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1 Introduction

The technique of using balanced min-cut partitioning in placement was presented by Breuer in

1977 [7]. Such min-cut placers use scalable and extensible divide-and-conquer algorithmic frame-

work and tend to produce routable placements [9]. Recent work offers extensions to block place-

ment and large-scale mixed-size placement [15, 18, 31], and robust incremental placement [33].

Over the years partitioning-based placement has seen many revisions and enhancements, but

the underlying framework (illustrated in Figure 1) remains much the same. Top-down partitioning-

based placement algorithms seek to decompose a given placement instance into smaller instances

by sub-dividing the placement region, assigning modules to subregions and cutting the netlist

hypergraph [7,19]. The top-down placement process can be viewed as a sequence of passes where

each pass examines all bins and divides some of them into smaller bins. Most commonly the

division step is accomplished with balanced min-cut partitioning that minimizes the number of

signal nets connecting modules in multiple regions [7]. These techniques leverage well-understood

and scalable algorithms for hypergraph partitioning and typically lead to routable placements [9].

This chapter is organized as follows: Section 2 introduces the basic framework for min-cut

partitioning-based placement. Next, Section 3 presents recent enhancements to min-cut placement.

Section 4 describes adapting partitioning based methods to mixed-size placement and Section 5

outlines recent techniques that give min-cut placement an edge over other placement algorithms.

Lastly, Section 6 discusses the workings of state-of-the-art min-cut placers such as Dragon [38,39,

43], FengShui [4, 27], NTUPlace2 [22] and Capo [30–35] and illustrates how they differ from the

basic min-cut framework and each other.
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Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While (queue not empty)
2 Dequeue a bin
3 If (bin small enough)
4 Process bin with end-case placer
5 Else
6 Choose a cut-line for the bin (including direction)
7 Build partitioning hypergraph from netlist

and cells contained in the bin
8 Partition the bin into smaller bins

(generally via min-cut bi- or quadri-section)
9 Enqueue each child bin

Figure 1: Top-down partitioning-based placement.

2 Top-down Partitioning-based Placement Framework

Using min-cut partitioning in placement was presented by Breuer in 1977 [7]. The underlying

framework remains mostly the same since then and is illustrated in Figure 1. The placement region

is represented by a series of of placement bins which represent (i) a placement region with allowed

module locations (sites), (ii) a collection of circuit modules to be placed in this region, (iii) all

signal nets incident to the modules in the region, and (iv) fixed cells and pins outside the region

that are adjacent to modules in the region (terminals).

Min-cut partitioning-based placers generally proceed by dividing the netlist and placement

area into successively smaller pieces until the pieces are small enough to be handled efficiently

by optimal end-case placers [11]. State-of-the-art placers generally use a wide range of hyper-

graph partitioning techniques to best fit partitioning problem size — optimal (branch-and-bound

[11]), middle-range (Fiduccia-Mattheyses [20]) and large-scale (multi-level Fiduccia-Mattheyses

[10, 26]). Min-cut placement is highly scalable (due in large part to algorithmic advances in min-

cut partitioning [10, 20, 26]) and typically produces routable placements.

In this section, we introduce topics relevant to top-down partitioning-based placement that must

be addressed by all modern min-cut placers. Specifically we discuss terminal propagation, biparti-

tioning vs. multi-way partitioning, cut-line selection and whitespace (or free space) allocation.

2.1 Terminal Propagation and Inessential Nets

Proper handling of terminals is essential to the success of top-down placement approaches [11,19,

21, 37]. When a particular placement bin is split into multiple subregions, some of the cells in-

side may be tightly connected to cells outside of the bin. Ignoring such connections can adversely
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Figure 2: Terminal propagation. The net shown has five fixed terminals: four above and
one below the cut-line. It also has movable cells which are represented by the cell with
a dashed outline. The four fixed terminals above the cut-line are propagated to the black
circle at the top of the bin while the one fixed terminal below the cut-line is propagated
to the black circle below the cut-line. The movable cells remain unpropagated. Note that
the net is inessential since terminals are propagated to both sides of the cut-line [32].

affect the quality of a placement since these connections can account for significant amounts of

wirelength. On the other hand, these terminals are irrelevant to the classic partitioning formulation

as they cannot be freely assigned to partitions. A compromise is possible by using an extended

formulation of “partitioning with fixed terminals”, where the terminals are considered to be fixed

in (“propagated to”) one or more partitions, and assigned zero areas (original areas are ignored).

Nets which are propagated to both partitions in bi-partitioning are considered “inessential” since

they will always be cut and can be safely removed from the partitioning instance to improve run-

time [11]. Terminal propagation is typically driven by geometric proximity of terminals to subre-

gions/partitions. Figure 2 depicts terminal propagation for a net with several fixed terminals. This

particular net is inessential as it has terminals propagated to both sides of the cut-line.

2.2 Bipartitioning vs. Multi-way Partitioning

In his seminal work on min-cut placement, Breuer introduced two forms of recursive min-cut

placement: slice/bisection and quadrature [7]. The style of min-cut placement most commonly

used today has grown from the quadrature technique which advocated the use of horizontal and

vertical cuts; the slice/bisection technique used only horizontal cuts and exhibited worse perfor-

mance than quadrature [7].

Since that time, horizontal and vertical cut-lines have been standard in all placement tech-

niques, but there has been debate as to whether there should be an ordering to the cuts (i.e. hor-

izontally bisect a bin then vertically bisect its children as in quadrature [7]) or both cuts should

be done simultaneously as in quadrisection [37]. Quadrisection has been shown to allow for the
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optimization of techniques other than min-cut (such as minimal spanning tree length [21]), but ter-

minal propagation is more complex when splitting a bin into four child bins instead of two. Also,

bisection can simulate quadrisection with added flexibility in cut-line selection and shifting (see

Section 2.3) [31]. There are currently no known methods that use greater than 4-way partitioning

and the vast majority of partitioning-based placement techniques involve min-cut bipartitioning.

2.3 Cut-line Selection and Shifting

Breuer studied two types of cut-line direction selection techniques and found that alternating cut-

line directions from layer to layer produced better half-perimeter wirelength (HPWL) than using

only horizontal cuts [7]. The authors of [40] studied this phenomenon further by testing 64 cut-line

direction sequences. Their experiments did not find that the two cut-sequences that alternate at each

layer were the best, but did find that long sequences of cuts in the same direction during placement

was detrimental to performance [40]. The authors of [44] developed a dynamic programming

technique to choose optimal cut sequences for partitioning based placement, but also found that

nearly optimal cut sequences could be determined from the aspect ratio of the bin to be split.

After cut-line direction is chosen, partitioning-based placers generally choose the cut-line that

best splits a placement bin in half in the desired direction. Cut-lines are generally aligned to

placement row and site boundaries to ease the assignment of standard-cells to rows near the end

of global placement [9]. After a bin is partitioned, the initial cut-line may be moved, or shifted, in

order to satisfy other objectives such as whitespace allocation or congestion reduction.

