
Securely Sealing Multi-FPGA Systems

Tim Güneysu1, Igor Markov2, and André Weimerskirch3

1 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
2 University of Michigan, 2260 Hayward St., Ann Arbor, MI 48109-2121

3 ESCRYPT Inc, 315 E. Eisenhower Parkway, Ann Arbor, MI 48108

Abstract. The importance of hardware security of electronic systems is rapidly
increasing due to (1) the increasing reliance of mass-produced and mission-critical
systems on embedded electronics, and (2) the ever-growing supply chains that
disentangle chip designers and manufacturers from OEMs. Our work shows how
to dramatically reduce vulnerability to Trojan-horse injection and in-field com-
ponent replacement. We propose methods to verify the authenticity and integrity
of an FPGA configuration during startup and at runtime. We also developed effi-
cient protocols for electronic sealing of a multi-FPGA system, which automatically
enforces the system configuration detected upon power-up and bans further mod-
ifications.

1 Introduction

The proliferation of fake goods in the electronics industry is well documented. Between
2005 and 2008, US and Canadian authorities seized $78M worth of counterfeit Cisco
hardware from China, including network modules, WAN interface cards, gigabit interface
converters, and less expensive routers [8]. An even larger amount of fake networking hard-
ware had previously been sold to customers, including financial institutions, universities,
the FAA, the FBI and several branches of the US military. The Anti-Counterfeiting Task
Force established by the Semiconductor Industry Association reports that ”one company
has seen fakes of 100 separate parts in three years”.

Reportedly, the FBI is concerned that widely seen counterfeit equipment may be state-
sponsored, to facilitate access to otherwise secure systems [2, 8]. IEEE Spectrum pointed
out that a Syrian air-defense radar may have been sabotaged during an Israeli bombing
raid in September 2007 through a “kill-switch” planted by a European chipmaker [3]. With
semiconductor manufacturing increasingly outsourced overseas, the DARPA-sponsored
“Trust” program is addressing potential subversion of military electronics by seeking
techniques to detect and disable such alterations. It ensures rigorous evaluation by funding
work on concealing Trojan horses in ICs and identifying such Trojans.

Altering an IC often requires painstaking reverse engineering, but in some cases such
alteration can be easy. For instance, the proposed “obligatory accreditation system for
IT security products” in China [1] demands source code from hardware manufacturers,
making reverse engineering unnecessary.

The challenges addressed in our work include (1) defeating Trojan horses, (2) compo-
nent authentication in single- and multi-chip systems, and (3) countering unauthorized
component replacement with deficient or compromised variants.

Contribution: Our proposal signficantly reduces the vulnerability of electronic systems by
reducing the time interval when component replacement can be successful. It encompasses

– Delayed logic design via the use of FPGAs, which defeats many malicious alterations
before system integration.

– Chip integrity verification required to prevent replacement of an existing chip.
– A protocol for electronic sealing of a multi-chip system that continually authenticates

individual chips and prevents unauthorized replacement after the first power-up.

Outline: The remaining part of this paper is organized as follows. Section 2 covers our
security objectives for secure (FPGA-based) hardware systems. Here we rely on security
infrastructure available in recent FPGA devices, reviewed in Section 3. Section 4 outlines
assumptions and requirements necessary to establish the methods and protocols proposed
in Sections 5 and 6. Implementation details are discussed in Section 7, and concluding
remarks are given in Section 8.

2 Security Objectives for Hardware Systems

The dramatic rise in chip piracy and concerns about subversion are due to the recent sepa-
ration of design and manufacturing, traditionally performed by one company. Companies
now tend to narrow their focus and fit into long supply chains that end with OEM system
integrators. Convincing solutions to security challenges must account for this context.
Delayed Logic Design. It would be difficult to subvert a chip before its functionality
is available to the attacker in any form — hardware or software. Therefore, delaying
logic design until after manufacturing and shipment can dramatically reduce the time
period during which a chip is vulnerable to replacement or alteration. Such delay is made
possible by modern FPGA chips, which are sufficiently large, fast and cheap for many
applications. Given their regular structure, blank FPGA chips can be tested quickly, after
which a system integrator can program each chip with a precomputed trusted bit-stream.
Chip Integrity Verification. Along with ASICs and custom-designed chips, FPGA-
based chips used in larger systems run the risk of being replaced by knock-offs or mali-
ciously altered designs. Unfortunately, the low cost of FPGAs and the simplicity of FPGA
design tools facilitates single and mass-produced knock-offs. However, such replacements
are easier to detect because FPGA configurations are completely determined by discrete
parameters (configuration bits). Therefore, one can compute a cryptographic hash of
FPGA bit-streams and use this fingerprint to periodically authenticate the chip using a
challenge-response protocol.
Electronic Sealing. Field-programming of component chips by a trusted system inte-
grator defeats many replacement and Trojan-horse attacks performed prior to system
integration. To guard against attacks after system integration, we use chips that report
their own identity. The identity of each chip must be checked reliably, so that

