
Hypergraph Partitioning With Fixed Vertices�

Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov

UCLA Computer Science Department, Los Angeles, CA 90095-1596

Abstract

We empirically assess the implications of fixed terminals for hy-
pergraph partitioning heuristics. Our experimental testbed incor-
porates a leading-edge multilevel hypergraph partitioner [14] [3]
and IBM-internal circuits that have recently been released as part
of the ISPD-98 Benchmark Suite [2, 1]. We find that the pres-
ence of fixed terminals can make a partitioning instance consid-
erably easier (possibly to the point of being “trivial”): much less
effort is needed to stably reach solution qualities that are near best-
achievable. Toward development of partitioning heuristics specific
to the fixed-terminals regime, we study the pass statistics offlat
FM-based partitioning heuristics. Our data suggest that with more
fixed terminals, the improvements in a pass are more likely to oc-
cur near the beginning of the pass. Restricting the length of passes
– which degrades solution quality in the classic (free-hypergraph)
context – is relatively safe for the fixed-terminals regime and con-
siderably reduces run time of our FM-based heuristic implemen-
tations. We believe that the distinct nature of partitioning in the
fixed-terminals regime has deep implications (i) for the design and
use of partitioners in top-down placement, (ii) for the context in
which VLSI hypergraph partitioning research is pursued, and (iii)
for the development of new benchmark instances for the research
community.

1 Introduction

Hypergraph partitioning research in VLSI CAD has been primar-
ily motivated by the gate-level top-down placement context, which
in modern ASIC design methodology can demand extremely effi-
cient and high-quality solutions for netlist sizes exceeding 1 million
vertices. New heuristics for hypergraph partitioning are typically
evaluated in the context offree hypergraphs, where all vertices
are free to move into any partition [4, 2].Every benchmark, and
every benchmark result reported in the literature, is for the free-
hypergraph context.Even when I/O pad locations are specified in
the .vpnr or .yal source for early ACM/SIGDA benchmarks, the
partitioning benchmarks (in .net/.are format; see [1]) do not indi-
cate how these pads correspond to fixed vertices in partitions.

Our study is motivated by the following observation:In top-
down placement, the input to the partitioner isnever a free hyper-
graph.Rather, the input containsfixed terminalsthat arise from the
chip I/Os or from the propagated terminals of other sub-problems
in the partitioning hierarchy [6, 16]. The number of these fixed ter-
minals can be estimated from Rent’s rule [15, 5], which states that
in a layout with Rent parameterp, on average a block ofC cells will
haveT = k �Cp propagated or external terminals. This corresponds

�Research supported by a grant from Cadence Design Systems, Inc.

Rent Parameter 5% 10% 20%

p= 0:60 40992 7250 1281
p= 0:65 186943 25800 3561
p= 0:70 1413600 140250 13915

Table 1: Block sizes below which the expected number of fixed
vertices due to propagated terminals will exceed a specified per-
centage (5%, 10% or 20%) of the total number of vertices in a
top-down placement when the design has given Rent parameterp.
We assume that the average pins per cell in the design isk= 3:5.

to a partitioning instance ofC+T vertices, of whichT are fixed.
Here,k is a constant equal to the average number of pins per cell,
and is approximately 3.5 for modern designs; Rent parameter val-
ues for modern designs have been estimated at around 0.68 [5, 17].
Table 1 shows the maximum block sizes below which we expect
all blocks (in a design with Rent parameterp) to have a given per-
centage of their vertices fixed.1 We observe that even rather sizable
sub-blocks of the design can be expected to have a high proportion
of fixed terminals.

With this paper, we bring attention to the problem of partition-
ing with fixed terminals, and demonstrate that unique aspects of
the fixed-terminals regime may require new partitioning heuristics
Hence, the nature of partitioning in the fixed-terminals regime can
have deep implications (i) for the design and use of partitioners
in top-down placement, (ii) for the context in which VLSI hyper-
graph partitioning research is pursued, and (iii) for the development
of new benchmark instances for the research community.

