
On Wirelength Estimations for Row-Based Placement�

Andrew E. Caldwell, Andrew B. Kahng, Stefanus Mantik, Igor L. Markov and Alex Zelikovsky
UCLA Computer Science Department, Los Angeles, CA 90095-1596

fcaldwell,abk,stefanus,imarkov,alexzg@cs.ucla.edu

Abstract
Wirelength estimation in VLSI layout is fundamental to any pre-detailed
routing estimate of timing or routability. In this paper, we develop
new wirelength estimation techniques appropriate for top-down floor-
planning and placement synthesis of row-based VLSI layouts. Our
methods include accurate, linear-time approaches, often with sublinear
time complexity for dynamic updating of estimates (e.g., for annealing
placement). The new techniques offer advantages not only for early
on-line wirelength estimation during top-down placement, but also for
a posteriori estimation of routed wirelength given a final placement.
In developing these new estimators, we have made several theoretical
contributions. Notably, we have resolved the long-standing discrepancy
betweenregion-basedandbounding box-basedRSMT estimation tech-
niques; this leads to new estimates that are functions of instance sizen
and aspect ratioAR.

1 Introduction
Wirelength estimation in VLSI layout is fundamental to any pre-detailed
routing estimate of timing or routability. Accordingly, wirelength esti-
mation has been studied in such contexts as gate-array routability [5],
hierarchical top-down layout [4] [6] [18], floorplanning [9], and growth
rates of rectilinear Steiner minimal trees [16] [17] [3]. Our present work
is aimed at wirelength estimationduring the synthesis of row-based
placement.

We distinguish three basic types of wirelength estimations associ-
ated with placement:a priori, a posterioriandon-lineestimations.1

� A priori estimation seeks to estimate the total wirelength of a lay-
out design in advance, before placement. For example, a floor-
planner may use such estimates to obtain rough measures of routa-
bility, RC parasitics and circuit performance; these in turn drive
floorplan changes and circuit optimizations. For such estimates
to provide leverage, they must be faster than the actual placement
or routing constructions, at the cost of reduced accuracy. Such es-
timates are typified by the “wireload models” used in RTL floor-
planning and logic optimization.

� A posterioriestimation occurs when we are given a fixed place-
ment and want to estimate the post-routing wirelength. This is
of value whenever routing requires significantly more CPU time
than placement or wiring estimation. Typical applications in-
clude predicting the routability of gate array layouts [5] [6], esti-

�This research was supported by a grant from Cadence Design Systems, Inc.
1We do not discuss the class ofconstructivewiring estimators, which essentially con-

struct the layout down to global or detailed routing in order to obtain an “estimate” of the
wiring. Constructive estimators can be relevant to certain design methodologies, but we are
more concerned with early and fast predictions that afford the leverage essential to forward
synthesis.

mating channel height in standard-cell layouts [13] [14], choos-
ing between two competing placements, etc. Again, such es-
timates must be faster than actual construction of the routing.
(Note that accuracy need not be perfect if the estimate has good
“fidelity”, i.e., for any two solutions the estimator correctly pre-
dicts which one is better even if the estimate of relative solution
costs may be inaccurate.

� On-line estimation occurs when we want to estimate the wire-
lengthduring top-down hierarchical floorplanning or placement.
This has many applications. For example, the estimate can be
used to stop the placement process early, as soon as it becomes
obvious that the placement process is leading to a bad solution.
Early estimates of wirelength can also be used to shorten the
feedback loops in timing- and wirelength-driven placement: clock
tree synthesis, scan ordering, gate sizing, etc. may all be done
earlier in the flow when good wiring estimates are available. Fi-
nally, wirelength estimates can be useful in determining the merit
of local perturbations to the current solution. For example, the in-
ner loop of a simulated annealing placer requires us to accurately
estimate the quality of a proposed move. Since this incremental
cost estimation is one of the main contributors to annealing place-
ment runtime, an on-line estimator must be very fast. The accu-
racy of on-line wirelength estimation should be between those for
a priori anda posteriori regimes, reflecting the available infor-
mation (more information thana priori, less thana posteriori).

Previous Wirelength Estimation Techniques
In the present work, we equate “wirelength estimation” with “estima-
tion of the rectilinear Steiner minimal tree (RSMT) cost”.2 The input
to the RSMT problem is a pointsetP of sizejPj= n. P can be chosen
randomly from a uniform distribution over a rectangular regionR hav-
ing widthwR and heighthR. Alternatively, we may know the minimum
bounding box enclosing all points ofP, having widthwbb and height
hbb. We now review the most relevant literature for this problem.
Growth rates of subadditive functionals in the Euclidean plane.The
work of [17] [15], in a literature that stems from the seminal work of
Beardwood et al. [1], shows that the expected cost (total tree length)
of a Euclidean Steiner minimal tree overn uniformly random points
chosen within a bounded plane regionR of areawR �hR is proportional
to
p

wR �hR �n for sufficiently largen. The constant of proportionality,
denoted byβ, is dependent on the functional of the pointset (e.g., the
minimum spanning tree cost, or the minimum traveling salesperson tour
cost, have similar growth rates but different constants of proportionality
βEMST, βETSP, etc.).
MST-based methods.Hwang [10] shows that the rectilinear Steiner
ratio (worst-case ratio of rectilinear minimum spanning tree (RMST)
cost to RSMT cost) is 3=2. Hence, 2=3 times the RMST cost is a lower
bound on RSMT cost. Since the RMST cost is an upper bound on
RSMT cost, one might propose, e.g., 5=6 times the RMST cost as an

2We understand that router outputs may not be the same as RSMTs (due to the routing
heuristic, congestion, timing or noise constraints, and obstacles), and we understand that
minimum wirelength is not perfectly correlated with minimum delay or maximum routabil-
ity. Nevertheless, pure RSMT cost estimation remains a core technology within today’s
industry floorplanners, I/O pin optimizers, global and detailed placers, and related tools.
Our ongoing work is developing extensions to model the effects of routability and perfor-
mance optimization.



