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Abstract

We present approximations to non-smooth continuous func-
tions by di�erentiable functions which are parameterized
by a scalar � > 0 and have convenient limit behavior as
� ! 0. For standard numerical methods, this translates
into a tradeo� between solution quality and speed. We show
the utility of our approximations for wirelength and delay
estimations used by analytical placers for VLSI layout. Our
approximations lead to more \solvable" problems.

1 Introduction

Continuous optimization problems often involve convex ob-
jective and constraint functions that are di�erentiable al-
most everywhere, but have non-di�erentiabilities due to di-
rectional derivatives disagreeing at some points. This non-
di�erentiability can occur, e.g., when the functions involve
absolute values. Examples in VLSI analytic placement in-
clude wirelength [1, 14] and delay [7, 8, 15], both of which
depend on the absolute value of node-to-node distances. Ex-
amples abound in other applications, e.g., multifacility lo-
cation [5, 11] and denoising in image processing.

Optimization methods that assume di�erentiability, e.g.,
Newton methods and variants [10, 18], are unsatisfactory if
optima occur at or near points of non-di�erentiability.1

In recent applications [1, 5, 11], non-di�erentiability has
been addressed by function regularization, i.e., removing
non-di�erentiabilities without signi�cantly changing the set
of minimizers. Newton-type methods become applicable:
their speed improves as the magnitude of the regularization
increases, but optima of the regularized objective diverge
from those of the original problem. To gauge this tradeo�,
the regularization is parameterized by a scalar � � 0, with
� = 0 corresponding to the original function and any � > 0
giving a smooth function amenable to numerical methods.
Reasonable convergence properties as � ! 0 and problem-
independent scaling of � allow the use of a regularized ob-
jective, instead of the original objective, for practical appli-
cations.

This paper proposes new generalized approaches to con-
struct regularizations for given objectives, notably piecewise
linear functions that are used by analytical placers in VLSI
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1More sophisticated methods typically complicate algorithms, in-
crease computational e�ort, and have convergence problems. E.g.,
sub-gradient optimization [9], use of an auxiliary variable and aux-
iliary inequality constraints [6, x4.2.3] or solution of a sequence of
problems with updated weights in the objective function [6, x4.2.3].

layout. A special case has been successfully applied to the
minimization of linear wirelength [1] and gives a new in-
terpretation of the well-known heuristic GORDIAN-L [14].
We give regularizations of linear wirelength and path-delay
based objectives that cannot be produced by previous ap-
proaches.2 Combining our proposed regularization with a
novel strictly convex estimate for path-based delay yields
problems that are amenable to Newton-type methods, yet
are smaller and easier to solve than those produced by
[7, 8, 15]. We thus achieve a new outlook on performance-
driven analytical placement.

Section 2 describes our proposed methods of function
regularization, complete with asymptotic theorems and typ-
ical examples. Section 3 discusses two issues critical for im-
plementations: changes in the set of minimizers when the
original objective is regularized, and scale-independent reg-
ularization. Applications to VLSI layout are given in Section
4, and conclusions are given in Section 5.

2 Function regularization

For an open subset X � Rn, we assume a continuous convex
function f : X ! R and seek a family of smooth convex
functions f�(�) for � > 0 such that

(a) lim�!0 f�(x) = f(x) uniformly on Rn

(b) lim�!0 infx2Rn f�(x) = infx2Rn f(x)

For simple functions, we provide \recipes" for regular-
ization and prove their desired limit behaviour. For com-
plicated functions, e.g., f(x) = 2jxj + x2, we isolate non-
di�erentiabilities to small symbolic fragments for which
recipes exist. Replacing the symbolic fragments with their
regularizations yields a regularization of the overall function.

2.1 Piecewise linear functions

We begin by considering f : R! R and distinguish a com-
mon case where regularizing f is easy:

f(x) =

�
�1(x� x0) + C; if x � x0;
�2(x� x0) + C; if x < x0;

(1)

where �1 > 0, �2 < 0, and C is arbitrary.
For p � 2, the �-regularization of f is de�ned by:

8x; f�(x) = C + (jf(x)� Cjp + �)
1

p : (2)

2In [11], the lp norm (
P

jxij
p)

1

p is regularized with (
P

jxij
p +

�)
1

p , which is not smooth for p=1 (the Manhattan norm which gov-
erns node-to-node distances used in wirelength and delay estimation).



This regularization is di�erent from that in [11], as p is now
a regularization parameter.

Example 1: If f(x) = jxj and p = 2 then f�(x) =
p

x2 + �.
This can be used to regularize the l1-norm. The value p = 2
is typical since it is the smallest value for which the regular-
ized function is twice-di�erentiable. (See Theorem 1.)

