# IMPLICATIONS OF AREA-ARRAY I/O FOR ROW-BASED PLACEMENT METHODOLOGY\*

A. E. Caldwell, A. B. Kahng, S. Mantik and I. L. Markov UCLA Computer Science Dept., Los Angeles, CA 90095-1596 {caldwell,abk,stefanus,imarkov}@cs.ucla.edu

#### ABSTRACT

We empirically study the implications of area-array I/O for placement methodology. Our work develops a three-axis testbed that examines (1) I/O regime (area-array vs. peripheral pad locations), (2) I/O and core placement methodology (variants of alternating vs. simultaneous I/O and core placement approaches), and (3) placement engine (hierarchical quadratic for both core and I/O cells vs. pure min-cut for core cells and assignment for I/O). Experimental data show that the area-array I/O regime is somewhat "more forgiving" of bad placement methodologies than the peripheral I/O regime. On the other hand, the wrong methodology can still entail substantial losses in solution quality and efficiency. Last, we hypothesize that reductions of on-chip wirelength from adopting the area-array I/O regime may be correlated with topological depth of circuits.

## 1. INTRODUCTION

IC packaging technologies with peripheral I/O pads have well-known shortcomings. Observed system Rent parameters suggest that ICs require asymptotically more pads than the die perimeter can provide [15]. Peripheral I/O pads also constrain clock/power distribution, and their inherently large parasitics cause coupling and power issues for off-chip signaling. Given these concerns, the area-array I/O regime is projected to eventually dominate IC implementation methodology, affording improved pad count and reliability, reduced noise coupling, and cost savings as the technology matures.

With respect to physical design, area-array I/O presents several critical new issues. Locating pads directly over the core layout region requires new tools for signal integrity analysis and simultaneous die-package simulation. The possibility of synergetic on-chip and on-package routing opens up many new problems, particularly in the distribution of clock and power. Finally, place-and-route tools will need to handle new layout constraints and objectives, e.g., for noise decoupling and ESD protection. Much effort remains in developing tools and methodology, and the precise impact of area-array I/O on such basic parameters as routability, required global interconnect resource for the design, etc. remains largely unknown.

In this work, we focus on the implications of the areaarray I/O regime on I/O and core placement *methodology* for row-based ICs. Specifically, we examine whether the shift to area-array I/O requires changes to methodologies (e.g., alternating I/O and core placement) and engines (e.g., top-down "quadratic placers" that integrate sparse-system solvers with min-cut partitioners) that are perceived to be successful in the peripheral I/O regime. Our specific contributions include:

- We develop a three-axis testbed that allows examination of (1) I/O regime (area-array vs. peripheral pad locations), (2) I/O and core placement methodology (variants of alternating vs. simultaneous I/O and core placement approaches), and (3) placement engine (hierarchical quadratic for both core and I/O cells vs. pure min-cut for core cells and assignment for I/O).
- Under modest assumptions, we experimentally show that area-array I/O leads to smaller wirelengths (suggesting better routability) than peripheral I/O.
- Again experimentally, we show that the area-array I/O regime is somewhat "more forgiving" of bad I/O and core placement methodologies. On the other hand, the wrong methodology can still hurt solution quality and/or runtime.

The remainder of this paper is organized as follows. In Section 2, we review related previous work, while Section 3 gives a model of I/O regimes, along with a taxonomy of I/O and core placement methodologies and placement engines. Section 4 describes details of our experimental testbed, and Section 5 gives experimental studies of different placement methodologies in the peripheral and area-array I/O regimes. Section 6 concludes with a description of ongoing research efforts.

## 2. PREVIOUS WORK

For the intrinsic area-array regime,<sup>1</sup> to which our studies apply, Tan et al. [17] pose the layout problem as: "Given a core portion of the chip which already contains the I/O buffers, place the possible uniformly spaced area-array pads on the top metal layer of the design ... and route these pads to the I/O ports of the chip...". For a given fixed core placement, Tan et al. propose a pad placement and assignment methodology that searches for feasible pad locations until there are 10% more identified pad locations than I/O ports. Assignment is used to match I/O ports to pad locations. Farbarik et al. [5] report a suite of CAD tools for intrinsic area-array ICs, notably an area-pad floorplanner that drives the placement of blocks and associated

<sup>\*</sup>THIS WORK WAS SUPPORTED BY A GRANT FROM CADENCE DESIGN SYSTEMS, INC.

<sup>&</sup>lt;sup>1</sup>Intrinsic area-array ICs are those originally designed and laid out for area-array bonding; extrinsic area-array ICs are originally designed and laid out for peripheral bonding, and later converted to the area-array regime using a signal redistribution layer [17]. Maheshwari et al. [11] distinguish the same concepts as "true area-I/O" vs. "redistribution".

I/O buffers so as to minimize routing cost to area pads.<sup>2</sup> A corner-stitched maze router is used to perform the area-pad routing. Kiamilev et al. [9] propose three distinct layout methodologies for intrinsic area-array ICs. The second approach is similar to that of [5] but uses manual routing; the third approach separately optimizes the core and I/O buffer circuit placements on chip, then places area pads directly above corresponding I/O buffers using a two-dimensional array structure called a *pad interface module*.

An important work vis-a-vis our own is that of Maheshwari et al. [11], which addresses timing and wirelength implications of transitioning a field-programmable MCM implementation to the area-array I/O regime. In [11], analysis of a theoretical model based on random placement and Rent's rule suggests that area-array I/O "offer[s] a small improvement on the total wirelength, but not much", since the proportion of external nets decreases as the circuit grows large. On the other hand, experimental results with an FPGA layout tool indicate that area-array I/O can afford increased routability (around 13% average reduction in wiring resource usage) and smaller parasitics, particularly for combinational benchmarks.

Finally, I/O placement methodology has been extensively studied for row-based designs and the peripheral I/O regime. RITUAL [16] leaves I/Os floating on the core boundary (allowing infeasible positions) and legalizes them during detailed placement. PACT [13] notes the potential weak I/O placement quality of RITUAL, and proposes linear assignment to compute an initial (i.e., before core cells are placed) I/O placement. Analysis of circuit structure and path timing constraints is used to determine assignment costs. The authors of PACT [13] observe, by way of motivation, that the common practice of alternating I/O and core placements starting from an arbitrary initial I/O placement can be time-consuming; furthermore, "even if convergence is achieved, the final solution is heavily influenced by the [arbitrary] initial pad assignment". For small instances of up to 589 gates and 301 I/Os, PACT achieves between 6.5% and 23.6% percent reduction in total wirelength versus random I/O placement, and between 1.0% and 9.7% improvement in path timing.

