variation in vertex weights (cell areas) due to the drive
range of deep-submicron cell libraries, presence of complex
cells and large macros in the netlist, etc.

Use model. A modern top-down standard-cell placement tool
might perform timing- and routing congestion-driven recursive
min-cut bisection of a cell-level netlist to obtain a “coarse place-
ment”, which is then refined into a “detailed placement” by stochas-
tic hill-climbing search. Theentireplacement process in currently
released commercial tools requires approximately 1 CPU minute
per 6000 cells on a 300MHz Sun Ultra-2 uniprocessor worksta-
tion with adequate RAM. The implied partitioning runtimes are
on the order of 5 CPU seconds for netlists of size 25,000 cells,
and under one CPU minute for netlists of size 750,000 cells [13].
Quite possibly, experimental validation of heuristics in the wrong
runtime regimes (say, hundreds of CPU seconds for a 5000-cell
benchmark, without extenuating justifications) has no practical rel-
evance. We also observe that in top-down placement, almost all
hypergraph partitioning instances have many vertices fixed in par-
titions due to terminal propagation [14, 35] or pad locations. Sep-
arate work of ours [9] suggests that the presence of fixed terminals
fundamentally changes the nature of the partitioning problem from
that embodied in the “unfixed” benchmarks currently studied. We
believe that these two aspects of the use model for hypergraph par-
titioning suggest heuristics that are optimized for speed and “easy”
instances; such heuristics may turn out to be different from those in
the current literature.

2.2 Robust Experimental Testbed

To identify algorithmic improvements at the leading edge of heuris-
tic technology, it is critical to evaluate proposed algorithm improve-
ments not only against the best available implementations, but also
using a competent implementation. In our experience, proposed
“improvements” often look good if applied to weak or slow imple-
mentations, but may actually worsen strong or fast implementations
(cf., e.g., the maxims “Do make it fast enough” and “Do measure
CPU time” given by Gent et al. [19]). An incorrectly implemented
testbed can lead to incorrect conclusions, which then waste the re-
search community’s efforts to reproduce the improvement that pur-
portedly results from the new technique.

In the following, we illustrate the danger of irreproducible and
possibly meaningless experimental conclusions that stem from a
poorly implemented or understood partitioning testbench. Our in-
test is to raise awareness of a very much underestimated root cause
of a poor testbench, namely, the failure to understandimplicit im-
plementation decisionsthat can dominate quality/runtime tradeoffs
(cf. “Do report important implementation details” [19]). A corol-
lary is that researchers must take pains to identify and clearly de-
scribe such implicit decisions in order for results to be reproducible.

With respect to the Fiduccia-Mattheyses algorithm, we believe
that many implementation pitfalls correspond toimplicit decisions
– underspecified features and ambiguities in the original algorithm
description that must be resolved in any particular implementation.
Examples include the following.

� Tie-breakingin choosing the highest gain bucket when select-
ing the next move to make. When the FM gain structure is im-
plemented such that available moves are segregated, typically
by source or destination partition, there can be more than one
nonempty highest-gain bucket. Then, if the balance constraint
is anything other than “exact bisection”, it is possible for all
the moves at the heads of the highest-gain buckets to be le-
gal. The FM implementer must choose a method for dealing
with this situation. Below, we contrast three approaches: (i)
choose the move that is not from the same partition as the last
vertex moved (“away” ); (ii) choose the move in partition 0
(“part0” ); and (iii) choose the move from the same partition
as the last vertex moved (“toward” ).

� Whether to update, or skip the updating, when thedelta gain
of a move is zero. When a vertexx is moved, the gains for all
verticesy on nets incident tox must potentially be updated.
In all FM implementations that we know of, this is done by
going through the incident nets one at a time, and computing
the changes in gain for verticesy on these nets. A straight-
forward implementation computes the change in gain (“delta
gain”) for y by adding and subtracting four cut values for the
net under consideration, and immediately updatingy’s posi-
tion in the gain container. Notice that sometimes the delta
gain can be zero. Below, we show the effect of the implicit
decision whether to reinsert a vertexy when it experiences
a zero delta gain move (“All ∆gain” ), or whether to skip the
gain update (“Nonzero” ). The former will shift the position
of y within the same gain bucket; the latter will leavey’s posi-
tion unchanged. The effect of zero delta gain updating is not
immediately obvious.2

� Tie-breakingon where to attach new element in gain bucket,

2The gain update method presented in [17] has theside effectof skipping all zero
delta gain updates. However, this method is both netcut- and two-way specific; it is
by no means certain that the FM implementer will find analogous solutions fork-way
partitioning with a general objective.