– faking any part of the chip, such as communication circuits, would not allow passing
identity checks.

– chips that lie about their identity (e.g., trying to replay overheard communications)
do not pass the checks.

2

We address these challenges by several protocols for electronically sealing multi-chip
systems. One option is for a dedicated hardware entity to periodically verify the identity
of each FPGA by checking if it retains a shared secret. These checks can be performed
between normal bus-level communications and would detect changes in a chip’s identity.

3 State of the Art in FPGA Security

To detect chip tampering after start-up, our protocols for authenticating chip configura-
tions use recent FPGA technology. We therefore review security features and techniques
in recent FPGAs and in academic literature.

3.1 Security Features of Modern FPGAs

The introduction of bitstream encryption was the first feature that significantly improved
FPGA security. Today, many (volatile) FPGAs support encrypted bitstreams to crypto-
graphically protect configuration stored in an external memory – eliminating the threat
of inspection and theft by unauthorized parties. Besides confidentiality of the Intellectual
Property (IP) contained in the FPGA configuration, the installation of a secret key on
each device can be also used as an effective tool to prevent overbuilding and device cloning.
However, bitstream encryption does not solve all security issues. For example, attacks on
the integrity of an FPGA configuration (which performs a security-related function) are
countered by a non-cryptographic CRC checksum on most FPGAs, and CRC is easy to
manipulate. Finally, some FPGA manufactures (such as Xilinx) install a device-specific
identification number (ID) on their FPGAs with which FPGAs can be distinguished. For
example, Xilinx’ DeviceDNA is a 57-bit static device ID (of which effectively only 55-bit
are used) that could be employed for device identification in cryptographic binding or
sealing protocols. We classify modern FPGA devices as follows:
C1. FPGAs with authenticated encryption. Xilinx Virtex-6 FPGAs offer an AES-
256 bitstream encryption and HMAC (based on a SHA-256 hash) function that can be
used to ensure configuration confidentiality, authentication and integrity during power-up.
Authentication/identification of multi-chip systems and (cryptographic) integrity checks
at runtime are not supported.
C2. FPGAs with bitstream encryption only. Many high-performance FPGA (such
as Xilinx Virtex II/4/5/6 FPGAs, larger Spartan-6, Altera Stratix II/III/IV/V, Cyclone
III LS, Actel ProASIC3, LatticeECP) devices allow the use of encrypted bitstreams,
mostly using AES-128 or AES-256 encryption. However, cryptographically strong au-
thentication and integrity checks for the bitstream are not supported.
C3. FPGA without cryptographic features. Low-cost FPGA devices typically do
not provide any cryptographic protection mechanisms for their configurations, except for
an identification number (e.g., in Xilinx Spartan-3 A/AN devices). Since these devices do
not provide any cryptographic trust anchor, an FPGA developer needs to include security
features within the configuration bitstream. The security of this approach is bounded by
the difficulty of reverse-engineerng the bitstream that contains the cryptographic secrets.
Therefore, adapting our techniques to low-security FPGAs would require more work and
incur a greater overhead.

3

3.2 Prior Academic Work

In [6, 21], the authors compiled a comprehensive list of security risks of FPGA-based
systems. Further guidelines on trusted FPGAs can be found in [18,20]. Several proposals
perform bitstream authentication by extending the bitstream decryptor core within the
FPGA’s static configuration logic with an authentication function [5, 16]. Further work
discusses the challenges of establishing and storing secret keys. Instead of plain memory
cells that store the secret key, one can use Physically Unclonable Functions [15], which
can be configured to derive cryptographic keys from chip-specific hardware fluctuations.
For example, key establishment schemes based on (rather complex) PUF-based protocols
were proposed in [9, 19]. Keys can be established through public-key cryptography [10].