Chen and Marek-Sadowska [2] note possible weaknesses in PACT, e.g., that the chip boundary is represented by a linear array of locations. The authors of [2] construct an initial I/O placement by annealing, using circuit structure and path delay constraints in the objective. The path timing penalty of a bad I/O placement is estimated as being up to 10%; no wirelength penalty data is given. A significant improvement to PACT is given by [14], who separately process *floating inputs* in performing the initial I/O placement. When both methods are compared in the context of a wirelength-driven annealing placer, the method of [14] improves over PACT total wirelength by 42% for two of the four cases reported (with up to 412 cells and 59 pads). The work of Gao et al. [7] typifies top-down partitioning-based placers that deal with peripheral I/O pads and core cells simultaneously, i.e., separate balance factors are maintained for I/Os and core cells during the partitioning step.

## 3. A TAXONOMY OF I/O AND CORE PLACEMENT METHODOLOGY

## 3.1. I/O Regimes

We study the following abstract model of I/O regimes for row-based designs.

- I/O cells must be placed exactly at pad locations, and any I/O cell can be placed at any pad location.
- No two I/O cells can occupy the same location.
- For a design with *P* I/O cells and a rectangular core layout region, we fix pad locations:
  - with P locations uniformly spaced around the boundary of the core layout region (this models the peripheral I/O regime with generic locations),
  - with P locations along the sides of the core layout region determined by "projecting" original peripheral pad locations<sup>3</sup> to the layout boundary with respect to the center of the layout region (this models the peripheral I/O regime with user locations), or
  - with an array of locations spaced uniformly within the core layout region (this models the area-array I/O regime).<sup>4</sup>

Our model of the area-array regime ignores many practical constraints, as well as freedoms, that are associated with pad location and I/O assignment to pads. For example, we ignore I/O placement constraints – many of which have yet to be precisely characterized – that arise from package technology, decoupling and ESD requirements, power/ground distribution, etc. However, our model permits controlled study of netlist embeddability and embedding strategy, and is tractable even to industry layout tools that do not otherwise handle the area-array regime. Within this model, we investigate the following taxonomy of methodologies and engines for I/O and core placement.

## **3.2.** Alternating vs. Simultaneous Methodologies Previous works use two basic methodologies, *alternating* and *simultaneous*, for I/O and core cell placement.

- Alternating I/O and core placement. The alternating methodology iterates between two basic steps, (1) fixing core cells and re-placing I/Os, and (2) fixing I/Os and re-placing core cells. There are two distinct variants, alternating core-first and alternating I/O-first. In the core-first variant, we delete all I/O cells from the netlist, then place the core cells into legal core sites to minimize, e.g., a total wirelength objective. We then restore the original netlist, and begin the alternation with step (1). In the I/O-first variant, we determine an initial I/O placement and then begin the alternation typically uses a random initial I/O placement. In the peripheral I/O regime, we can also have a user-defined initial I/O placement.
- Simultaneous I/O and core placement. The simultaneous methodology determines placements of I/O and core cells at the same time. For example, [7] performs hierarchical top-down placement, and specifies that any physical partition at any level contains (assignable) I/Os in proportion to the number of (available) legal pad sites contained in the partition.

 $<sup>^2\,{\</sup>rm The}$  netlist assigning I/O buffers to pads is assumed fixed, in contrast to [17] where "[the] netlist is generated using a pad assignment method...".

<sup>&</sup>lt;sup>3</sup>I.e., as specified in the benchmark data when we received it. <sup>4</sup>If the core region has dimensions  $H \times W$ , there will be  $\frac{H}{2(H+W)}$  rows and  $\frac{W}{2(H+W)}$  columns of pads.

# 3.3. Hierarchical Placement Engines

Most placement tools, with the notable exception of TimberWolf [18], are reputed to incorporate the hierarchical top-down strategy as part of their approach. The two most common variants are based respectively on *analytic placement* and *pure min-cut placement*.

- Analytic placement. As reviewed in [1], the analytic placement (popularly referred to as "quadratic placement") approach involves (1) solution of a sparse linear system to determine a continuous module placement that minimizes a squared-wirelength objective<sup>5</sup>, interleaved with (2) heuristic means of "legalizing", or "spreading", the placement so that it satisfies discrete constraints (e.g., no module overlaps). The sparse linear systems can correspond to hierarchical subproblems in the top-down placement process. The legalization step is typically accomplished via partitioning or assignment/transportation formulations, along with highly sophisticated metaheuristics.
- Pure min-cut placement. A pure min-cut strategy uses an iterative partitioner, e.g., some variant of the Fiduccia-Mattheyses heuristic [6], with a minimum net cut objective. Techniques such as terminal propagation, table-lookup treelength estimators, etc. are used to improve fidelity of the min-cut partitioning objective with respect to the actual placement objective, which is often based on the sum of net bounding box halfperimeters. Again, many sophisticated metaheuristics are used to achieve competitive results.

#### 4. EXPERIMENTAL QUESTIONS AND TESTBED

In most IC place-and-route flows today, I/O locations are assumed to be fixed in any input instance to the placement tool. For example, in hierarchical blocks the I/O locations may be fixed by a pin optimizer or by a chip-level route planner within the design planning tool. Even for "flat, fullchip" placement (e.g., traditional gate-array ASIC), CAD engineers often heuristically assign system I/Os to pad locations. The conventional wisdom is that fixing the I/O placement before placing core cells impacts the total wirelength of the layout by at most a few percent. This is plausible since the number of nets incident to I/Os is small relative to the total number of nets, and matches the conclusions of [11]. On the other hand, recall that in the peripheral I/O regime (i) a high-quality I/O placement can significantly improve wirelength and performance for small designs [2], and (ii) with alternating I/O and core placement methodologies the final solution is "heavily influenced" by the initial I/O placement [13]. Thus:

• Experimental Question 1: Does an initial I/O placement have as "heavy" an influence (with respect to alternating methodologies) in the area-array I/O regime as it does in the peripheral I/O regime?

Next, we observe that within the hierarchical placement approach, the use of analytic placers ("quadratic placers") *requires* fixed I/O locations to "anchor" the result of the continuous placement. If there are no prescribed I/O locations, then the analytic placement collapses down to a single point and provides a vacuous start to the legalization step. We ask whether a "fix I/Os first" mindset with the analytic placement approach has somehow guided I/O and core placement methodology in the wrong direction.

- Experimental Question 2: Can core-first alternation (which a pure min-cut placement engine might achieve more naturally than a quadratic placer) deliver results superior (in terms of solution quality and/or convergence) to those of I/O-first alternation?
- Experimental Question 3: Can a simultaneous methodology deliver results superior (in terms of solution quality and/or convergence) to those of an alternating methodology?