2.4 Whitespace Allocation

Management of whitespace (also known as free space) is a key issue in physical design as it has

a profound effect on the quality of a placement. The amount of whitespace in a design is the

difference between the total placeable area in a design and the total movable cell area in the design.

A natural scheme for managing whitespace in top-down placement, uniform whitespace allocation,

was introduced and analyzed in [12]. Let a placement bin which is going to be partitioned have site

area S, cell area C, absolute whitespace W = max{S−C,0} and relative whitespace w = W/S. A

bi-partitioning divides the bin into two child bins with site areas S0 and S1 such that S0 + S1 = S

and cell areas C0 and C1 such that C0 +C1 = C. A partitioner is given cell area targets T0 and T1

as well as a tolerance τ for a particular bi-partitioning instance. In many cases of bi-partitioning,

4



D
R

A
FT

T0 = T1 = C
2 , but this is not always true [5]. τ defines the maximum percentage by which C0 and

C1 are allowed to differ from T0 and T1, respectively.

The work in [12] bases its whitespace allocation techniques on whitespace deterioration: the

phenomenon that discreteness in partitioning and placement does not allow for exact uniform

whitespace distribution. The whitespace deterioration for a bi-partitioning is the largest α, such

that each child bin has at least αw relative whitespace. Assuming non-zero relative whitespace in

the placement bin, α should be restricted such that 0 ≤ α ≤ 1 [12]. The authors note that α = 1

may be overly restrictive in practice because it induces zero tolerance on the partitioning instance

but α = 0 may not be restrictive enough as it allows for child bins with zero whitespace, which can

improve wirelength but impair routability [12].

For a given block, feasible ranges for partition capacities are uniquely determined by α. The

partitioning tolerance τ for splitting a block with relative whitespace w is (1−α)w
1−w [12]. The chal-

lenge is to determine a proper value for α. First assume that a bin is to be partitioned horizontally

n times more during the placement process. n can be calculated as dlog2 Re where R is the number

of rows in the placement bin [12]. Assuming end-case bins have α = 0 since they are not further

partitioned, w, the relative whitespace of an end-case bin, is determined to be τ
τ+1 where τ is the

tolerance of partitioning in the end-case bin [12].

Assuming that α remains the same during all partitioning of the given bin gives a simple deriva-

tion of α = n
√

w
w [12]. A more practical calculation assumes instead that τ remains the same over

all partitionings. This leads to τ = n
√

1−w
1−w − 1 [12]. w can be eliminated from the equation for τ

and a closed form for α based only w and n is derived to be α =
n+1√1−w−(1−w)

w( n+1√1−w)
[12].

Free Cell Addition. One method of non-uniform whitespace allocation in placement, was

presented in [3]. To achieve a non-uniform allocation of whitespace, free cells (standard cells that

have no connections in the netlist) are added to the design which is then placed using uniform

whitespace allocation. Care must be taken not to add too many cells to the design which can

complicate the work of many placement algorithms, increasing interconnect length or leading to

overlapping circuit modules [18].

Several other whitespace allocation techniques have been published in the literature, many of

which have the objective of congestion reduction [28, 32, 38, 39, 43]. These techniques which deal

specifically with congestion reduction are covered in a later chapter in this book ??.

5



D
R

A
FT

3 Enhancements to the Min-cut Framework

This section describes several techniques which are recent improvements to the to the min-cut

partitioning-based framework presented in Section 2. These techniques range from fairly simple

yet effective techniques such as repartitioning and placement feedback to changes in the optimiza-

tion goals of min-cut placement as in weighted net-cut.

3.1 Better Results Through Additional Partitioning

Huang and Kahng introduced two techniques for improving the results of quadrisection based

placement known as cycling and overlapping [21]. Cycling is a technique whereby results are

improved by partitioning every placement bin multiple times each layer [21]. After all bins are

split for the first time in a layer of placement, a new round of partitioning on the same bins is

done using the results of the previous round for terminal propagation. These additional rounds of

partitioning are repeated until there is no further improvement of a cost function [21]. A similar

type of technique was presented for min-cut bisection called placement feedback. In placement

feedback, bins are partitioned multiple times, without requiring steady improvement in wirelength,

to achieve more consistent terminal propagation [25].

Placement feedback serves to reduce the number of ambiguously propagated terminals. Am-

biguity in terminal propagation arises when a terminal is nearly equidistant to the centers of the

child bins of the bin being partitioned. In such cases it is unclear as to what side of the cut-line

the terminal should be propagated. Traditional choices for such terminals is to propagate them

to both sides or neither side of the cut-line in fear of making a poor decision [25]. Ambiguously

propagated terminals introduce indeterminism into min-cut placement as they may be propagated

differently based on the order in which placement bins are processed [25].

To reduce the number of ambiguously propagated terminals, placement feedback repeats each

layer of partitioning n times. Each successive round of partitioning uses the resulting locations

from the previous partitioning for terminal propagation. The first round of partitioning for a par-

ticular layer may have ambiguous terminals, but the second and later rounds will have reduced

numbers of ambiguous terminals making terminal propagation more robust [25]. Empirical results

show that placement feedback is effective in reducing HPWL, routed wirelength and via count [25].

The technique of overlapping also involves additional partitioning calls during placement [21].
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While doing cycling in quadrisection, pieces of neighboring bins can be coalesced into a new bin

and split to improve solution quality [21]. Brenner and Rohe introduced a similar technique which

they called repartitioning which was designed to reduce congestion [6]. After partitioning, conges-

tion was estimated in the placement bins of the design. Using this congestion data, new partitioning

problems were formulated with all neighbors of a congested area. Solving these new partitioning

problems would spread congestion to neighboring areas of the placement while possibly incurring

an increase in net length [6].

Capo [30–35] repartitions bins similarly, but for the improvement of HPWL. After the initial

solution of a partitioning problem is returned from a min-cut partitioner, Capo has the option of

shifting the cut-line to fulfill whatever whitespace whitespace requirements may be asked of it. A

shift of the cut-line, though, represents a change in the partitioning problem formulation (as the

initial partitioning problem was built assuming a different cut-line which can have a significant

effect on terminal propagation). Thus, the partitioning problem is rebuilt with the new cut-line lo-

cation and solved again to improve wirelength. The repartitioning does not come with a significant

runtime penalty because the initial partitioning solution is reused and modified by flat passes of a

Fiduccia-Mattheyses [20] partitioner.

3.2 Fractional Cut

When a placement bin is split with a vertical cut-line, there are generally many possible cut-lines

that can split the bin roughly equally since the size of sites in row-based placement is generally

small. On the other hand, row heights are generally non-trivial as compared to the height of the

core placement area. Since standard cells are ultimately placed in rows, most min-cut placers

choose to align cut-lines to row boundaries [9]. The authors of [4] that this causes the “narrow

region” problem which leads to instability in min-cut placement.