ALGORITHM TESTCASE
Updates Bias ibm01 ibm02 ibm03

Flat LIFO FM
All ∆gain Away 1204/1885 723/3256 3531/4389
All ∆gain Part0 1333/1909 558/2440 2998/4166
All ∆gain Toward 485/1023 342/1274 3074/3939
Nonzero Away 333/639 271/551 1597/2838
Nonzero Part0 293/660 321/573 1684/2938
Nonzero Toward 319/607 291/543 1592/2843

Flat CLIP FM
All ∆gain Away 373/842 292/1841 1664/3623
All ∆gain Part0 361/772 384/1499 1336/3543
All ∆gain Toward 327/615 333/945 1482/3066
Nonzero Away 323/542 300/574 1531/2689
Nonzero Part0 282/556 319/582 1237/2732
Nonzero Toward 339/528 297/562 1201/2504

ML LIFO FM
All ∆gain Away 216/289 280/433 744/958
All ∆gain Part0 217/289 266/429 795/957
All ∆gain Toward 216/289 266/423 805/971
Nonzero Away 219/287 279/432 786/969
Nonzero Part0 216/282 276/421 764/952
Nonzero Toward 217/276 266/419 785/959

ML CLIP FM
All ∆gain Away 219/283 285/428 807/960
All ∆gain Part0 216/289 266/441 790/969
All ∆gain Toward 218/284 266/425 782/953
Nonzero Away 217/283 266/414 760/957
Nonzero Part0 220/285 266/447 749/934
Nonzero Toward 216/282 275/433 780/959

Table 1: Best and average cuts in partitioning withactual
areas and2% balance tolerance, over 100 independent runs.

e.g., LIFO versus FIFO versus random (this has been ad-
dressed in the literature by [21]).3

� Tie-breakingwhen selecting the best solution encountered
during the pass, e.g., choose the first such solution, the last
such solution, or the one that is furthest from violating bal-
ance constraints.

Table 1 reports pairs of form (minimum cut /average cut) for
bipartitioning with four partitioner variants on IBM test cases [2]
with actual cell areas, 2% balance constraint (i.e., partition sizes
constrained to be between 49% and 51% of total cell area). From
the data, we see the effects of just these two implicit decisions:

� The average cutsize for a flat partitioner can increase by
startling amounts if the worst combination of choices is used
instead of the best combination. Such effects far outweigh the
typical solution quality improvements reported for new algo-
rithm ideas in the partitioning literature.

� Stronger optimization engines (order of strength: ML CLIP>

ML LIFO > flat CLIP> flat LIFO) can tend to decrease the
“dynamic range” for the effects of implementation choices.
This is actually a danger: e.g., developing a multilevel FM
package may hide the fact that the underlying flat engines
are badly implemented. At the same time, the effects of a
bad implementation choice can still be apparent even when
that choice is wrapped within a strong optimization technique
(e.g., ML CLIP).

3In [21], where the authors show that inserting moves into gain buckets in LIFO
order is much preferable to doing so in FIFO order (also a constant-time insertion) or
at random. Since the work of [21], all FM implementations that we are aware of use
LIFO insertion.

Tolerance Algorithm ibm01 ibm02 ibm03

02% Reported LIFO 450/2701 648/12253 2459/16944
02% Our LIFO 366/594 301/542 1588/2688
10% Reported LIFO 270/486 313/3872 1624/12348
10% Our LIFO 244/445 266/405 1057/1993

Table 2: Comparison of our LIFO FM results (“Our LIFO”)
against other LIFO FM results [2] (“Reported LIFO”), for
ISPD98 benchmark suite cases. Results shown are mini-
mum/average cutsizes obtained over 100 independent single-
start trials, with 2% and 10% balance constraints and actual
cell areas.

Examples of such effects are visible throughout the literature
(e.g., compare “FM” results for exact unit-area bisection of MCNC
test cases). A recent example is found in [2], which reports LIFO
FM results on the new ISPD98 partitioning benchmark suite. Ta-
ble 2 shows that the difference in solution quality obtained by our
“LIFO FM” implementation and the “LIFO FM” implementation
of [2] is substantial; this supports our claim that silent implementa-
tion choices can swamp the typical claimed improvements of algo-
rithm innovations. Taxonomies of other (hidden) implementation
decisions are given by, e.g., Hauck and Borriello [20], who note
the effect of initial solution generation, and by Caldwell et al. [10].
The latter work also points out the need for a flexible, highly mod-
ular testbench architecture to facilitate algorithm experimentation
and correct pruning of implementation options.