Each of these questions can be asked in both the peripheral and area-array I/O regimes.

#### Testbed

To test all placement strategies within the above taxonomy, we require four capabilities: (1) placement of core cells with I/Os detached from the netlist; (2) placement of core cells with fixed I/Os; (3) placement of I/Os onto discrete locations when core cells are fixed; and (4) simultaneous placement of I/O and core cells.

Our testbed includes both an industry placer and our own placer. The industry placer reputedly uses some form of the quadratic (analytic) placement approach; we run it in default mode. It can be coerced to provide the first three out of the four capabilities above, via a mix of site definitions, fixed-location constraints, I/O-core reclassification, and scripting. Our placer integrates a number of techniques, but we invoke only pure hierarchical min-cut placement for core cells and min-cost assignment for I/Os to achieve all four of the capabilities above.

Both the industry placer and our placer can read test cases from industry in the Cadence LEF/DEF format. Our experiments are based on two industry designs from which we removed all nets incident to more than 100 cells, as well as all spare cells and the 1-pin nets that result from removal of spare cells. Parameters of the test cases are shown in Table 1.

| Test Case | Cells | I/Os | $\operatorname{Nets}$ |
|-----------|-------|------|-----------------------|
| Case 1    | 3231  | 545  | 2844                  |
| Case 2    | 12133 | 662  | 11826                 |

Table 1. Test cases used for experiments.

## 5. EXPERIMENTAL RESULTS

## 5.1. Experiments With the Industry Placer

The industry placer, to our knowledge, assumes that I/Os are placed and fixed. We have not yet been able to achieve a simultaneous methodology with this tool. To implement alternating I/O and core placement methodologies, we modify the netlist at each iteration by relabeling former movable core cells as fixed I/Os, and former fixed I/Os as movable core cells. The placer can also be run with all I/Os removed from the netlist to construct initial core placements. Notice that the placement of core cells with all I/Os removed from the netlist gives an empirical "lower bound" for wirelength. Such lower bounds are 246633 microns for Case 1 and 1602701 microns for Case 2.

Table 2 presents placement results (sum of net bounding box half-perimeters) for the I/O regimes discussed in the

<sup>&</sup>lt;sup>5</sup>In some sense, the term "quadratic placement" is a misnomer since it is also possible to analytically solve for a continuous placement that minimizes a different objective, e.g., linear wirelength.

| Industry Placer                  |             |                      |                 |      |      |                 |  |
|----------------------------------|-------------|----------------------|-----------------|------|------|-----------------|--|
| Case 1 (WL $\times 10^5 \mu m$ ) |             |                      |                 |      |      |                 |  |
| I/O                              | Alternation | 1 <sup>st</sup> Iter |                 | В    |      |                 |  |
| Regime                           |             | all                  | I/O             | all  | I/O  | #               |  |
| PG                               | Core        | 4.75                 | 2.60            | 4.17 | 1.55 | 4               |  |
|                                  | I/O(r)      | 6.62                 | 3.42            | 4.43 | 1.65 | 19              |  |
|                                  | Core        | 5.41                 | 3.26            | 4.68 | 1.98 | 6               |  |
| PU                               | I/O(r)      | 6.79                 | 3.44            | 4.92 | 2.10 | 14              |  |
|                                  | I/O(u)      | 6.44                 | 3.07            | 4.83 | 2.06 | 17              |  |
| AA                               | Core        | 2.84                 | 0.71            | 2.82 | 0.68 | 6               |  |
|                                  | I/O(r)      | 5.77                 | 2.59            | 3.11 | 0.72 | 19              |  |
|                                  | Case 2      | 2 (WL >              | $< 10^6  \mu m$ | ı)   |      |                 |  |
| PG                               | Core        | 2.15                 | 0.59            | 2.04 | 0.35 | 14              |  |
|                                  | I/O(r)      | 2.71                 | 0.85            | 2.05 | 0.33 | 16              |  |
|                                  | Core        | 2.31                 | 0.73            | 2.16 | 0.44 | 6               |  |
| PU                               | I/O(r)      | 2.78                 | 0.88            | 2.16 | 0.44 | 16              |  |
|                                  | I/O(u)      | 2.81                 | 0.88            | 2.14 | 0.38 | 7               |  |
| AA                               | Core        | 1.70                 | 0.14            | 1.67 | 0.12 | $1\overline{6}$ |  |
|                                  | I/O(r)      | 2.54                 | 0.66            | 1.76 | 0.13 | 19              |  |

Table 2. Studies of peripheral and area-array I/O regimes.

previous section: peripheral with generic locations (PG), peripheral with user-defined locations (PU), and areaarray (AA). Methodologies studied were alternating starting with a fixed initial core placement (Core) and alternating starting with a fixed initial I/O placement (I/O). Recall that the PU,I/O combination permits use of the designer's I/O placement. Thus, for the PU regime we distinguish a starting random I/O placement (I/O(r)) from a starting user-defined I/O placement (I/O(u)). All experiments involving random initial I/O placements (I/O(r)) are averages over 5 runs.

We place I/Os and core 10 times each, in alternation, using the industry placer; this yields 19 iterations with meaningful placement results.<sup>6</sup> We report best wirelength values over all 19 iterations along with the iteration number (1-19) at which the best result occurred. We also report wirelength values obtained at the first iteration. Two wirelength values are given: summed over all nets, and summed over only nets that contain I/Os.

For the standard methodology of alternating I/O and core placement steps starting with a random I/O placement, surprisingly many iterations are required until the best placement is reached. (Quite possibly, current practice does not invoke sufficiently many alternations.) Often, wirelength does not improve monotonically over successive iterations, but instead oscillates. This is shown in Figure 1, which shows all results in the PG and AA regimes for both Case 1 and Case 2. The oscillating effect is very strong with peripheral I/O regimes, and relatively weak with area-array I/O. Furthermore, the I/O placement steps for peripheral I/O usually increase wirelength, while core placement steps usually decrease wirelength. One possible explanation is that the industry placer's algorithm, while highly successful for core placement, does not perform as well for I/Os. Thus, the I/O placement iterations are essentially "perturbations" or "kick moves" from which the core placement recovers. We also note that the best wirelengths in all I/O(r)experiments obtain from 22% to 46% reduction over the ini-



Figure 1. Wirelengths after I/O and core placement iterations for Case 1 (top) and Case 2 (bottom) with the industry placer.

tial wirelengths. We conclude that an initial random I/O placement can be very harmful, and that the traditional methodology may require many alternations to recover.