4 Threat Model, Assumptions and Requirements

Electronic hardware is produced and employed by several actors. The Hardware Man-
ufacturer (HM) produces FPGA devices. The Intellectual Property Owner (IPO) owns
application-specific designs, synthesizes them into configuration bitfiles and licenses for a
fee, usually on a per-volume basis. The System Integrator (SI) embeds these designs in
FPGA devices. The End User (EU) physically possesses the product, using it as intended
or abusing it. The Trustworthy Owner (TO) owns the entire electronic system4.
Threat model. We assume that the IPO is trustworthy and seeks protection from design
subversion. Our proposal relies on SI, also assumed trustworthy. Given that FPGAs are
easy to program, SI and IPO may be the same entity. 5 The EU may alter the system,
and any malicious third party is included in the EU group. The HM includes the entire
development chain, and we distinguish several cases in terms of trustworthyness.

The HM (or any part of the design and manufacturing chain) can introduce Trojans,
malicious programs, and backdoors in the FPGA. To defeat some of these attacks, we
assume that SI can randomly sample FPGAs chips from all FPGAs produced, e.g., by
purchasing them through proxies/anonymously. This undermines targeted manipulation
of FPGAs for use by the HM. Furthermore, we assume that the SI randomizes FPGA
place-and-route, so that each maps FPGA differently, making it impossible to predict
where each LUT/gate will go in the FPGA (note that ASICs and custom-made chips
cannot afford this approach). Thus, HM’s Trojans or malicious routines cannot connect
to specific internal signals of the chip. However, if the HM includes a general trigger (e.g.,
time-based), the issue will be detected by other users of the FPGA, very likely before it
can cause major damage to TO’s systems. The HM may be able to inject a backdoor to
read out the FPGA configuration. However, this issue is in the domain of protection of
intellectual property rather than our objective. Furthermore, our analysis assumes that
HM already obtained the FPGA configuration and can modify it maliciously.

The EU is able to add/remove one or several FPGA(s) to/from the system. The
added FPGAs may be under attacker’s control. The EU is able to tap into and alter

4 The TO does not always run FPGAs devices. For instance, military systems are owned by the
government but run by specific detachments.

5 If FPGAs are shipped by an untrusted party, the receiver can check FPGA’s integrity using
proposed techniques. In this case, the initial receiver is included in the SI group and assumed
trustworthy.

4

the communication between FPGAs. The attacker is also able to inject messages to the
communication channel between FPGAs, but not probe an FPGA or extract security
credentials while the system is powered. When the system is powered down, the attacker
is not able to physically extract security credentials in a short time period (say one hour).
We assume that the attacker is not able to replace the entire system (including all FPGAs)
at once. We assume that the TO regularly checks the system. For instance, one of the
FPGAs might be located in a physically secure compartment that is only accessible to the
TO and that regularly provides a status notification to the trustworthy TO. Our proposed
mechanisms will defeat all attackers that are located within the described attacker model.
Further assumptions and requirements. The general security objective pursued in
our work is to prevent altered chips from successfully running in a computer system.
Therefore we propose cryptographic authentication and identification services for single
and multi-chip systems. We rely on trustworthy hardware infrastructure for authentication
and on initialization at a physically-secure facility by a trusted party. We also assume that
each FPGA passes an enrollment phase performed by a trusted party (e.g., the system
integrator) during which secrets are installed in the device or system. During system
initialization in this environment, keys Ki for bitstream encryption are generated and
loaded in the secure key store of each FPGA (either by programming eFuses or the
battery-backed-up RAM). We assume that bitstreams are authenticated and that there is
a mechanism in place to counter loading old versions (e.g., each bitstream version uses an
individual bitstream encryption key). We further make the non-trivial assumption that
CAD tools for FPGAs, used at the secure facility, are trusted and do not cause unintended
side-effects [17]. Note that the possibility of subversion before initialization and enrollment,
e.g., by injecting Trojan horses into the FPGA fabric, is inherently difficult since the
FPGA configuration may be randomized at the last minute (the principle of delayed logic
design) and multiple FPGA configurations, loaded one after another, can use the same
logic elements.