2.3 Experiment Design

Since even the most careful software implementation can miss
some insight, impactful research must also entail rigorous exper-
imental comparisons to leading-edge approaches (“Do check your
health regularly” [19]). This ensures that a new technique improves
solution quality in an absolute sense, rather than in just a relative
sense vis-a-vis some potentially low-quality “internal” implemen-
tation. (A necessary attribute of experimental comparisons is that
they are “apples to apples”.)

Barr et al. [5] observe that research about heuristics is valu-
able if it is “revealing”, i.e., “offer[s] insight into general heuristic
design or the problem structure by establishing the reasons for an
algorithm’s performance and explaining its behavior”. To this end,
a research experiment should be driven by a clear statement of “the
questions to be answered and the reasons that experimentation is
required”. Maxims listed by Gent et al. [19] under the heading of
experiment design include “Do measure with many instruments”,
“Do vary all relevant factors”, “Don’t change two things at once”,
“Do collect all data possible”, etc. – admittedly obvious concepts
on one hand, but all too uncommonly observed on the other hand.
In this subsection, we illustrate how imperfect experiment design
can detract from understanding and the value of the research re-
sult. Our illustration points out that deep understanding of heuris-
tics may be required even to formulate the experiments that drive
and verify algorithm innovation.

We consider the CLIP algorithm of [15], which has been en-
abling within a recent multilevel partitioner implementation [3].
We make two observations.

� First, FM-based partitioners typically look at only the first
move in a bucket. We believe this is partly for speed, and
partly as a historical legacy from partitioners being tuned for
unit-area, exact-bisection benchmarking. (Note that moves
are examined in priority order, so the first legal move found is
the best.) If the first move is legal it is made; if the move is not



Tolerance Algorithm ibm01 ibm02 ibm03

02% Reported CLIP 471/2456 1228/12158 2569/16695
02% Our CLIP 329/485 298/472 797/1635
10% Reported CLIP 246/462 439/4163 1915/9720
10% Our CLIP 237/424 266/406 675/1325

Table 3: Comparison of our CLIP FM implementation (“Our
CLIP”) and the CLIP FM reported in [2] (“Reported CLIP”),
for ISPD98 benchmark suite cases. Our CLIP FM does not
insert cells with area greater than the balance constraint into
the gain structure. Results shown are minimum/average cut-
sizes obtained over 100 independent single-start trials, with
2% and 10% balance constraints and actual cell areas.

legal, the entire bucket (or perhaps even every bucket for that
partition) is skipped. This strategy is reasonable since it is
very time-consuming to traverse a bucket’s entire list, hoping
that one of the nodes in it will be legal.

� Second, the CLIP algorithm begins by placing all moves into
0-gain buckets. This is because CLIP chooses moves by their
cumulative delta gain (i.e., the “actual gain” minus the initial
gain), and initially every move has a cumulative delta gain of
0. Hence, if the move at the head of each bucket at the begin-
ning of a CLIP pass is not legal, the whole pass terminates
without making any moves. Furthermore, even if the first
move is legal, CLIP is still likely to get stuck if the moves
very soon afterwards in both buckets are illegal. This is be-
cause there will not be enough time for the moves to “spread
out”, and nearly all will still be in the zero-gain bucket. We
call this thecorking effectin CLIP: the large node at the head
of the list (bucket) acts as acork.

Traces of CLIP executions show that corking actually occurs
fairly often, particularly with the more modern ISPD98 actual-area
benchmarks. CLIP places the cells with highest (total initial) gain
at the heads of the zero gain buckets at the beginning of the pass.
Particularly in a random solution, the cells with the highest gain
will tend to be the cells of highest degree, which are also the cells
with greatest area. Any number of simple techniques can be con-
ceived to address this problem. For example:

� do not place cells that have area greater than the balance tol-
erance into the gain structure at the begining of the pass (this
technique actually benefits all FM variants, and has essen-
tially zero overhead); or

� look beyond the first move in a bucket, if the first move is
illegal (we find this to be too time-consuming, and it moreover
appears to have a harmful effect on solution quality).