RSMT estimator that guarantees at most 16% error. Alternatively, em-

pirical studies show thatcost(RSMT)
cost(RMST) averages around 0:88; see [12] for

a review. While MST-based estimators are excellent, we avoid them be-
cause their implementation requiresΩ(nlogn) runtime with fairly high
constant, or elseΩ(n2) runtime.3

Bounding box based methods.In iterative improvement placers, the
objective is typically based on the half-perimeter of the bounding box
of pin locations for each net, i.e., the RSMT estimate iswbb+hbb. This
is computed in linear time; given appropriate data caching, it can be
updated in expected sublinear time when a cell is moved. The bounding
box half-perimeter exactly gives the RSMT cost for 2- and 3-pin nets,
and can be fairly accurate for larger nets if the bounding box aspect
ratio becomes large (see below). However, during top-down placement
or floorplanning, the pin locations are typically snapped to the centers
of theregionsin which they are located, after which the bounding box
computation occurs. This can be an unbounded factor smaller than
the correct value4; corrections for special cases have been proposed
by Donath [4] and subsequent authors.

Chung and Hwang [3] study the worst-case cost of the rectilinear
Steiner minimal tree (RSMT) overn points with bounding box dimen-

sionswbb;hbb. The maximum value ofcost(RSMT)
wbb+hbb

tends to
p

n+1
2 as

n! ∞. Several authors (e.g., Sechen) have noted that this result im-
plies a correction factor to the bounding box half-perimeter estimate
for nets withjPj> 3.

Hamada et al. [8] propose a purelya priori wirelength estima-
tion based on local neighborhood analysis. Nets are expanded into
cliques, and 2-neighborhoods of each are analyzed to obtain parameters
of branching within the circuit. Multi-pin net wirelength estimates are
inferred from these parameters and a physical model in which neigh-
bors of a given cell compete for locations close to that cell.

Cheng [2] empirically estimates the probability of having a wire
pass through any given point within a net bounding box when the net
is routed. His methodology is equivalent to estimating the horizontal
and vertical components of the RSMT cost, as a correction factor to the
sum(wbb+hbb). The correction factor is a function of the net sizen;
[2] provides a table of such correction factors obtained by Monte Carlo
methods.5

Our Contributions
In this paper, we develop new on-line wirelength estimation techniques
appropriate for top-down floorplanning and placement synthesis of row-
based VLSI layouts. Our methods include accurate, linear-time ap-
proaches (typically with sublinear time complexity for dynamic updat-
ing of estimates) to guide both iterative and top-down placement meth-
ods.

We make the following theoretical contributions.

� First, we develop new bounding box estimators for on-line wire-
length estimation in top-down layout. Specifically, we give both
an exactO(n2) algorithm and twoO(n) heuristics for computing
the expected bounding box ofn points with known distribution
amongk regions of a floorplan or hierarchical placement. Im-
portantly, our heuristics are much faster that the exact algorithm

3As we will emphasize below, our work seekslinear-timeestimators that fit a dynamic /
on-line use model. We do recognize that MST-based estimators have the interesting feature
that they return an actual topology, as opposed to just a cost estimate. Our experience
with industrial deep-submicron libraries and process technologies is that with well-balanced
and well-sized circuits the resistive interconnect effects are not dominant, e.g., lumped-
capacitance or simpleCef f estimates as in [11] are adequate. Whether any routing estimate
(as opposed to a detailed Steiner embedding) can be used for noise-avoidance is yet unclear.

4Consider two tall and thin regions next to each other; the distance between their cen-
ters is an unbounded factor smaller than the expected distance between two random points
chosen from the two regions.

5A detailed survey of all RSMT estimates is beyond the scope of this draft. For example,
we omit discussion of methods (e.g., the improvement of Donath’s technique given in [18],
or [9]) that estimate hierarchical interconnections as opposed to RSMTs.

even for small values ofn, which makes them better choices in
many applications.

� Second, we make new insights into the discrepancy between asymp-
totic results of Steele et al. (that expected RSMT cost is propor-
tional to

p
wR �hR �n) and the accepted practice (that expected

RSMT cost is proportional to
p

n� (wbb+hbb)).

� Third, we demonstrate why a practical estimator of expected RSMT
cost cannot simply be based on a single constantβ. Rather, such
an estimator must be based on a set of valuesβ(n;AR) (whereAR
is the aspect ratio of the region within which points are randomly
chosen, or else the aspect ratio of the pointset’s bounding box).

� Fourth, we develop new wirelength estimators using pure ana-
lytic techniques (specifically, a direct combination of the first and
third results above), empirical (table-lookup) approaches6, and a
combination of the table-lookup and analytic techniques.

We also make the following practical contributions.

� We show that our new estimators are substantially more accurate
than previous methods that are used in industry tools, including
bounding box methods and the method of Cheng [2].

� We validate our new wirelength estimators in the on-line context,
using a top-down partitioning-based placement tool. We show
that our new estimators can stably and accurately predict eventual
total RSMT cost or total bounding box half-perimeter early in the
top-down placement process. Thus, unpromising solutions can
be pruned earlier in the top-down layout process.

