
IMPLICATIONS OF AREA-ARRAY I/O FOR ROW-BASED PLACEMENT
METHODOLOGY�

A. E. Caldwell, A. B. Kahng, S. Mantik and I. L. Markov
UCLA Computer Science Dept., Los Angeles, CA 90095-1596

fcaldwell,abk,stefanus,imarkovg@cs.ucla.edu

ABSTRACT

We empirically study the implications of area-array I/O
for placement methodology. Our work develops a three-axis
testbed that examines (1) I/O regime (area-array vs. pe-
ripheral pad locations), (2) I/O and core placement method-
ology (variants of alternating vs. simultaneous I/O and core
placement approaches), and (3) placement engine (hierar-
chical quadratic for both core and I/O cells vs. pure min-cut
for core cells and assignment for I/O). Experimental data
show that the area-array I/O regime is somewhat \more for-
giving" of bad placement methodologies than the peripheral
I/O regime. On the other hand, the wrong methodology
can still entail substantial losses in solution quality and ef-
�ciency. Last, we hypothesize that reductions of on-chip
wirelength from adopting the area-array I/O regime may
be correlated with topological depth of circuits.

1. INTRODUCTION

IC packaging technologies with peripheral I/O pads have
well-known shortcomings. Observed system Rent param-
eters suggest that ICs require asymptotically more pads
than the die perimeter can provide [15]. Peripheral I/O
pads also constrain clock/power distribution, and their in-
herently large parasitics cause coupling and power issues
for o�-chip signaling. Given these concerns, the area-array
I/O regime is projected to eventually dominate IC imple-
mentation methodology, a�ording improved pad count and
reliability, reduced noise coupling, and cost savings as the
technology matures.
With respect to physical design, area-array I/O presents

several critical new issues. Locating pads directly over the
core layout region requires new tools for signal integrity
analysis and simultaneous die-package simulation. The pos-
sibility of synergetic on-chip and on-package routing opens
up many new problems, particularly in the distribution of
clock and power. Finally, place-and-route tools will need to
handle new layout constraints and objectives, e.g., for noise
decoupling and ESD protection. Much e�ort remains in
developing tools and methodology, and the precise impact
of area-array I/O on such basic parameters as routability,
required global interconnect resource for the design, etc.
remains largely unknown.
In this work, we focus on the implications of the area-

array I/O regime on I/O and core placement methodology
for row-based ICs. Speci�cally, we examine whether the
shift to area-array I/O requires changes to methodologies
(e.g., alternating I/O and core placement) and engines (e.g.,
top-down \quadratic placers" that integrate sparse-system

�THIS WORK WAS SUPPORTED BY A GRANT FROM
CADENCE DESIGN SYSTEMS, INC.

solvers with min-cut partitioners) that are perceived to be
successful in the peripheral I/O regime. Our speci�c con-
tributions include:

� We develop a three-axis testbed that allows examina-
tion of (1) I/O regime (area-array vs. peripheral pad
locations), (2) I/O and core placement methodology
(variants of alternating vs. simultaneous I/O and core
placement approaches), and (3) placement engine (hi-
erarchical quadratic for both core and I/O cells vs.
pure min-cut for core cells and assignment for I/O).

� Under modest assumptions, we experimentally show
that area-array I/O leads to smaller wirelengths (sug-
gesting better routability) than peripheral I/O.

� Again experimentally, we show that the area-array I/O
regime is somewhat \more forgiving" of bad I/O and
core placement methodologies. On the other hand,
the wrong methodology can still hurt solution quality
and/or runtime.

The remainder of this paper is organized as follows. In
Section 2, we review related previous work, while Section 3
gives a model of I/O regimes, along with a taxonomy of I/O
and core placement methodologies and placement engines.
Section 4 describes details of our experimental testbed, and
Section 5 gives experimental studies of di�erent placement
methodologies in the peripheral and area-array I/O regimes.
Section 6 concludes with a description of ongoing research
e�orts.

2. PREVIOUS WORK

For the intrinsic area-array regime,1 to which our studies
apply, Tan et al. [17] pose the layout problem as: \Given
a core portion of the chip which already contains the I/O
bu�ers, place the possible uniformly spaced area-array pads
on the top metal layer of the design ... and route these
pads to the I/O ports of the chip...". For a given �xed
core placement, Tan et al. propose a pad placement and
assignment methodology that searches for feasible pad lo-
cations until there are 10% more identi�ed pad locations
than I/O ports. Assignment is used to match I/O ports
to pad locations. Farbarik et al. [5] report a suite of CAD
tools for intrinsic area-array ICs, notably an area-pad oor-
planner that drives the placement of blocks and associated

1
Intrinsic area-array ICs are those originally designed and laid

out for area-array bonding; extrinsic area-array ICs are originally
designed and laid out for peripheral bonding, and later converted
to the area-array regime using a signal redistribution layer [17].
Maheshwari et al. [11] distinguish the same concepts as \true
area-I/O" vs. \redistribution".