We next observe that with every placement regime, placing core cells first with I/Os removed leads to overall smaller wirelength. Furthermore, in all but the  $PU_{,I}/O(u)$  case, far fewer iterations are required before essentially the best wirelength is achieved. From a methodology point of view, it appears that disconnecting the I/Os from the netlist and placing the core yields a superior start for alternation. Finally, total wirelength values show that the best I/O regime is area-array, followed by uniformly-spaced (generic) peripheral. The worst regime in terms of "achievable" wirelength was the PU regime: we speculate that the nonuniformity of the pad locations makes wirelength minimization more difficult for the various methodologies. Notice that in the PU regime, the I/O placement defined by the designer leads to overall smaller wirelength, again confirming that the initial I/O placement strongly influences the final placement and that a bad initial placement is harmful.

## 5.2. Experiments With Our Placer

With our placer, a simultaneous methodology is implemented by performing top-down hierarchical placement, with core cells recursively bipartitioned by a min-cut KLFM heuristic at each level, and I/O cells re-placed by min-cost assignment at each level. To set the assignment costs for

 $<sup>^6</sup>$  On a 140MHz Sun Ultra-1, average CPU time per core placement iteration was 2 minutes and 20 minutes, and average CPU time per I/O placement iteration was 45 seconds and 2.5 minutes, for Cases 1 and 2 respectively.

the I/O cells, we assume that each core cell is located in the center of its current region within the top-down process.<sup>7</sup> Our implementation of alternating methodologies uses top-down min-cut FM bipartitioning for each core placement iteration, and min-cost assignment for each I/O placement iteration. With our placer, all reported results are averages over 5 runs.

|                                | 01                               | ır Plac  | er   |           |      |    |  |
|--------------------------------|----------------------------------|----------|------|-----------|------|----|--|
| Case 1 $(WL 	imes 10^5 \mu m)$ |                                  |          |      |           |      |    |  |
| I/O                            | Methodology                      | $1^{st}$ | Iter | Best Iter |      |    |  |
| Regime                         |                                  | all      | I/O  | all       | I/O  | #  |  |
|                                | Core                             | 3.63     | 1.66 | 3.25      | 1.17 | 17 |  |
| PG                             | I/O                              | 6.41     | 3.88 | 3.45      | 1.28 | 18 |  |
|                                | Simultaneous                     |          | -    | 4.05      | 1.69 | I  |  |
|                                | Core                             | 2.56     | 0.62 | 2.56      | 0.62 | 1  |  |
| AA                             | I/O                              | 5.52     | 3.12 | 2.68      | 0.63 | 12 |  |
|                                | Simultaneous                     |          | -    | 3.00      | 0.82 | I  |  |
|                                | Case 2 (WL $\times 10^6 \mu m$ ) |          |      |           |      |    |  |
|                                | Core                             | 1.79     | 0.25 | 1.73      | 0.16 | 15 |  |
| $\mathbf{PG}$                  | I/O                              | 2.64     | 0.94 | 1.85      | 0.22 | 16 |  |
|                                | Simultaneous                     |          |      | 1.89      | 0.25 | I  |  |
|                                | Core                             | 1.68     | 0.13 | 1.66      | 0.11 | 7  |  |
| AA                             | I/O                              | 2.41     | 0.76 | 1.71      | 0.12 | 14 |  |
|                                | Simultaneous                     | —        |      | 1.74      | 0.13 |    |  |

Table 3. Studies of peripheral and area-array I/O regimes.

Table 3 shows that as the total wirelength improves from the first iteration to the best iteration, the same reduction (or even greater reduction) occurs in the nets incident to I/Os. This phenomenon appears to be independent of I/O regime and placement methodology. As expected, using min-cost assignment for I/O placement results in much more efficient I/O placement iterations, and generally decreases wirelength from the previous iteration (in contrast to what we observed with the industry placer).<sup>8</sup> As seen in Figure 2, wirelength decreases faster than with the industry placer. Furthermore, near-best wirelength results tend to be achieved in fewer iterations (sometimes almost immediately). We believe that this is due to use of assignment for I/O placement.

In general, alternating methodology experiments with our placer lead to similar qualitative conclusions as experiments with the industry placer. We emphasize that our wirelength values and CPU times are not comparable with those of the industry placer, since the industry placer performs many detailed optimizations to guarantee routability. (We leave such optimizations, and the ability to perform direct comparisons between the two placers, to future work.) Finally, we note that the results from the simultaneous methodology are fairly disappointing. We believe that variant implementations may be more successful, and our future work targets these.



Figure 2. Wirelengths after I/O and core placement iterations for Case 1 (top) and Case 2 (bottom) with our placer.

## 5.3. Experiments with Netlist Structure

Our final experiments seek a link between topological structure of netlists and the ability of area-array I/O to reduce total wirelength. We conjecture that designs in which core cells are nearer I/Os will benefit greatly from area-array I/O, while designs in which core cells are further from I/Os will not benefit as much. The intuition is that area-array I/O offers more flexibility in the I/O placement, and that this can help a design whose core cells are tightly bound to I/Os. On the other hand, if the core cells are loosely bound to I/Os, then extra flexibility in the I/O placement may not be needed to achieve low wirelength.

To verify this conjecture, we have produced a series of *mutant* netlists by (1) iteratively finding the core cells furthest from I/Os (using simple hop-count in the netlist hypergraph), and (2) transforming these cells into "I/Os". In this way, we may change the topological depth fairly quickly with minimal change to the netlist. Table 4 shows the *topological profile*, i.e., the number of cells at each hop-count (level) from the I/Os, for the each original design and five mutants selected for their variety of topological depths. Each mutant is designated by the number of cells changed from the original (e.g., Case 1m40 has 40 original core cells changed into I/Os). For each mutant, we perform the same placement experiments as before, but apply only the most successful methodology, i.e., alternating core-first. These

<sup>&</sup>lt;sup>7</sup>Nets containing multiple I/Os are not common in our experience, hence I/O placement can be reduced to the classical assignment problem with independent assignment costs for each combination of I/O and pad location. Our implementation uses the efficient cost scaling algorithm due to Goldberg and Kennedy [8].

