Synthesis of Quantum Logic Circuits

Vivek V. Shendé Stephen S. Bullock Igor L. Markowv

vshende@eecs.umich.edu stephen.bullock@nist.gov imarkov@eecs.umich.edu

1Dept. of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109-2212, USA
2Mathematical and Computational Sciences Division, Natl. Inst. of Standards and Technology, Gaithersburg, MD 20899-8910, USA

Abstract — The pressure of fundamental limits on classical commercially available from MagiQ Technologies in the U.S.
computation and the promise of exponential speedups from quan- and IdQuantique in Europe.

tum effects have recently brought quantum circuits to the atten- Quantum bit data states differ from classical states in two
tion of the EDA community [10, 17, 4, 16, 9]. We discuss efficient important ways. First, a single quantum bit may take on a
circuits to initialize quantum registers and implement generic  ~gntinuum of valueg; |0) +2,|1) for z,2> complex numbers.
guantum computations. Our techniques yield circuits that are Readings of the quantum bit retuthor 1 with probability
twice as small as the best previously published technique. More- 1z ‘2/ 12112+ |2]2, so that quantum computers inherently al-
over, a theoretical lower bound shows that our new circuits canbe |\ for probabilistic computation. Second and far more signifi-
improved by at most a factor of two. Further, the circuits grow by ¢ant n qubits collectively may store more information than that

at most a factor of nine under severe architectural restrictions. stored byn isolated (local) one-qubit states. Meaning, the ax-
ioms of quantum mechanics demandrequbit quantum state
I. INTRODUCTION be a sum of termg; |b) for each of the2" bit stringsh. Thus

o _ . n quantum bits in particular sto' probabilities of observing
As the ever-shrinking transistor approaches atomic propagach bit string. Entanglements the physical effect allowing
tions, Moore’s law must confront the small scale granularity ofnhis. An example is the two-qubit registgoo) + |11>)/\@,
the world: we cannot build wires thinner than atoms. Worsghere the string®0 and11 are observed with equal probabil-
still, at atomic dimensions we must contend with the laws aty but 01, 10 are never observed.
quantum mechanics. For example, suppose one bit is enCOde‘&hysically, qubits are stored in quantum-mechanical sys-

as the presence or the apsence of an electron in "?‘Sma” r]eglo[ng' such as the nuclear spins of atoms or ions, or the current
Since we know very precisely where the electron is located, t 1 a superconductor. Quantum logic gates can be applied to se-

Heisenberg uncertainty principle dictates that we cannot knol\gCted qubits in am-qubit register and modify the value of the

its momentum with hig_h accuracy. Since. it.s speed might br%gister. The gate might be applied by an RF pulse or a laser
large, a large potential is needed to keep it in place. A quan%;

; : L eam. Usually, gates that act on three or more qubits are pro-
tative analysis of thg situation leads e?(pgrtg from NCSU, SR ibitively difficult to implement directly and must be decom-
and Intel [24] to derive fundamental limitations on the scala-

bility of any computing device which moves electrons. aposed Into a sequence of two-qubit gates[6]. Two-qubit gates

vetth i fcts also facilitat dicallv di ay in turn be decomposed into circuits containing one-qubit
etihese same quantum eflects aiso facilitate a radically ILi[;{]ates:, and a canonical two-qubit gate calleddietrolled-not
ferent form of computation [7]. Theoreticallguantumcom-

; . (CNOY. TheCNOTcan be thought of as axORgate that pre-
puters could outperform their classical counterparts when soly:

; e _vents loss of information by preserving one of the input values.
ing certain discrete problems [8]. A successful large-scale im- _ ] ) _
plementation of Shor's integer factorization [18] would com- The first published algorithm to carry out a two-qubit gate
promise the RSA cryptosystem used in electronic commerc@ecomposition implemented arqubit quantum gate by a cir-
On the other hand, quantum effects also allow perfectly s&Uit containingO(n®4") CNOTgates [2]. Further improve-
cure public-key cryptography [3]. Indeed, such cryptograph{€nts use clever circuit transformations and/or Gray codes

systems, based on single-photon communication, are alreddy 1. 19]. Finally, a different technique [11] has led to
circuits with a CNOTcount of 4" — 21 These numbers