I/O bu�ers so as to minimize routing cost to area pads.2 A
corner-stitched maze router is used to perform the area-pad
routing. Kiamilev et al. [9] propose three distinct layout
methodologies for intrinsic area-array ICs. The second ap-
proach is similar to that of [5] but uses manual routing; the
third approach separately optimizes the core and I/O bu�er
circuit placements on chip, then places area pads directly
above corresponding I/O bu�ers using a two-dimensional
array structure called a pad interface module.

An important work vis-a-vis our own is that of Mahesh-
wari et al. [11], which addresses timing and wirelength im-
plications of transitioning a �eld-programmable MCM im-
plementation to the area-array I/O regime. In [11], analy-
sis of a theoretical model based on random placement and
Rent's rule suggests that area-array I/O \o�er[s] a small
improvement on the total wirelength, but not much", since
the proportion of external nets decreases as the circuit
grows large. On the other hand, experimental results with
an FPGA layout tool indicate that area-array I/O can af-
ford increased routability (around 13% average reduction in
wiring resource usage) and smaller parasitics, particularly
for combinational benchmarks.

Finally, I/O placement methodology has been exten-
sively studied for row-based designs and the peripheral I/O
regime. RITUAL [16] leaves I/Os oating on the core
boundary (allowing infeasible positions) and legalizes them
during detailed placement. PACT [13] notes the potential
weak I/O placement quality of RITUAL, and proposes lin-
ear assignment to compute an initial (i.e., before core cells
are placed) I/O placement. Analysis of circuit structure
and path timing constraints is used to determine assign-
ment costs. The authors of PACT [13] observe, by way of
motivation, that the common practice of alternating I/O
and core placements starting from an arbitrary initial I/O
placement can be time-consuming; furthermore, \even if
convergence is achieved, the �nal solution is heavily inu-
enced by the [arbitrary] initial pad assignment". For small
instances of up to 589 gates and 301 I/Os, PACT achieves
between 6.5% and 23.6% percent reduction in total wire-
length versus random I/O placement, and between 1.0%
and 9.7% improvement in path timing.

Chen and Marek-Sadowska [2] note possible weaknesses
in PACT, e.g., that the chip boundary is represented by a
linear array of locations. The authors of [2] construct an
initial I/O placement by annealing, using circuit structure
and path delay constraints in the objective. The path tim-
ing penalty of a bad I/O placement is estimated as being
up to 10%; no wirelength penalty data is given. A signi�-
cant improvement to PACT is given by [14], who separately
process oating inputs in performing the initial I/O place-
ment. When both methods are compared in the context
of a wirelength-driven annealing placer, the method of [14]
improves over PACT total wirelength by 42% for two of the
four cases reported (with up to 412 cells and 59 pads). The
work of Gao et al. [7] typi�es top-down partitioning-based
placers that deal with peripheral I/O pads and core cells si-
multaneously, i.e., separate balance factors are maintained
for I/Os and core cells during the partitioning step.

2The netlist assigning I/O bu�ers to pads is assumed �xed,
in contrast to [17] where \[the] netlist is generated using a pad
assignment method...".

3. A TAXONOMY OF I/O AND CORE
PLACEMENT METHODOLOGY

3.1. I/O Regimes

We study the following abstract model of I/O regimes for
row-based designs.

� I/O cells must be placed exactly at pad locations, and
any I/O cell can be placed at any pad location.

� No two I/O cells can occupy the same location.

� For a design with P I/O cells and a rectangular core
layout region, we �x pad locations:

{ with P locations uniformly spaced around the
boundary of the core layout region (this models
the peripheral I/O regime with generic locations),

{ with P locations along the sides of the core layout
region determined by \projecting" original periph-
eral pad locations3 to the layout boundary with re-
spect to the center of the layout region (this models
the peripheral I/O regime with user locations), or

{ with an array of locations spaced uniformly within
the core layout region (this models the area-array
I/O regime).4

Our model of the area-array regime ignores many practical
constraints, as well as freedoms, that are associated with
pad location and I/O assignment to pads. For example, we
ignore I/O placement constraints { many of which have yet
to be precisely characterized { that arise from package tech-
nology, decoupling and ESD requirements, power/ground
distribution, etc. However, our model permits controlled
study of netlist embeddability and embedding strategy, and
is tractable even to industry layout tools that do not other-
wise handle the area-array regime. Within this model, we
investigate the following taxonomy of methodologies and
engines for I/O and core placement.