<sup>&</sup>lt;sup>178</sup>On a 140MHz Sun Ultra-1, average CPU time per core placement iteration was 2 minutes and 15 minutes, and average CPU time per I/O placement iteration was 14 seconds and 22 seconds, for Cases 1 and 2 respectively.

| Test Case   | I/Os | Topological profile (by levels)     |
|-------------|------|-------------------------------------|
| Case 1      | 545  | $1030,\ 1265,\ 352,\ 33,\ 6$        |
| Case 1m6    | 551  | 1037, 1272, 345, 26                 |
| Case 1m19   | 564  | $1072,\ 1358,\ 237$                 |
| Case 1m40   | 585  | $1253,\ 1300,\ 93$                  |
| Case 1m100  | 645  | 1433, 1143, 10                      |
| Case 1m110  | 655  | 1459, 1117                          |
| Case 2      | 662  | 1010, 2668, 4194, 2667, 786, 137, 9 |
| Case 2m3    | 665  | 1019, 2685, 4244, 2727, 706, 87     |
| Case 2m10   | 672  | 1054, 2835, 4522, 2633, 410, 7      |
| Case 2m16   | 678  | 1069, 2877, 4599, 2570, 340         |
| Case $2m40$ | 702  | $1170,\ 3353,\ 5068,\ 1802,\ 38$    |
| Case 2m67   | 729  | $1247, \ 3604, \ 5083, \ 1470$      |

Table 4. **Topological profiles** of original and mutant netlists for Case 1 and Case 2. The topological profile indicates the number of cells at each hop-count (level) from the I/Os.

results are shown in Table 5.

To assess the impact of the area-array regime, we observe the difference between best wirelengths achieved with areaarray I/O and with peripheral I/O. For the smaller design, Case 1, this difference clearly increases as more cells in the design move closer to the I/Os. However, for Case 2 only minor changes in this difference can be seen. We believe that alternate characterizations of netlist topology may be needed, as well as more detailed studies.

# 6. CONCLUSIONS AND FUTURE WORK

In this paper, we have empirically studied the implications of area-array I/O for placement *methodology* using a testbed that allows us to vary the I/O regime, the I/O and core placement methodology, and the placement engine. Our main results are as follows.

- We confirm that with alternating placement methodologies, which are often used in practice today, the number of iterations needed to achieve good solutions can be surprisingly large. Also, a bad (e.g., random) initial I/O placement can seriously handicap subsequent iterations.
- We also conclude that it is better to begin the alternation by placing a netlist of core cells with all I/Os disconnected, rather than by placing I/Os randomly as in traditional approaches. This has interesting implications vis-a-vis the use of quadratic placers, which can require fixed "anchors" in the placement instance.
- Our experiments also show that the area-array I/O regime offers substantial wirelength improvements over the best methodology we found for the peripheral I/O regime. The wirelength reductions range from 12%-27% with an industry placer, and average around 30% with our placer.
- We show that the classical assignment problem may be a more appropriate framework for the I/O placement iteration. We observe that the assignment formulation accurately captures placement costs since I/Os rarely share nets, and that assignment algorithms seem more efficient than traditional placers on I/Os-only instances. Furthermore, traditional placers may not easily adapt to I/O placement instances, and may even increase the total wirelength in some iterations.