In Section 2 below, we empirically assess the implications of
fixed terminals for hypergraph partitioning heuristics. Our experi-
mental testbed incorporates a leading-edge multilevel [14] [3] hy-
pergraph partitioner and IBM-internal circuits that have recently
been released as part of the ISPD-98 Benchmark Suite [2, 1]. We
conclude that the presence of fixed terminals can make a parti-
tioning instance considerably easier (possibly to the point of be-
ing “trivial”): much less effort is needed to stably reach solution
qualities that are near best-achievable. Section 3 presents early
studies aimed at developing partitioning heuristics specific to the
fixed-terminals regime. We study the pass statistics offlat FM-
based partitioning heuristics, and demonstrate that with more fixed
terminals, the improvements in a pass are more likely to occur
near the beginning of the pass. A heuristic that restricts the length
of passes – which would degrade solution quality in the classic
(free-hypergraph) context – is relatively safe for the fixed-terminals
regime and considerably reduces runtime of our FM-based imple-
mentations. Section 4 concludes with directions for future work.

2 Effect of Fixed Terminals on Instance Difficulty

We start by posing our motivating experimental questions, then de-
scribe our experimental testbed and protocol, followed by empirical
results.

1This assumes that the blocks are in “Region I” of the Rent parameter fit [15].

2.1 Experimental Questions

1. By how much can the presence of fixed terminals affect the
solution quality achieved by modern partitioning heuristics?

2. Do partitioning instances with fixed terminals require less ef-
fort to “solve well” (with modern partitioning heuristics) than
similar-complexity instances without fixed terminals?

3. Can guidelines be inferred as to the necessary effort required
to achieve good partitioning solutions when a given propor-
tion of the hypergraph vertices are fixed?

2.2 Experimental Testbed

Our experimental testbed contains implementations of common
FM-based partitioning heuristics and standard partitioning bench-
marks.

Partitioner

We use an internally developed partitioning engine that implements
themultilevel FMapproach described in [3] and [14]. Implementa-
tion details generally follow the parameters established in [3] (use
of CLIP [7], heavy-edge matching, clustering ratio, etc.). The par-
titioning engine does not perform V-cycling as in [14], since V-
cycling was determined to be a net loss in terms of overall cost-
runtime profile of our partitioner.

The partitioning engine achieves solution quality and runtimes
on a per-start basis that are somewhat better than those reported for
MLC [3] and hMetis [14] in the 1998 paper of Alpert [2] and on
Alpert’s web page [1]. This is confirmed by the experimental data
reported in the next section.

Test Data

We have run experiments with the IBM01 through IBM05 test cases
from the ISPD-98 Benchmark Suite developed by Alpert [2, 1]. We
use actual areas of cells, and a 2% balance constraint. Because the
cell areas vary considerably in the IBM benchmarks (there are often
individual cells that occupy several percent of the total area [1]),
there there is little point in doing unit-area studies for the real-life
placement context. Moreover, tight balance constraints are more
appropriate to the top-down cell placement application.

Experimental Protocol

In our experiments we choose vertices to fix at random from the set
of all vertices in the netlist. We either (i) fix the chosen vertices
independently into random partitions (“rand” in Figures 1 and 2),
or (ii) fix the chosen vertices according to where they are assigned
in the best min-cut solution we could find for the instance when no
vertices were fixed (“good”). For each of the resulting four regimes
we fix a number of vertices equal to 0%, 0.1%, 0.5%, 1.0%, 2.0%,
5%, 10%, 15%, 20%, 30%, 40% and 50% of the total number of
vertices in the instance.2 We apply the multilevel CLIP FM engine
noted in the previous subsection. A singletrial applies this parti-
tioner to the given partitioning instance for 1, 2, 4 or 8 independent
starts, and returns the best cutsize obtained as well as the number of
CPU seconds used. (All CPU times are for a 140MHz Sun Ultra-1
workstation running Solaris2.6.) All of our data represent averages
of 50 trials.

2In generating these instances, weincrementallyfix additional vertices, e.g., all
vertices fixed at 1.0% are also fixed at 2.0%.