Based on our assumptions, we now present mechanisms to integrate cryptographic
configuration integrity checking and electronic sealing for FPGA devices of classes C1,C2.
The availability of bitstream encryption in these two device classes can be regarded as
basic trust anchor that enables the implementation of upper-layer security objectives on
top (i.e., cryptographic authentication and integrity checks). Note that our proposals are
solely based on symmetric cryptography that can be implemented in the fabric of an
FPGA. This involves the standardized AES block cipher for encryption/decryption, an
authentication function such as HMAC-SHA-256, and a method to distinguish FPGA
devices (e.g., using DeviceDNA or PUFs). We further assume that these cryptographic
standard primitives are sufficiently protected against implementation attacks, such as
side-channel or fault-injection attacks.

5 Configuration Integrity Checking

Integrity checks of FPGA configurations (especially for security-critical component) are
essential to hamper replacement attacks. We now present two possible methods to check
the integrity of a single device beyond automatically provided CRC integrity tests (1) at
startup time and (2) periodically during operation to detect Single Event Upsets (SEU)

5

as well as a malicious tampering at runtime. Our proposal for (1) described in Section 5.1
is more lightweight, does not interfere with operations and resource requirements of the
main application and only demands for a slightly larger external memory to provide the
storage for a multi-boot FPGA configuration. The proposal (2) discussed in Section 5.2
performs periodical checks while the main application is running at the cost of augmenting
the main application with relevant cryptographic functions (possibly requiring a larger
FPGA device).

5.1 Integrity Check at System Startup

Since devices of class C1 already include a facility to authenticate FPGA configuration
at startup, we focus on FPGA class C2, illustrated by a Xilinx Spartan-6 XC6SLX75.
In particular, this device supports encrypted multi-boot configurations, which can be
loaded in sequence. For devices that do not support multi-boot, a similar behavior can
be achieved by using the partial reconfiguration of FPGAs and internal configuration
interfaces such as Xilinx’ Internal Configuration Access Port (ICAP).

The first configuration (A) contains a cryptographic authentication and decryption
(and optionally an identification) function that directly decrypts and authenticates the
multi-boot image (B) right after configuration. The authentication is based on standard-
ized symmetric authentication mechanisms, such as MACs involving standardized block
ciphers or keyed hash functions like HMAC. Note that the bitstream must be decrypted
before authentication to prevent simple substitution attacks [5]. To this end, AES de-
cryption engine is implemented in the fabric of the FPGA (additionally to the bitstream
decryptor in the FPGA control logic which is not directly accessible to user logic). Secret
keys and/or checksums required for authentication and integrity check can be stored in the
configuration bitstream, which must be encrypted and inaccessible in decrypted form, so
as to ensure cryptographic security. Upon passing the authentication and integrity test of
the configuration image, configuration (A) issues a command (e.g., for Spartan-6 FPGAs,
the IPROG command sent via ICAP) to load the second part of multi-boot bitstream
(B) into the FPGA which contains the main application. Figure 1 illustrates the FPGA
multi-boot configuration with configuration (A) currently loaded into the FPGA.

Configuration (A) can also be extended to perform security functions beyond authenti-
cation and integrity tests. For example, (A) can implement a PUF instead of or in addition
to the DeviceDNA device identification function (see Section 6.1). It might be also benefi-
cial to implement or derive a chip-specific secret value (e.g., obtained from a PUF or other
complex secret function) in configuration (A) but actually use it in the main application
(B) (e.g., to perform periodical integrity checks as described in Section 5.2). This requires
passing a secret value Kc between these two FPGA configurations (preserving confiden-
tiality) that are loaded one after the other on the same FPGA. An possible solution is
to store a common global secret KG in both encrypted configuration (A) and (B) that
masks the derived secret value Kc from configuration (A) by xor using c = KG⊕Kc. The
masked value c can then be stored temporarily off-chip until configuration (B) is loaded
decrypting the off-chip secret via Kc = KG ⊕ c again. Depending on the FPGA, it may
also be possible to transfer the secret Kc on-chip between configurations. This can be
done with read/write registers of an FPGA’s control logic which remain unchanged dur-
ing FPGA configuration. For example, 5×16-bit GENERAL and READBACK registers