1_Most current c_omputin_g technologies use eI(_ectron charges to s_tore i”f‘%fompare to the theoretical, dimension-based lower bound of
mation; the exception is spintronics-based techniques, e.g. magnetic RAM. [211(4,1 _3n— 1)} [16]. Yet prior algorithms remain a factor of
four away and fare poorly for smail Each requires at lea8t
CNOTgates fom = 2, while the lower bound is three. In con-
strast, hand-optimized two-qubit operators [23, 4] obtain three
CNOTE[16, 22, 21]. Even special cases may be treated [16], us-
ing a simple procedure for finding@NOFoptimal two-qubit
circuits [14]. In contrast, in three qubits the lower bound4s




while the generic decomposition of [11] achie#& CNOFE If uwas a2 x 2 matrix, then the left and right matrices are —
and a specialty circuit [20] achievé$. up to scalars R, matrices. The center matrix is &) matrix.
In our work, we implement an arbitranyqubit operator us- Collecting the scalars, we obtain the advertised decomposition.

ing (1/2) x 4" —3x 2"' 41 CNOTgates. This represents an e next describe a very useful two-qubit gate that can be im-
improvement by a factor of two over the best known resu”ﬁlemented in practice. The controlled-n@NO7Y gate quan-
for both the3-qubit andn-qubit case. Th&-qubit countis21 tjzes the classical reversible two-input two-output logic gate
CNO'B, while then-qubit count is a factor of two away from \hich inverts the second bit if the firstis SeveralCNOE are
the lower bound of4" —3n—1)/4. We also discuss efficient gepicted in Fig. 3. We writ€} for a CNOTgate that flips the

circuits for initializing quantum registers and consider NOW arr . it it the j-th js 1. Thed x 4 unitaries forC2 andC} are:
chitectural considerations can affect circuit size. As this paper

reports exploratory work on a revolutionary computing tech-

nology, we do not necessarily seek working prototypes. In- 1000 1000
stead, we emphasize fundamental results and attempt to gain a c2 — 0 100 cl— 0 001
better understanding of the structure of quantum circuits. 0 001 0 010

0 010 0100

Il. GATES FORQUANTUM LOGIC ) . )
If a 2P x 2P unitaryU; acts on g-qubit register and 2 x 24

Letn be the number of qubit$y = 2". Thequbitis the sim-  unitaryU, acts on aj-qubit register, then the joint action on a
plest possible quantum mechanical system, with only a tw@ombinedn = p + q register isnot a block matrix but rather
dimensional state space. To bring out the analogy with a clage Kronecker (tensor) produdt ® U, (e.g. [4]). As a matrix,
sical bit, we pick basis vectot8) and|1). Note, however, that U, ® U, is blockwise a matrix of multiples dfl,, where the
in general the state of a qubit is described by a complex vectatultiples are the entries &f;. Since tensors are cheap in the
|p) = a|0) +B|1). An_n-qubit vector is a similar sum over circuit language, we hope to recognize such factors.
bit strings|g) = S a;|b), i.e. vectors inCN. Computations
are in particular unitary operators, i.e. mags — u|@), with
ue CN*N andut’ = Iy for Iy an indentity matrix.

We recall notation for Paui matrices, commonly encountered
in the quantum mechanics literature.

1. THE QUANTUM MUX AND ITSIMPLEMENTATION

) A quantum multiplexois a gate acting ok + 1 qubits of
Oy = ( 0 1 > oy = < 0 -l ) o, = < 10 ) which one is designated as thentrol qubit. Depending on
10 0 0 -1 whether the control bit carrigsor 1, the gate performs either
Appropriate physical operations may evolve a one-qubit state OF U1 on the remaining bits. If the control bitis the highest
|¢) — €'°i |¢), wherea; is a Pauli matrix as above or a linearorder bit, theMUXmatrix is block diagonal( U 0 )
combination. Arelementary gatés such arR;(6) = e '%9i/2, 0w
One-qubit states may be seen as as vectors in space, and in thifne CNOTis a good example of a quantum multiplexor. An-

picture theR; are spatial rotations[134.2]. More explicitly: ~ Other variant is theiniformly k-controlledR; gate[19]. Such
a gate operates ok+ 1 qubits, of whichk are controlsand