The “narrow region” problem becomes an issue when bins become tall and narrow. In such

cases, total cell area may be able to fit into a given narrow bin, but it may not be possible to assign

cells into these rows legally due to row area constraints or the number of legal solutions is so

small that net-cut is artificially increased as a result [4]. Take for example a placement bin that

encompasses two adjacent rows, each four units in length. If we have one cell with length five

units and another with length two units, there is no way to legally place them in the rows, yet total
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area constraints are satisfied.

To remedy this situation, the authors of [4] propose using a “fractional cut”: a horizontal cut-

line that is allowed to pass through a fraction of a row. As horizontal cut-lines do not necessarily

align with rows, cells must be assigned to rows before optimal end-case (typically single-row)

placers can be used [4]. To legalize the placement, one proceeds on a row-by-row basis. Each

cell is tentatively assigned to a preferred height in the placement: the center of its placement bin.

Starting with the top-most row, cells are assigned to rows so as to minimize the cost of assigning

cells. If a cell is assigned to the current row, its cost is the squared distance from its preferred

position to the current row. If a cell is not assigned to the current row, its cost is the squared

distance from its preferred position to the next lower row [4]. After all cells are assigned to rows,

they are sorted by their x coordinates and packed in rows to remove any overlaps. The assignment

of cells to rows is achieved efficiently by a dynamic programming formulation [4].

Experimental results show considerable improvements in terms of HPWL reduction in place-

ment, but packing of cells in rows does not generally produce routable placements [32].

3.3 Analytical Constraint Generation

The authors of [5] note that min-cut placement techniques are effective at reducing HPWL of

designs that are heavily constrained in terms of whitespace, but do not perform nearly as well as

analytical techniques when there are large amounts of whitespace. The authors suggest that one

reason for the discrepancy is that min-cut placers generally try to divide placement bins exactly in

half with a relatively small tolerance. This tends to spread cell area roughly uniformly across the

core area. Increasing the tolerance for partitioning a bin can allow for less uniformity in placement

and lower HPWL due to tighter packing, but still does not reproduce the performance of analytical

techniques [5].

To improve the HPWL performance of min-cut placement techniques on designs with large

amounts of whitespace (which are becoming increasingly popular in real-world designs), while still

retaining the good performance of min-cut techniques when there is limited whitespace, the authors

of [5] suggest integrating analytical techniques and min-cut techniques. Before constructing a

partitioning instance for a given placement bin, an analytical technique is run on the objects in the

bin to minimize their quadratic wirelength [5]. Next, the center of mass of the placement of the
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objects of the bin is calculated. This points to roughly where the objects should go to reduce their

wirelength. Then one constructs a rectangle having the same aspect ratio as the placement bin and

having the same area as the total area of movable objects in the bin. Let A be the total area of

cells in the bin, H be the height of the bin and W the width of the bin. The height and width of

such a rectangle can be calculated as follows: rectangle height RH =
√

A∗H
W and rectangle width

RW =
√

A∗W
H [5]. One centers this rectangle at the center of mass of the analytical placement and

intersects the rectangle with the proposed cut-line of the bin. The amount of area of the rectangle

that falls on either side of the cut-line is used as a target for min-cut partitioning [5]. As most

min-cut partitioners chose to split cell area equally, this is a significant departure from traditional

min-cut placement.

Empirical results suggest that analytical constraint generation (ACG) is effective at improving

the performance of min-cut placement on designs with large amounts of whitespace while retaining

the good performance of min-cut placers on constrained designs while not impairing the routability

of designs [5]. This performance comes at the cost of approximately 28% more runtime [5].

3.4 Better Modelling of HPWL by Partitioning

It is well-known that the min-cut objective in partitioning does not accurately represent the wire-

length objective of placement [21, 36]. Optimizing HPWL and other objectives directly through

partitioning can provide improvements over min-cut. Huang and Kahng showed that net weighting

and quadrisection can be used to minimize a wide range of objectives such as minimal spanning

tree cost [21]. Their technique consists of computing vectors of weights for each net (called net-

vectors) and using these weights in quadrisection [21]. Although this technique can represent a

wide range of cost functions to minimize, it requires the discretization of pin locations into the

centers of bins and requires that sixteen weights must be calculated per net for partitioning [21].

The authors of [36] introduce a new terminal propagation technique in their placer THETO that

allows the partitioner to better map net-cut to HPWL. The terminal propagation in THETO differs

from traditional terminal propagation in that each original net may be represented by one or two

nets in the partitioned netlist, depending on the configuration of the net’s terminals. Two special

cases — nets with no terminals and inessential nets — are treated the same as in traditional terminal

propagation. Five other cases are analyzed in [36], based on the configuration of terminals relative
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to the centers of the child bins, and proper weight computation is described (one case requires two

nets). This way weighted net-cut better represents the “HPWL degradation” seen after partitioning.

Empirically, this terminal propagation and net weighting are shown to reduce HPWL in min-cut

placement.

This technique is simplified in [15] and reduced to the calculation of three wirelengths per

net per partitioning instance (w1, w2 and w12) which completely determine the connectivity and

costs of all nets in the derived partitioning hypergraph. While this formulation is more compact

than that in [36], it is also more general. For each net in each partitioning instance, one must

calculate the cost of all nodes on the net being placed in partition 1 (w1), the cost of all nodes on

the net being placed in partition 2 (w2) and the cost of all nodes on the net being split between

partitions 1 and 2 (w12). Up to two nets can be created in the partitioning instance, one with

weight |w1 −w2| and the other with weight w12 −max(w1,w2). The only assumption made in [15]

is that w12 ≥ max(w1,w2). With these costs and the corresponding connectivity of the derived

hypergraph, minimizing weighted net-cut directly corresponds to minimizing HPWL.

4 Mixed-size Placement

Mixed-size placement, the placement of large macros in addition to standard cells, has become a

relevant challenge in physical design and is poised to dominate physical design in the near future

as we move from traditional “sea of cells” ICs to “sea of hard macros” SoCs [42]. To keep up

with this shift in physical design, several techniques for partitioning based mixed-size placement

have been proposed and are described in this section. These techniques include floorplacement,

PATOMA, and mixed-size placement with fractional cut.

4.1 Floorplacement

From an optimization point of view, floorplanning and placement are very similar problems –

both seek non-overlapping placements to minimize wirelength. They are mostly distinguished by

scale and the need to account for shapes in floorplanning, which calls for different optimization

techniques. Netlist partitioning is often used in placement algorithms, where geometric shapes of

partitions can be adjusted. This considerably blurs the separation between partitioning, placement

and floorplanning, raising the possibility that these three steps can be performed by one CAD tool.
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Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While (queue not empty)
2 Dequeue a bin
3 If (bin has large/many macros or is marked as merged)
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack

all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision. Merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else if (bin small enough)
12 Process end case
13 Else
14 Bi-partition the bin into smaller bins
15 Enqueue each child bin

Figure 3: Min-cut floorplacement. Bold-faced lines 3-10 are different from tradi-
tional min-cut placement [31].

The authors of [31] develop such a tool and term the unified layout optimization floorplacement

following Steve Teig’s keynote speech at ISPD 2002.