6

FPGA

Control

AES-256

Bitstream

Decryption

Header

FPGA
(Configuration A

loaded)

Configuration A

Authentication/

Integrity Test

Configuration B

Main Application

Checksum/Keys

Encrypted Multi-Boot

Configuration in

External Flash

LOAD
SPI

Bitstream

Authentication

ICAP

IP
R
O
G

CTL

SUCCESS? LOAD

Fig. 1. Multi-boot configuration for bitstream authentication & integrity test.

can be used (i) to store individual words Kc,i (or masked ci) of a temporary 80-bit secret
in configuration A and (ii) read them back after loading configuration B.

5.2 Periodic Integrity Check at Runtime

To prevent attacks that are applied during system operation, the one-time configuration
authentication at system startup presented in Section 5.1 is not sufficient. The solution
presented in this Section applies to FPGAs of classes C1,C2 and is related to the proposal
by Drimer [5] but our solution is counter-less and thus supports asynchronous authentica-
tion. Most devices of these two classes allow a readback of the currently used configuration
using external and internal ports from the fabric. On many FPGAs (such as Spartan-6), a
readback using internal ports remains possible even if bitstream encryption is used (using
the ICAP interface) and also does not interrupt a continuous system operation. Thus,
bitstream authentication can run in parallel to the main application. It can be periodi-
cally called to read the current FPGA configuration using the ICAP interface, verifying
its integrity and authenticity (see Figure 2).

6 Electronic Sealing of Multi-Chip Systems

Given a multi-chip systems, we want to prevent the injection of Trojan horses and replace-
ment of individual components with knock-offs. Such tampering can be detected using
mutual identification of individual chip-level components, performed within our proposed
electronic sealing protocols. A generic solution to protect a single FPGA is provided by
Altera’s MAX II reference design [4] in which a CPLD is programmed to exchange crypto-
graphic handshaking tokens with the FPGA device. However, this solution leaves unclear
the storage of secret cryptographic key(s) and the applicability to multi-FPGA systems.

7

FPGA

Control

Header

FPGA
Configuration

Checksum/Keys

Encrypted Configuration

in External Flash Memory

LOADSPI
Bitstream

Authentication

ICAP

READBACK

LOAD

S
U
C
C
E
S
S
?

Main Application
C
H
E
C
K

Fig. 2. Periodic integrity & authenticity checks of an FPGA configuration.

In this section, we propose three protocols for use with FPGAs of classes C1,C2 to
enable electronic sealing based on an authenticated heartbeat for multi-FPGA systems6

The first protocol (Section 6.1) employs a central chip or component to store cryptographic
identifiers for all chips in the system, similar to Altera’s solution [4] but more versatile.
In Section 6.2, we further establish a decentralized method with which FPGAs perform
a peer-to-peer authentication using a common global key without an additional security
component. The third protocol (Section 6.3) performs electronic sealing in a ring topology
without relying on a global key.

6.1 Symmetric Authentication & Central Security Module

For this protocol a central security module (CSM) is used to store individual keys Ki

and identities IDi of all deployed FPGAs. The IDi of an FPGA can be derived using the
DeviceDNA feature, if available. Alternatively, PUFs on FPGAs have evolved to a suit-
able method to derive device-specific identification numbers when no vendor support to
distinguish devices is available. The individual (or global) secret keys Ki of each FPGA
can be stored as encrypted part of the configuration in the system Flash or can be gen-
erated by another PUF. To reduce the number of logic resources occupied by secret key
generation, a multi-boot configuration as shown in Section 5.1 can be used to generate
secret keys beforehand in a separate configuration step. The CSM that manages all se-
crets can be either a CPLD located on-board, i.e., directly connected to the FPGAs via
an internal bus, or it can be located at a remote back-end and connected via a network
interface. The CSM needs to be initialized by a trusted party during system initialization

6 While large FPGAs can already accommodate entire systems, multi-FPGA systems remain
attractive in many cases, in part due to pricing of FPGA parts. For example, it is still cheaper
to buy three largest Spartan-6 XC6SLX150 devices compared the cheapest, single Virtex-6
FPGA.