|                                                                                                     | Indu<br>Case                                                                                                                                  | stry Pl<br>1 (WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ acer  \times 10^5$ )                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mutant                                                                                              | Pad                                                                                                                                           | 1 1 1 st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iter                                                                                                                                                                                                                                                                                      | Rest                                                                                                                                                                                                | Iter                                                                                                                                                                                                |
| Case                                                                                                | Pogimo                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |                                                                                                                                                                                                     |
|                                                                                                     | DC                                                                                                                                            | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/0                                                                                                                                                                                                                                                                                       | 4.17                                                                                                                                                                                                | 1/0                                                                                                                                                                                                 |
| 1                                                                                                   | PG<br>AA                                                                                                                                      | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                                                                                                                                                                                                                                                                                      | 4.17                                                                                                                                                                                                | 1.00                                                                                                                                                                                                |
| 1 0                                                                                                 | AA                                                                                                                                            | 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.71                                                                                                                                                                                                                                                                                      | 2.02                                                                                                                                                                                                | 0.00                                                                                                                                                                                                |
| 1m6                                                                                                 | PG                                                                                                                                            | 4.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.46                                                                                                                                                                                                                                                                                      | 4.17                                                                                                                                                                                                | 1.53                                                                                                                                                                                                |
| 1 10                                                                                                | AA                                                                                                                                            | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                                                                                                                                      | 2.80                                                                                                                                                                                                | 0.65                                                                                                                                                                                                |
| 1m19                                                                                                | PG                                                                                                                                            | 4.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.57                                                                                                                                                                                                                                                                                      | 4.09                                                                                                                                                                                                | 1.68                                                                                                                                                                                                |
| 1 40                                                                                                | AA                                                                                                                                            | 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.84                                                                                                                                                                                                                                                                                      | 2.78                                                                                                                                                                                                | 0.69                                                                                                                                                                                                |
| 1m40                                                                                                | PG                                                                                                                                            | 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.90                                                                                                                                                                                                                                                                                      | 4.17                                                                                                                                                                                                | 1.68                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 2.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75                                                                                                                                                                                                                                                                                      | 2.62                                                                                                                                                                                                | 0.67                                                                                                                                                                                                |
| 1m100                                                                                               | PG                                                                                                                                            | 5.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.24                                                                                                                                                                                                                                                                                      | 4.53                                                                                                                                                                                                | 2.23                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92                                                                                                                                                                                                                                                                                      | 2.64                                                                                                                                                                                                | 0.81                                                                                                                                                                                                |
| 1m110                                                                                               | PG                                                                                                                                            | 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.34                                                                                                                                                                                                                                                                                      | 4.61                                                                                                                                                                                                | 2.35                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99                                                                                                                                                                                                                                                                                      | 2.70                                                                                                                                                                                                | 0.85                                                                                                                                                                                                |
|                                                                                                     | $\mathbf{Case}$                                                                                                                               | <b>2</b> (WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\times 10^{6})$                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                     |
| 2                                                                                                   | $\overline{PG}$                                                                                                                               | 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59                                                                                                                                                                                                                                                                                      | 2.04                                                                                                                                                                                                | 0.35                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.14                                                                                                                                                                                                                                                                                      | 1.67                                                                                                                                                                                                | 0.12                                                                                                                                                                                                |
| 2m3                                                                                                 | PG                                                                                                                                            | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60                                                                                                                                                                                                                                                                                      | 2.02                                                                                                                                                                                                | 0.34                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15                                                                                                                                                                                                                                                                                      | 1.73                                                                                                                                                                                                | 0.13                                                                                                                                                                                                |
| 2m10                                                                                                | PG                                                                                                                                            | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                      | 1.95                                                                                                                                                                                                | 0.31                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                      | 1.74                                                                                                                                                                                                | 0.16                                                                                                                                                                                                |
| 2m16                                                                                                | PG                                                                                                                                            | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57                                                                                                                                                                                                                                                                                      | 1.94                                                                                                                                                                                                | 0.32                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                      | 1.68                                                                                                                                                                                                | 0.13                                                                                                                                                                                                |
| 2m40                                                                                                | PG                                                                                                                                            | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57                                                                                                                                                                                                                                                                                      | 1.98                                                                                                                                                                                                | 0.33                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15                                                                                                                                                                                                                                                                                      | 1.66                                                                                                                                                                                                | 0.13                                                                                                                                                                                                |
| 2m67                                                                                                | PG                                                                                                                                            | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59                                                                                                                                                                                                                                                                                      | 2.04                                                                                                                                                                                                | 0.38                                                                                                                                                                                                |
|                                                                                                     | AA                                                                                                                                            | 1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.17                                                                                                                                                                                                                                                                                      | 1.67                                                                                                                                                                                                | 0.13                                                                                                                                                                                                |
|                                                                                                     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |                                                                                                                                                                                                     |
|                                                                                                     | 01                                                                                                                                            | Ir Plac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or                                                                                                                                                                                                                                                                                        | 1.01                                                                                                                                                                                                |                                                                                                                                                                                                     |