3.2. Alternating vs. Simultaneous Methodologies

Previous works use two basic methodologies, alternating
and simultaneous, for I/O and core cell placement.

� Alternating I/O and core placement. The alter-
nating methodology iterates between two basic steps,
(1) �xing core cells and re-placing I/Os, and (2) �x-
ing I/Os and re-placing core cells. There are two
distinct variants, alternating core-�rst and alternating
I/O-�rst. In the core-�rst variant, we delete all I/O
cells from the netlist, then place the core cells into le-
gal core sites to minimize, e.g., a total wirelength ob-
jective. We then restore the original netlist, and begin
the alternation with step (1). In the I/O-�rst variant,
we determine an initial I/O placement and then begin
the alternation with step (2). As noted above, I/O-�rst
alternation typically uses a random initial I/O place-
ment. In the peripheral I/O regime, we can also have
a user-de�ned initial I/O placement.

� Simultaneous I/O and core placement. The
simultaneous methodology determines placements of
I/O and core cells at the same time. For example, [7]
performs hierarchical top-down placement, and spec-
i�es that any physical partition at any level contains
(assignable) I/Os in proportion to the number of (avail-
able) legal pad sites contained in the partition.

3I.e., as speci�ed in the benchmark data when we received it.
4If the core region has dimensions H � W , there will be
H

2(H+W)
rows and W

2(H+W)
columns of pads.

3.3. Hierarchical Placement Engines

Most placement tools, with the notable exception of Tim-
berWolf [18], are reputed to incorporate the hierarchical
top-down strategy as part of their approach. The two most
common variants are based respectively on analytic place-
ment and pure min-cut placement.

� Analytic placement. As reviewed in [1], the an-
alytic placement (popularly referred to as \quadratic
placement") approach involves (1) solution of a sparse
linear system to determine a continuous module place-
ment that minimizes a squared-wirelength objective5,
interleaved with (2) heuristic means of \legalizing", or
\spreading", the placement so that it satis�es discrete
constraints (e.g., no module overlaps). The sparse lin-
ear systems can correspond to hierarchical subprob-
lems in the top-down placement process. The legal-
ization step is typically accomplished via partitioning
or assignment/transportation formulations, along with
highly sophisticated metaheuristics.

� Pure min-cut placement. A pure min-cut strategy
uses an iterative partitioner, e.g., some variant of the
Fiduccia-Mattheyses heuristic [6], with a minimum net
cut objective. Techniques such as terminal propaga-
tion, table-lookup treelength estimators, etc. are used
to improve �delity of the min-cut partitioning objective
with respect to the actual placement objective, which
is often based on the sum of net bounding box half-
perimeters. Again, many sophisticated metaheuristics
are used to achieve competitive results.

4. EXPERIMENTAL QUESTIONS AND
TESTBED

In most IC place-and-route ows today, I/O locations are
assumed to be �xed in any input instance to the placement
tool. For example, in hierarchical blocks the I/O locations
may be �xed by a pin optimizer or by a chip-level route
planner within the design planning tool. Even for \at, full-
chip" placement (e.g., traditional gate-array ASIC), CAD
engineers often heuristically assign system I/Os to pad loca-
tions. The conventional wisdom is that �xing the I/O place-
ment before placing core cells impacts the total wirelength
of the layout by at most a few percent. This is plausible
since the number of nets incident to I/Os is small relative
to the total number of nets, and matches the conclusions of
[11]. On the other hand, recall that in the peripheral I/O
regime (i) a high-quality I/O placement can signi�cantly im-
prove wirelength and performance for small designs [2], and
(ii) with alternating I/O and core placement methodologies
the �nal solution is \heavily inuenced" by the initial I/O
placement [13]. Thus:

� Experimental Question 1: Does an initial I/O
placement have as \heavy" an inuence (with respect
to alternating methodologies) in the area-array I/O
regime as it does in the peripheral I/O regime?

Next, we observe that within the hierarchical placement
approach, the use of analytic placers (\quadratic placers")
requires �xed I/O locations to \anchor" the result of the
continuous placement. If there are no prescribed I/O lo-
cations, then the analytic placement collapses down to a

5In some sense, the term \quadratic placement" is a mis-
nomer since it is also possible to analytically solve for a contin-
uous placement that minimizes a di�erent objective, e.g., linear
wirelength.

single point and provides a vacuous start to the legalization
step. We ask whether a \�x I/Os �rst" mindset with the
analytic placement approach has somehow guided I/O and
core placement methodology in the wrong direction.

