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1 Introduction

A hypergraph is a generalization of a graph wherein edges can connect more than two ver-

tices and are called hyperedges. Just as graphs naturally represent many kinds of information

in mathematical and computer science problems, hypergraphs also arise naturally in impor-

tant practical problems, including circuit layout, Boolean SATisfiability, numerical linear alge-

bra, etc. Given a hypergraph H , k-way partitioning of H assigns vertices of H to k disjoint

nonempty partitions. The k-way partitioning problem seeks to minimize a given cost function

of such an assignment. A standard cost function is net cut, which is the number of hyperedges

that span more than one partition, or, more generally, the sum of weights of such edges. Con-

straints are typically imposed on the solution, and make the problem difficult. For example,

certain vertices can be fixed in their partitions (fixed constraints) or the total vertex weight in

each partition may be limited (balance constraints). With balance constraints, the problem of

optimally partitioning a hypergraph is known to be NP-hard [28]. However, since partitioning

is critical in several practical applications, heuristic algorithms were developed with near-linear

runtime. Such move-based heuristics for k-way hypergraph partitioning appear in [46, 27, 14],

with refinements given by [47, 58, 32, 49, 24, 10, 20, 35, 41, 25]. The following is an introduc-

tion to partitioning formulations and algorithms, centered on the Fiduccia-Mattheyses heuristic

[27] and its derivatives.
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There are a wide variety of contexts for hypergraph partitioning. Several of them are out-

lined in Section 2. Each context uses a hypergraph to represent another kind of data structure.

The mappings of several mathematical structures to hypergraphs are described below:

Matrices. The pattern of non-zero entries of a matrix A can be represented by a hypergraph

whose hyperedges correspond to rows of A and vertices correspond to the columns of A. Each

hyperedge, e, will be connected to a vertex, v, if Ae,v 6= 0. Figure 1 gives an example of a

matrix and its corresponding hypergraph.

Logic Circuits. Logic circuits are composed of gates (or standard cells) that perform log-

ical operations and connected by metal wires. The same electrical signal may propagate from

one gate to several other gates — such a connection is called a net, and can be conveniently

represented by a hyperedge. The hypergraph corresponding to a logic circuit directly maps

gates to vertices and nets to hyperedges. The dual of this hypergraph is sometimes used as

well. In the dual hypergraph, vertices correspond to nets, and hyperedges correspond to gates.

An example of a logic circuit and corresponding hypergraph are given in Figure 2.

Boolean Formulae. The conjunctive normal form (CNF) for Boolean formulae consists

of Boolean variables or their complements grouped into clauses and combined with the OR

operation. All of the clauses are then combined with the AND operation (see Figure 3 for an

example). To convert a CNF formula to a hypergraph, the following mapping is used. Each

literal in the formula (a Boolean variable is a literal and its complement is another literal) maps

to one vertex in the hypergraph. Each clause maps to a hyperedge, which connects to the

vertices that correspond to the literals in the clause. A Boolean formula in conjunctive normal

form is shown in Figure 3 along with the corresponding hypergraph.

The remainder of this survey discusses hypergraph partitioning as illustrated by these three

contexts. Section 2 describes how these contexts give rise to practical applications of hyper-

graph partitioning. Terms used in this survey are defined in Section 3. Section 4 summarizes

the various techniques presented in this survey and outlines how scale dictates which technique
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is most applicable. The Fiduccia-Mattheyses heuristic is described in detail in Section 5 and

the Multilevel Fiduccia-Mattheyses extension is discussed in Section 6. Available software

and benchmarks are briefly described in Section 7. Sample empirical results are given in the

appendix.

2 Motivation and Applications

Hypergraph partitioning arises in several practical applications, three of which are outlined

below
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Figure 1: An example of a nearly block-diagonal matrix and corresponding hy-
pergraph. Each row of the matrix corresponds to a hyperedge, and each column
corresponds to vertices v1 through v8. Recursively bisecting the graph aligns the
blocks of the matrix on the diagonal.