2 The Bounding Box ofn Random Points With Given
Distribution Among k Rectangles

Hierarchical partitioning- and annealing-based placers maintain lists of
rectangular regions and cells assigned to each region. Until the bottom
level of the placement, cells may have no particular location, yet wire-
length cost estimates are needed to drive further partitioning or anneal-
ing. We therefore estimate the expected Manhattan wirelength under
the assumption that cells are uniformly distributed within the rectan-
gular regions to which they are assigned.7 In particular, for each net
we estimate the expected half-perimeter of the bounding box, assuming
each pin is uniformly distributed in the region to which its cell belongs.
Formally, we are givenN rectanglesRi , i = 1; : : : ;N, in the rectilinear
plane, and we are given that theith rectangle containsni uniformly ran-
dom points. We seek estimates of the expected width and height of the
bounding box of alln= ∑N

i=1 ni random points.
The straightforward and often used heuristic – assuming that each

cell is placed in the center of its rectangle (i.e., at its expected location)
– can be smaller than the correct answer by an unbounded factor. In the
example shown after Fact 4, this heuristic underestimates the expected
distance between two pins by one third of the bounding box size, and
can return a zero estimate when the true expected distance is large.8

Since thex� and they�coordinates of each pin are independent
random variables with ranges in segments, we can estimate the two
sides of the bounding box separately and add the results to obtain the
expected half-perimeter. Since the expected side of the bounding box
is simply the expected distance between the maximal and the minimal
random point, finding these two expectations (i.e., of the maximal and

6The empirical approach easily allows practical variants, e.g., a given routing tool’s
characteristics can be captured by using the router’s results, rather than the output of an
RSMT heuristic, to create the lookup tables.

7The techniques that we develop below apply to the case where there is a known non-
uniform probability distribution for pin locations within a given region (e.g., [9]).

8We are not the first to notice this error, e.g., [9] cite Donath [4] as a source for simple
correction factors in the cases ofN = 1;2. Our purpose in this section is to develop a more
complete theory than in previous works, and to use it as the basis for novel wirelength
estimators in subsequent sections.



minimal coordinates) will solve the problem. Let us specify a given
rectangleRi by its lower-left and upper-right cornersf(ax

i ;a
y
i );(b

x
i ;b

y
i )g

with ax
i � bx

i anday
i � by

i . Then, the computation of the expected bound-
ing box of then points is given in Figure 1.

Computation of the Expected Bounding Box
Input: RectanglesRi = f(ax

i ;a
y
i );(b

x
i ;b

y
i )g; i = 1: : :N

each withni random points
Output: The expected widthEwidth and the expected heightEheight

of the bounding box of all points
For horizontal segments[ax

i ;b
x
i ] with ni random points each:

find Ele f t, the expected location of the leftmost point
find Eright , the expected location of the rightmost point

For vertical segments[ay
i ;b

y
i ] with ni random points each:

find Etop, the expected location of the topmost point
find Ebottom, the expected location of the bottommost point

Output Ewidth = Eright �Ele f t andEheight= Etop�Ebottom

Figure 1: Computing the expected bounding box forn points dis-
tributed overN rectangles.

In the remainder of this section, we will deal with computing the ex-
pected location of theleftmostpoint, because computing any ofEright ,
Etop, or Ebottomobviously reduces to computingEle f t:

The Expected Minimum Problem. Given N segments[ai ;bi ]; i =1; : : : ;N
on the real line with ni points distributed uniformly in the ith segment,
find the expected location of the point with minimum coordinate.

The following subsection gives an exactO(n2) algorithm, and subsec-
tion 2.2 givesO(n) andO(nlogn) heuristics that we use as the basis of
new estimators in later sections.

2.1 Exact Solution of the Expected Minimum Prob-
lem

We work with a random pointPi on a segment in terms of itscumulative
distribution function pi(t) : [ai ;bi ]! [0;1], which gives the probability
of the point appearing to the left oft. Thus, 1� pi(t) gives the proba-
bility of the point appearing to the right oft. The uniform distribution
corresponds to the cumulative distributionpi(t) =

t�ai
bi�ai

.
We can extend cumulative distribution functions by 0 to the left

from ai and by 1 to the right frombi , allowing us to deal with ran-
dom pointssupportedon different segments (i.e., taking non-zero and
non-one values of the cumulative distribution only on their respective
segments).

Fact 1 For n independent random points with cumulative distributions
pi(t), the distribution of the minimum is1�∏n

i=1(1� pi(t)).

Fact 2 The expected location of a random point with distributionτ(t)
supported within[A;B] is E= B� R B

A τ(t) dt.9

Since a point distributed on[ai ;bi ] is also distributed on any contain-
ing segment (but not vice versa), one can enlarge[ai ;bi ] to any [A;B]
when considering products in Fact 1 and the theorems below. Facts 1
and 2 imply

Fact 3 For n independent random points with cumulative distributions
pi(t) supported within the segment[A;B] (i.e. having its non-zero and
non-one values within[A;B]), the expected minimum is

Emin = B�
Z B

A
(1�

n

∏
i=1

(1� pi(t))) dt = A+

Z B

A
(

n

∏
i=1

(1� pi(t))) dt

9Idea of the proof: Represent the cumulative distribution as the derivative of the distri-
bution and integrate by parts.

Fact 4 The expected minimum for k independent random points uni-
formly distributed on the segment[0;1] is 1

k+1 .

Example. If two points are uniformly distributed on[0;1] the leftmost
is expected at13 and the rightmost — at23. Consequently, the straight-
forward estimate for the expected distance between two random points
as the distance between their expectations (0 in this case) will be wrong
by 1

3 of the bounding box size for the region over which the points are
distributed (or 100% of the correct result).

Theorem 2.1 Consider n random points, each of which is indepen-
dently and uniformly distributed on segment[ai ;bi ], i = 1; :::;n. Let
ai � ai+1 and let A= a1 and B= minbi . Then the expected minimum
Emin is

Emin=A+

Z B

A

�
1� t�a1

b1�a1

�
dt�

n

∑
i=2

Z B

ai

t�ai

bi �ai

i�1

∏
j=1

�
1� t�aj

bj �aj

�
dt

The formula above can be computed inn steps, spendingO(n) time
on each step to multiplyP(t) by a linear polynomial and integrate the
result.