2.3 Experimental Results

Figures 1 and 2 show detailed results for the IBM01 and IBM03
test cases, respectively. All data shown are for experiments where
fixed vertices are chosen randomly from the set of all vertices in the
instance.

� Each Figure contains six plots, with four traces in each plot
corresponding to 1, 2, 4 and 8 starts of the multilevel parti-
tioning engine.

� The upper (“good”) row of each Figure gives data for the
regime where all fixed vertices are consistent with the best so-
lution that we know for the unconstrained (no fixed vertices)
instance. The lower (“rand”) row of each Figure gives data
for the regime where the fixed vertices are randomly assigned
to partitions.

� The left two plots in each Figure show theraw solution costs
(best cutsize obtained with the given number of starts, aver-
aged over 50 trials) versus the percentage of fixed vertices.

� Plots in the middle column in each Figure show thenormal-
ized solution costsversus the percentage of fixed vertices. In
the “good” regime, the normalization is to a single constant
value (since all instances have fixed vertices consistent with
the same good solution), so the shape of the traces is simi-
lar to the plot of raw solution costs. However, in the “rand”
regime, the raw solution costs increase drastically with the
percentage of randomly chosen/fixed vertices, and each per-
centage of fixed vertices corresponds to a distinct partitioning
instance. Thus, for each instance in the “rand” regime, we
normalize solution costs to the best solution cost seen over all
(1+2+4+8)�50= 750 starts of the multilevel partitioner
for that instance.

� The right two plots in each Figure show theper-start CPU
timeversus the percentage of fixed vertices.

We performed similar experiments where fixed vertices are cho-
sen randomly from the set of identified I/Os (pads) in the netlist.3

However, we do not discuss these results, for several reasons. First,
the number of I/Os is typically very small (less than one percent
of all vertices). Second, for those percentages of fixed vertices that
could be chosen from I/Os we could find no difference in any ex-
periment between fixing identified I/Os and fixing random vertices.
Finally, for the vast majority of hierarchical block partitioning in-
stances in top-down placement, the fixed terminals do not corre-
spond to chip I/O pads anyway.

We also do not show results for the IBM02, IBM04 and IBM05
test cases. This is because the data looks essentially identical to
what we have shown for IBM01 and IBM03. Indeed, we have been
agreeably surprised by the consistency of our experimental results.

From the Figures, we make the following observations.

� The raw solution costs4 indicate that as more fixed vertices
are (randomly) selected and assigned to partitions, the achiev-
able solution cost increases rapidly. This addresses the first
experimental question: the presence of fixed vertices matters.

� The normalized solution costs indicate that if the netlist has
many terminals fixed in partitions (which is is what we believe
distinguishes real-life partitioning instances generated during
top-down placement), then the partitioning problem is indeed
“easy”.

3When the fixed vertices are chosen from pads in the netlist, the percentage is
limited by the total number of pads and we do not fix any further vertices.

4Note that these raw solution costs suggest that our multilevel partitioner is (at
least) on par with [3] [14] in terms of solution quality.

Testcase Percent Fixed Terminals
0% 5% 10% 15% 20% 30% 50%

IBM01 12.0,20.5% 12.6,10.8% 9.9,9.1% 8.9,7.6% 8.0,4.8% 6.1,2.6% 4.6,0.8%
IBM02 9.6,12.4% 8.3,10.0% 8.1,6.1% 7.7,3.7% 6.7,2.7% 6.7,2.4% 6.4,3.2%
IBM03 10.4,6.8% 9.8,6.5% 8.3,5.7% 7.6,4.8% 6.4,3.3% 6.4,4.1% 6.0,3.7%
IBM04 12.9,8.3% 10.9,7.0% 9.9,4.4% 7.4,3.5% 8.1,2.6% 7.4,3.5% 6.1,1.0%
IBM05 32.6,37.0% 16.4,5.3% 13.0,4.7% 10.1,4.0% 8.6,3.5% 7.9,2.3% 5.3,1.5%

Table 2: Average number of passes per run, and average percentage
of nodes moved per pass (excluding the first pass), for 50 runs of
LIFO-FM. Partitions are allowed to deviate from exact bisection by
2%.