o Thex-axis rotation:R,(6) = ( €0s8/2 isin6/2 ) one is thetarget A different R, is applied to the target for
ising/2  cosH/2 each control bit-string. If the target is the lowest order bit, then
cosd/2  sing/2 the ma}trix is block diqggnal, with thieth 2 x 2 block aRz(ei)
—sinB/2 cos/2 ) g_ate given cor_1tro|-str|ng_ Encoding the paramei[e%_lnto_ a
diagonal matrixd, the uniformly controlled rotation is given
e i9/2 by e7199%/2 A uniformly controlledR, gate withk controls
0 du/2 ) requires only2k CNOTgates an@K gatesR,, per Fig. 1.

These operators suffice to implement an arbitrary one-qubit” (K+1)-qubit quantum multiplexor can be implemented
computation. In fact, an arbitrag/x 2 unitary matrixU has USing twok-qubit gates and a uniformly-controlledR, gate.
U= ei“’Rz(a)Ry(e)Rz(B). We discard the leading scailf as To see this, we formulate an equation for the required gates and

it is physically unmeasurable. To derive this fact, we recall th&2!Ve it. We want unitary,w and unitary diagonal satisfying
Cosine-Sine decomposition [13] of matrix analy%is factors

an even-dimensional unitary matnixusing smaller unitaries a (v d w
a,a,b,b’ and real diagonal matricess such that® +¢? = 1: b ) v ar w /)

e They-axis rotation:R,(8) = <

e Thez-axis rotation:R;(a) = (

/
b s cC b’ To find them, definal andv by diagonalizingab = vd?v'.

— dvT q’ — dozelogd it i i
2S0urce code for computing the Cosine-Sine decomposition can be obN€NW=dV'b. Asded = o208 it is alunlformly con-
tained from Matlab by typingvhich gsvd at the Matlab prompt. trolled R, gate controlled on the low order bits.
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Fig. 1. A uniformly controlled rotatiorexp(id ® o) is denoted by afR, gate ono,’'s wire and square controls @ wires. We assert that such gates can be
recursively decomposed as shown above. For, Writel, @ 81 + 0; ® &, and use the well-known two-qubit circuit identtf;f(oZ ® GZ)Cf = |, ® 0 to rewrite
dR0;=lh®d&® GZ+C%(|2 R0 oZ)C,%. Exponentiating produces the circuit in the center. Recursive cancellations are shown at right.

U
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IV. SYNTHESIS OF UNITARY OPERATORS Diagonal operators pass through controls. Also, for any two-
gubit operator, there is a diagonal diagonal two-qudit opera-
tor d so thatvd anddv may be implemented using tWoNO'B

( a c —s a ([24], Prop. 111.3.) Passing through thg > ® d’s, the remain-
u=
) (5 )7 )

Recall from Section Il th€osine-Sinelecomposition:

s ¢ ing two-qubit operators cost twWGNOTgates. Since we save
one CNOTIin the implementation of every two-qubit gate but
The left and right factora® b anda @ b’ are quantum multi- the first, the count above results. Note thatrfer 3, 21CNOFE
plexors. The central factor may be writtelfy®l0s(c-is)/2 |~ are needed. This is the best known circuit at present (Cf. [20].)

analogy with uniformly controlledR, gates, we call this a uni-
formly controlledR, gate. It may also be implemented using
Fig. 1. Simplifying multiplexors per Section Ill, we obtain:

. NxN T — i . o : .
NQ Decomposition: Foer/szeN(/Cz ) 2 U = In, there exist  certain common primitives in classical computering are not
V1,V2,V3,V4,01,02,83 € C » ViVj = Inj2, j diagonal,  ayailable for quantum computation. For example, intializing
real, such that an n-quantum bit register require®(2") gates rather than,
_ 10225, 0,05 0,053 since an amplitude is set for each b_|t string. M_oreovgr, some
u=(lz®v)e (l2®vz)e (l2®vs)e (I2@Va)  rchitectures only allow gate operations on neighboring qubits.
Hence an arbitrary-qubit operator can be implemented by We next describe how to optimally initialize a quantum reg-

a circuit containing three uniformly controlled rotations andSter from|[0) to a givenn-qubit state|). Suppose first that