� Experimental Question 2: Can core-�rst alter-
nation (which a pure min-cut placement engine might
achieve more naturally than a quadratic placer) deliver
results superior (in terms of solution quality and/or
convergence) to those of I/O-�rst alternation?

� Experimental Question 3: Can a simultaneous
methodology deliver results superior (in terms of solu-
tion quality and/or convergence) to those of an alter-
nating methodology?

Each of these questions can be asked in both the peripheral
and area-array I/O regimes.

Testbed

To test all placement strategies within the above taxonomy,
we require four capabilities: (1) placement of core cells with
I/Os detached from the netlist; (2) placement of core cells
with �xed I/Os; (3) placement of I/Os onto discrete loca-
tions when core cells are �xed; and (4) simultaneous place-
ment of I/O and core cells.
Our testbed includes both an industry placer and our

own placer. The industry placer reputedly uses some form
of the quadratic (analytic) placement approach; we run it
in default mode. It can be coerced to provide the �rst three
out of the four capabilities above, via a mix of site de�-
nitions, �xed-location constraints, I/O-core reclassi�cation,
and scripting. Our placer integrates a number of techniques,
but we invoke only pure hierarchical min-cut placement for
core cells and min-cost assignment for I/Os to achieve all
four of the capabilities above.
Both the industry placer and our placer can read test

cases from industry in the Cadence LEF/DEF format. Our
experiments are based on two industry designs from which
we removed all nets incident to more than 100 cells, as well
as all spare cells and the 1-pin nets that result from removal
of spare cells. Parameters of the test cases are shown in
Table 1.

Test Case Cells I/Os Nets
Case 1 3231 545 2844
Case 2 12133 662 11826

Table 1. Test cases used for experiments.

5. EXPERIMENTAL RESULTS

5.1. Experiments With the Industry Placer

The industry placer, to our knowledge, assumes that I/Os
are placed and �xed. We have not yet been able to achieve
a simultaneous methodology with this tool. To implement
alternating I/O and core placement methodologies, we mod-
ify the netlist at each iteration by relabeling former movable
core cells as �xed I/Os, and former �xed I/Os as movable
core cells. The placer can also be run with all I/Os removed
from the netlist to construct initial core placements. No-
tice that the placement of core cells with all I/Os removed
from the netlist gives an empirical \lower bound" for wire-
length. Such lower bounds are 246633 microns for Case 1
and 1602701 microns for Case 2.
Table 2 presents placement results (sum of net bounding

box half-perimeters) for the I/O regimes discussed in the

Industry Placer

Case 1 (WL �105�m)
I/O Alternation 1st Iter Best Iter

Regime all I/O all I/O #
PG Core 4.75 2.60 4.17 1.55 4

I/O(r) 6.62 3.42 4.43 1.65 19
Core 5.41 3.26 4.68 1.98 6

PU I/O(r) 6.79 3.44 4.92 2.10 14
I/O(u) 6.44 3.07 4.83 2.06 17

AA Core 2.84 0.71 2.82 0.68 6
I/O(r) 5.77 2.59 3.11 0.72 19

Case 2 (WL �106�m)
PG Core 2.15 0.59 2.04 0.35 14

I/O(r) 2.71 0.85 2.05 0.33 16
Core 2.31 0.73 2.16 0.44 6

PU I/O(r) 2.78 0.88 2.16 0.44 16
I/O(u) 2.81 0.88 2.14 0.38 7

AA Core 1.70 0.14 1.67 0.12 16
I/O(r) 2.54 0.66 1.76 0.13 19

Table 2. Studies of peripheral and area-array I/O
regimes.

previous section: peripheral with generic locations (PG),
peripheral with user-de�ned locations (PU), and area-
array (AA). Methodologies studied were alternating start-
ing with a �xed initial core placement (Core) and alternat-
ing starting with a �xed initial I/O placement (I/O). Recall
that the PU,I/O combination permits use of the designer's
I/O placement. Thus, for the PU regime we distinguish a
starting random I/O placement (I/O(r)) from a starting
user-de�ned I/O placement (I/O(u)). All experiments in-
volving random initial I/O placements (I/O(r)) are averages
over 5 runs.
We place I/Os and core 10 times each, in alternation, us-

ing the industry placer; this yields 19 iterations with mean-
ingful placement results.6 We report best wirelength values
over all 19 iterations along with the iteration number (1-19)
at which the best result occurred. We also report wirelength
values obtained at the �rst iteration. Two wirelength val-
ues are given: summed over all nets, and summed over only
nets that contain I/Os.
For the standard methodology of alternating I/O and core