|                                                                                                     | Oı<br>Case                                                                                                                                    | ır Plac<br>1 (WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $er \times 10^5$ )                                                                                                                                                                                                                                                                        | 1101                                                                                                                                                                                                |                                                                                                                                                                                                     |
| Mutant                                                                                              | Ou<br>Case<br>Pad                                                                                                                             | $\begin{array}{c} 1 & \mathbf{Plac} \\ 1 & \mathbf{WL} \\ 1^{st} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\times 10^5$ )<br>Iter                                                                                                                                                                                                                                                                   | Best                                                                                                                                                                                                | Iter                                                                                                                                                                                                |
| Mutant<br>Case                                                                                      | Ou<br>Case<br>Pad<br>Regime                                                                                                                   | $\begin{array}{c c} \mathbf{r} & \mathbf{Plac} \\ 1 & (WL \\ & 1^{st} \\ & all \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\text{er}}{\times 10^5)}$ Iter I/O                                                                                                                                                                                                                                                 | Best<br>all                                                                                                                                                                                         | Iter<br>I/O                                                                                                                                                                                         |
| Mutant<br>Case<br>1                                                                                 | Ou<br>Case<br>Pad<br>Regime<br>PG                                                                                                             | $\begin{array}{c} 1 1 1 1 1 1 1 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\text{er}}{\times 10^5)}$ Iter $I/O$ 1.66                                                                                                                                                                                                                                          | Best<br>all<br>3.25                                                                                                                                                                                 | Iter<br>I/O<br>1.17                                                                                                                                                                                 |
| Mutant<br>Case<br>1                                                                                 | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA                                                                                                       | $\begin{array}{c} \mathbf{ir \ Plac} \\ \mathbf{ir \ Plac} \\ 1 \ (WL \\ 1^{st} \\ all \\ 3.63 \\ 2.56 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{ser} \\ \times 10^5) \\ \text{Iter} \\ I/O \\ 1.66 \\ 0.62 \end{array}$                                                                                                                                                                                           | Best<br>all<br>3.25<br>2.56                                                                                                                                                                         | Iter<br>I/O<br>1.17<br>0.62                                                                                                                                                                         |
| Mutant<br>Case<br>1<br>1m6                                                                          | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG                                                                                                 | $\begin{array}{c c} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{ser} \\ \times 10^5) \\ \text{Iter} \\ I/O \\ 1.66 \\ 0.62 \\ 1.69 \end{array}$                                                                                                                                                                                   | Best<br>all<br>3.25<br>2.56<br>3.25                                                                                                                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17                                                                                                                                                                 |
| Mutant<br>Case<br>1<br>1m6                                                                          | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA                                                                                           | $\begin{array}{c c} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{ser} \\ \times 10^{5}) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \end{array}$                                                                                                                                                                  | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63                                                                                                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63                                                                                                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19                                                                  | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG                                                                                     | $\begin{array}{c c} 1 & 1 & 1 \\ 1 & \mathbf{Plac} \\ 1 & (WL \\ & 1^{st} \\ & all \\ \hline & 3.63 \\ \hline & 2.56 \\ \hline & 3.66 \\ \hline & 2.64 \\ \hline & 3.67 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ I/O \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \end{array}$                                                                                                                                                                    | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28                                                                                                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23                                                                                                                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19                                                                  | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA                                                                               | Ir Plac           1r Plac           1 (WL           1 <sup>st</sup> all           3.63           2.56           3.66           2.64           3.67           2.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ I/O \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \end{array}$                                                                                                                                                            | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64                                                                                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66                                                                                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40                                                          | Ot<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG                                                                         | $\begin{array}{c c} 1, 1, 3 \\ 1 & \mathbf{Plac} \\ 1 & (WL \\ & 1^{st} \\ all \\ \hline 3, 63 \\ 2.56 \\ \hline 3, 66 \\ 2.64 \\ \hline 3, 67 \\ \hline 2, 69 \\ \hline 3, 67 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \end{array}$                                                                                                                                             | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30                                                                                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38                                                                                                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40                                                          | Ot<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA                                                                   | $\begin{array}{c c} 1, 1, 0 \\ 1 & \mathbf{Plac} \\ 1 & (\mathrm{WL} \\ & 1^{st} \\ all \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.64 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \end{array}$                                                                                                                                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60                                                                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70                                                                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100                                                 | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG                                                 | $\begin{array}{c} \text{Int} \mathbf{r} \\ \textbf{r} \\ $          | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \end{array}$                                                                                                                             | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49                                                                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65                                                                                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100                                                 | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA                                                       | $\begin{array}{c} \text{Int} \mathbf{r} \\ \textbf{r} \\ \textbf{Plac} \\ \textbf{1} \\ (\text{WL} \\ 1^{st} \\ all \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.64 \\ 3.92 \\ 2.70 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \end{array}$                                                                                                                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57                                                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79                                                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110                                        | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG                                     | $\begin{array}{c} \text{In Floc} \\ \text{Ir Plac} \\ \text{I (WLL} \\ 1^{st} \\ \text{all} \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.64 \\ 3.92 \\ 2.70 \\ 4.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \end{array}$                                                                                                             | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54                                                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73                                                                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110                                        | Ou<br>Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA                                           | $\begin{array}{c} 1.10\\ \text{ir Plac}\\ 1 \text{ (WL}\\ 1^{st}\\ \text{all}\\ 3.63\\ 2.56\\ 3.66\\ 2.64\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.64\\ 3.92\\ 2.70\\ 4.02\\ 2.77\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \end{array}$                                                                                                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61                                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82                                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110                                        | Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA             | $\begin{array}{c} 1.10\\ \text{ir Plac}\\ \textbf{1} (\text{WL}\\ 1^{st}\\ \text{all}\\ 3.63\\ 2.56\\ 3.66\\ 2.64\\ 3.67\\ 2.69\\ 3.67\\ 2.64\\ 3.92\\ 2.70\\ 2.77\\ \textbf{2} (\text{WL}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \end{array}$                                                                                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61                                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82                                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2                                   | Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG       | $\begin{array}{c} \text{in } \mathbf{r} \\ \text{in } \mathbf{r} \\ \text{matrix} \\ 1 \\ \text{(WL} \\ 1^{st} \\ \text{all} \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.64 \\ 3.92 \\ 2.70 \\ 4.02 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \end{array}$                                                                             | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73                                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16                                                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2                                   | Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA             | $\begin{array}{c} 1.10\\ \text{in Flac}\\ \textbf{in Flac}\\ \textbf{1} (WL \\ 1^{st}\\ \text{all}\\ 3.63\\ 2.56\\ 3.66\\ 2.64\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.64\\ 3.92\\ 2.70\\ 4.02\\ 2.77\\ \textbf{2} (WL \\ 1.79\\ 1.68\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \end{array}$                                                                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66                                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11                                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3                            | Case<br>Pad<br>Regime<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA<br>PG<br>AA | $\begin{array}{c} 1.10\\ \textbf{in f}\\ \textbf{in f}\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{It er} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.94 \\ 2.25 \\ 0.94 \\ 0.25 \\ 0.13 \\ 0.24 \end{array}$                                                            | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74                                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17                                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3                            | OtCasePadRegimePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAA                                                                       | $\begin{array}{c} 1.10\\ \textbf{in Plac}\\ \textbf{in Plac}\\ \textbf{1} (WL\\ 1^{st}\\ all\\ 3.63\\ 2.56\\ 3.66\\ 2.64\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.64\\ 3.92\\ 2.70\\ 4.02\\ 2.77\\ \textbf{2} (WL\\ 1.79\\ 1.68\\ 1.78\\ 1.67\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.94 \\ 2.25 \\ 0.94 \\ 0.94 \\ 0.13 \\ 0.24 \\ 0.13 \end{array}$                                                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68                                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11                                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3<br>2m10                    | OtCasePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPG                                                                  | $\begin{array}{c c} \mathbf{r} \ \mathbf{Plac}\\ \mathbf{r} \ \mathbf{Plac}\\ 1 \ (\mathbf{WL} \\ 1^{st} \\ all \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.64 \\ 3.92 \\ 2.70 \\ 4.02 \\ 2.77 \\ 2 \ (\mathbf{WL} \\ 1.79 \\ 1.68 \\ 1.67 \\ 1.79 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \text{er} \\ \text{*}10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.26 \end{array}$                                                            | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75                                                 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.18                                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3<br>2m10                    | OtCasePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAA                                                        | $\begin{array}{c c} \mathbf{r} \ \mathbf{Plac}\\ \mathbf{r} \ \mathbf{Plac}\\ 1 \ (\mathbf{WL} \\ 1^{st} \\ all \\ \hline 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.64 \\ 3.92 \\ 2.70 \\ 4.02 \\ 2.77 \\ \hline 2.77 \\ \hline 4.02 \\ 2.77 \\ \hline 2.77 \\ \hline 4.02 \\ 2.77 \\ \hline 1.79 \\ 1.68 \\ 1.78 \\ 1.67 \\ 1.79 \\ 1.67 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{er} \\ \text{*}10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.24 \\ 0.13 \\ 0.26 \\ 0.13 \end{array}$                                    | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75<br>1.66                                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.18<br>0.12                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3<br>2m10<br>2m16            | OtCasePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAA                                | $\begin{array}{c} \text{In Plac} \\ \textbf{ir Plac} \\ \textbf{ir Plac} \\ \textbf{l} \\ \textbf{ir Value} \\ 1 \\ \textbf{(WL} \\ 1^{st} \\ all \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.77 \\ 2.70 \\ 4.02 \\ 2.77 \\ 2.77 \\ 1.79 \\ 1.68 \\ 1.78 \\ 1.67 \\ 1.79 \\ 1.67 \\ 1.80 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{It er} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.24 \\ 0.13 \\ 0.26 \end{array}$                                            | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75<br>1.66<br>1.74                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.17<br>0.12<br>0.17                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3<br>2m10<br>2m16            | OtCasePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAA                                                        | $\begin{array}{c} \mathbf{r}, \mathbf{Plac} \\ \mathbf{r}, \mathbf{Plac} \\ 1, (\mathbf{WL}, 1^{st}, all) \\ 3.63 \\ 2.56 \\ 3.66 \\ 2.64 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.69 \\ 3.67 \\ 2.64 \\ 3.92 \\ 2.70 \\ 4.02 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.77 \\ 2.70 \\ 4.02 \\ 2.77 \\ 1.68 \\ 1.78 \\ 1.67 \\ 1.79 \\ 1.68 \\ 1.67 \\ 1.79 \\ 1.68 \\ 1.74 \\ 1.80 \\ 1.74 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.24 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.16 \end{array}$                     | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75<br>1.66<br>1.74<br>1.66                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.12<br>0.12                                         |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2m10<br>2m10<br>2m16<br>2m40        | OtCasePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAA                                | $\begin{array}{c} \mathbf{r}, \mathbf{r},$  | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.16 \\ 0.28 \end{array}$             | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75<br>1.66<br>1.74<br>1.66<br>1.76                         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.17<br>0.12<br>0.20                                 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2<br>2m3<br>2m10<br>2m16<br>2m40    | OtCasePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAA                                                | $\begin{array}{c} 1.10\\ \text{ir Plac}\\ \textbf{ir Plac}\\ \textbf{1} (WL \\ 1^{st}\\ all\\ 3.63\\ 2.56\\ 3.66\\ 2.64\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.69\\ 3.67\\ 2.64\\ 3.92\\ 2.70\\ 4.02\\ 2.77\\ \textbf{2} (WL \\ 1.79\\ 1.68\\ 1.78\\ 1.67\\ 1.79\\ 1.67\\ 1.80\\ 1.67\\ 1.80\\ 1.68\\ 1.68\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{Iter} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.15 \\ \end{array}$  | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75<br>1.66<br>1.74<br>1.66<br>1.76<br>1.68         | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.17<br>0.11<br>0.18<br>0.12<br>0.17<br>0.20<br>0.15 |
| Mutant<br>Case<br>1<br>1m6<br>1m19<br>1m40<br>1m100<br>1m110<br>2m3<br>2m10<br>2m16<br>2m40<br>2m67 | OtCasePadRegimePGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPGAAPG                                         | $\begin{array}{c} \mathbf{r}, \mathbf{r}, \mathbf{r} \\ \mathbf{r}, \mathbf{r}$ | $\begin{array}{c} \text{er} \\ \times 10^5) \\ \text{It er} \\ \text{I/O} \\ 1.66 \\ 0.62 \\ 1.69 \\ 0.66 \\ 1.73 \\ 0.76 \\ 1.82 \\ 0.79 \\ 2.17 \\ 0.94 \\ 2.25 \\ 0.99 \\ \times 10^6) \\ 0.25 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.13 \\ 0.26 \\ 0.16 \\ 0.15 \\ 0.31 \\ \end{array}$ | Best<br>all<br>3.25<br>2.56<br>3.25<br>2.63<br>3.28<br>2.64<br>3.30<br>2.60<br>3.49<br>2.57<br>3.54<br>2.61<br>1.73<br>1.66<br>1.74<br>1.68<br>1.75<br>1.66<br>1.74<br>1.66<br>1.74<br>1.66<br>1.76 | Iter<br>I/O<br>1.17<br>0.62<br>1.17<br>0.63<br>1.23<br>0.66<br>1.38<br>0.70<br>1.65<br>0.79<br>1.73<br>0.82<br>0.16<br>0.11<br>0.17<br>0.11<br>0.17<br>0.12<br>0.17<br>0.12<br>0.21                 |