Theorem 1: 8p � 2; 8 � > 0, f� de�ned in (2) is:

(a) at least (dpe � 1)-times continuously di�erentiable,

(b) strictly convex,

(c) for p > 2 a non-integer: exactly dpe � 1 = bpc-times
continuously di�erentiable,

(d) for p � 2 an integer: at least p-times di�erentiable
(in fact, in�nitely di�erentiable) i� �1 = ��2.

Proof: The function f� is continuous everywhere and is
in�nitely-di�erentiable everywhere except at x0. The second
derivative exists and is positive everywhere, except possibly
at x0, leading to (b).

The 1st,...,(dpe�1)th left and right derivatives of jf(x)�
Cjp are all zero at x0, while for p a non-integer its higher
derivatives are in�nite. The chain rule then implies (a) and
(c).

If �1 = ��2 and p � 2 is an integer, then f�(x) =

C + ((�1)
pjx � x0j

p + �)1=p, and is in�nitely di�erentiable.
If, instead, �1 6= ��2 then the left and right p-th derivatives
of jf(x)� Cjp di�er at x0, proving the \only if" of (d).

Theorem 2: For f� de�ned in (2), we have:

(a) 8x; jf�(x)� f(x)j � �1=p,

(b) lim�!0 f�(x) = limp!1 f�(x) = f(x) uniformly on R,

(c) 8x; 8�1 > �2 > 0, f�1(x) > f�2(x) > f0(x) = f(x),

(d) lim�!0minx2R f�(x) = minx2R f(x),

(e) 8� > 0 limx!�1 f�(x) = f(x).

Proof: The inequalities (c) are shown by subtracting C
and taking both sides of the inequality to the power p. Note
that f� �C � �1=p > 0 for � > 0.

For (a), observe that � = j(f� � C)p � (f � C)pj =
j(f� � C) � (f � C)j � j(f� � C)p�1 + : : : + (f � C)p�1j �

(f� � C)p�1jf� � f j � �
p�1

p jf� � f j.
Item (b) follows from (a); (d) follows from (b) and (c).
Using (c) and the above inequalities, we have jf�(x) �

f(x)j � �
(f�(x)�C)p�1 . Since limx!�1 f�(x) = 1 for

�1; �2 6= 0, we have that limx!�1 jf�(x)� f(x)j = 0, prov-
ing (e).

Note that 2(e) is not true anymore with �1 = 0 or �2 = 0
(e.g., f(x) = �1maxfx; 0g or f(x) = ��2minfx; 0g). These
two cases can be reduced to �1 6= 0 and �2 6= 0 by ro-
tating the plot around the coordinate center, which moti-
vates an alternative regularization of f that is coordinate-
independent. Consider the upper branch of a hyperbola
with asymptotes going along the plot of f(x). For f(x) =
�1maxf0; x�x0g+C (the same as (1) with �2 = 0) such a
hyperbola can be de�ned in the x-y plane (i.e., for y = f(x))
with the following equation:3

(2(y � C)=�1 � x+ x0)
2 � (x� x0)

2 = �: (3)

3For �1 > 0 and �2 < 0, a hyperbola similar to that in Equation
(3) would de�ne an in�nitely di�erentiable regularization, otherwise
satisfying the statements of Theorems 1 and 2. For �1 6= ��2, it will
di�er from the regularization de�ned in (1) because the latter is not
twice-di�erentiable according to Theorem 1(d).

One can verify that Theorem 1 holds for this regulariza-
tion with the regularized function being in�nitely di�eren-
tiable as well. Theorem 2 also holds. For piecewise linear
functions, we need:

Fact 3: Any convex piecewise linear function with k linear
segments can be presented (not necessarily uniquely) as a
sum of k� 1 convex functions of the form (1), possibly with
�1 = 0 or �2 = 0.

Corollary 4: Any convex piecewise linear function with k
linear segments can be �-regularized with jf(x)� f�(x)j �

�1=p(k� 1). The regularization will possess properties from
Theorems 1 and 2.

Example 2: If �1 and �2 in (1) are of the same sign, but
f(x) is still convex, then by Corollary 4 it can be regularized.
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Figure 1: f(x) = j1�xj+2jxj+j0:4�xj with p = 2 and f�(x) =p
(1 � x)2 + � + 2

p
x2 + � +

p
(0:4� x)2 + �; � = 0:01.

2.2 Symbolic regularization and examples

For many functions, the cusps that need to be regularized
are due to an absolute value or more general case analysis
in the symbolic representation of the function. De�ne F by:

8x;F (x) =

�
F1(x� x0) + C; if x � x0;
F2(x� x0) + C; if x < x0;

(4)

with F1(t); t � 0 and F2(t); t � 0 continuously di�erentiable,
non-negative, convex, and F1(0) = F2(0) = 0, but not nec-
essarily F 01(0

+) = F 02(0
�). Let C be arbitrary.