Min-cut placers scale well in terms of runtime and wirelength minimization, but cannot produce

non-overlapping placements of modules with a wide variety of sizes. On the other hand, annealing-

based floorplanners can handle vastly different module shapes and sizes, but only for relatively few

(100-200) modules at a time. Otherwise, either solutions will be poor or optimization will take too

long to be practical. The loose integration of fixed-outline floorplanning and standard-cell place-

ment proposed in [2] suffers from a similar drawback because its single top-level floorplanning

step may have to operate on numerous modules. Bottom-up clustering can improve the scalability

of annealing, but not sufficiently to make it competitive with other approaches. The work in [31]

applies min-cut placement as much as possible and delays explicit floorplanning until it becomes

necessary. In particular, since min-cut placement generates a slicing floorplan, it is viewed as an

implicit floorplanning step, reserving explicit floorplanning for “local” non-slicing block packing.

Placement starts with a single placement bin representing the entire layout region with all the

placeable objects initialized at the center of the bin. Using min-cut partitioning, the bin is split

into two bins of similar sizes, and during this process the cut-line is adjusted according to actual

partition sizes. Applying this technique recursively to bins (with terminal propagation) produces a

series of gradually refined slicing floorplans of the entire layout region. In very small bins, all cells

can be placed by a branch-and-bound end-case placer [11]. However, this scheme breaks down
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Figure 4: Progress of mixed-size floorplacement on the IBM01 benchmark from
IBM-MSwPins. The picture on the left shows how the cut lines are chosen during the
first six layers of min-cut bisection. On the right is the same placement but with the floor-
planning instances highlighted by “rounded” rectangles. Floorplanning failures can be
detected by observing nested rectangles [31].

on modules that are larger than their bins. When such a module appears in a bin, recursive bisec-

tion cannot continue, or else will likely produce a placement with overlapping modules. Indeed,

the work in [27] continues bisection and resolves resulting overlaps later. In this technique, one

switches from recursive bisection to “local” floorplanning where the fixed outline is determined by

the bin. This is done for two main reasons: (i) to preserve wirelength [8], congestion [6] and de-

lay [23] estimates that may have been performed early during top-down placement, and (ii) avoid

legalizing a placement with overlapping macros.

While deferring to fixed-outline floorplanning is a natural step, successful fixed-outline floor-

planners have appeared only recently [1]. Additionally, the floorplanner may fail to pack all mod-

ules within the bin without overlaps. As with any constraint-satisfaction problem, this can be for

two reasons: either (i) the instance is unsatisfiable, or (ii) the solver is unable to find any of existing

solutions. In this case, the technique undoes the previous partitioning step and merges the failed

bin with its sibling bin, whether the sibling has been processed or not, then discards the two bins.

The merged bin includes all modules contained in the two smaller bins, and its rectangular outline

is the union of the two rectangular outlines. This bin is floorplanned, and in the case of failure can

be merged with its sibling again. The overall process is summarized in Figure 3 and an example is

depicted in Figure 4.

It is typically easier to satisfy the outline of a merged bin because circuit modules become
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relatively smaller. However, Simulated Annealing takes longer on larger bins and is less successful

in minimizing wirelength. Therefore, it is important to floorplan at just the right time, and the

algorithm determines this point by backtracking. Backtracking does incur some overhead in failed

floorplan runs, but this overhead is tolerable because merged bins take considerably longer to

floorplan. Furthermore, this overhead can be moderated somewhat by careful prediction.

For a given bin, a floorplanning instance is constructed as follows. All connections between

modules in the bin and other modules are propagated to fixed terminals at the periphery of the

bin. As the bin may contain numerous standard cells, the number of movable objects is reduced

by conglomerating standard cells into soft placeable blocks. This is accomplished by a simple

bottom-up connectivity-based clustering [26]. The existing large modules in the bin are usually

kept out of this clustering. To further simplify floorplanning, soft blocks consisting of standard

cells are artificially downsized, as in [3]. The clustered netlist is then passed to the fixed-outline

floorplanner Parquet [1], which sizes soft blocks and optimizes block orientations. After suitable

locations are found, the locations of all large modules are returned to the top-down placer and

are considered fixed. The rows below those modules are fractured and their sites are removed,

i.e., the modules are treated as fixed obstacles. At this point, min-cut placement resumes with a

bin that has no large modules in it, but has somewhat non-uniform row structure. When min-cut

placement is finished, large modules do not overlap by construction, but small cells sometimes

overlap (typically below 0.01% by area). Those overlaps are quickly detected and removed with

local changes.

Since the floorplacer includes a state-of-the-art floorplanner, it can natively handle pure block-

based designs. Unlike most algorithms designed for mixed-size placement, it can pack blocks into

a tight outline, optimize block orientations and tune aspect ratios of soft blocks. When the number

of blocks is very small, the algorithm applies floorplanning quickly. However, when given a larger

design, it may start with partitioning and then call fixed-outline floorplanning for separate bins. As

recursive bisection scales well and is more successful at minimizing wirelength than annealing-

based floorplanning, the proposed approach is scalable and effective at minimizing wirelength.

Empirical boundary between placement and floorplanning. By identifying the characteris-

tics of placement bins for which the algorithm calls floorplanning, one can tabulate the empirical

boundary between placement and floorplanning. Formulating such ad hoc thresholds in terms of
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Floorplanning conditions for floorplacement
N,n: The numbers of large modules and movable objects in a given bin.
A(m): The area of the m largest modules in a given bin, m ≤ n.
C: The capacity of a given bin.
Test 1. At least one large module does not fit into a potential child bin.
Test 2. N ≤ 30 and A(N) < 0.80∗A(n) and A(n) > 0.6∗C.
Test 3. N ≤ 15 and A(N) < 0.95∗A(n) and A(n) > 0.6∗C.
Test 4. A(50) < 0.85∗C.
Test 5. A(10) < 0.60∗C.
Test 6. A(1) < 0.30∗C and N = 1.
Test 7. N = n = 1.

Table 1: Floorplanning conditions used in floorplacement [31]. Test 1 is the most funda-
mental, for if a bin meeting test 1 were not floorplanned, a failure would be guaranteed
at the next level. Tests 2-6 detect bins dominated by large macros. Test 7 is a base case
where only one module exists, but it is large.

dimensions of the largest module in the bin, etc., allows one to avoid unnecessary backtracking and

decrease the overhead of floorplanning calls that fail to satisfy the fixed outline constraint because

they are issued too late. In practice, issuing floorplanning calls too early (i.e., on larger bins) in-

creases final wirelength and sometimes runtime. To improve wirelength, the ad hoc tests for large

modules in bins (that trigger floorplanning) are deliberately conservative.

These conditions were derived by closely monitoring the legality of floorplanning and min-cut

placement solutions. When a partitioned bin yields an illegal placement solution it is clear that the

bin should have been floorplanned and a condition should be derived. When a call to floorplanning

fails to satisfy the fixed outline constraint the placer has to backtrack. To avoid paying this penalty,

a condition should be derived to allow for floorplanning the parent bin and prevent the failure.