The Expected Minimum Algorithm
Input: segments[ai ;bi ]; i = 1::N each containingni random points
Output: The expected positionEmin of the minimum point
SetM = minbi , the smallest of the right segment endpoints
Discard all segments with left endpoint greater thanM
Sort the segments by left endpoints, such thata1 � : : :� an
SetA= a1
E = A+

R M
A (1� t�a1

b1�a1
)dt ; P(t) = 1

For each i = 2; : : : ;n
P(t) = P(t)(1� t�ai�1

t�bi�1
)

E = E �R B
ai

t�ai
bi�ai

P(t)dt
Output Emin = E

Figure 2: AnO(n2) exact algorithm for expected minimum.

Theorem 2.2 The Expected Minimum Algorithm (Figure 2) finds the
expected minimum of n points uniformly distributed in segments[ai ;bi ]
in time O(n2).

Theorem 2.1 shows that the expectation of the minimum is com-
puted starting from the expectation of one point, with a series of appar-
ently exponentially decreasing negative corrections. This motivates the
question of designing linear or near-linear time heuristics:if we allow
for small decreasing errors to the above corrections, the cumulative
error will be small.

2.2 Fast Estimation of the Expected Minimum
We now present two heuristics for finding the expected minimum which
are significantly faster than the exact algorithm, not only asymptoti-
cally, but also for small values ofn.

The linear-time heuristic starts with the segment for the first random
point and gradually shifts both endpoints of this segment to the left as
it goes sequentially through the list of all segments. The midpoint of
the resulting segment gives an approximation of the expected minimum
(see Figure 3).

The second heuristic is more accurate but slower, withO(nlogn)
runtime. It sorts all segments in decreasing order of their left endpoints



The Fast Expected Minimum Heuristic
Input: Segments[ai ;bi ]; i = 1: : :N, each with one random point
Output: Approximate expected location of the leftmost point
1. A= a1, B= b1
2. For eachof then�1 remaining segments[ai ;bi ] do

if ai < A, then swap the two segments[A;B] and[ai ;bi ]
if ai < B
then

if bi � B
thenB= B� (B�ai)

3

3(bi�ai)(B�A)

elseB= B�
1
3 (bi�ai)

2+(B�ai)(B�bi)
(B�A)

3. Output Emin =
A+B

2

Figure 3: A linear-time heuristic for expected minimum.

The Expected Minimum Heuristic
Input: Segments[ai ;bi ]; i = 1: : :N each with one random point
Output: Approximate expected location the leftmost point
1. Sort segments by left endpoints, such thata1 � : : :� an
2. Find the leftmost right endpointM = minbi
3. Omit all segments withai > M
4. Apply Fast Expected Minimum Heuristic to remaining segments

Figure 4: A more accurate,O(nlogn) expected minimum heuristic.

and finds the leftmost right endpointM = minbi . The Fast Expected
Minimum Heuristic is then applied to segments whose left endpoints
are not greater thanM (see Figure 4).

Step 2 of the Fast Expected Minimum Heuristic is based on the
following

Proposition 2.3 If [a1;b1] and[a2;b2] (a1� a2) are two segments each
containing one random point, then the expected minimum is equal to

a1+b1

2
� (b1�a2)

3

6(b1�a1)(b2�a2)
if b1 � b2;

or otherwise

a1+b1

2
�

1
3(b2�a2)

2� (b2�a2)(b1�a2)+(b1�a2)
2

2(b1�a1)

We replace a pair of segments with a new segment such that its mid-
dle approximates the expected minimum of random points in the two
original segments. This can be viewed as approximating the cumulative
distribution of the minimum (over the union of original segments) with
a linear cumulative distribution (over the new segment). The approx-
imation error of one such step is the difference between the original
expected minimum and the middle of the new segment (“new expected
minimum”). However, when the step is applied many times, additional
error is incurred by our removing higher momenta of the expected min-
imum.

To show that the sorting step (Step 1) in the Expected Minimum
Heuristic improves accuracy, consider segments[a1;b1] = [0;1] and
[ai ;bi ] = [ 1

2 ;
1
2 ], i = 2; : : : ;n. For this input, the Fast Expected Mini-

mum Heuristic correctly determines the expected minimum for the ran-
dom points in the first two segments as3

8, but the right endpoint of the
resulting segment is placed at3

4. All other segments[ai ;bi ], i = 3; : : : ;n,
further shift the right endpoint to the left. For sufficiently largen, the

right endpoint will be at12 and the approximate expected minimum will
be at1

4. On the other hand, the exact expected minimum is still3
8.

To assess the relative error of the Fast Expected Minimum Heuris-
tic, we compute both the approximate and the exact expectedmaximum
values as well. Then evaluate the relative error between the heuris-
tic’s approximated expected distance between maximum and minimum
values, and the exact expected distance between maximum and mini-
mum values. In the above example, the relative error of the Fast Ex-
pected Minimum Heuristic is 100% since the heuristic’s approximated
expected distance is34 � 1

4 = 1
2, while the exact expected distance is

5
8� 3

8 = 1
4); we believe that this is the worst case. Our Monte-Carlo ex-

periments indicate that the average error of the Fast Expected Minimum
Heuristic for random input10 is about 1.1%.

On the other hand, for the input described above, the Expected Min-
imum Heuristic finds the exact expected minimum. Monte-Carlo exper-
iments also confirm the benefit of the sorting step: for 10000 random
inputs for each value ofn= 3; : : : ;30 the expected relative error of the
Expected Minimum Heuristic was always less than 0.6%, and we never
encountered any instance with relative error greater than 5%. Based on
the symmetry of the problem, we also believe that the maximum rela-
tive error of the Expected Minimum Heuristic occurs in the case when
all segments are the same. An error bound for this case is given by the
following

Fact 5 If all segments are identical, the maximum possible error of the
Expected Minimum Heuristic is� 5:15%.

This discussion suggests that the Expected Minimum Heuristic has
small worst-case error. We leave determining the exact performance
ratio as an open problem.