8

where all keys Ki as well as the corresponding identifier IDi for all FPGAs are stored
in a permanent, internal key storage. The CSM’s internal key storage must not be read
nor overwritten externally. Updating or removing a key-identifier pair within the CSM
is an optional feature but can be useful to allow later chip updates or replacements due
to defects. This can be realized by authenticating the updating party against the CSM
using a master-key after which overwriting (parts of) the key storage with external data
is enabled for a limited amount of time.

Once the keys Ki have been stored within the CSM, a mutual authentication scheme
is periodically initiated by the CSM at runtime as part of the normal system operation.
This authenticated heartbeat phase draws on [5] and enables electronic sealing at system
runtime as follows:

1. The CSM sends a random numberR1 to FPGAi after a globally specified time interval.

2. The FPGA generates a random number R2 and responds with EncKi(R1, R2, IDCSM),
where IDCSM denotes a target identifier of the CSM and EncKi(X,Y) denotes the
encryption (e.g. AES-CBC) of X concatenated Y using key Ki.

3. The CSM first decrypts the message and checks if decrypted R1 and IDCSM is correct.
Then, it extracts R2 and sends the message EncKi(R1, R2, IDFPGAi) to the FPGA,
where IDFPGAi denotes the target identifier of the FPGA.

4. The FPGA decrypts the message and checks R2 and IDFPGAi .

After such a successful mutual authentication of both parties, both chips continue opera-
tion. If the CSM fails to authenticate an FPGA chip, it may permanently deactivate the
entire system, broadcast a warning message, etc. Likewise, the system designer/integrator
determines the appropriate response if an FPGA chip fails to authenticate the CSM, e.g.,
self-deactivation of the FPGA by erasing its bit-stream.

6.2 Pairwise Authentication

The following protocol does not rely on a CSM. Instead, all FPGAs use a global key
KG for mutual authentication using identifiers IDi. The global key KG can either stored
directly in an encrypted part of the FPGA configuration or it can be realized as follows:
during system initialization in a trusted environment, a PUF on each FPGA is used to
derive a chip-specific secret key KPUFi . Then a global key KG is selected randomly and
a mask value Mi is computed for each FPGA i as Mi = KPUFi ⊕KG. This mask value is
stored (unencrypted) in permanent memory. Only by combining the correct secret KPUFi

(obtained individually per device from the PUF) with the device-specific mask value, the
global key can be recovered during system runtime: KG = Mi ⊕KPUFi .

A single global key KG allows efficient key deployment during initialization and re-
quires only limited storage (a single key/mask). However, by extracting the global key
from an FPGA, an adversary can replace any FPGA in the system.

After initialization by system integrator, every FPGA periodically invokes a mutual
authentication process as part of the normal system operation. This authenticated heart-
beat phase draws on [5] and encompasses the following steps:

9

1. FPGAi sends a random number R1 to FPGAj , i < j over a shared link using a multi-
master communication protocol (for synchronization, arbitration and data collision
detection).

2. FPGAj generates a random number R2 and responds with EncKG
(R1, R2, IDFPGAi),

where IDFPGAi denotes the target identifier of FPGAi.
3. FPGAi decryptsR1 and IDFPGAi and if they are correct, it responds with EncKG

(R1, R2,
IDFPGAj), where IDFPGAj denotes the target identifier of FPGAj .

4. FPGAj decrypts and checks R2 and IDFPGAj .

The system designer/integrator determines the appropriate response in case an FPGA
fails authentication, e.g., an error message can be broadcast over the internal bus to
prohibit communication with the FPGA that failed authentication.

6.3 Authentication based on a Ring Topology

Compared to the protocol presented in Section 6.2, FPGAs are arranged in a ring topology
so that each FPGA only engages a symmetric authentication scheme with its two nearest
neighbors. Hence, this protocol does not require storing a global key or a single individual
key in each FPGA, but only the two individual keys Ki and Ki+1 with i ∈ 0, ..., n− 1
are stored in each of the n FPGAs. These keys can be stored or generated similarly as
described in Section 6.2. Note that extracting a pair of keys Ki and Ki+1 from an FPGA
does not, in itself, allow faking another FPGA in the ring.