Table 5. Studies of peripheral and area-array I/O placement regimes with netlist mutants.

Our ongoing work addresses three issues. First, our experiments have shown that our combination of min-cut and assignment may eventually be competitive with the industry placer, at least in situations where both I/O and core cells must be placed. (Again, recall that our approach does not require any fixed anchors, and that the first iteration appears very important.) We hope to improve our placer to meet similar routability and legalization objectives as the industry tool, so that more direct comparisons will be possible. Second, we believe that the simultaneous I/O and core placement methodology still holds promise, and we hope to better understand the relationship between netlist topology and wirelength reductions afforded by the area-array regime.

## REFERENCES

- C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov and K. Yan, "Quadratic Placement Revisited", Proc. ACM/IEEE Design Automation Conference, June 1997, pp. 752-757.
- [2] B. Chen and M. Marek-Sadowska, "Timing Driven Placement of Pads and Latches", Proc. IEEE International ASIC Conf., Rochester, Sept. 1992, pp. 30-33.
- [3] B. T. Davis, C. Gauthier, P. Parakh, T. Basso, C. Lefurgy, R. Brown and T. Mudge, "Impact of MCM's on High Performance Processors", Proc. INTERpack-97: International, Intersociety Electronic and Photonic Packaging Conf., Mauna Lani, vol. 1, June 1997, pp. 863-868.
- [4] P. Dehkordi, C. Tan and D. Bouldin, "Intrinsic Area Array ICs: What, Why and How", Proc. IEEE Multi-Chip Module Conf., Santa Cruz, Feb. 1997, pp. 120-124.
- [5] R. Farbarik, X. Liu, M. Rossman, P. Parakh, T. Basso and R. Brown, "CAD Tools for Area-Distributed I/O Pad Packaging", Proc. IEEE Multi-Chip Module Conf., Santa Cruz, Feb. 1997, pp. 125-129.
- [6] C.M Fiduccia and R.M. Mattheyses, "A Linear Time Heuristic for Improving Network Partitions," in Proc. ACM/IEEE Design Automation Conf., 1982, pp. 175– 181.
- [7] T. Gao, C. L. Liu and K. C. Chen, "A Performance Driven Hierarchical Partitioning Placement Algorithm", Proc. European Design Automation Conf., Hamburg, Sept. 1993, pp. 33-38.
- [8] A. Goldberg and R. Kennedy, "An Efficient Cost Scaling Algorithm for the Assignment Problem", Math. Prog. 71 (1995), pp. 153-178.
- [9] F. E. Kiamilev, A. V. Krishnamoorty, J. Rieve, R. G. Rozier, G. F. Alpin, C. D. Hull, R. Farbarik and R. E. Oettel, "Design of ICs for Flip-Chip Integration with Optoelectronic Device Arrays", Proc. IEEE Multi-Chip Module Conf., Santa Cruz, Feb. 1997, pp. 163-167.
- [10] R. J. Lomax, R. B. Brown, M. Nanua and T. D. Strong, "Area I/O Flip-Chip Packaging to Minimize Interconnect", Proc. IEEE Multi-Chip Module Conf., Santa Cruz, Feb. 1997, pp. 2-7.
- [11] V. Maheshwari, J. Darnauer, J. Ramirez and W. W.-M. Dai, "Design of FPGAs with Area I/O for Field Programmable MCM", Proc. ACM Symp. on Field-Programmable Gate Arrays, 1995, pp. 17-23.

- [12] M. Marek-Sadowska and S. P. Lin, "Timing Driven Placement", Proc. IEEE Intl. Conf. on Computer-Aided Design, Nov. 1989, pp. 94-97.
- [13] M. Pedram, K. Chaudhary and E. S. Kuh, "I/O Pad Assignment Based on the Circuit Structure", Proc. IEEE International Conf. on Computer Design, Cambridge, Oct. 1991, pp. 314-318.
- [14] R. V. Raj, N. S. Murty, P. S. Nagendra Rao and L. M. Patnaik, "Effective Heuristics for Timing Driven Constructive Placement", Proc. Intl. Conf. on VLSI Design, Bangalore, Jan. 1997, pp. 38-43.
- [15] Semiconductor Industry Association, National Technology Roadmap for Semiconductors: Technology Needs (1997 edition), December 1997.
- [16] A. Srinivasan, K. Chaudhary and E. S. Kuh, RITUAL: a performance-driven placement algorithm. *IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing*, vol.39, (no.11), Nov. 1992, p.825-840.
- [17] C. Tan, D. Bouldin and P. Dehkordi, "Design Implementation of Intrinsic Area Array ICs", Proc. Conf. on Advanced Research in VLSI, Ann Arbor, Sept. 1997, pp. 82-93.
- [18] TimberWolf Systems, Inc., http://www.twolf.com, 1998.
- [19] R. R. Tummala and E. J. Rymaszewski, eds., Microelectronic Packaging Handbook, Van Nostrand Reinhold, 1989.