3 Expected RSMT Cost forn Random Points
Distributed in a Plane Region

A literature on growth rates of subadditive functionals of pointsets,
originating with Beardwood et al. [1] and continuing through works
of Steele and Snyder [16] [17], establishes bounds on the expected
RSMT cost,E[c(RSMT)], for n points chosen uniformly at random in
a regionR. Specifically, we know thatE[c(RSMT)] ∝

p
area(R) �n

whenn grows sufficiently large. The constant of proportionalityβ does
not depend on the shape of the region.11 Empirical evidence suggests

that the expected value of the ratioc(RSMT)p
area(R)�n converges to the con-

stantβ � 0:76. If R is a rectangle, which is often appropriate in layout
applications, thenarea(R) = wR �hR andE[c(RSMT)] ∝

p
wR �hR �n.

Our work in this section is motivated by an apparent contradiction.
If the expected RSMT cost is proportional to the square root of the area
wR �hR of a given region, why are all practical estimates based on the
half-perimeterwR+ hR of the region? Put another way, if the theory
suggests use of ageometric meanestimate, why have practitioners al-
ways used anarithmetic meanestimate?12 In this section, we resolve
this puzzle both theoretically and experimentally. We show that there
is very substantial deviation from the

p
wR �hR �n expected RSMT cost

when the pointset is small and/or when the regionR is non-square (i.e.,
has aspect ratio> 1). As it happens, these are precisely the conditions
of interest for VLSI layout applications. The results of this section,
along with those of the previous section, together allow us to develop
new and highly accurate RSMT cost estimators in Section 4.

10We generatedn (n= 3; : : : ;30) random segments in the(0;1)-interval and found both
the exact and the approximate expected distance between the maximum and minimum. We
ran 10000 experiments for eachn and found that the average relative error was largest (i.e.,
about 1.2%) forn= 12 while the maximum relative error was always less than 10%.

11The argument is simple. Tile the region with uniform small squares. Apply the known
result forR= the unit square to each small square, then join the “trees” in each small square
together. The cost of joining is asymptotically negligible.

12The half-perimeter of the region is twice the arithmetic meanwR+hR
2 . We know that

many estimates scale as square-root of the number of. pins, whose average for nets in VLSI
circuits is close to 2.



c(RSMT)=
p

n�area
Aspect Ratio (AR)

n 1 2 4 8 16 32 64 128 256
4 0.64 0.67 0.78 0.98 1.29 1.76 2.44 3.44 4.82
5 0.67 0.70 0.80 0.99 1.30 1.76 2.43 3.39 4.76
6 0.69 0.72 0.81 0.99 1.27 1.73 2.41 3.36 4.68
7 0.71 0.73 0.81 0.98 1.26 1.69 2.33 3.25 4.56
8 0.72 0.74 0.82 0.97 1.24 1.66 2.28 3.16 4.44
9 0.73 0.75 0.81 0.96 1.21 1.62 2.21 3.07 4.33

10 0.74 0.75 0.81 0.95 1.19 1.57 2.15 2.99 4.18
15 0.75 0.76 0.80 0.90 1.10 1.42 1.91 2.62 3.67
20 0.76 0.77 0.80 0.87 1.03 1.30 1.73 2.37 3.29
30 0.76 0.76 0.79 0.84 0.95 1.16 1.51 2.03 2.81

Table 1: Average values ofcost(RSMT)p
n�area

over 10000 randomn-point sam-

ples in a rectangular region with aspect ratioAR.

We first show that the convergence of the ratioE[c(RSMT)]p
area(R)�n to β

strongly depends on the shape of the regionReven though the value of
β is asymptotically independent of the shape. We confine our discus-
sion to the relevant case of rectangular regions; this allows the shape
of the regionR to be expressed as anaspect ratio AR= wR

hR
, where we

assume without loss of generality thatwR > hR.

Theorem 3.1 E[c(RSMT)] for n random points chosen uniformly in a

rectangular region R is proportional to the aspect ratiow(R)
h(R) , when the

aspect ratio is sufficiently large.

Our theorem implies that we can reformulate the result from [1] as:
E[c(RSMT)] ∝

p
area(R) �n for a sufficiently large numbern> N0 of

random points chosen uniformly in a regionR, whereN0 depends on
the shape of the regionR. We experimentally validate the theorem, as
well as the original result from the literature, by the following experi-
ment. We first generateN = 10000 random instances ofn points, for
n = 4;5; : : : ;30 (note thatn = 2;3 are not interesting), chosen from a
uniform distribution in the rectangular region[0;1]� [0;AR], for val-
ues of aspect ratioAR= 1;2;4;8; :::;512. We then find the cost of a
heuristic RSMT over the generatedn points using the Batched Iterated
1-Steiner implementation of Griffith et al. [7], and divide this cost byp

AR�n.13 Table 1 presents the resulting valuesβ(n;AR), which we
know should converge toβ � 0:76 by the theory of Beardwood, Steele
et al. The plot of Figure 5 presents a portion of the Table 1 data in
an alternate way; we give individual curves depicting the convergence
of β(n;AR) for different values of the aspect ratioAR. Notice that the
convergence is slower for larger values ofAR, and that the deviation
of β(n;AR) from β is larger whenn is small. The wide separation of
the curves for smalln, and the slow convergence for largeAR, explains
the discrepancy between the theoretical result and the observed use in
practice of half-perimeter based RSMT estimators.

4 Expected RSMT Cost ofn Random Points
Distributed in a Specified Bounding Box

While the results of the previous section allow improved estimates of
c(RSMT) for pointsets in a given (rectangular) region, such estimates
can often be very rough. In practice, e.g., fora posterioriestimation,
the bounding box of the RSMT instance (indeed, the entire pointset) is
known. Intuitively, the more we know about the pointset, the better our
estimate ofc(RSMT) should be. In this section, we theoretically and
experimentally determine improvements in RSMT cost estimation that
can be obtained when we know the pointset bounding box.