placement steps starting with a random I/O placement, sur-
prisingly many iterations are required until the best place-
ment is reached. (Quite possibly, current practice does not
invoke su�ciently many alternations.) Often, wirelength
does not improve monotonically over successive iterations,
but instead oscillates. This is shown in Figure 1, which
shows all results in the PG and AA regimes for both Case
1 and Case 2. The oscillating e�ect is very strong with pe-
ripheral I/O regimes, and relatively weak with area-array
I/O. Furthermore, the I/O placement steps for peripheral
I/O usually increase wirelength, while core placement steps
usually decrease wirelength. One possible explanation is
that the industry placer's algorithm, while highly success-
ful for core placement, does not perform as well for I/Os.
Thus, the I/O placement iterations are essentially \pertur-
bations" or \kick moves" from which the core placement re-
covers. We also note that the best wirelengths in all I/O(r)
experiments obtain from 22% to 46% reduction over the ini-

6On a 140MHz Sun Ultra-1, average CPU time per core place-
ment iteration was 2 minutes and 20 minutes, and average CPU
time per I/O placement iteration was 45 seconds and 2.5 minutes,
for Cases 1 and 2 respectively.

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

0 2 4 6 8 10 12 14 16 18 20

Case 1 (Industry Placer)

AA I/O(r)
AA Core
PG Core
PG I/O(r)

Lower Bound

1.6e+06

1.8e+06

2e+06

2.2e+06

2.4e+06

2.6e+06

0 2 4 6 8 10 12 14 16 18 20

Case 2 (Industry Placer)

AA I/O(r)
AA Core
PG Core
PG I/O(r)

Lower Bound

Figure 1. Wirelengths after I/O and core place-
ment iterations for Case 1 (top) and Case 2 (bot-
tom) with the industry placer.

tial wirelengths. We conclude that an initial random I/O
placement can be very harmful, and that the traditional
methodology may require many alternations to recover.
We next observe that with every placement regime, plac-

ing core cells �rst with I/Os removed leads to overall smaller
wirelength. Furthermore, in all but the PU,I/O(u) case, far
fewer iterations are required before essentially the best wire-
length is achieved. From a methodology point of view, it
appears that disconnecting the I/Os from the netlist and
placing the core yields a superior start for alternation. Fi-
nally, total wirelength values show that the best I/O regime
is area-array, followed by uniformly-spaced (generic) periph-
eral. The worst regime in terms of \achievable" wirelength
was the PU regime: we speculate that the nonuniformity of
the pad locations makes wirelength minimization more dif-
�cult for the various methodologies. Notice that in the PU
regime, the I/O placement de�ned by the designer leads to
overall smaller wirelength, again con�rming that the initial
I/O placement strongly inuences the �nal placement and
that a bad initial placement is harmful.

5.2. Experiments With Our Placer

With our placer, a simultaneous methodology is imple-
mented by performing top-down hierarchical placement,
with core cells recursively bipartitioned by a min-cut KLFM
heuristic at each level, and I/O cells re-placed by min-cost
assignment at each level. To set the assignment costs for

the I/O cells, we assume that each core cell is located in the
center of its current region within the top-down process.7

Our implementation of alternating methodologies uses top-
down min-cut FM bipartitioning for each core placement
iteration, and min-cost assignment for each I/O placement
iteration. With our placer, all reported results are averages
over 5 runs.

Our Placer

Case 1 (WL �105�m)
I/O Methodology 1st Iter Best Iter

Regime all I/O all I/O #
Core 3.63 1.66 3.25 1.17 17

PG I/O 6.41 3.88 3.45 1.28 18
Simultaneous | | 4.05 1.69 |
Core 2.56 0.62 2.56 0.62 1

AA I/O 5.52 3.12 2.68 0.63 12
Simultaneous | | 3.00 0.82 |

Case 2 (WL �106�m)
Core 1.79 0.25 1.73 0.16 15

PG I/O 2.64 0.94 1.85 0.22 16
Simultaneous | | 1.89 0.25 |
Core 1.68 0.13 1.66 0.11 7

AA I/O 2.41 0.76 1.71 0.12 14
Simultaneous | | 1.74 0.13 |

Table 3. Studies of peripheral and area-array
I/O regimes.