2.1 Numerical Linear Algebra

The runtime of linear algebra computations can vary dramatically depending on the sparsity

of input matrices and their patterns of non-zero values [40, 56], which can affect the sparsity

of intermediate matrices appearing during computations. In particular, many linear algebra

operations (such as matrix-vector multiply, matrix-matrix multiply, solving systems of linear

equations, eigenvalue problems, etc.) are faster for block-diagonal matrices. Such operations

are easily parallelized because each block is an independent computation. Computing these

operations on matrices with permuted rows or columns will give an answer that differs by the
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same permutation. Therefore the result can be interpreted in the same way, and it is desirable

to swap rows in order to bring non-zero elements in input matrices as close to the diagonal

as possible before applying such operations. One way to achieve this is through recursive

calls to hypergraph partitioning on a hypergraph representation of the matrix. Figure 1 shows

a small example of a sparse block-diagonal matrix with its corresponding hypergraph. This

permutation on vertices was obtained by recursively partitioning the hypergraph.

Figure 2: An example of a logic circuit and the corresponding hypergraph.

2.2 Integrated Circuit Design

VLSI circuit design has long provided driving applications and ideas for hypergraph partition-

ing heuristics. For example, the methods of Kernighan-Lin [46] and Fiduccia-Mattheyses [27]

form the basis of today’s move-based approaches. The method of Goldberg-Burstein [31] pre-

saged the multilevel approaches recently popularized in the parallel simulation [29, 36, 42] and

VLSI [9, 41, 10] communities. As noted in [6], applications in VLSI design include test, simu-

lation and emulation; design of systems with multiple field-programmable devices; technology

migration and repackaging; and top-down floorplanning and placement.

Depending on the specific VLSI design application, a partitioning instance may have di-

rected or undirected hyperedges, weighted or unweighted vertices, etc. However, in all con-

texts the instance represents at the transistor-level, gate-level, cell-level, block-level, chip-level,
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or behavioral description module level – a human-designed system. Such instances are highly

non-random. Hence, the current practice remains to evaluate new algorithmic ideas against

suites of human-designed benchmark instances. In the VLSI partitioning community, perfor-

mance of algorithms is typically evaluated on the ISPD 1998 benchmarks released by IBM.

Alpert [4] noted that previous circuits did not reflect the complexity of modern partitioning

instances, particularly in VLSI physical design; this motivated the release of eighteen larger

benchmarks produced from internal designs at IBM [3].

Salient features of benchmark (real-world) circuit hypergraphs include:

• size: number of vertices can be in the millions (instances of all sizes are equally impor-

tant),

• sparsity: average vertex degrees are typically between 3 and 5 for device-, gate-, and

cell-level instances; higher average vertex degrees occur in block-level design,

• number of hyperedges (nets) typically between 0.8x and 1.5x of the number of vertices

(each module typically has only one or two outputs, each of which represents the source

of a new signal net),

• average net sizes are typically between 3 to 5,

• a small number of very large nets (e.g., clock, reset, test) connect hundreds or thousands

of vertices.

Partitioning heuristics must be highly efficient in order to be useful in VLSI design.1 Be-

cause of this and also because of their flexibility in addressing variant objective functions, fast
1For example, a modern top-down standard-cell placement tool will perform recursive min-cut bisection of

a gate-level hypergraph to obtain a coarse global placement, which is then refined into a detailed placement by
local optimizations. This entire placement process, for example, takes approximately 1 CPU minute per 7000
standard cells on an AMD Opteron 250 work-station with adequate RAM. The implied partitioning runtimes are
on the order of 1 CPU second for hypergraphs with 3500 vertices, and 10 minutes for hypergraphs with 2 million
vertices.
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and high-quality iterative move-based partitioners using the approach of Fiduccia-Mattheyses

[27] have dominated recent practice.

The primary use of partitioning heuristics in VLSI design is that of top-down recursive

min-cut bisection placement. In this placement framework, a region of a chip is divided geo-

metrically, and the logic inside that region is partitioned topologically. Each of these pieces are

then recursively divided until the regions are so small that an optimal end-case placer can solve

the problem in a reasonable amount of time.

φ = (v1 + v3)(v3 + v5)(v2 + v5 + v4)
(v5 + v6)(v6 + v7 + v8)(v8 + v9)

Figure 3: An example of a CNF logic formula φ and the corresponding hypergraph.