These conditions are refined to prevent floorplanning failure by visual inspection of a plot of

the resulting parent bin and formulating a condition describing its composition. An example of

such a plot is shown in Figure 4. Floorplanned bins are outlined with rounded rectangles. Nested

rectangles indicate a failed floorplan run, followed by backtracking and floorplanning of the larger

parent bin. In our experience, these tests are strong enough to ensure that at most one level of

backtracking is required to prevent overlaps between large modules.
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4.2 PATOMA and PolarBear

PATOMA 1.0 [17] pioneered a top-down floorplanning framework that utilizes fast block-packing

algorithms (ROB or ZDS [16]) and hypergraph partitioning with hMETIS [26]. This approach is

fast and scalable, and provides good solutions for many input configurations. Fast block-packing

is used in PATOMA to guarantee that a legal packing solution exists, at which point the burden of

wirelength minimization is shifted to the hypergraph partitioner. This idea is applied recursively to

each of the newly-created partitions. In end-cases, when a partitioning step leads to unsatisfiable

block-packing, the quality of the result is determined by the quality of its fast block-packing algo-

rithms. In end-cases, when partitioning cannot be used because it creates unsatisfiable instances of

block-packing, block locations are determined by fast block-packing heuristics. The placer Polar-

Bear [18] integrates algorithms from PATOMA to increase the robustness of a top-down min-cut

placement flow. Similar to PATOMA, the floorplanner IMF [15] utilizes top-down partitioning, but

allows overlaps in the initial top-down partitioning phase. A bottom-up merging and refinement

phase fixes overlaps and further optimizes the solution quality.

4.3 Fractional Cut for Mixed-size Placement

The work in [27] advocates a two-stage approach to mixed-size placement. First, the min-cut placer

FengShui [4] generates an initial placement for the mixed-size netlist without trying to prevent all

overlaps between modules. The placer only tracks the global distribution of area during partition-

ing and uses the fractional cut technique (see Section 3.2), which further relaxes book-keeping by

not requiring placement bins to align to cell rows. While giving min-cut partitioners more freedom,

these relaxations prevent cells from being placed in rows easily and require additional repair during

detail placement. This may particularly complicate the optimization of module orientations, not

considered in [27] (relevant benchmarks use only square blocks with all pins placed in the centers).

The second stage consists of removing overlaps by a fast legalizer designed to handle large

modules along with standard cells. The legalizer is essentially greedy and attempts to shift all

modules towards the left edge of the chip (or to the right edge, if that produces better results). In

our experience, the implementation reported in [27] leads to horizontal stacking of modules and

sometimes yields out-of-core placements, especially when several very large modules are present
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Figure 5: A placement of the IBM01 benchmark from IBM-MSwPins by FengShui
before (left) and after (right) legalization and detail placement.

(the benchmarks used in [27] contain numerous modules of medium size). See Figure 10 in [31]

and Figure 6 in [30] for examples of this behavior. Another concern about packed placements is

the harmful effect of such a strategy on routability, explicitly shown in [43]. Overall, the work

in [27] demonstrates very good legal placements for common benchmarks, but questions remain

about the robustness and generality of the proposed approach to mixed-size placement. Example

FengShui placements before and after legalization are shown in Figure 5.

5 Advantages of Min-cut Placement

This section presents recent techniques which give min-cut placement a significant advantage over

other placement algorithms in whitespace allocation, floorplacement, routed wirelength and incre-

mental placement.

5.1 Flexible Whitespace Allocation

The min-cut bisection based placement framework offers much flexibility in whitespace alloca-

tion. Section 2.4 describes uniform allocation of whitespace for min-cut bisection placement and

a trivial pre-processing step to allow for non-uniform allocation. This section outlines two more

sophisticated whitespace allocation techniques, minimum local whitespace and safe whitespace,

that can be used for non-uniform whitespace allocation and satisfying whitespace constraints [35].

Minimum Local Whitespace. If a placement bin has more than a user-defined minimum lo-

cal whitespace (minLocalWS), partitioning will define a tentative cut-line that divides the bin’s
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placement area in half. Partitioning targets an equal division of cell area, but is given more free-

dom to deviate from its target. Tolerance is computed so that with whitespace deterioration, each

descendant bin of the current bin will have at least minLocalWS [35].

The assumption that the whitespace deterioration, α, in end-case bins is 0 made in [12] and

presented in Section 2.4 no longer applies, so the calculation of α must change. Since we want all

child bins of the current bin to have minLocalWS relative whitespace, in particular end case bins

must have at least minLocalWS and thus we may set w = minLocalWS, instead of a function

of τ. Using the assumption that α remain constant during partitioning, α can be calculated directly

as α = n
√

w
w [12]. With the more realistic assumption that τ remain constant, τ can be calculated as

τ = n
√

1−w
1−w −1 [12]. Knowing τ, α can be computed as α = (τ+1)+ τ

w [12].

After a partitionment is calculated, the cut-line is shifted to ensure that minLocalWS is pre-

served on both sides of the cut-line. If the minimum local whitespace is chosen to be small, one

can produce tightly packed placements which greatly improves wirelength.

Safe Whitespace. The last whitespace allocation mode is designed for bins with “large” quan-

tities of whitespace. In safe whitespace allocation, as with minimum local whitespace allocation, a

tentative geometric cut-line of the bin is chosen, and the target of partitioning is an equal bisection

of the cell area. The difference in safe whitespace allocation mode is that the partitioning tolerance

is much higher. Essentially, any partitioning solution that leaves at least safeWS on either side of

the cut-line is considered legal. This allows for very tight packing and reduces wirelength, but is

not recommended for congestion-driven placement [35].

Figure 6 illustrates uniform and non-uniform whitespace allocation. Column (a) shows global

placements with uniform (top) and non-uniform (bottom) whitespace allocation on the ISPD 2005

contest benchmark adaptec1 (57.34% utlization) [29]. In the non-uniform placement shown, the

minimum local whitespace is 12% and safe whitespace is 14%. Columns (b) and (c) show intensity

maps of the local utilization of each placement. Lighter areas of the intensity maps signify viola-

tions of a given target placement density; darker areas have utilization below the target. Regions

completely occupied by fixed obstacles are shaded as if they exactly meet the target density. The

target densities for columns (b) and (c) are 90% and 60%. Note that uniform whitespace produces

almost no violations when the target is 90% and relatively few when the target is 60%. The non-

uniform placement has more violations as compared to the uniform placement especially when the
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Figure 6: Column (a) shows global placements of the ISPD 2005 Placement contest
benchmark adaptec1 [29] (57.34% utilization) with uniform whitespace allocation (top)
and non-uniform whitespace allocation (bottom). Fixed obstacles are drawn with double
lines. To indicate orientation, north-west corners of blocks are truncated. Columns (b)
and (c) depict the local utilization of the placements. Lighter areas of the placement sig-
nify placement regions with density above a given target (90% for column (b) and 60%
for column (c)) whereas darker areas have utilization below the target.

target is 60%, but remains largely legal with the 90% target density.