– When 0% of the vertices are fixed in partitions, more
starts (e.g., 4 or 8) are required for the average best cut-
size to approach the value that the multilevel partitioner
is capable of achieving for the given instance.

– When larger percentages of the vertices are fixed in par-
titions, fewer starts (e.g., 1 or 2) are required for the av-
erage best cutsize to approach the “good solution cost”.

– In the normalized traces, the curves are “flatter” (and
there is less difference between the 1-start and 8-start
traces) as the percentage of fixed vertices increases.

– In all of our experiments, an instance with 20% or more
vertices fixed is essentially solvable to very high qual-
ity in one or two starts, i.e., further starts are unneces-
sary. This suggests that most hierarchical block parti-
tioning instances in placement are easy; recall Table 1
from Section 1.5

� Runtimes decrease substantially when the percentage of fixed
vertices increases; this is expected since the partitioner has
less freedom and a smaller number of movable vertices.

� Solution quality for “good” instances, and runtime for “rand”
instances, are non-monotone in the percentage of fixed ver-
tices. We suspect that this indicates “relatively overcon-
strained” instances where the inflexibility of the instance
hurts the ability of the partitioner to find “trajectories to good
solutions” more than it helps the partitioner by reducing the
solution space. An interesting direction for future work is to
attempt to demonstrate this effect. As discussed below, the
data also suggest that current partitioning technology is not
well-tuned to the fixed-terminals regime.

3 Toward Partitioners for the Fixed-Terminals Regime

We now describe preliminary explorations into partitioning meth-
ods designed specifically for the fixed-terminals regime. The
first subsection presents motivating studies of pass-length statis-
tics. The second subsection gives runtime and cutsize results for
a new heuristic variant, using the same fixed-terminals instances
described above.

3.1 FM Pass Structure With Fixed Terminals

A motivating observation is that in the absence of sufficient fixed
terminals, FM may occasionally produce passes in which nearly ev-
ery node is moved. Recall that during an FM pass, nodes are moved
one at a time until each node has been moved; for bipartitioning,
all nodes have been “flipped” when the end of the pass is reached.
Then, the best solution found during the pass (i.e., best prefix of

5The benefit from additional starts decreases more noticeably in the “rand” regime
than in the “good” regime. Since propagated terminals are not likely assigned to their
ideal locations, the benefit from starts in the top-down placement context is likely
somewhere between the “rand” and “good” portraits.

the move sequence) is restored. Any move “undone” in this pro-
cess has essentially been wasted. Without terminals, FM will oc-
casionally produce passes in which almost no moves are wasted –
the pass flips almost all nodes between partition 0 and partition 1.
However, if there are sufficiently many nodes adjacent to fixed ter-
minals, such a “near-flip” is very unlikely to be improving. Table 2,
documents the average number of passes per run, and the average
percentage of nodes moved per pass: increasingly higher percent-
ages of the moves in the FM passes are wasted as the proportion of
fixed terminals increases. This strongly suggests that in the fixed-
terminals regime, FM-style heuristics can profitably impose a hard
cut-off on pass lengths.

3.2 FM Variants With Early-Stop Passes

Since the first FM pass traditionally begins with a random partition-
ing, many nodes will be moved, regardless of the number of fixed
terminals. However, we may limit the number of moves per pass –
after the first pass – in order to reduce overhead when the best solu-
tion found is near the beginning of the pass. Table 3 documents the
effects on average cutsize and average CPU time for single LIFO
FM starts, when FM passes are cut off after 50%, 25%, 10% or 5%
of the moves have been made. For instances without sufficient ter-
minals, early stopping has a detrimental effect on solution quality,
but with sufficient terminals no effect on solution quality is seen. In
all cases, limiting the number of moves in a pass improves runtime.
solution quality. A surprising observation is that current partition-
ers appear to struggle when faced with only a small proportion (e.g.,
5% or 10%) of fixed terminals. Because all terminals are fixed in
a “good” location, and because fixed terminals are added only to
produce problems with a higher percentage of fixed nodes, any so-
lution for the cases of 20% or 0% fixed is also feasible for the case
of 10% fixed. The fact that the partitioner produces better results
for both the 20% and the 0% cases than for the 10% case may point
to a failing of current partitioners.