13In what follows, we will always use this Batched Iterated 1-Steiner implementation to
approximate the (NP-hard) RSMT solution. Results in [7] indicate that this will overesti-
mate the true RSMT cost by an average of less than a quarter percent for the instance sizes
that we discuss.
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Figure 5: Plots ofβ(n) = E[c(RSMT)]=
p

area(R) �n for different as-
pect ratiosARof the rectangular region.

Avg. RSMT Cost for Unit Square
#points (n)

4 5 6 8 10 15 20 30
RSMT 1.28 1.50 1.69 2.04 2.33 2.91 3.38 4.15
90% 40.6 34.8 31.0 25.1 20.6 16.1 13.0 10.0
95% 48.1 40.8 36.8 29.7 24.3 18.9 15.4 12.0
98% 57.2 48.0 43.2 34.8 29.3 22.6 18.4 14.5

Table 2: Average RMST costs over 10000 randomn-point samples in a
unit square. Maximum relative deviation from average (expressed as a
percentage) is computed for “best” 90%, 95% and 98% of samples.

We begin with an empirical demonstration of the gain from know-
ing the bounding box. We generateN = 10000 random instances ofn
points (n= 4;5; : : : ;30) chosen from a uniform distribution in the unit
(1�1) square. The first row of Table 2 shows average values of RSMT
cost over theN samples for each value ofn. (These correspond the first
column of Table 1, scaled by factors of

p
n.) The table also shows the

maximum relative deviation from this average (expressed as a percent-
age) among the 90%, 95% and 98% of the instances.14

Similarly, in Table 3, the first row gives averages overN = 10000
samples of theratio of the RSMT costdivided by the half-perimeter
of the pointset’s bounding box. Each column again gives maximum
relative deviations in the middle 90%, 95% and 98% of the data, ex-
pressed as percentages. We see that normalizing to the bounding box
half-perimeter yields a greatly improved estimate.

Finally, we make a small digression to indicate how far off these
estimates are from “best possible” non-constructive estimates, namely,
those based on the rectilinear MST construction. Recall that RMST cost
is known to average around 12% greater than RSMT cost (cf. analyses
of Bern and de Carvalho, as reviewed in [12]). Table 4 gives the aver-

14The exact calculation is as follows. For each of 10000 samples we find the relative
deviation ofc(RSMT) from the average cost of RSMT for a givenn. The we rank all
relative deviations for each given value ofn. To find, say, the maximum relative deviation
over the 90% of samples, we determine the 90th percentiles of the rank order. For example,
we see from the table that the middle 90% of all 10000 7-point instances havec(RSMT)
within 27.003% of the average value ofc(RSMT), which is 1.8748.



Average of RSMT Cost / Bounding Box Half-Perim.
#points (n)

4 5 6 8 10 15 20 30
NRSMT 1.06 1.13 1.19 1.31 1.42 1.66 1.87 2.22
90% 10.5 11.8 14.2 14.4 13.4 11.6 10.2 8.5
95% 14.5 15.2 15.8 16.7 15.6 13.8 12.1 10.1
98% 20.0 18.3 18.7 18.9 18.6 16.4 14.4 12.2

Table 3: First line (NRSMT) gives averages of RSMT cost divided
by the half-perimeter of the pointset’s bounding box. The 10000n-
point samples are taken from a uniform distribution in the unit square.
Maximum relative deviation (expressed as a percentage) is computed
for “best” 90%, 95% and 98% of the samples, respectively.

Average of RMST Cost / RSMT Cost in Unit Square
#points (n)

4 5 6 8 10 15 20 30
MST 1.10 1.11 1.11 1.11 1.12 1.12 1.12 1.12
90% 9.4 9.3 8.2 6.7 6.2 4.8 4.2 3.3
95% 12.5 10.5 9.6 7.9 7.3 5.8 5.0 3.9
98% 16.5 13.2 11.8 9.3 8.7 7.0 5.8 4.7

Table 4: First line (MST) gives average ratios of RMST cost divided
by RSMT cost. The 10000n-point samples are taken from a uniform
distribution in the unit square. Maximum relative deviation (expressed
as a percentage) is computed for “best” 90%, 95% and 98% of the
samples.

age ratio of RMST cost over RSMT cost, for the same 10000 random
instances for each value ofn. This allows us to compare the bounding
box estimator with the minimum spanning tree estimator. We conclude
that the bounding box-based estimator is much better than the region-
based estimator, and that the MST-based estimator is somewhat better
still. However, as we noted earlier, the MST is too expensive to be
used in practice – we require linear-time on-line wirelength estimators
with sublinear update costs (based on reasonable storage) in the itera-
tive placement context.

A New Connection Between Region-Based and Bound-
ing Box-Based Estimation
From the results of Section 3 we know there is a dependency of RSMT
cost on the aspect ratio of theregion from which points are chosen.
When we also consider the previous results of this section, we are mo-
tivated to seek a dependency of RSMT cost on the the aspect ratio of
the pointset bounding boxas well. Intuitively, if we can estimate this
dependency, we will be able to more accurately predict the RSMT cost
for random points with a known bounding box. In the remainder of this
section, we will give a formal basis for such an estimation, then confirm
our ideas experimentally.

The results of Section 3 allow us to estimate RSMT cost for random
pointsets chosen in aregionwith given aspect ratio, based on empirical
values ofβ(n;AR). From the previous results of this section, we know
that estimates that exploit knowledge of the pointset bounding box are
more accurate than estimates that use only knowledge of the region
from which the pointset was chosen. The difficulty is that theβ(n;AR)
values from Section 3 cannot be directly applied when we have a spe-
cific pointset with a specific bounding box. We resolve this difficulty
as follows.