5.2 Solving Difficult Instances of Floorplacement

Floorplacement (see Section 4.1) appears promising for SoC layout because of its high capacity

and the ability to pack blocks. However, as experiments in [30] demonstrate, existing tools for

floorplacement are fragile — on many instances they fail, or produce remarkably poor placements.

To improve the performance of min-cut placement on mixed-size instances, the authors of [30]

propose three synergistic techniques for floorplacement that in particular succeed on hard in-

stances: (i) selective floorplanning with macro clustering, (ii) improved obstacle evasion for B*-

tree, and (iii) ad hoc look-ahead in top-down floorplacement. Obstacle evasion is especially impor-
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Variables: queue of placement partitions
Initialize queue with top-level partition

1 While (queue not empty)
2 Dequeue a partition
3 If (partition is not marked as merged)
4 Perform look-ahead floorplanning on partition
5 If look-ahead floorplanning fails
6 Undo one partition decision
7 Merge partition with sibling
8 Mark new partition as merged and enqueue
9 Else if (partition has large macros or

is marked as merged)
10 Mark large macros for placement after floorplanning
11 Cluster remaining macros into soft macros
12 Cluster std-cells into soft macros
13 Use fixed-outline floorplanner to pack

all macros (soft+hard)
14 If fixed-outline floorplanning succeeds
15 Fix large macros and remove sites beneath
16 Else
17 Undo one partition decision
18 Merge partition with sibling
19 Mark new partition as merged and enqueue
20 Else if (partition is small enough and

mostly comprised of macros)
21 Process floorplanning on all macros
22 Else if (partition small enough)
23 Process end case std cell placement
24 Else
25 Bi-partition netlist of the partition
26 Divide the partition by placing a cutline
27 Enqueue each child partition

Figure 7: Modified min-cut floorplacement flow. Bold-faced lines are new [30].

tant for top-down floorplacement, even for designs that initially have no obstacles. The techniques

are called SCAMPI, an acronym for SCalable Advanced Macro Placement Improvements. Empiri-

cally, SCAMPI shows significant improvements in floorplacement success rate (68% improvement

as compared to the floorplacement technique presented in Section 4.1) and HPWL (3.5% reduction

compared to floorplacement in Section 4.1).

Traditional placement techniques such as top-down and analytical frameworks, bottom-up clus-

tering and iterative cell-spreading, scale well in terms of runtime and interconnect optimization

when all modules are small. However, handling a wide variety of module sizes with these tech-

niques seems considerably more difficult [30]. On the other hand, simulated annealing has a good

track record in handling heterogeneous module configurations, but can only be effectively ap-

plied to small problem sizes [30]. This dichotomy between large-scale placement techniques and

annealing-based floorplanning necessitates a rethinking of existing floorplacement flows [30].

Selective floorplanning with macro clustering. In top-down correct-by-construction frame-
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ning threshold is reached, all macros in the bin are designated for floorplanning. Then,
the floorplacement flow continues down until detailed placement, where the standard cells
will be placed. The plot on the right illustrates the SCAMPI flow. Macros are selectively
placed at the appropriate levels of hierarchy [30].

works like Capo and PATOMA [17] (see Section 4.2), a key bottleneck is in ensuring ongoing

progress — partitioning, floorplanning or end-case processing must succeed at any given step.

Both frameworks experience problems when floorplanning is invoked too early to produce rea-

sonable solutions — PATOMA resorts to solutions with very high wirelength, and Capo times out

because it has nothing to resort to and runs the an annealer on too many modules. In order to scale

better, the annealer clusters small standard cells into soft blocks before starting Simulated Anneal-

ing. When a solution is available, all hard blocks are considered placed and fixed — they are treated

as obstacles when the remaining standard cells are placed. Compared to other multi-level frame-

works, this one does not include refinement, which makes it relatively fast. Speed is achieved at

the cost of not being able to cluster modules other than standard cells because the floorplanner does

not produce locations for clustered modules. Unfortunately, this limitation significantly restricts

scalability of designs with many macros [30].

The proposed technique of selective floorplanning with macro clustering allows to cluster

blocks before annealing, and does not require additional refinement or cluster-packing steps (which

are among the obvious facilitators) — instead certain existing steps in floorplacement are skipped.

This improvement is based on two observations: (i) blocks that are much smaller than their bin

can be treated like standard cells, (ii) the number of blocks that are large relative to the bin size is

necessarily limited. E.g., there cannot be more than nine blocks with area in excess of 10% of a

bin’s area [30].

In selective floorplanning, each block is marked as small or large based on a size threshold.
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Standard cells and small blocks can be clustered, except that clusters containing hard blocks have

additional restrictions on their aspect ratios. After successful annealing, only the large blocks are

placed, fixed and considered obstacles. Normal top-down partitioning resumes, and each remaining

block will qualify as large at some point later. This way, specific locations are determined when the

right level of detail is considered. If floorplanning fails during hierarchical placement, the failed

bin is merged with its sibling and the merged bin is floorplanned (see Figure 7). The blocks marked

as large in the merged bin include those that exceed the size threshold and also those marked as

large in the failed bin (since the failure suggests that those blocks were difficult to pack). After the

largest macros are placed, the flow resumes [30].

The proposed technique limits the size of floorplanning instances given to the annealer by a

constant (in our case 200 modules) and does not require much extra work. However, it introduces

an unexpected complexity. The floorplacement framework does not handle fixed obstacles in the

core region, and none of the public benchmarks have them. When Capo fixes blocks in a particular

bin, it fixes all of them and never needs to floorplan around obstacles. Another complication due to

newly introduced fixed obstacles is in cutline selection. Reliable obstacle-evasion and intelligent

cutline selection may be required by practical designs, even without selective floorplanning (e.g.,

to handle pre-diffused memories, built-in multipliers in FPGAs, etc). Therefore they are viewed as

independent but synergistic techniques [30].

Obstacle evasion in floorplanning: B*-tree enhancement. When satisfying area constraints

is difficult, it is very important to increase the priority of area optimization so as to achieve legality

[14]. Because of this, the authors of [30] select the B*-tree [13] floorplan representation for its

amenability to packed configurations and add obstacle evasion into B*-tree evaluation.

Ad-hoc look-ahead floorplanning. The sum of block areas may significantly under-estimate

the area required for large blocks. Better estimates are required to improve the robustness of

floorplacement and look-ahead area-driven floorplanning appears as a viable approach [30].

SCAMPI performs look-ahead floorplanning to validate solutions produced by the hypergraph

partitioner, and check that a resulting partition is packable, within a certain tolerance for failure.

Look-ahead floorplanning must be fast, so that the amortized runtime overhead of the look-ahead

calls is less than the total time saved from discovering bad partitioning solutions. Therefore look-

ahead floorplanning is performed with blocks whose area is larger than 10% of the total module
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Figure 9: Calculating the three costs for weighted terminal propagation with StWL: w1

(left), w2 (middle), and w12 (right). The net has five fixed terminals: four above and
one below the proposed cut-line. For the traditional HPWL objective, this net would be
considered inessential. Note that the structure of the three Steiner trees may be entirely
different, which is why w1, w2 and w12 are evaluated independently [32].

area in the bin, and soft blocks containing remaining modules. For speed, the floorplanner is

configured to perform area-only packing, and the placer is configured to only perform look-ahead

floorplanning on bins with large blocks. Dealing with only the largest blocks is sufficient because

floorplanning failures are most often caused by such blocks [30].