For p � 2, the �-regularization of F (x) is de�ned by:

8x;F�(x) = C + (jF (x)�Cjp + �)
1

p ; (5)

which subsumes (2) for the piecewise linear case.
Replacing a symbolic fragment with a regularization in

a larger function leads to a smooth function.4

Example 3: maxfa; bg = (a+b+ja�bj))=2 and minfa; bg =
(a+ b� ja� bj))=2 can be regularized as, respectively, (a+

b+ (ja� bjp + �)1=p)=2 and (a+ b� (ja� bjp + �)1=p)=2.

In particular, for f(x) = maxf0; (x�x0)g and p = 2, f�(x) =
1
2
((x�x0)+

p
(x� x0)2 + �), which matches the hyperbola

in (3) when �2 = 1.

Example 4: f(a; b) = maxf(a+ b)2; (a� b)2g = a2 + b2 +

2jabj can be regularized as f�(a; b) = a2+ b2+2
p

a2b2 + �.
4The convexity properties and the limit behavior of the fragment

regularizations often extend to the resulting function through sums,
products, exponents, etc. Properties 1 and 2 from [11] provide ex-
cellent examples of such symbolic regularization; however, the non-
di�erentiable fragments are regularized di�erently there.



3 Practical issues

When f(x) is convex, but not strictly convex, it can have
multiple minimizers. However, f�(x) is strictly convex for
� > 0 and has only one minimizer (see, e.g., Figure 1). From
the theorems in Section 2, under mild conditions a minimizer
of f can be obtained as the limit of the minimizer of f�(x)
as � ! 0. In some cases, the minimizer of f�(x) already
minimizes f(x), e.g., for any � the unconstrained minimizer
of (2) is the unconstrained minimizer of (1).

Numerical methods using �-regularization require spe-
ci�c values of � to evaluate the regularization or its deriva-
tives. Ideally, this should be independent of the scale of
the arguments in the objective function. In other words,
regularization should scale independently of �.

Proposition 5: Given f(x) = jxj, limx!1 f�(kx)=f�(x) =
f(kx)=f(x), 8 k > 0 � > 0.
Proof: limx!1 kpxp + �=xp + � = kp.

To have f�(x)(kx)=f�(x)(x) = Kf(kx)=f(x) for all x and

someK, �(x) must scale as xp. In practice, the pth exponent
of the maximal x value for a problem can be multiplied by
an instance-independent �0 to produce �.

4 Applications to Analytical Placement

4.1 Wirelength approximation

Analytical placers position nodes to minimize wirelength by
solving a sequence of optimization problems. Since exact
wiring of edges is unknown, linear wirelength estimates are
used. Typically, linear constraints of the form Hx = b are
included. The resulting problem:

min
x

f
P

i>j
aij jxi � xj j : Hx = bg (6)

(x represents unknown node positions) is not amenable to
Newton-type methods since it is neither di�erentiable nor
strictly convex. However, since the number of unknowns x
is large (104 { 106), Newton-type methods are essential for
computational e�ciency.

One methodology, GORDIAN-L [14], is based on updat-
ing weights on the objective [6, x4.2.3] and considers:

min
x�

f
P

i>j

aij

jx
��1

i
�x

��1

j
j
(x�i � x�j )

2 : Hx� = bg; (7)

where x��1 and x� denote the vectors of node positions
at iterations � � 1 and �. A quadratic objective is used
to avoid the non-di�erentiability of (6), but the coe�cients
of the objective are updated iteratively to approximate the
linear wirelength estimate.

As an alternative, regularization of (6) has been proposed
in [1] and considers:

min
x

f
P

i>j
aij
p
(xi � xj)

2 + � : Hx = bg: (8)

This optimization problem was solved in [1] in two ways:
with a linearly-convergent �xed-point method due to
Eckardt's [2, 3] generalization of the Weiszfeld algorithm
[17], and with a novel primal-dual Newton method having
quadratic convergence. Numerical testing in [1] illustrates
the tradeo�s in values of � > 0 versus time and di�culty.5

5It is also shown in [1] that the GORDIAN-L heuristic can be
interpreted as a special case � = 0 of a �xed-point method having
guaranteed linear convergence for � > 0. This can be seen by di�er-
entiating the objective function in (8), setting � = 0 and comparing
to (7).
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Figure 2: Wiring model for a single net.

4.2 Delay approximation

Performance-driven analytical placers typically rely on El-
more delays [4] in approximating critical path delays. If an
equivalent-� model is used for each segment of interconnect
(i.e., a lumped-distributed model with half the capacitance
at each end), then the Elmore delay is a posynomial, but
not strictly convex, function of the lengths of the intercon-
nect segments.6 Not all objectives and constraints can be
cast as posynomials, e.g., absolute values and node positions
appearing in length calculations (cf. (7)).