2.3 Automated Theorem-Proving and Formal Verification

Algorithms for electronic design automation (EDA) [55, 62], including those for synthesis as

well as hardware and software verification, require efficient manipulation of Boolean func-

tions. Boolean satisfiability (SAT) [54, 59] solvers and binary decision diagrams (BDDs) [13]

have traditionally been used with such applications, but their worst-case complexity remains

exponential and can scarcely be improved.

A key observation is that Boolean functions arising in EDA applications and constraint

satisfaction problems possess useful structural properties, e.g., related variables in satisfiability

typically participate in the same clauses. Uses of problem structure are known to improve the

efficiency of SAT and BDD algorithms. For example, Prasad et al. [57] theoretically show

that combinational circuits with small net cuts give easy instances of automatic test pattern

generation (ATPG), which are essentially SAT instances. BDDs with smaller cuts tend to have

fewer hyperedges and vertices, speeding up BDD manipulations [1, 11].
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Based on these observations, the authors of [2] reorder Boolean variables to place “con-

nected” variables close to each other. The ordering process relies on recursive calls to hyper-

graph partitioning to reduce net cut. This optimization can accelerate SAT solving and BDD

manipulation, and reduce BDD memory consumption. The authors of [7, 51] apply partitioning

techniques to more general types of reasoning and more sophisticated theorem provers.

3 Definitions and Terminology

In what follows, V is the set of vertices in a hypergraph.

1 Disjoint Partitions: A k-tuple P = (p0, ...,pk−1) with each pi a set of vertices such that

∪k−1

i=0
pi = V and ∩k−1

i=0
pi = ∅.

2 k-way Partitionment: A function of the form δ : V → P wherein all vertices of V are

mapped to a disjoint partitions from the k-tuple P. More practically, this function assigns the

vertices to one of k disjoint partitions.

3 Balance Constraint: A pair of values (l, u). A partition p with a balance constraint must

obey l ≤
∑

v∈p
W (v) ≤ u, where W (v) is the weight of vertex v or 1 if the vertex has no

weight.

When ∀v ∈ V, W (v) = 1, then
∑

v∈p
W (v) = |p|, the number of vertices in p. Partitioning

using similar balance constraints for all partitions will equalize the number of vertices in each.

4 Hypergraph: A pair of sets H = (V,E). V is the set of vertices of the hypergraph and

E is the set of hyperedges of the hypergraph. Each hyperedge in a hypergraph is a non-empty

subset of V, the size of this subset is called the hyperedge’s degree. A weighted hypergraph has

non-negative numeric weights associated with each vertex, each hyperedge, or both.
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Conventional graphs are a special case of hypergraphs, where all hyperedges have degree

2. In most cases, the degree of a hyperedge is no smaller than 2.

Vertices and hyperedges optionally have non-negative numeric weights. A weight of 0

usually means that the edge or the vertex is deleted. Weights usually have additive semantics,

e.g., two weighted edges e1 and e2 connecting the same pair of vertices can be replaced with a

single edge e3 such that W (e3) = W (e1) + W (e2) (see also Definition 8).

5 Cut: A hyperedge e of hypergraph is cut if, with respect to a particular partitionment δ,

its vertices are mapped to more than one partition. The net cut of a partitionment is the total

number of hyperedges that are cut. The weighted net cut of a partitionment is the sum of the

weights of hyperedges that are cut.

6 Hypergraph Partitioning: The process of finding a partitionment of a hypergraph such

that some cost function, such as net cut, is minimized. When the solutions must additionally

satisfy balance constraints, the process is called balanced hypergraph partitioning. Hypergraph

partitioning that results in two partitions is called bisection.

7 The k-way Hypergraph Partitioning Problem: Given a hypergraph H = (V,E), find a

k-way partitionment δ : V → P that maps the vertices of H to one of k disjoint partitions such

that some cost function c : δ → R is minimized.

One typically deals with a particular hypergraph partitioning problem instance which con-

sists of a particular hypergraph, a set of two or more balance constraints, and an objective

function.

8 Clustering: The process of computing a coarser hypergraph from an input hypergraph by

merging vertices into larger groups of vertices called clusters.