5.3 Optimizing Steiner Wirelength

Weighted terminal propagation as described in [15] and summarized in Section 3.4, is sufficiently

general to account for objectives other than HPWL such as Steiner Wirelength (StWL) [32]. StWL

is known to correlate with final routed wirelength (rWL) more accurately than HPWL and the

authors of [32] hypothesize that if StWL could be directly optimized during global placement, one

may be able to enhance routability and reduce routed wirelength.

The points required to calculate w1 for a given net are the terminals on the net plus the center

of partition 1. Similarly, the points required to calculate w2 are the terminals plus the center of

partition 2. Lastly, the points to calculate w12 are the terminals on the net plus the centers of both

partitions. See Figure 9 for an example of calculating these three costs. Clearly the HPWL of the

set of points necessary to calculate w12 is at least as large as that of w1 and w2 since it contains

an additional point. By the same logic, StWL also satisfies this relationship since RSMT length

can only increase with additional points. Since StWL is a valid cost function for these weighted

partitioning problems, this is a framework whereby it can be minimized [32].

The simplicity of this framework for minimizing StWL is deceiving. In particular, the propa-

gation of terminal locations to the current placement bin and the removal of inessential nets [11]
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— standard techniques for HPWL minimization — cannot be used when minimizing StWL. Mov-

ing terminal locations drastically changes Steiner-tree construction and can make StWL estimates

extremely inaccurate. Nets that are considered inessential in HPWL minimization (where the x-

or y-span of terminals, if the cut is vertical or horizontal respectively, contains the x- or y-span

of the centers of child bins) are not necessarily inessential when considering StWL because there

are many Steiner trees of different lengths that have the same bounding box. Figure 9 illustrates

a net that is inessential for HPWL minimization but essential for StWL minimization. Not only

computing Steiner trees, but even traversing all relevant nets to collect all relevant point locations

can be very time-consuming. Therefore, the main challenge in supporting StWL minimization is

to develop efficient data structures and limit additional runtime during placement [32].

Pointsets with multiplicities. Building Steiner trees for each net during partitioning is a com-

putationally expensive task. To keep runtime reasonable when building Steiner trees for parti-

tioning, the authors of [32] introduce a simple yet highly effective data structure — pointsets with

multiplicities. For each net in the hypergraph, two lists are maintained. The first list contains all the

unique pin locations on the net that are fixed. A fixed pin can come from sources such as terminals

or fixed objects in the core area. The second list contains all the unique pin locations on the net

that are movable, i.e., all other pins that are not on the fixed list. All points on each list are unique

so that redundant points are not given to Steiner evaluators which may increase their runtime. To

do so efficiently, the lists are kept in a sorted order. For both lists, in addition to the location of the

pin, the number of pins that correspond to a given point is also saved [32].

Maintaining the number of actual pins that correspond to a point in a pointset (the multiplicity

of that point) is necessary for efficient update of pin locations during placement. If a pin changes

position during placement, the pointsets for the net connected to the pin must be updated. First,

the original position of the pin must be removed from the movable point set. As multiple pins can

have the same position, especially early in placement, the entire net would need to be traversed

to see if any other pins share the same position as the pin that is moving. Multiplicities allow to

know this information in constant time. To remove the pin, one performs a binary search on the

pointset and decreases the multiplicity of the pin’s position by 1. If this results in the position

having a multiplicity of 0, the position can be removed entirely. Insertion of the pin’s new position

is similar: first, a binary search is performed on the pointset. If the pin’s position is already present
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in the pointset, the multiplicity is increased by 1. Otherwise, the position is added in sorted order

with a multiplicity of 1. Empirically, building and maintaining the pointset data structures takes

less than 1% of the runtime of global placement [32].

Performance. The authors of [32] compared three Steiner evaluators in terms of runtime

impact and solution quality. They chose the FastSteiner [24] evaluator for global placement based

on its reasonable runtime and consistent performance on large nets. Empirical results show the use

of FastSteiner leads to a reduction of StWL by 3% on average on the IBMv2 benchmarks [43] (with

a reduction of routed wirelength up to 7%) while using less than 30% additional runtime [32].

5.4 Incremental Placement

To develop a strong incremental placement tool, ECO-system, the authors of [33] build upon an

existing global placement framework and must choose between analytical and top-down. The main

considerations include robustness, the handling of movable macros and fixed obstacles, as well as

consistent routability of placements and the handling of density constraints. Based on recent em-

pirical evidence [30,32,35], the top-down framework appears a somewhat better choice. However,

analytical algorithms can also be integrated into ECO-system when particularly extensive changes

are required. ECO-system favorably compares to recent detail placers in runtime and solution

quality and fares well in high-level and physical synthesis.

General Framework. ECO-system can be likened to reverse engineering the min-cut place-

ment process. The goal is to reconstruct the internal state of a min-cut placer that could have

produced the given initial placement. Given this state, one can choose to accept or reject its previ-

ous decisions based on their own criteria and build a new placement for the design. If many of the

decisions of the placer were good, one can achieve a considerable runtime savings as compared to

placement from scratch. If many of the decisions are determined to be bad, one can do no worse

in terms of solution quality than placement from scratch. An overview of the application of ECO-

system to an illegal placement is depicted in Figure 11. The overall algorithm in the framework of

min-cut placement is shown in Figure 10.

To rebuild the state of a min-cut placer, one must reconstruct a series of cut-lines and parti-

tioning solutions efficiently. One must also determine criteria for the acceptability of the derived

partitioning and cut-line. To extract a cut-line and partitioning solution from a given placement bin,
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Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While(queue not empty)
2 Dequeue a bin
3 If(bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cut-line which has

the smallest net-cut considering
cell area balance constraints

7 If(cut-line causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cut-line
10 Improve net-cut of partitioning with

single pass of Fiduccia-Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cut-line and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If(bin small enough)
17 Process end case
18 Else
19 Bi-partition the bin into child bins
20 Mark child bins to place from scratch
21 Enqueue each child bin

Figure 10: Incremental min-cut placement. Bold-faced lines 3-15 and 20 are different
from traditional min-cut placement [33].

all possible cut-lines of the bin as well as the partitions they induce must be examined. Starting at

one edge of the placement bin (left edge for a vertical cut and bottom edge for a horizontal cut)

and moving towards the opposite edge, for each potential cut-line encountered, one maintains the

cell area on either side of the cut-line, the partition induced by the cut-line and its net cut.