four (n— 1)-qubit operators, as illustrated in Figure 2. Wethe vector describing has only real entries. Partition the vec-

next count gates for the resulting recursive unitary synthesie’ represent|n§;¢> into 2-element blocks, and consider each
algorithm. Letc; be the number oENOTgates needed to im- &S & vector irR“. Let the j-th such vector have leng#ty and
plement aj-qubit operator. Therj < 4c; 3 +3x 2I-L. In form an a_ngl_e 0B; with thex-a?us. Taking|¢') = S Aj|j) and
particular, if--qubit operators may be implemented using, © = 2 8i 1) (il, we see thaexp(id® oy) [¢)10) = |@). There-
CNOTgates, then the following inequality fox, results. cursive technique suggested by this equation yields a circuit
with 2" —2 CNOT. The real) differs from the general case

ch <4 f(cp+3x 27 —3x 2t by a diagonal unitarg, which differ from a uniformly con-
trolled R, by ann — 1 qudit diagonal’. Hence a circuit fod.
Apply the decomposition until only one-qubit operators reCancellations between these two circuits reduce the count to
main,c, < (3/4) x4"—3x 2"~ CNOTgates. (Cf. [11].) Ifwe 2"t1_—2n—2CNOT [15].
rather terminate the recursion with two-qubit operators, hand- Second, we note that our circuits adapt well to qubit-chain
optimized3-CNOTcircuit decompositions [16, 22, 21] lower libraries, where qubits are ordered in a sequence and only
the CNOTcount to(9/16) x 4" — 3 x 2"1, CNOT between adjacent qubits are allowed. MosiOTgates
For (4" — 3 x 2"+ 2)/2 CNOT, a final optimization is used in our decomposition already act on nearest neighbors,
needed. End the recursion org&? two-qubit operators re- e.g. those gates implementing the two-qubit operators. More-
main. These two-qubit operators are all on the same lines aoder, Fig. 1 shows that onlg"* CNOTgates of lengttk
are separated by the controls of uniformly controlled rotationgwhere the length of a loc&NOTis 1) will appear in the cir-

V. PRACTICAL CONSIDERATIONS

Fig. 2. A circuit diagram illustrating the NQ matrix decomposition. Fig. 3. Implementing a long-rangeNOTgate with nearest-neighb@NOE.
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‘ ‘ Number of Qubits

11213 4| 5 | 6 | 7
VMS [19] 0| 4| 64 | 536 | 4156 | 22618 | 108760 [1]
MVBS[11] | O | 8 | 48 | 224 960 3968 16128

NQ 0 3 21 | 105 465 1953 8001 2]
TABLE |
A COMPARISON OFCNOTFCOUNTS VERSUS NUMBER OF QUBITS FOR [3]
SEVERAL RECENT SYNTHESIS ALGORITHMS

cuit implementing a uniformly-controlled rotation withcon- [4]

trol bits. Fig. 3 decomposes a lendgt€NOTinto 4k — 4 length

1 CNO. It follows that9 x 2"~1 — 8 nearest-neighbdNOE

suffice to implement the uniformly controlled rotation. There-

L . : . )
fore restrictingCNOTgates to nearest-neighbor interactions in-

creaseNOTcount by at most a factor of nine. [6]

(71

V1. CONCLUSIONS ANDFUTURE WORK

Our approach to quantum circuit synthesis emphasizes simi8]
plicity, a well-pronounced top-down structure, and practical
computation via the Cosine-Sine decomposition. By intro- [°]
ducing the quantum multiplexor, we have reinterpreted the
Cosine-Sine decomposition to allow recursive implementatio?lo]
of quantum gates. While applying our methods to the prob-
lem of 3-qubit circuit synthesis is presently the best approach,
future specialty techniques developed to solve this problemui)
can be used as terminal cases of our recursion. We have also
discussed various problems specific to quantum computation,
specifically initialization of quantum registers and mapping tol12l
the nearest-neighbor gate library.

As seen in Table I, the universal circuit reported in this work[13]
achieves the best known controlled-not counts, both for small
numbers of qubits and asymptotically. However, ultimately[
this just means that our exponentially large circuits are a corl-ls]
stant factor smaller than the next best exponentially large cir-
cuits. More telling is the fact that our technique performs well
in finding small circuits when this is possible.
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