The main advantage of this authentication scheme compared to the scheme discussed
in Section 6.2 is that only two individual keys Ki and Ki+1 are stored in every FPGA.
Hence, an adversary is not able to replace an arbitrary FPGA in the system after he
has extracted the keys out of another FPGA. Further, the entire FPGA ring can be
authenticated by sequentially verifying every pair of neighboring FPGAs.

7 Implementation Considerations

Our protocols and techniques draw on features common in modern FPGAs (e.g., JTAG
TAP, ICAP, DeviceDNA), as well as standard cryptography available in both academic
literature and industrial IP portfolios. Our solution in Section 5 requires an additional core
for bitstream decryption (AES-CBC) and authentication (e.g., HMAC as a standardized
keyed hash function), implemented in the programmable fabric. Similarly, electronic seal-
ing requires encryption (AES) and a device-specific identifier (based on the DeviceDNA
feature or PUFs). Rather than review well-known implementation details of state-of-the-
art implementations, we cite relevant sources and provide an overview in Table 1. It is
not our intent to provide an exhaustive list, but rather to show feasibility of our propos-
als and limit implementation overhead, even for small FPGA devices of classes C1,C2.
For standard encryption and decryption, Drimer et al. describe small and fast AES cores
with different modes of operation (including authenticated encryption) on Virtex-5 FP-
GAs [7]. Their smallest implementation requires 212 slices and 2 BRAMs using a fixed
secret key. Logic slices in our reference FPGA (Spartan-6) are quite similar to those on
Virtex-5, and implementation results generally agree with those reported by Drimer et al.

10

Table 1. Implementation cost (SLC = FPGA slices) and performance of required cryptographic
primitives. Note that FPGA slices of Spartan-6 and Virtex-5 devices are very similar.

Primitive Device Resources Throughput

AES [7] Virtex-5 212 SLC/2 BRAM 1.7 GBit/s
HMAC/SHA-256 [12] Spartan-6 110 SLC/1 BRAM 1.2 GBit/s
PUF (50 bit ID) [13] Virtex-5 130 SLC -

Optimized keyed hash functions such as HMAC-SHA-256 on FPGAs were described by
McEvoy et al. in [14] and are also commercially available from Helion [12] taking 110 slices
and 1 BRAM of a Spartan-6 FPGA. To implement the integrity check based on a multi-
boot configuration and/or periodic runtime check described in Section 5, we combine the
cryptographic primitives with an ICAP interface and a small-footprint Microblaze micro-
processor soft core with fixed timer support which occupies 613 slices and 4 BRAMs on a
Spartan-6. The complete solution requires less than 1000 Spartan-6 slices and 7 BRAMs.
In a medium-sized Spartan-6 XC6SLX75 (see Section 5.1), this corresponds to a slice and
BRAM utilization of 8.6% and 4.1%, respectively.

Protocols in Section 6 require fewer resources. To reliably distinguish FPGA devices
(Section 6), one can use Xilinx DeviceDNA or any of FPGA-compatible PUF tech-
niques [9, 11, 13]. Butterfly PUFs, for example, require 130 Virtex-5 slices to generate
a 50-bit identifier [13]. Including overhead for control logic and the required encryption
function [7], the resource consumption for electronic sealing is upper-bounded by 500
slices and 2 BRAMs (i.e., 4.3% of the slices and 1.2% of the BRAMs contained in the
Spartan-6 XC6SLX75).

8 Conclusions

We proposed a comprehensive solution to guard against counterfeit integrated circuits
in single- and multi-chip systems. In particular, delayed logic design in terms of FP-
GAs limits the time interval during which successful attacks can be mounted against a
hardware system. Since modern FPGAs already provide bitstream encryption as a basic
feature, we proposed in this work how to enable configuration authentication during sys-
tem startup and runtime as well how to establish electronic sealing in multi-chip systems
using only symmetric cryptography. We presented two reasonable techniques to verify the
integrity and authenticity of FPGA configuration for devices that provide bitstream en-
cryption. First, we proposed a multi-boot configuration that cryptographically verifies its
own integrity before the actual main application is loaded. The second technique performs
periodic configuration readback within the FPGA to prevent manipulations of security
functions during runtime. A second major contribution deals with electronic sealing of
multi-chip systems. We developed three efficient protocols based on a central security
module, peer-to-peer- and ring-based communication that enable mutual authentication
of system components to detect tampering or unauthorized replacement of protected de-
vices. Finally, we evaluate the implementation overhead for common FPGA parts and
show that it is moderate.