Table 3 shows that as the total wirelength improves from
the �rst iteration to the best iteration, the same reduc-
tion (or even greater reduction) occurs in the nets incident
to I/Os. This phenomenon appears to be independent of
I/O regime and placement methodology. As expected, us-
ing min-cost assignment for I/O placement results in much
more e�cient I/O placement iterations, and generally de-
creases wirelength from the previous iteration (in contrast
to what we observed with the industry placer).8 As seen in
Figure 2, wirelength decreases faster than with the industry
placer. Furthermore, near-best wirelength results tend to
be achieved in fewer iterations (sometimes almost immedi-
ately). We believe that this is due to use of assignment for
I/O placement.
In general, alternating methodology experiments with

our placer lead to similar qualitative conclusions as exper-
iments with the industry placer. We emphasize that our
wirelength values and CPU times are not comparable with
those of the industry placer, since the industry placer per-
forms many detailed optimizations to guarantee routabil-
ity. (We leave such optimizations, and the ability to per-
form direct comparisons between the two placers, to future
work.) Finally, we note that the results from the simultane-
ous methodology are fairly disappointing. We believe that
variant implementations may be more successful, and our
future work targets these.

7Nets containing multiple I/Os are not common in our ex-
perience, hence I/O placement can be reduced to the classical
assignment problem with independent assignment costs for each
combination of I/O and pad location. Our implementation uses
the e�cient cost scaling algorithm due to Goldberg and Kennedy
[8].

8On a 140MHz Sun Ultra-1, average CPU time per core place-
ment iteration was 2 minutes and 15 minutes, and average CPU
time per I/O placement iteration was 14 seconds and 22 seconds,
for Cases 1 and 2 respectively.

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

0 2 4 6 8 10 12 14 16 18 20

Case 1 (Our Placer)

AA I/O
AA Core
PG Core

PG I/O
Low Bound

1.6e+06

1.8e+06

2e+06

2.2e+06

2.4e+06

2.6e+06

0 2 4 6 8 10 12 14 16 18 20

Case 2 (Our Placer)

AA I/O
AA Core
PG Core

PG I/O
Lower Bound

Figure 2. Wirelengths after I/O and core place-
ment iterations for Case 1 (top) and Case 2 (bot-
tom) with our placer.

5.3. Experiments with Netlist Structure

Our �nal experiments seek a link between topological struc-
ture of netlists and the ability of area-array I/O to reduce
total wirelength. We conjecture that designs in which core
cells are nearer I/Os will bene�t greatly from area-array
I/O, while designs in which core cells are further from I/Os
will not bene�t as much. The intuition is that area-array
I/O o�ers more exibility in the I/O placement, and that
this can help a design whose core cells are tightly bound to
I/Os. On the other hand, if the core cells are loosely bound
to I/Os, then extra exibility in the I/O placement may not
be needed to achieve low wirelength.
To verify this conjecture, we have produced a series of

mutant netlists by (1) iteratively �nding the core cells fur-
thest from I/Os (using simple hop-count in the netlist hy-
pergraph), and (2) transforming these cells into \I/Os".
In this way, we may change the topological depth fairly
quickly with minimal change to the netlist. Table 4 shows
the topological pro�le, i.e., the number of cells at each hop-
count (level) from the I/Os, for the each original design and
�ve mutants selected for their variety of topological depths.
Each mutant is designated by the number of cells changed
from the original (e.g., Case 1m40 has 40 original core cells
changed into I/Os). For each mutant, we perform the same
placement experiments as before, but apply only the most
successful methodology, i.e., alternating core-�rst. These

Test Case I/Os Topological pro�le (by levels)
Case 1 545 1030, 1265, 352, 33, 6
Case 1m6 551 1037, 1272, 345, 26
Case 1m19 564 1072, 1358, 237
Case 1m40 585 1253, 1300, 93
Case 1m100 645 1433, 1143, 10
Case 1m110 655 1459, 1117

Case 2 662 1010, 2668, 4194, 2667, 786, 137, 9
Case 2m3 665 1019, 2685, 4244, 2727, 706, 87
Case 2m10 672 1054, 2835, 4522, 2633, 410, 7
Case 2m16 678 1069, 2877, 4599, 2570, 340
Case 2m40 702 1170, 3353, 5068, 1802, 38
Case 2m67 729 1247, 3604, 5083, 1470

Table 4. Topological pro�les of original and mutant
netlists for Case 1 and Case 2. The topological pro�le in-
dicates the number of cells at each hop-count (level) from
the I/Os.

results are shown in Table 5.
To assess the impact of the area-array regime, we observe

the di�erence between best wirelengths achieved with area-
array I/O and with peripheral I/O. For the smaller design,
Case 1, this di�erence clearly increases as more cells in the
design move closer to the I/Os. However, for Case 2 only
minor changes in this di�erence can be seen. We believe
that alternate characterizations of netlist topology may be
needed, as well as more detailed studies.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have empirically studied the implications
of area-array I/O for placementmethodology using a testbed
that allows us to vary the I/O regime, the I/O and core
placement methodology, and the placement engine. Our
main results are as follows.