Once a cut-line and partitioning have been chosen, they mus be evaluated to see if they should

be accepted or rejected. To evaluate the partitioning, the authours of [33] use it as input to a

Fiduccia-Mattheyses partitioner and see how much it can be improved by a single pass (if the

bin is large enough, a multi-level Fiduccia-Mattheyses partitioner can be used). The intuition is

that if the constructed partitioning is not worthy of reuse, a single Fiduccia-Mattheyses pass could

improve its cut non-trivially. If the Fiduccia-Mattheyses pass improves the cut beyond a certain

threshold, the solution is discarded and the entire bin is bisected from scratch. If a partition is

accepted by this criterion, one performs a legality test: if the partitioning overfills a child bin, the

cut-line is discarded and the bin is bisected from scratch.

Empirically, the runtime of the cut-line selection procedure (which includes a single pass of a

Fiduccia-Mattheyses partitioner) is much smaller than partitioning from scratch. On large bench-
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(i) a bin contains no overlap and is ignored for the remainder of the legalization process
or, (ii) the placement contained in the bin is considered too poor to be kept (too many
overlaps or does not meet the solution quality requirements) and is replaced from scratch
using min-cut or analytical techniques [33].

marks, the cut-line selection process requires 5% of ECO-system runtime time whereas min-cut

partitioners generally require 50% or more of ECO-system runtime. ECO-system as a whole re-

quires approximately 15% of original placement runtime.

Handling Macros and Obstacles. With the addition of macros, the flow of top-down place-

ment usually becomes more complex. The authors of [33] adopt the style of floorplacement

from [30, 31] (see Sections 4.1 and 5.2). For legalization with macros, a new criterion for floor-

planning is added: if a placement bin has non-overlapping positions for macros (i.e. no macros

in the placement bin overlap each other) the macros are placed in exactly their initial positions; if

some of the macros overlap, other floorplanning criteria are used to decide. If any of the macros

are moved, the placement of all cells and macros in the bin must be discarded and placement and

proceeds as described in [31].

During the cut-line selection process, some cut-line locations are considered invalid — namely

those that are too close to obstacle boundaries but do not cross the obstacles. This is done to prevent

long and narrow slivers of space between cut-lines and obstacle boundaries. Ties for cut-lines are

broken based on the number of macros they intersect. This helps to reduce overfullness in child

bins allowing deeper partitioning, which reduces runtime [33].
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6 State-of-the-art Min-cut Placers

In this section, we present partitioning-based placement techniques that are used in cutting-edge

placers. For each placer, we describe its overall flow, how this differs from the generic min-cut

flow, and how it handles challenges in placement such as fixed obstacles and mixed-size instances.

In particular we describe the techniques used by the placers Dragon [38, 39, 43], FengShui [4, 27],

NTUPlace2 [22] and Capo [30–35].

6.1 Dragon

The most recent version of Dragon, Dragon2006 [39], combines min-cut bisection with Simulated

Annealing for placement. In its most basic flow, Dragon2006 utilizes recursive bisection with the

hMETIS partitioner [26]. Each bin is partitioned multiple times with a feedback mechanism to

allow for more accurate terminal propagation (see Section 3.1 for more details on placement feed-

back). Partitioning is followed by Simulated Annealing on the placement bins where whole bins

are swapped with one another to improve HPWL [38, 39]. After a number of layers of interleaved

partitioning and Simulated Annealing, each bin contains only a few cells and the partitioning phase

terminates. Next, bins are aligned to row structures and cell-based Simulated Annealing is per-

formed wherein cells are swapped between bins to improve HPWL [38, 39]. Lastly, cell overlaps

are removed and local detail placement improvements are made.

Mixed-size Placement. The traditional Dragon flow does not take macros into consideration

during placement. To account for macros, partitioning, bin-based annealing and legalization must

be modified. In addition, Dragon2006 makes two passes on a design with obstacles; the first pass

finds locations for macros and the second treats macros as fixed obstacles [39] (similar to [2]).

In the first pass, partitioning is modified to handle large movable macros. The traditional

Dragon flow alternates cut directions at each layer and chooses the cut-line to split a bin exactly in

half in order to maintain a regular grid structure. In the presence of large macros, the requirement

of a regular bin structure is relaxed. The cut-line of the bin is shifted to allow the largest macro to

fit into a child bin after partitioning. If macros can only fit in one bin, they are pre-assigned to the

child bin in which they can fit and not involved in partitioning [38, 39].

Bin-based Simulated Annealing after partitioning is also modified as bins may not all have the

same dimensions. Horizontal swaps between adjacent bins are only allowed if they are of the same
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height. Similarly, vertical swaps between adjacent bins are only allowed if they are of the same

width. Lastly, diagonal bin swaps are only legal if the bins have the same height and width. After

all bins have a threshold of cells or fewer, partitioning stops and macro locations are legalized.

Once legal, macros are considered fixed and partitioning begins again at the top level to place the

standard cells of the design [38, 39].

6.2 FengShui

FengShui [4, 27] is a recursive bisection min-cut placer that uses the hMETIS partitioner [26].

FengShui implements the fractional cut technique (see Section 3.2) and packs its placements to

either side of the placement region which has a serious affect on the routability of its placements

[32]. FengShui also supports mixed-size placement (see Section 4.3)

6.3 NTUPlace2

NTUPlace2 [22] is a hybrid placer that uses both min-cut partitioning and analytical techniques

for standard-cell and mixed-size designs. NTUPlace2 uses repartitioning (see Section 3.1), cut-line

shifting (see Section 2.3) and weighted net-cut (see Section 3.4) [22].

NTUPlace2 uses analytical techniques to aid partitioning which are different from those in

ACG (see Section 3.3). Before partitioning calls to the hMETIS partitioner [26], objects in a

placement bin are first placed by an analytical technique to reduce quadratic wirelength [22]. Those

objects which are placed far from the proposed cut-line are considered fixed in their current loca-

tions for the partitioning process. This technique helps to make terminal propagation more exact

and with the weighted net-cut technique has resulted in very good solution quality [22].

To handle mixed-size placement, macro locations are legalized at each layer. Macros become

fixed at different layers of placement according to their size relative to placement bin size. Thus

larger macros are placed earlier in placement [22]. Macros are legalized using a linear program-

ming technique that attempts to minimize the movement of macros during legalization [22].

6.4 Capo

Capo [30–35] is a min-cut floorplacer. As such it implements the floorplacement flow as described

in Section 4.1 and further improved by SCAMPI in Section 5.2 rather than the traditional min-cut

flow and implicitly handles mixed-size placement and fixed obstacles in the placement area. Capo
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can use either MLPart [10] or hMETIS [26] for hypergraph partitioning. Whitespace allocation in

Capo is done per placement bin: either uniform (see Section 2.4), minimum local or safe whitespace

allocation (see Section 5.1) is chosen based on the bin’s whitespace and user-configurable options.

To improve the quality of results, Capo also implements repartitioning (see Section 3.1), placement

feedback (see Section 3.1), weighted net-cut (see Section 3.4) and several whitespace allocation

techniques. Capo has also been used to optimize Steiner wirelength in placement (see Section 5.3)

and can be used for incremental placement (see Section 5.4).
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