Table 3 shows that the trivial first approach (“Our CLIP”) can
lead to noticeable performance differences versus other CLIP im-
plementations. We believe that the susceptibility of the original
CLIP algorithm to corking is fundamentally due to experiment de-
sign: corking is masked by the tendency to compare partitioners
according to unit-area bisection results (cf. “Do understand your
problem generator” [19]).4 This suggests that the research com-
munity could benefit from increased vigilance regarding the test-
ing of proposed algorithms within actual use models. Algorithms

4The well-defined nature of certain CAD problems (notably partitioning) and the
strong push for even small improvements in quality of results may lead to a tendency
towards fragile algorithm innovations. The fact that CLIP corking was not previously
realized is due to testing of algorithms on an incomplete set of data; the older MCNC
test cases lack large cells, and have historically been used in “unit-area” mode.

should ideally be tested on the full range of applicable problems;
more generally, any prospective advance in algorithm technology
should be evaluated in a range of contexts, and within any particu-
lar context should conform to all the requirements imposed by that
context.5

3 Methodology for Reporting

3.1 Algorithm Description

As noted earlier, Gent et al. propose the maxim, “Do report impor-
tant implementation details”. Section 2.2 above showed that algo-
rithm innovation depends on having the strongest possible baseline
implementation testbed. Attaining such a testbed is not easy since
many implicit implementation decisions must be correctly identi-
fied and made – and at a minimum, the list of reported algorithm
details should include these implementation decisions. In our expe-
rience, the effects of such implementation elements as randomizers,
initial solution generators, tie-breaking decisions, etc. can be very
large – particularly when metaheuristic comparisons are made (see
the next subsection). We suggest that with the maturation of the
VLSI CAD field, benchmark algorithm implementations(available
in source code form) will become at least as important asbench-
mark datain driving cost-effective research and development.

3.2 Comparison of Metaheuristics

Most papers in the VLSI CAD partitioning literature report av-
erage and best solution quality obtained over some fixed number
of independent starts of a given heuristic (e.g., 20 or 100 starts).
This reporting style can obscure the quality-runtime tradeoff curve,
which is very unpredictable given widely varying problem sizes,
constraints and hypergraph topologies. Furthermore, for the moti-
vating context of top-down standard-cell placement, there is no re-
alistic use model in which a partitioner will be called 20 times (let
alone 100 times) for a given instance. Realistic runtime regimes
support at most a few starts of the fastest partitioners of which we
are aware.

In the metaheuristics and, e.g., INFORMS communities, ex-
perimental reporting methodology for metaheuristics has been the
subject of much discussion and consensus-building. Barr et al. [5]
describe a number of standard reporting styles; the most popular
is the “best-so-far (BSF) curve”, which plots the solution cost that
the algorithm is expected to achieve in a multistart regime, versus
the given CPU time budgetτ. As noted by Schreiber and Martin
[33] [34], speed-dependent rankingmethodologies for the multi-
start regime can be based on variants of BSF evaluation. In particu-
lar, such methodologies use the distribution ofcτ, the best solution
cost achieved in timeτ.6 Different heuristics can be ranked based
on the mean values ofcτ, based on the probabilities thatcτ = C0,
etc. This yields a usefulranking diagramdiagnostic that depicts re-
gions of, e.g., (instance size, CPU time) dominance for each of the
heuristics being compared. Statistical analyses (e.g., significance
tests) are also recognized as helpful in evaluating the significance
of solution cost variation in diverse circumstances; Brglez has re-
cently pointed this out, along with effects of randomizations, in the
VLSI CAD literature [7].

We support the comparison of heuristics using methods similar
in spirit to the BSF curves presented in [5], or the speed-dependent

5In particular, no algorithm in the VLSI CAD partitioning literature hasa priori re-
stricted its domain of application to, e.g., only unit-area bisection. Thus, it is eminently
reasonable to evaluate VLSI CAD partitioning algorithms on non-unit area instances,
as long as such instances arise in the motivating application domains.