A popular ad hoc approach is to convert timing analysis
results into net weights [16, 13] incorporated into the wire-
length objective function. Path-based delays have also been
included explicitly as nondi�erentiable constraints [7, 8, 15],
but numerical solutions are hard and the constraints are
many, e.g., for k critical paths, each with an average of e
edges, ke constraints are required in [8].

Thus, the problem of including explicit performance in-
formation is still open. Two elements are necessary: (i)
strictly convex delay estimates in terms of node positions
and (ii) their regularization to remove non-di�erentiabilities.

For a given net we use rectilinear L-shaped interconnects
to connect the source directly to each sink (see Figure 2).
An equivalent-L model is used for each of the two segments
of each L-shaped interconnect. Let Cs be the capacitance of
sink s, Rd be the driver resistance and rx (ry) and cx (cy)
be the per-unit interconnect series resistance and shunt ca-
pacitance, resp., in the x- (y-) direction equivalent-L model.
The delay from the source to a speci�c sink consists of:

(a) Source resistance times all downstream capacitance:

Rd(
P

s
cxj�j+ cyjj + Cs) (9)

(b) Interconnect resistance times sink capacitance:

(rxj�j+ ryjj)Cs (10)

(c) Interconnect resistance times interconnect capacitance:

rxcx�
2 + rycy

2 + rycxj�jjj: (11)

where � = xd � xs and  = yd � ys. Components (a) and
(b) are convex. However, they are non-di�erentiable when
nodes are aligned vertically or horizontally. Component (c)
is clearly convex if (but not \only if") the cross term j�jjj is
ignored. The magnitude of the cross term can be comparable
to other terms and should not be ignored if strict convexity
can be otherwise guaranteed.

Proposition 6: If cy=ry > 0:25cx=rx then the delay com-
ponent (c) is strictly convex.
Proof: The functions q�; q+ : R2 ! R

q�(�; ) = �2rxcx + 2rycy � rycx�; (12)

q+(�; ) = �2rxcx + 2rycy + rycx�; (13)

6If all objective and constraint functions are posynomial functions,
then a transformation can be used to produce a convex problem with
strictly convex objective [6, x6.8.2.3].
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Figure 3: Regularization of the interconnect delay.

are strictly convex under the assumption of the proposition.
The function d(�; ) = maxfq�(�; ); q+(�; )g is the max-
imum of two strictly convex functions and is hence strictly
convex. The function d(xd � xs; yd � ys) is strictly convex
due to the composition and equals the interconnect delay.

Thus, given suitable capacitance to resistance ratios in
the di�erent routing directions (e.g., di�erent metal layers),
the cross term can be kept. Regularization of delay com-
ponents (a) and (b) is straightforward. Component (c) is
regularized similarly to Example 4 in Section 2.2 as

q
(�rycx)

2 + � + �2rxcx + 2rycy: (14)

Figure 3 illustrates (11) and its regularization (14).
Finally, critical path delays can be taken as the sum of

the delay along those edges along the path. Since the indi-
vidual edge delays are convex, so is the path delay.

4.3 Wire length and delay brought together

We propose several concise performance-driven formula-
tions. For penalization of critical path delays, we propose

min
x;y

ff(x; y) +K
P

�2P
d��(x; y) : x; y 2 
g; (15)

where f(x; y) is the wirelength estimate, P is the set of
critical paths, d��(x; y) is the regularized delay for path �,
scalar K normalizes the delay and wirelength terms and 

represents the set of constraints.

For minimization of longest path delays we propose

min
x;y

ff(x; y) +K
P

�2P
max

�
�; d��(x; y)

	
: x; y 2 
g; (16)

where � is a \soft" target delay. Since delay information is
included directly in the objective function, the number of
constraints is not increased by the inclusion of performance-
driven information.

Finally, for \hard" timing constraints we propose:

min
x;y

�
f(x; y) : d��(x; y) � �; 8� 2 P : x; y 2 


	
: (17)

Regularization results in one constraint per critical path and
still allows for Newton-type methods (e.g., [18]).

5 Conclusions

Numerical solvers perform best with smooth and convex
functions. Non-di�erentiable points often arise when, e.g.,

Manhattan distances, are used. We have presented gen-
eral, provably good regularization techniques for eliminating
cusps in optimization objectives, and have discussed their
theoretical and practical properties. Our techniques are
more general and \modular" than those previously proposed
and can be applied to large classes of functions. Their util-
ity has been demonstrated for wirelength- and delay-based
objectives in VLSI applications, where they lead to smaller
and easier performance-driven placement formulations.
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