� We con�rm that with alternating placement method-
ologies, which are often used in practice today, the
number of iterations needed to achieve good solutions
can be surprisingly large. Also, a bad (e.g., random)
initial I/O placement can seriously handicap subse-
quent iterations.

� We also conclude that it is better to begin the alter-
nation by placing a netlist of core cells with all I/Os
disconnected, rather than by placing I/Os randomly as
in traditional approaches. This has interesting implica-
tions vis-a-vis the use of quadratic placers, which can
require �xed \anchors" in the placement instance.

� Our experiments also show that the area-array I/O
regime o�ers substantial wirelength improvements over
the best methodology we found for the peripheral I/O
regime. The wirelength reductions range from 12%-
27% with an industry placer, and average around 30%
with our placer.

� We show that the classical assignment problem may
be a more appropriate framework for the I/O place-
ment iteration. We observe that the assignment formu-
lation accurately captures placement costs since I/Os
rarely share nets, and that assignment algorithms seem
more e�cient than traditional placers on I/Os-only in-
stances. Furthermore, traditional placers may not eas-
ily adapt to I/O placement instances, and may even
increase the total wirelength in some iterations.

Industry Placer

Case 1 (WL �105)
Mutant Pad 1st Iter Best Iter
Case Regime all I/O all I/O
1 PG 4.75 2.60 4.17 1.55

AA 2.84 0.71 2.82 0.68
1m6 PG 4.62 2.46 4.17 1.53

AA 2.88 0.72 2.80 0.65
1m19 PG 4.63 2.57 4.09 1.68

AA 2.90 0.84 2.78 0.69
1m40 PG 4.81 2.90 4.17 1.68

AA 2.67 0.75 2.62 0.67
1m100 PG 5.06 3.24 4.53 2.23

AA 2.74 0.92 2.64 0.81
1m110 PG 5.14 3.34 4.61 2.35

AA 2.79 0.99 2.70 0.85
Case 2 (WL �106)

2 PG 2.15 0.59 2.04 0.35
AA 1.70 0.14 1.67 0.12

2m3 PG 2.18 0.60 2.02 0.34
AA 1.73 0.15 1.73 0.13

2m10 PG 2.08 0.50 1.95 0.31
AA 1.74 0.16 1.74 0.16

2m16 PG 2.14 0.57 1.94 0.32
AA 1.74 0.16 1.68 0.13

2m40 PG 2.13 0.57 1.98 0.33
AA 1.71 0.15 1.66 0.13

2m67 PG 2.21 0.59 2.04 0.38
AA 1.79 0.17 1.67 0.13

Our Placer

Case 1 (WL �105)
Mutant Pad 1st Iter Best Iter
Case Regime all I/O all I/O
1 PG 3.63 1.66 3.25 1.17

AA 2.56 0.62 2.56 0.62
1m6 PG 3.66 1.69 3.25 1.17

AA 2.64 0.66 2.63 0.63
1m19 PG 3.67 1.73 3.28 1.23

AA 2.69 0.76 2.64 0.66
1m40 PG 3.67 1.82 3.30 1.38

AA 2.64 0.79 2.60 0.70
1m100 PG 3.92 2.17 3.49 1.65

AA 2.70 0.94 2.57 0.79
1m110 PG 4.02 2.25 3.54 1.73

AA 2.77 0.99 2.61 0.82
Case 2 (WL �106)

2 PG 1.79 0.25 1.73 0.16
AA 1.68 0.13 1.66 0.11

2m3 PG 1.78 0.24 1.74 0.17
AA 1.67 0.13 1.68 0.11

2m10 PG 1.79 0.26 1.75 0.18
AA 1.67 0.13 1.66 0.12

2m16 PG 1.80 0.26 1.74 0.17
AA 1.74 0.16 1.66 0.12

2m40 PG 1.80 0.28 1.76 0.20
AA 1.68 0.15 1.68 0.15

2m67 PG 1.82 0.31 1.76 0.21
AA 1.68 0.16 1.67 0.14

Table 5. Studies of peripheral and area-array I/O
placement regimes with netlist mutants.

Our ongoing work addresses three issues. First, our ex-
periments have shown that our combination of min-cut and
assignment may eventually be competitive with the indus-
try placer, at least in situations where both I/O and core
cells must be placed. (Again, recall that our approach does
not require any �xed anchors, and that the �rst iteration
appears very important.) We hope to improve our placer to
meet similar routability and legalization objectives as the
industry tool, so that more direct comparisons will be possi-
ble. Second, we believe that the simultaneous I/O and core
placement methodology still holds promise, and we hope to
�nd a better implementation. Finally, we hope to better
understand the relationship between netlist topology and
wirelength reductions a�orded by the area-array regime.