� From Fact 4, we know that if we choosek random points in a
rectangular region with sidesw andh, the expected sides of the
bounding box of these points arew0 =w(1� 2

k+1) andh0 = h(1�
2

k+1).

� Therefore, if we are givenk random points having a knownbound-
ing boxwith sideswbb andhbb, we may predict that the expected
RSMT cost is the same as the expected RSMT cost ofk ran-
dom points chosen in theregionhaving sideswR= k+1

k�1 �wbb and

hR = k+1
k�1 �hbb.

� We can then apply lookup in Table 1 to estimate the RSMT cost
over thek points.15

The above recipe defines a new type of estimator that is the first to
combine the classic region-based and bounding box-based approaches.
We have confirmed that wirelength predictors based on the approach
of computingwR = k+1

k�1 �wbb, hR = k+1
k�1 �hbb differ from empirically

constructed (i.e., via Monte Carlo experiments) predictors by less than
1%.

In the empirical approach (which is analogous to the construction
of Table 1, we generate a random set ofn points within a bounding box
of prescribed widthw and heighth in the following way:

1. generate a random set ofn points in the 1�1 square;

2. find the bounding box of this set of points, with dimensionsw0
andh0; and

3. multiply all x- andy-coordinates of the points byw=w0 andh=h0,
respectively.

We use this construction in finding RSMT costs overN = 10000 sam-
ples ofn random points with bounding box aspect ratioAR= 1;2; :::;32,
and dividing by the half-perimeter of the bounding box. Table 5 shows
the average values for this ratio of RSMT cost to bounding box half-
perimeter, as a function ofn andAR. A similar empirical analysis was
performed by Cheng [2], but the corresponding coefficients did not de-
pend on aspect ratio. Additionally, the author of [2] used a worse code
for finding heuristic RSMTs. As a result, the entries of the first row
of Table 5, which we reproduce from [2], are larger than our entries
by approximately 2% even in the case ofAR= 1. In practice, Cheng’s
method will produce even worse overestimates of RSMT cost because
it ignores the effect of bounding box aspect ratio.16

5 Practical On-Line Wirelength Estimation
To see the practical value of our new estimators, we first observe that
they are extremely efficient.

� In the on-line (top-down placement) context, we haven pins dis-
tributed among various regions. Instead of returning the bound-
ing box of the region centers, we apply the linear-time heuristic
of Figure 3 in Section 2 to obtain the expected bounding box of
the pins, then perform lookup (with linear interpolation as appro-
priate) in Table 5 of Section 4.

� In the a posteriori context, we haven pins in exact locations.
Instead of returning any of the previous bounding box based es-
timates, we perform lookup (again with linear interpolation as
appropriate) in Table 5.

The time complexity of our estimates in each context isO(n). Up-
dating the estimate when a pin is moved, as long as we have exact
locations and do not need to execute the heuristic of Figure 3, requires

15This simple approach is very accurate, as we will discuss next. It may be possible to
improve its accuracy by considering all possible region dimensionswR andhR, weighted by
the likelihood that the pointset was actually chosen from within those region dimensions.
However, we believe that the advantages of such a complicated extension will be minimal.

16N.B.: Readers may notice that the entries forAR= 1 in Table 5 are slightly different
from the entries in the first row of Table 3. This is because the Table 3 entries are averaging
over all bounding box aspect ratios, not justAR= 1. The expected bounding box aspect
ratio for random points is somewhere between 1 and 2, and this is consistent with the data
in the two tables.



Average RSMT Cost for Pointsets With BBox Half-Perimeter = 1
#points (n)

AR 4 5 6 8 10 15 20 30
1� 1.08 1.15 1.22 1.34 1.45 1.69 1.89 2.23
D 12.2 13.4 15.5 15.2 14.4 12.7 11.4 9.52
1 1.06 1.13 1.19 1.32 1.42 1.66 1.87 2.22
D 11.2 12.5 14.5 14.1 13.5 11.6 10.3 8.64
2 1.05 1.11 1.16 1.27 1.36 1.59 1.78 2.10
D 9.83 10.3 12.3 12.6 12.6 11.2 10.1 8.64
4 1.03 1.07 1.11 1.18 1.25 1.41 1.57 1.84
D 6.87 6.93 8.50 9.54 9.98 9.87 9.35 8.13
10 1.01 1.03 1.05 1.08 1.12 1.21 1.29 1.45
D 3.37 3.44 4.39 5.05 5.53 6.18 6.51 6.53

Table 5: Each entry represents an average, over 10000 samples ofn
random points having prescribed bounding box aspect ratio, of RSMT
cost divided by bounding box half-perimeter. The first row reproduces
coefficients from the paper by Cheng [2]. Each row marked with D
gives the maximum relative deviation from the average in 90% of the
samples, expressed as a percentage.

only a constant number of operations after the net bounding box has
beenupdated. Thus, speedups of bounding boxupdatesthat are used
in practice (see, e.g., TimberWolf-related papers of Sechen et al) hence
transfer directly into our methods. Having established efficiency, we
next show that our methods lead to improved estimation accuracy in
the on-line context.

We have incorporated our new estimates, along with the previous
center-based, bounding box-based, and Cheng [2] estimates, into an in-
ternal placement testbed that includes both top-down partitioning and
annealing engines.17 Specifically, we compare the following nine wire-
length estimates (the first four algorithms estimate half-perimeters of
net bounding boxes and the rest five algorithms estimate Steiner tree
lengths taking in account the net sizes and the aspect ratios of bounding
boxes):

� CBB : Standard bounding box estimate using the center coordi-
nates of the region in which the given pin is located

� HBB : Heuristic bounding box estimate using the linear-time
heuristic of Figure 3

� HBB0 : Heuristic BBox with length scaled down to zero for nets
completely contained in a region

� HBB6 : Heuristic BBox assuming that regions have dimensions
that are scaled to 1/6 of their actual values (with the scaled re-
gions having the same centers as the original regions)

� Cheng : CBB estimate, scaled by the coefficients of Cheng [2]
(reproduced in the first line of Table 5)

� CBBtab : CBB estimate, followed by lookup in Table 5

� HBBtab : HBB estimate, followed by lookup in Table 5

� HBB0tab : HBB0 estimate, followed by lookup in Table 5

� HBB6tab : HBB6 estimate, followed by lookup in Table 5

Notice that if we blindly follow the uniform distribution assump-
tion, we will tend to overestimate wirelengths during the early stages
of the top-down placement process. This is because cells that are con-
nected by a net will end up closer together than predicted by the random
model, due to the contribution of the net to the placement objective.