The weight of each cluster will be the sum of the weights of its vertices, or simply the

number of vertices if they have no weights.
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Several cost objectives exist for the hypergraph partitioning problem. The most common

by far is net cut. In VLSI placement, reduced net cut is correlated with shorter wires, and in

parallelization smaller net cut means reduced interprocessor communication. For more than

2-way partitioning, the sum-of-degrees metric is sometimes used. For this metric, the cost of

each hyperedge is equal to the number of different partitions which contain some of its vertices.

4 Summary of Techniques and Their Scale Dependence

In many applications of hypergraph partitioning, the size of input grows every year, and the

demand for performance is high. For example, the number of transistors in a typical VLSI

design continues to grow exponentially (according to Moore’s Law). The algorithms applicable

to these circuits must scale to tens of millions of components today and hundreds of millions

in the foreseeable future. Because of these large inputs, any partitioning technique used must

have near-linear complexity in the worst case in order to be effective.

State-of-the-art partitioning tools use local search heuristics to refine a given partitionment.

The basic technique common to all VLSI partitioning applications is the Fiduccia-Mattheyses

(FM) algorithm [27], which applies linear-time passes to iteratively improve a given partition-

ment by moving every vertex exactly once. A prevalent extension of this algorithm is the Multi-

level FM (MLFM) algorithm, which improves both solution quality and runtime of partitioning

large hypergraphs by clustering tightly connected components and partitioning the resulting

smaller hypergraph. However, for sufficiently small hypergraphs, “flat” FM can produce op-

timal solutions faster than MLFM, indicating that different techniques should be applied at

different scales.

Despite growing input sizes, recursive applications of partitioning will still produce a large

number of small partitioning instances, and the performance of partitioning on small instances

is equally relevant in practice. In high-performance applications, actual runtime, rather than

asymptotic complexity, is a design objective of prime importance. Due to this, occasionally an
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algorithm with higher complexity will be selected if it is faster for practical input sizes. The

following is a summary of the techniques available, and at which scale they are effective.

4.1 Exhaustive Enumeration

Exhaustive enumeration produces optimal partitionments and has exponential asymptotic com-

plexity but low constant runtime factor. As such, at very small scales, exhaustive enumeration

is the fastest known technique. The evaluation of each solution is the bottleneck of this al-

gorithm, and it can be sped up by incrementally evaluating the cost objective. However, it is

straightforward to iteratively update the cut of a partitionment when one vertex is moved [15].

We can represent each partitionment as a vector, with each entry corresponding to a vertex’s

partition. Then, enumerating the values of this vector in Gray code order moves only one vertex

at a time, thus allowing incremental update of net cut for fast evaluation. Empirically, we find

this to be the fastest technique for one to nine vertices [15].

4.2 Branch and Bound

The runtime of exhaustive enumeration grows exponentially in the number of vertices and thus

cannot scale very far. However, its scalability can be improved through intelligent search space

pruning; this technique is known as branch and bound (B&B). A B&B implementation does

a depth-first search of the tree of partial partitionments (some vertices assigned to a partition,

some yet unassigned) by choosing a partition for the next unassigned vertex and recursing.

It can search the entire solution space in the worst case and therefore also has exponential

time complexity, but maintains optimality by bounding away only suboptimal results. Partition

balance constraints can be used for pruning illegal solutions and best-seen cost can be used to

bound away suboptimal results.

One notable improvement to the bounding function is known as inevitable cut[15], which

applies to the portion of a hypergraph that is made up of two-pin nets. Choosing any partition
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Figure 4: Two small examples of an inevitable cut computation. The black ver-
tices have been assigned to their respective partitions and the white vertex is still
unassigned. In each case, any assignment of the white vertex implies that some
edges will be cut. The inevitable cut is 1 on the left and 2 on the right. For a given
unassigned vertex, inevitable cut is computed as the smallest number of adjacent
vertices assigned to any one partition.