6Based on the average runtime of a single start of a heuristic, a given time boundτ
can be converted to a bound on the number of starts.



rankings of [33] [34]. One observation is that it is essential to use
actual CPU time as an axis of comparison, as opposed to coarser-
grain quanta such as “number of starts”. This is because many
advanced metaheuristics, including VLSI multilevel partitioning
heuristics, do not necessarily use independent starts. For exam-
ple, pruning (early termination of starts that appear unpromising
relative to previous starts) can be applied, along with techniques
such as V-cycling [25, 26] that are invoked only for the best re-
sult of several starts (this implies that sampling methods [33] [34]
cannot be used). In comparing algorithms, we say that a particular
(solution cost , runtime) performance pointA is dominatedby an-
other performance pointB if and only if B has both lower cost and
lower runtime thanA. (In other words, no one would ever choose to
run configurationA over configurationB.) We then define thenon-
dominated frontierof (solution cost , runtime) performance points
to be the set of all such points that are not dominated by any other
points; this is exactly the Pareto set in multi-objective optimization.
The non-dominated frontier (Pareto set) of performance points ob-
tained from multiple heuristics allows the reader to easily see which
heuristic is preferable for a given runtime regime, how much cost
improvement can be obtained for a given increment of runtime, etc.

Appropriate Comparisons

Advances in the VLSI partitioning literature are traditionally re-
ported with respect to a collection of benchmark instances. It is crit-
ical that the instances be appropriately chosen. For the top-down
placement context, a wide range of instance sizes best emulates the
actual use model. It is also important that the benchmarks be as up-
to-date as possible. In particular, we believe that the new ISPD98
benchmark suite (parameters given in [2] and on the Web [1]) is
now much more relevant than the MCNC cases.7

To match the top-down placement use model, we believe that
actual-area partitioning is the most relevant test of a partitioner.
Traditional balance constraints of 2% (partition areas between 49%
and 51% of total cell area) and 10% (partition areas between 45%
and 55% of total cell area) are both relevant, since vertical cutlines
can be located rather continuously in the design.8 As noted above,
practical runtime budgets are very tight, even for large instances.
Finally, results should be compared against the leading edge.

Example Metaheuristic Evaluation: hMetis-1.5

As an example, performance evaluation of the leading avail-
able partitioner (the hMetis-1.5 executable available on the
Web from the University of Minnesota [28, 26]) might be re-
ported as follows. A similar performance evaluation for our
own internally developed partitioner is available at our website,
http://vlsicad.cs.ucla.edu/.

� We run hMetis-1.5 using precisely its default configurations
(cf. the description of “shmetis” in [27]), and vary only the
number of starts. We run hMetis-1.5 using number of starts
equal to 1, 2, 4, 8, 16 and 100 (note that 100 starts is the
standard way in which hMetis solution quality had been pre-
sented in the past [2], and is in some sense a limit of practical
interest). hMetis-1.5 will V-cycle the best result among these

7The MCNC cases are small and lack nodes with large degree or large area. In con-
trast, the ISPD98 cases have up to 210,341 cells and also include many large macro-
cells.

8Due to the discrete nature of cell rows, horizontal cutlines do require tighter bal-
ance constraints, or else a partitioning cleanup step to “snap” into row-compatible
partition sizes.

Circuit Configuration
1 2 3 4 5 6

ibm01 265.7/6.4 264.1/8.2 248.0/12.0 246.9/19.7 236.8/42.7 224.5/216.5
ibm02 318.5/11.6 315.1/14.8 305.1/21.0 304.1/35.0 287.8/77.9 269.5/369.0
ibm03 894.8/18.3 873.9/22.1 852.5/32.7 862.3/51.5 797.9/116.9 755.3/518.1
ibm04 564.5/15.8 542.2/21.4 536.0/31.3 532.4/51.7 523.7/111.2 516.2/549.7
ibm05 1768.1/26.1 1746.3/30.8 1742.6/44.8 1740.6/77.6 1735.2/165.9 1730.5/836.0
ibm06 719.0/27.6 668.1/33.2 650.8/46.2 597.1/70.5 570.8/163.8 543.9/675.9
ibm10 1328.3/65.9 1283.2/81.7 1217.3/113.5 1203.7/176.7 1142.9/393.7 1108.4/1739.0
ibm14 2113.4/163.0 1966.6/195.0 1906.9/281.0 1853.9/447.0 1850.4/966.6 1770.0/4348.9
ibm18 1858.2/248.2 1812.9/294.9 1750.9/436.3 1719.7/740.1 1681.2/1599.6 1666.2/7529.9

Table 4: Evaluation of hMetis1.5 [26] [27] for IBM test cases from
the ISPD98 benchmark suite [2]. Solutions are constrained to be
within 2% of bisection (partitions must contain between 49% and
51% of total cell area). Data expressed as (average cut / aver-
age CPU time), with the latter normalized to CPU seconds on a
200MHz Sun Ultra-2.