4 Conclusions and Open Problems

We have empirically demonstrated a mismatch between the top-
down placement context and current directions in VLSI CAD hy-
pergraph partitioning research and benchmarking. We point out
how easy the partitioning problem becomes when fixed terminals
are present, and how strong this effect is. We believe that there is
a great deal of work remaining to be done in the area of extremely
fast partitioning for the fixed-terminals regime, i.e., the real-world
placement context.

Our early efforts have entailed per-pass analyses offlat FM-
based partitioning heuristics, confirming that the presence of fixed
terminals limits the improvements in a pass to moves made at the
beginning of the pass. Hard cut-offs on pass length – which de-
grades solution quality in the classical “free-hypergraph” context
– is relatively safe in the presence of terminals, and considerably
reduces runtime of our FM-based implementations.

An open and rather pragmatic issue is whether faster algorithms
can be developed that exploit the presence of fixed terminals in ap-
plications such as top-down placement. Further analysis of the ef-
fects of fixed terminals may be useful. In particular, it is not yet
clear how to measure the “strength” of fixed terminals, or alterna-
tively the “degree of constraint” in particular problem instances.
While our experiments fix random terminals from known hyper-
graphs where most vertices have low degree, it is always possible
to fix vertices of very high degree to yield qualitatively different
problem instances with similar numbers of fixed terminals. Indeed,
a bipartitioning instance with arbitrary number/percent of fixed ter-
minals can be represented by an equivalent instance with only two
terminals, by clustering all terminals fixed in a given partition into

210

220

230

240

250

260

270

280

290

300

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / costs

1
2
4
8

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / norm costs

1
2
4
8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / run time

1
2
4
8

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / costs

1
2
4
8

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / norm costs

1
2
4
8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / run time

1
2
4
8

Figure 1: Experimental results for IBM01 test case, actual cell areas, 2% balance tolerance. The four traces in each plot
correspond to 1, 2, 4 and 8 starts of the multilevel partitioner. We report raw best solution costs (left column), normalized
best solution costs (middle column) and total CPU times (right column) for both the “good” (upper row) and “rand”
(lower row) regimes. In all plots, the given parameter is plotted against the percentage of fixed vertices in the instance.

800

850

900

950

1000

1050

1100

1150

1200

1250

0 5 10 15 20 25 30 35 40 45 50

IBM03 / good / costs

1
2
4
8

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30 35 40 45 50

IBM03 / good / norm costs

1
2
4
8

5

5.5

6

6.5

7

7.5

0 5 10 15 20 25 30 35 40 45 50

IBM03 / good / run time

1
2
4
8

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

IBM03 / rand / costs

1
2
4
8

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 5 10 15 20 25 30 35 40 45 50

IBM03 / rand / norm costs

1
2
4
8

6.5

7

7.5

8

8.5

9

9.5

0 5 10 15 20 25 30 35 40 45 50

IBM03 / rand / run time

1
2
4
8

Figure 2: Experimental results for IBM03 test case, actual cell areas, 2% balance tolerance. The four traces in each plot
correspond to 1, 2, 4 and 8 starts of the multilevel partitioner. We report raw best solution costs (left column), normalized
best solution costs (middle column) and total CPU times (right column) for both the “good” (upper row) and “rand”
(lower row) regimes. In all plots, the given parameter is plotted against the percentage of fixed vertices in the instance.