for a particular vertex may imply some additional cost, because it may be connected to ver-

tices in both (all) partitions. The minimum possible additional cost (considering only two-pin

nets) over all legal partition assignments for a particular vertex is known as its inevitable cut,

and can be computed directly. It is the minimum number of two-pin connections to vertices

locked in any particular partition. Figure 4 shows two small examples of an inevitable cut com-

putation (for more details see [15]). The inevitable cut of a vertex can be safely added to the

lower-bound cost computation in the bounding function to strengthen the pruning of suboptimal

results. It is unclear how to extend this technique to multi-pin nets. The inevitable cut tech-

nique can be extended to handle a larger portion of the hypergraph by replacing three-pin nets

with three-cliques (triangles) with each hyperedge’s weight multiplied by one-half the weight

of the original three-pin hyperedge. This “triangle technique” preserves cost of all partition-

ments exactly and allows inevitable cut to be applied to all two and three-pin nets. The runtime

of B&B can be unreasonably high for certain pathological cases that have many optimal solu-

tions. In practice we detect these cases with a time-out. If the runtime limit is exceeded we will

stop B&B and use a more scalable algorithm such as Fiduccia-Mattheyses discussed below.

Empirically, we find B&B to be the best technique for ten to thirty-five movable objects [15].
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4.3 The Fiduccia-Mattheyses Heuristic

Partitioning problems with more than thirty-five movable objects take an impractical amount

of runtime to solve optimally using B&B. Fortunately, an amortized near-linear-time heuristic

exists for iterative improvement of hypergraph partitions. The Fiduccia-Mattheyses (FM) al-

gorithm works by prioritizing moves by gain. A move changes to which partition a particular

vertex belongs, and the gain is the corresponding change to the cost function. After each vertex

is moved, gains for connected modules are updated.

The FM algorithm runs in passes wherein each vertex is moved exactly once. Passes are

generally applied until little or no improvement remains. Initial solutions are often produced

using a simple randomized algorithm. Empirically we find FM to be the best technique for

thirty-six to two hundred movable objects. Details of the FM algorithm are discussed below

and, at length in Section 5.

4.4 Multilevel Fiduccia-Mattheyses Framework

The multilevel hypergraph partitioning framework provides the best known partitioning results

for large-scale circuit hypergraphs. It consists of three main components: clustering, top-level

partitioning and refinement. During clustering, hypergraph vertices are combined into clusters

based on connectivity, leading to a smaller, clustered hypergraph. This step is repeated until the

hypergraph is small enough to be solved effectively by a “flat” partitioning algorithm (e.g., the

FM heuristic). The smallest hypergraph is partitioned with a very fast initial solution generator

(e.g., random) and iteratively improved using the flat partitioner. The resulting partitionment

is then interpreted as a solution for the next (less clustered) hypergraph during the refinement

stage, and improved again using the flat partitioning algorithm until the bottom level is reached.

Using this multilevel framework with the FM algorithm is known as the Multilevel Fiduccia-

Mattheyses (MLFM) technique, and it is the most effective and commonly used hypergraph

partitioning algorithm for large circuit hypergraphs. Empirically we find the MLFM algorithm
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to be the best technique for more than 200 movable objects. Details of the MLFM algorithm

are discussed at length in Section 6.

4.5 Other Types of Algorithms

Several other approaches exist for solving the hypergraph partitioning problem [19, 23, 26,

37, 63]. Typically, these techniques have some substantial drawback that makes their use im-

practical for high-performance applications. For example, meta-heuristics such as simulated

annealing and tabu search may be able to achieve better solution quality at the cost of an im-

practical increase in runtime [26]. Other techniques may have constraints on their input that

are violated by some problem instances, as is the case with spectral techniques [23]. Spectral

algorithms find eigenvalues of the Laplacian matrix of the connectivity graph and derive a par-

titionment from coefficients of an eigenvalue, e.g., by comparing them to the median [5]. These

algorithms may not handle fixed terminals well and are therefore not general enough to han-

dle many practical applications. Another technique relies on the Min-cut Max-flow theorem

and efficient network-flow algorithms to identify optimally small cuts in graphs [63]. These

polynomial-time algorithms do not typically perform approximation and can handle hyper-

edges using accurate conversion to graphs, but do not handle balance constraints, which results

in expensive trial-and-error in flow-based partitioners. Work by Hur and Lillis [37, 38] applies

similar techniques to placement, in a somewhat different setting, and describes an incremental

flow-solver that sweeps through a series of input configurations, however their placer is still

fairly slow.