11

References

1. China to make foreign firms reveal secret info. Yomiuri Shimbun (September 2008), http:
//www.yomiuri.co.jp/dy/business/20080919TDY01306.htm

2. FBI Concerned About Implications of Counterfeit Cisco Gear. Slashdot (April 2008), http:
//hardware.slashdot.org/article.pl?sid=08/04/22/1317212

3. Adee, S.: The Hunt For The Kill Switch. IEEE Spectrum 45(5), 34–39 (2008)
4. Altera Corporation: FPGA Design Security Solution Using MAX II Devices. White Paper

(September 2004), ver. 1.0 at http://www.altera.com/literature/wp/wp_m2dsgn.pdf
5. Drimer, S.: Authentication of FPGA bitstreams: why and how. In: Applied Reconfigurable

Computing. vol. 4419, pp. 73–84 (March 2007)
6. Drimer, S.: Volatile FPGA design security – a survey (v0.96) (April 2008), http://www.cl.

cam.ac.uk/~sd410/papers/fpga_security.pdf

7. Drimer, S., Güneysu, T., Paar, C.: DSPs, BRAMs, and a pinch of logic: Extended recipes
for AES on FPGAs. ACM Trans. Reconfigurable Technol. Syst. 3, 1–27 (January 2010),
http://doi.acm.org/10.1145/1661438.1661441

8. Gross, G.: US, Canadian agencies seize counterfeit Cisco gear. The Industry Standard (2008),
http://slashdot.org/article.pl?sid=08/02/29/1642221

9. Guajardo, J., Kumar, S., Schrijen, G., Tuyls, P.: FPGA intrinsic PUFs and their use for IP
protection. In: CHES. vol. 4727, p. 63. Springer (2007)

10. Güneysu, T., Möller, B., Paar, C.: Dynamic Intellectual Property Protection for Reconfig-
urable Devices. In: ICFPT 2007. pp. 169–176 (2007)

11. Güneysu, T.: Using Data Contention in Dual-ported Memories for Security Applications.
Journal of Signal Processing Systems 30 December 2010, 1–15 (2010), dOI 10.1007/s11265-
010-0560-z

12. Helion Technology: Tiny Hash Core Family for Xilinx FPGA. Data Sheet (2010), http:
//www.heliontech.com/downloads/tiny_hash_xilinx_datasheet.pdf

13. Kumar, S., Guajardo, J., Maes, R., Schrijen, G., Tuyls, P.: Extended abstract: The butterfly
PUF protecting IP on every FPGA. In: IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST 2008). pp. 67–70 (2008)

14. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the SHA-2
family of hash functions on FPGAs. In: Emerging VLSI Technologies and Architectures.
vol. 00 (2006)

15. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science
297(5589), 2026–2030 (2002)

16. Parelkar, M.M.: FPGA security – bitstream authentication. Tech. rep., George Mason Uni-
versity (2005), http://ece.gmu.edu/courses/Crypto_resources/web_resources/theses/
GMU_theses/Parelkar/Parelkar_Fall_2005.pdf

17. Roy, J.A., Koushanfar, F., Markov, I.L.: Extended abstract: Circuit CAD tools as a security
threat. In: HOST. pp. 65–66 (2008)

18. Seamann, G.: FPGA bitstreams and open designs (April 2000), http://web.archive.org/
web/20050831135514/http://www.opencollector.org/news/Bitstream/

19. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfigurable
platforms. In: CHES. vol. 4249, pp. 311–323 (2006)

20. Trimberger, S.: Trusted design in FPGAs. In: Design Automation Conference (June 2007),
http://videos.dac.com/44th/papers/1_2.pdf

21. Wollinger, T., Guajardo, J., Paar, C.: Security on FPGAs; state of the art implementation
and attacks. In: ACM Trans. Embedded Comp. Sys. (TECS) (2004)

12