Testcase Max Percent To Move Percent Fixed Terminals
0% 5% 10% 15% 20% 30% 50%

IBM01 nolimit 596.2(2.81) 1274.7(2.8) 1041.8(2.03) 687.1(1.74) 513.8(1.51) 303.4(1.09) 247.0(0.724)
50% 855.9(1.66) 1458.1(1.84) 1027.3(1.62) 720.3(1.35) 555.2(1.28) 290.3(0.999) 244.6(0.672)
25% 959.4(1.49) 1702.8(1.5) 1249.1(1.26) 777.0(1.08) 521.7(0.98) 297.4(0.77) 245.0(0.593)
10% 1233.6(1.47) 1811.4(1.39) 1435.3(1.18) 861.5(0.956) 514.7(0.832) 298.0(0.665) 242.8(0.496)
5% 1533.9(1.61) 2154.7(1.41) 1707.7(1.21) 1235.9(0.992) 631.5(0.845) 305.4(0.639) 247.4(0.462)

IBM02 nolimit 515.1(3.5) 764.0(2.83) 1006.6(2.67) 1263.6(2.36) 1258.3(2.05) 1180.9(1.91) 1713.8(1.49)
50% 547.0(2.45) 808.0(2.47) 1129.9(2.07) 1162.2(1.92) 1243.5(1.74) 1148.6(1.57) 1951.9(1.57)
25% 621.4(2.03) 805.1(1.95) 1064.9(1.57) 1089.8(1.48) 1430.5(1.5) 1452.3(1.41) 1541.5(1.35)
10% 718.5(1.95) 1222.9(1.72) 1280.3(1.47) 1299.6(1.28) 1280.6(1.23) 1206.8(1.2) 2134.3(1.14)
5% 875.3(2.32) 1379.3(1.75) 1270.3(1.55) 1407.1(1.28) 1172.7(1.16) 1353.1(1.06) 1804.7(1.01)

IBM03 nolimit 1929.7(4.46) 2544.7(4.03) 2867.0(3.31) 3391.4(3.04) 1709.0(2.22) 1509.8(2.1) 1713.3(1.8)
50% 2327.9(3.61) 2831.0(3.22) 2870.5(2.62) 3460.0(2.64) 1666.8(2.01) 1524.5(2.11) 1811.2(1.94)
25% 2160.5(2.56) 2896.8(2.75) 2643.2(2.32) 3135.3(2.11) 1729.3(1.72) 1653.0(1.88) 1412.7(1.45)
10% 2250.4(2.35) 2967.4(2.25) 3054.5(1.95) 3809.2(1.89) 1403.2(1.37) 1456.1(1.41) 1728.1(1.37)
5% 2198.7(2.17) 2985.4(2.05) 3100.4(1.98) 3182.2(1.77) 1634.4(1.3) 1711.6(1.4) 1633.3(1.25)

IBM04 nolimit 2018.4(6.8) 2315.6(5.69) 1921.7(4.83) 2115.8(3.71) 1898.3(3.74) 1870.0(3.16) 991.6(2.2)
50% 2411.2(5.02) 2181.8(4.57) 2173.0(3.92) 2005.3(3.17) 1920.3(3.11) 1623.2(2.88) 982.1(2.19)
25% 2337.0(3.92) 2447.0(3.5) 2047.4(2.99) 1869.7(2.54) 1681.8(2.47) 1477.5(2.18) 973.3(1.75)
10% 2646.1(3.46) 2829.6(3.75) 2175.7(2.71) 1813.9(2.22) 1999.3(2.12) 1764.6(1.99) 951.8(1.55)
5% 2957.7(3.84) 3109.4(3.72) 2513.9(2.9) 2131.0(2.27) 2125.0(2.14) 2010.3(1.83) 989.4(1.41)

IBM05 nolimit 3455.6(18.7) 3324.3(9.53) 2461.4(7.21) 2087.3(5.46) 1972.1(4.48) 1854.3(4.07) 1793.5(2.16)
50% 4726.8(7.96) 3254.0(6.43) 2486.2(4.94) 2104.3(4.25) 1979.4(3.83) 1857.6(3.28) 1793.3(2.23)
25% 4954.4(6.31) 3336.3(5.99) 2432.0(4.37) 2093.5(3.38) 1970.3(3.11) 1856.2(2.57) 1793.2(1.75)
10% 5234.6(6.31) 3528.6(4.72) 2545.3(3.93) 2121.0(2.93) 1991.8(2.45) 1850.6(2.25) 1793.0(1.48)
5% 5730.7(6.51) 3676.0(5.99) 2576.1(4.06) 2137.7(3.09) 2010.5(2.45) 1849.8(2.06) 1794.0(1.47)