5 The Fiduccia-Mattheyses Heuristic

The Fiduccia-Mattheyses (FM) heuristic for partitioning hypergraphs [27] is an iterative im-

provement algorithm. Its neighborhood structure is induced by single-vertex, partition-to-
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partition moves.2 FM starts with a possibly random solution and changes the solution by a

sequence of moves which are organized as passes. At the beginning of a pass, all vertices are

free to move (unlocked), and each possible move is labeled with the immediate change to the

cost it would cause; this is called the gain of the move (positive gains reduce solution cost,

while negative gains increase it). Iteratively, a move with highest gain is selected and executed,

and the moving vertex is locked, i.e., is not allowed to move again during that pass. Since

moving a vertex can change gains of adjacent vertices, after a move is executed all affected

gains are updated. Selection and execution of a best-gain move, followed by gain update, are

repeated until every vertex is locked. Then, the best solution seen during the pass is adopted

as the starting solution of the next pass. The algorithm terminates when a pass fails to improve

solution quality. Pseudo-code for the FM heuristic is given in Figure 5.

The FM algorithm has three main components (1) the computation of initial gain values at

the beginning of a pass; (2) the retrieval of the best-gain (feasible) move; and (3) the update

of all affected gain values after a move is made. One contribution of Fiduccia and Mattheyses

lies in observing that circuit hypergraphs are sparse, and any move’s gain is bounded between

plus and minus the maximal vertex degree in the hypergraph (times the maximal hyperedge

weight, if weights are used). This allows prioritization of moves by their gains. All affected

gains can be updated in amortized-constant time, giving overall linear complexity per pass[27].

In [27] all moves with the same gain are stored in a linked list representing a “gain bucket”. It

is important to note that some gains may be negative, and as such, FM performs hill-climbing

and is not purely greedy.

5.1 FM Passes

The Fiduccia-Mattheyses (FM) algorithm consists of incrementally-improving passes [27].

During each pass, FM will search the neighborhood of a given partitionment, and record the
2By contrast, the stronger Kernighan-Lin (KL) heuristic [46] uses a pair-swap neighborhood structure and has

cubic runtime per pass.
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1 FM(hypergraph, partitionment)
2 do
3 initialize gain container from partitionment;
4 FMpass(gain container, partitionment);
5 while(solution quality improves);
6 FMpass (gain container, partitionment)
7 solution cost = partitionment.get cost();
8 while(not all vertices locked)
9 move = choose move();

10 solution cost += gain container.get gain(move);
11 gain container.lock vertex( move.vertex() );
12 gain update(move);
13 partitionment.apply(move);
14 roll back partitionment to best seen solution;
15 gain container.unlock all();

Figure 5: Pseudo-code for the FM heuristic. choose move and gain update are
defined in Figure 8

best seen solution. FM performs successive passes as long as the solution can be improved.

At each pass, the FM repetitively chooses one (best) move and applies it, followed by the

processing of information about the new solutions thus obtained. Since no vertex can be moved

twice in a pass, no moves will be available beyond a certain point (end of a pass). Some best-

gain moves may increase the solution cost, and typically the solution at the end of the pass is

not as good as the best solutions seen during the pass. FM will then undo a given number of

moves to return to a solution with best-seen cost.

5.2 Gain Computation and Gain Update

The initialization of the FM data structures at the beginning of each pass is straightforward.

First traverse all hyperedges and count the number of vertices in each partition. If a hyperedge

is uncut, then decrease the gain of all adjacent vertices by the hyperedge weight (or by -1 when

no weights are given). If there is only one vertex in some partition, then increase the gain of

that vertex by the hyperedge weight (or by 1 when no weights are given) and do not change the

gain of all other adjacent vertices.
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Picking and applying one move is subtle. FM requests the best move from the gain con-

tainer and can continue requesting more moves until a feasible (i.e., not violating the balance

constraints) move is found. As FM applies the chosen move and locks the vertex, gains of

adjacent vertices likely need to be updated. In performing “generic” gain update, an implemen-

tation of FM must walk all hyperedges incident to the moving vertex and for each hyperedge

computes gain updates (delta gains) for each of its vertices due to this hyperedge (these are

combinations of the given hyperedge’s cost under four distinct partition assignments for the

moving and affected vertices; see Figures 8 and 13). These partial gain updates are imme-

diately applied to the gain container, and moves of affected vertices may have their priority

within the gain container changed. Even if the delta gain for a given move is zero, removing

and inserting it into the gain container will typically change tie-breaking among moves with

the same gain.