17Placements that we obtain from our internal testbed are competitive – in terms of run-
time, various solution metrics, and routability by industrial routers – with placements from
industry placers that we are aware of.

Test Case Number of Cells Number of Nets
Test1 1756 1492
Test2 3286 2902
Test3 6692 6527
Test4 12133 11828
Test5 12857 10880

Table 6: Parameters of five standard-cell test cases from industry.

Average Relative Error of Wire Length Estimates
% of levels completed

Estimator 10 20 30 40 50 60 70 80 90 100
CBB .243 .185 .138 .110 .086 .059 .031 .011 .001 .000
HBB 2.36 1.59 .911 .511 .298 .169 .071 .029 .002 .000
HBB0 .109 .071 .038 .032 .020 .016 .011 .008 .000 .000
HBB6 .191 .110 .050 .025 .025 .022 .015 .006 .001 .000
Cheng .208 .139 .085 .051 .038 .027 .039 .057 .065 .065
CBBtab .259 .188 .132 .104 .080 .057 .032 .016 .010 .010
HBBtab 2.37 1.61 .920 .509 .293 .164 .066 .025 .010 .010
HBB0tab .140 .097 .072 .047 .026 .020 .011 .008 .010 .010
HBB6tab .120 .069 .061 .045 .046 .040 .032 .018 .010 .010

Table 7: Relative errors of estimated sums of bounding box half-
perimeters and RSMT costs during the top-down placement. Data for 5
testcases are normalized and averaged.

Thus, we have proposed two corrections to our basic models. (1) In the
HBB0 and HBB0tab estimates, we assign a zero bounding box half-
perimeter to nets that still belong to the same block (i.e., region) of the
top-down partitioning. This captures the fact that most of these internal
nets will end up being placed with their cells close together (a conse-
quence of Rent’s rule). If a net already has its cells in different regions,
we apply our regular estimate since we already know these cells must
end up in separated locations. (2) An alternate way of modeling the
fact that cells that share a net should end up closer together than ran-
dom cells is to restrict the possible cell locations. To do this, we scale
the dimensions of each region by one-sixth18, while keeping the region
centered at the same coordinates. This leads to the HBB6 and HBB6tab
estimates.

Our experiments thus far have evaluated the accuracy of on-line
wirelength estimation in a top-down partitioning-based placer. We have
used five standard-cell test cases Test1,. . . ,Test5, obtained from indus-
try; their parameters are given in Table 6.

Our results are given in Table 7. For each test case, we run the top-
down partitioning based placer to completion, then measure both total
net bounding box half-perimeter and total Iterated 1-Steiner heuristic
RSMT cost of the result. For the bounding box estimators (the first
four rows of each table), each table entry gives the relative error of the
estimated sum of bounding box half-perimeters after the firsti � 10%
(i = 1; : : : ;10) levels of the top-down partitioning based placement, ver-
sus the final sum of bounding boxes. (We report data for every 10% of
the levels because the number of placement levels varies according to
instance size.) For the wirelength estimators (the last five lines of each
table), each table entry gives the relative error of the estimated sum of
Steiner tree costs, versus the final sum of I1S heuristic RSMT costs.
Table 7 gives the average of all the values. We see that our new es-
timators aresubstantiallybetter in the on-line context than previous
methods of estimating either sum of bounding box half-perimeters or
sum of RSMT costs. In other words, we can obtain accurate estimates
of the final values of these objectives, relatively early in the top-down
placement process. This allows pruning of bad solution paths, and large
potential runtime savings. At the same time, even fora posterioriesti-
mation our new methods are superior to previous approaches.

18The empirical factor of 1=6 is a result of fine-tuning our estimates.



6 Conclusions and Future Work

We have developed new wirelength estimation techniques appropriate
for top-down floorplanning and placement synthesis of row-based VLSI
layouts. Our methods give accurate, truly linear-time approaches, typi-
cally with sublinear time complexity for dynamic updating of estimates
(e.g., for annealing placement). The new techniques offer advantages
not only for early on-line wirelength estimation during top-down place-
ment, but also fora posterioriestimation of routed wirelength given a
final placement. In developing these new estimators, we have made
several theoretical contributions. Notably, we have resolved the long-
standing discrepancy betweenregion-basedand bounding box-based
RSMT estimation techniques; this leads to new estimates that are func-
tions of instance sizen and aspect ratioAR.

We have validated our new techniques experimentally using test
cases from industry; the HBB0 and HBB0tab are substantially supe-
rior to previous methods. Our ongoing research addresses such issues
as (1) confirming that our new cost estimates can successfully drive
partitioning- and annealing-based placers to improved solutions (pre-
liminary results are quite promising); and (2) improving the intuitions
that led to the HBB0/6 and HBB0/6tab refinements of our original esti-
mators.

The assumption about uniform distribution of cells in bounding
boxes may not hold in some VLSI CAD applications. We believe that
our methods can be applied if actual distributions are available, in par-
ticular, our exact algorithm for expected minimum can accommodate
many piece-wise polynomial distributions.

Extending our present results to non-uniform cell distributions ap-
pearing in top-down placement presents an intriguing direction for fu-
ture work.
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