Circuit Configuration
1 2 3 4 5 6

ibm01 258.6/6.0 252.5/8.3 246.1/11.7 242.2/19.7 227.3/41.9 216.6/209.2
ibm02 280.4/13.0 277.7/16.4 276.6/22.3 278.8/33.4 273.5/75.5 272.7/337.3
ibm03 787.8/17.3 781.3/21.9 776.0/29.6 749.3/49.0 736.6/108.4 693.2/490.8
ibm04 511.5/18.2 510.7/23.6 492.1/34.1 475.7/55.1 455.8/120.9 441.3/553.9
ibm05 1744.7/30.2 1742.2/32.0 1734.2/45.1 1724.1/75.1 1719.3/162.5 1713.5/790.4
ibm06 386.5/26.1 383.5/29.5 377.8/38.6 373.0/61.4 367.8/134.6 367.0/630.2
ibm10 817.0/52.1 805.9/66.3 799.2/95.5 778.6/154.4 770.9/342.0 760.6/1606.7
ibm14 1871.9/154.3 1810.4/182.5 1640.9/270.8 1593.5/421.6 1566.0/950.3 1527.5/4216.6
ibm18 1631.3/192.3 1632.4/272.4 1559.2/370.5 1533.0/612.5 1527.7/1336.9 1521.6/6479.2

Table 5: Evaluation of hMetis1.5 [26] [27] for IBM test cases from
the ISPD98 benchmark suite [2]. Solutions are constrained to be
within 10% of bisection (partitions must contain between 45% and
55% of total cell area). Data expressed as (average cut / aver-
age CPU time), with the latter normalized to CPU seconds on a
200MHz Sun Ultra-2.

starts. For each number of starts (corresponding to “Configu-
rations” 1 - 6, respectively) of hMetis-1.5, we execute hMetis-
1.5 with that number of starts 50 different times, and record
the average best cutsize and the average CPU time. All CPU
times are normalized to 200MHz Sun Ultra-2 CPU times.9

� We run the partitioner on the IBM01-06, IBM10, IBM14 and
IBM18 benchmarks, using actual cell areas and both 10% and
2% balance tolerance. Missing benchmarks are omitted in
this work only because of the very large CPU burden of run-
ning so many trials for each configuration of each test case
(we run the equivalent of nearly 10,000 starts for each test
case).

Partitioning results are reported in Tables 4 and 5 so as to re-
veal the runtime-quality tradeoff in the region of practical interest
– in addition to the traditional evaluation (100 starts). Data omitted
for readability in this medium include the standard deviations and
other descriptors of the distributions of all numbers; any more flex-
ible presentation medium for our results (e.g., a webpage) should
contain such information.

4 Conclusions

Despite much progress over the past several decades, the VLSI
CAD (hypergraph partitioning) research community can still bene-
fit from improved understanding of the fundamental heuristics upon

9Due to the extremely large amount of CPU required to perform our experiments,
some experiments were run on 110MHz Sun Sparc-5’s and on 300MHz Sun Ultra-
10’s. Runtime conversion factors were computed on an instance-specific basis by
comparing runtimes for hMetis-1.5 execution on different machines but with identi-
cal random seeds.



which new methods are continually developed. We suggest that
technical contributions should more diligently pursue reproducible
results and descriptions, as well as deeper understanding of inter-
actions between metaheuristic choices. On the research side, ex-
perimental testbeds and experimental designs should enable care-
ful contrast to the leading edge of the field, and should also be
relevant to the complete application and use model context. For
hypergraph partitioning, the examples of “implicit implementation
decisions” and the “corking” effect in CLIP FM [15], we have il-
lustrated the possibility of spurious conclusions for which the “er-
ror” can swamp claimed solution quality improvements due to al-
gorithm innovation. We further suggest that a culture of benchmark
metaheuristic implementations may in the future be as enabling to
the field as a culture of benchmark data. On the reporting side,
complete descriptions are necessary, along with more principled
(and standardized) methodologies for comparison of metaheuris-
tics. Here, useful guidance can be obtained from the metaheuristics
literature. We provide illustrative fragments from the evaluation of
one leading metaheuristic, the hMetis-1.5 partitioner from the Uni-
versity of Minnesota [28, 26].

Our ongoing research seeks to improve our basic understanding
of VLSI partitioning (e.g., we believe that the effects of clustering
in multilevel FM and the difficulty of multi-way partitioning are
two fundamental gaps in knowledge). We seek such improvements
while attempting to adhere to the research and reporting principles
and standards that we have outlined in this paper.
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