In most implementations the gain update is the main bottleneck, followed by the gain con-

tainer construction. The net cut objective is particularly amenable to optimizations during gain

update [58, 27, 18]. For example, hyperedges that have at least one vertex locked in each par-

tition can be safely ignored during gain update, as the cost of such a hyperedge cannot change

until the end of a pass, and they do not contribute to gain update. We term such hyperedges

locked. Once a hyperedge becomes locked, it is marked as such in a dedicated bitvector. While

this requires additional effort, the savings in the overall runtime per pass are considerable.

5.3 Custom Data Structures

The efficient custom data structures used by the FM algorithm are critical to its performance.

The gain bucket list data structure introduced in [27] is necessary to allow linear-time gain

update. Figure 6 shows the gain bucket list structure as originally illustrated. On the left is a

bucket-array structure which stores 2 ∗ pmax + 1 pointers to gain buckets, where pmax is the

maximum possible gain. The bucket-array allows constant-time lookup of moves which have
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Figure 6: The gain bucket list structure as illustrated in [27]. More efficient implementations
than what is depicted exist.

a particular gain. Each bucket is a possibly empty doubly-linked list of gain elements. On the

bottom is a repository which stores pointers to the gain elements associated with each vertex.

The repository allows constant time lookup of the gain for a particular vertex. To efficiently

find the move with max-gain, the index of the highest-gain, non-empty bucket is maintained.

The bucket-array structure is efficiently implemented with an array when the magnitude of

hyperedge weights is limited by some constant. However, an array- based implementation of

the bucket-array has space complexity dependent upon the magnitude of hyperedge weights.

For arbitrary hyperedge weights, the bucket-array must be modified in order to efficiently sup-

port the operations of a bucket-array in the context of an FM gain container. These operations

include (1) finding a particular gain bucket; (2) insertion and removal of gain elements; (3) find-

ing the maximum non-empty gain bucket and (4) finding the second-highest non-empty gain
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Figure 7: The gain list structure with a hybrid BST+hash-table bucket-array for
improved FM complexity with arbitrary hyperedge weights.

bucket. The last operation is necessary, for example, when the max-gain bucket is exhausted

and the new max-gain must be determined. If hyperedge weights are large, then an array-based

implementation of bucket-array will result in a large, sparse and wasteful structure that must be

searched (linear in the magnitude of weights) to implement operation (4).

Figure 7 shows an alternative implementation of bucket-array that allows for time complex-

ities of operations (1), (3) and (4) that do not depend on the magnitude or sparsity of hyperedge

weights. Operation (2) is logarithmic in the number of non-empty gain buckets. On the right

is a hash table that stores pointers to gain buckets. Since the expected lookup time for a hash

table is constant, this efficiently implements operation (1). On the left is a binary search tree

(BST)3 that stores the gains which are possible from some move (i.e., non-empty gain lists).

Since a BST is sorted, the largest item in the BST can be found in constant time, and this is
3We assume an implementation of a binary search tree that allows constant time traversal of the sorted se-

quence. The standard C++ set is an example of such a data structure.
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an efficient implementation of operation (3). Operation (4) is as easy as operation (3) for this

structure, since the second-highest gain is the second from the last entry in the non-empty gain

BST. The most difficult operation for this structure is operation (2), since BST insertion and

removal are logarithmic time operations. Nevertheless, the complexity of operation (4) for an

array-based implementation is linear in the magnitude of hyperedge weights. Therefore, for

sufficiently large weights, the runtime of this BST+hash bucket-array will be less than that of

an array-based implementation of bucket-array.