REFERENCES

[1] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov
and K. Yan, \Quadratic Placement Revisited", Proc.
ACM/IEEE Design Automation Conference, June
1997, pp. 752-757.

[2] B. Chen and M. Marek-Sadowska, \Timing Driven
Placement of Pads and Latches", Proc. IEEE Interna-
tional ASIC Conf., Rochester, Sept. 1992, pp. 30-33.

[3] B. T. Davis, C. Gauthier, P. Parakh, T. Basso, C. Le-
furgy, R. Brown and T. Mudge, \Impact of MCM's
on High Performance Processors", Proc. INTERpack-
97: International, Intersociety Electronic and Pho-
tonic Packaging Conf., Mauna Lani, vol. 1, June 1997,
pp. 863-868.

[4] P. Dehkordi, C. Tan and D. Bouldin, \Intrinsic Area
Array ICs: What, Why and How", Proc. IEEE Multi-
Chip Module Conf., Santa Cruz, Feb. 1997, pp. 120-
124.

[5] R. Farbarik, X. Liu, M. Rossman, P. Parakh, T. Basso
and R. Brown, \CAD Tools for Area-Distributed I/O
Pad Packaging", Proc. IEEE Multi-Chip Module Conf.,
Santa Cruz, Feb. 1997, pp. 125-129.

[6] C.M Fiduccia and R.M. Mattheyses, \A Linear Time
Heuristic for Improving Network Partitions," in Proc.
ACM/IEEE Design Automation Conf., 1982, pp. 175{
181.

[7] T. Gao, C. L. Liu and K. C. Chen, \A Perfor-
mance Driven Hierarchical Partitioning Placement Al-
gorithm", Proc. European Design Automation Conf.,
Hamburg, Sept. 1993, pp. 33-38.

[8] A. Goldberg and R. Kennedy, \An E�cient Cost Scal-
ing Algorithm for the Assignment Problem", Math.
Prog. 71 (1995), pp. 153-178.

[9] F. E. Kiamilev, A. V. Krishnamoorty, J. Rieve, R. G.
Rozier, G. F. Alpin, C. D. Hull, R. Farbarik and R. E.
Oettel, \Design of ICs for Flip-Chip Integration with
Optoelectronic Device Arrays", Proc. IEEE Multi-Chip
Module Conf., Santa Cruz, Feb. 1997, pp. 163-167.

[10] R. J. Lomax, R. B. Brown, M. Nanua and T. D. Strong,
\Area I/O Flip-Chip Packaging to Minimize Intercon-
nect", Proc. IEEE Multi-Chip Module Conf., Santa
Cruz, Feb. 1997, pp. 2-7.

[11] V. Maheshwari, J. Darnauer, J. Ramirez and W. W.-
M. Dai, \Design of FPGAs with Area I/O for Field
Programmable MCM", Proc. ACM Symp. on Field-
Programmable Gate Arrays, 1995, pp. 17-23.

[12] M. Marek-Sadowska and S. P. Lin, \Timing Driven
Placement", Proc. IEEE Intl. Conf. on Computer-
Aided Design, Nov. 1989, pp. 94-97.

[13] M. Pedram, K. Chaudhary and E. S. Kuh, \I/O Pad
Assignment Based on the Circuit Structure", Proc.
IEEE International Conf. on Computer Design, Cam-
bridge, Oct. 1991, pp. 314-318.

[14] R. V. Raj, N. S. Murty, P. S. Nagendra Rao and L.
M. Patnaik, \E�ective Heuristics for Timing Driven
Constructive Placement", Proc. Intl. Conf. on VLSI
Design, Bangalore, Jan. 1997, pp. 38-43.

[15] Semiconductor Industry Association, National Tech-
nology Roadmap for Semiconductors: Technology
Needs (1997 edition), December 1997.

[16] A. Srinivasan, K. Chaudhary and E. S. Kuh, RITUAL:
a performance-driven placement algorithm. IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol.39, (no.11), Nov. 1992,
p.825-840.

[17] C. Tan, D. Bouldin and P. Dehkordi, \Design Imple-
mentation of Intrinsic Area Array ICs", Proc. Conf. on
Advanced Research in VLSI, Ann Arbor, Sept. 1997,
pp. 82-93.

[18] TimberWolf Systems, Inc., http://www.twolf.com,
1998.

[19] R. R. Tummala and E. J. Rymaszewski, eds., Micro-
electronic Packaging Handbook, Van Nostrand Rein-
hold, 1989.