Table 3: Effects of cutting off all passes (after the first pass) at the given move limit during LIFO-FM partitioning. Partitions are allowed
to deviate from exact bisection by 2%. Data is expressed as average cut(average CPU time). CPU seconds measured on a 300MHz Sun
Ultra-10.

one single terminal. For common partitioning heuristics, such a
representation is likely to be just as easy or hard as the original in-
stance; we therefore need to quantify the “degree of constraint” in
an invariant way. Additional points of interest in partitioning with
fixed terminals include:

� developing interchange formats and benchmark suites that
correspond to partitioning with fixed terminals at various lev-
els of placement (we have made some efforts toward this end);

� determining whether multi-way partitioning is affected by
fixed terminals similarly to bipartitioning; and

� confirming the existence of “relatively overconstrained” in-
stances.

References

[1] C. J. Alpert, “Partitioning Benchmarks for VLSI CAD Community”,
http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html

[2] C. J. Alpert, “The ISPD-98 Circuit Benchmark Suite”,Proc.
ACM/IEEE International Symposium on Physical Design, April 98,
pp. 80-85. See errata at
http://vlsicad.cs.ucla.edu/~cheese/errata.html

[3] C. J. Alpert, J.-H. Huang and A. B. Kahng,“Multilevel Circuit Parti-
tioning”, ACM/IEEE Design Automation Conference, pp. 530-533.

[4] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partition-
ing: A Survey”,Integration, 19(1995) 1-81.

[5] J. A. Davis, V. K. De and J. D. Meindl, “A Stochastic Wire-Length
Distribution for Gigascale Integration (GSI) - Part I: Derivation and
Validation”, IEEE Transactions on Electron Devices, vol. 45(3), pp.
580-589.

[6] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement
of Standard Cell VLSI Circuits”,IEEE Transactions on Computer-
Aided Design4(1) (1985), pp. 92-98

[7] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-Removal
Using Iterative Improvement Techniques”,Proc. IEEE International
Conference on Computer-Aided Design, 1996, pp. 194-200

[8] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for
Improving Network Partitions”,Proc. ACM/IEEE Design Automa-
tion Conference, 1982, pp. 175-181.

[9] M. R. Garey and D. S. Johnson, “Computers and Intractability, a
Guide to the Theory of NP-completeness”, W. H. Freeman and Com-
pany: New York, 1979, pp. 223

[10] M. K. Goldberg and M. Burstein, “Heuristic Improvement Technique
for Bisection of VLSI Networks”,IEEE Transactions on Computer-
Aided Design, 1983, pp. 122-125.

[11] S. Hauck and G. Borriello, “An Evaluation of Bipartitioning
Techniques”,IEEE Transactions on Computer-Aided Design16(8)
(1997), pp. 849-866.

[12] D. J. Huang and A. B. Kahng, “Partitioning-Based Standard Cell
Global Placement with an Exact Objective”,Proc. ACM/IEEE Inter-
national Symposium on Physical Design, 1997, pp. 18-25.

[13] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs”,Bell System Tech. Journal49 (1970), pp. 291-
307.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-
level Hypergraph Partitioning: Applications in VLSI Design”,Proc.
ACM/IEEE Design Automation Conference, 1997, pp. 526-529.

[15] B. Landman and R. Russo, “On a Pin Versus Block Relationship for
Partitioning of Logic Graphs”,IEEE Transactions on ComputersC-
20(12) (1971), pp. 1469-1479.

[16] P. R. Suaris and G. Kedem, “Quadrisection: A New Approach to
Standard Cell Layout”,Proc. IEEE/ACM International Conference
on Computer-Aided Design, 1987, pp. 474-477.

[17] D. Sylvester and K. Keutzer, “Getting to the Bottom of Deep-
Submicron”, to appear inProc. IEEE Intl. Conference on Computer-
Aided Design, November 1998.