5.4 Implementation Insights

There are important degrees of freedom in the implementation of the above gain containers

which can have a significant effect on solution quality. Among the most notable is whether

items are taken from the gain buckets in Last-In-First-Out (LIFO) or First-In-First-Out (FIFO)

order. It has been shown that choosing LIFO order gain buckets can provide significant im-

provement in solution quality [32]. The intuition for this effect is that it exploits some locality

in the structure of the hypergraph. When moving one vertex to a different partition causes a

change to the gain of another vertex, that other vertex should also be considered for movement.

Extending the theme of exploiting the locality in graphs, Dutt and Deng [24] propose the

CLuster-oriented Iterative-improvement Partitioner (CLIP) algorithm. The key observation in

this algorithm is that if tightly-connected cluster is cut, then the solution cost can be reduced by

moving the cluster entirely into a single partition. CLIP first computes the gains of all vertices.

It then sorts them into a single linear order and puts them all into the zero-gain bucket. This

allows for choosing the highest gains first. More importantly, as partitioning proceeds, the

gain of each move will be determined solely by the change in gain due to moves of adjacent

vertices. Thus, when part of a cluster is moved, it is more likely that the rest of the cluster will

be moved along with it. CLIP does not track net cut as accurately as conventional FM, and

therefore it usually does not improve initial solutions that are already good. CLIP is used in
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1 choose move (gain container)
2 move = gain container.max feasible move();
3 while(move is infeasible)
4 gain container.mark infeasible(move);
5 move = gain container.max feasible move();
6 gain container.mark all feasible();
7 return move;
8 gain update (move)
9 source part = partition that move.vertex() is in;

10 dest part = partition where move.vertex() is going;
11 for each(hyperedge e incident to move.vertex())
12 if(e has no vertices in dest part before applying move)
13 for each(vertex v on e)
14 gain container.update(v, dest part, e.weight());
15 if(only 1 vertex on e in source part before applying move)
16 for each(vertex v on e)
17 gain container.update(v, source part, -e.weight());
18 if(only 1 vertex v remains in source part after applying move)
19 gain container.update(v, dest part, e.weight());
20 if(only 1 vertex v in dest part before applying move)
21 gain container.update(v, source part, -e.weight());

Figure 8: Functions called by the FM heuristic. A faster version of gain update that
takes advantage of special cases is given in Figure 13.

non-incremental contexts, starting with a random initial solution and is typically postprocessed

by conventional FM passes.

FM also tends to have problems when the highest-gain move is a vertex with high weight

that cannot move across the cutline due to balance constraints. This is known as the cork-

ing effect and some techniques for handling it are presented in [17]. Techniques specific to

hypergraphs with fixed vertices are presented in [16].

6 Multilevel Fiduccia-Mattheyses Partitioning Framework

The multilevel hypergraph partitioning framework was successfully verified in 1997 by [10,

41, 43] and has been conducive to the best known known partitioning results ever since. The
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main advantage that MLFM has over flat partitioners is its ability to more effectively search the

solution space by spending comparatively more effort on smaller coarsened hypergraphs. Good

coarsening algorithms allow for high correlation between good partitionments for coarsened

hypergraphs and good partitionments for the initial hypergraph. Therefore, a thorough search

at the top of the multilevel hierarchy is worthwhile because doing so is relatively inexpensive

when compared to flat partitioning of the original hypergraph, but can still preserve most of

the possible improvement. The result is an algorithmic framework with both improved runtime

and solution quality over a completely flat approach. Pseudo-code for an implementation of the

MLFM framework is given in Figure 9.

Multilevel partitioning consists of three main components: clustering, top-level partitioning

and refinement or “uncoarsening.” During clustering, hypergraph vertices are combined into

clusters based on connectivity, leading to a smaller, clustered hypergraph. This step is repeated

until there are only several hundred clusters, culminating in a hierarchy of clustered hyper-

graphs. We describe this hierarchy with the smaller hypergraphs being “higher” and the larger

hypergraphs being “lower.”4 The smallest (top-level) hypergraph is partitioned with a very fast

initial solution generator and iteratively improved, for example, using the FM algorithm. The

resulting partitionment is then interpreted as a solution for the next hypergraph in the hierarchy.

During the refinement stage, solutions are projected from one level to the next and iteratively

improved, for example, by the FM algorithm.

Additionally, the hMETIS partitioning program [45] introduced several new heuristics that

are incorporated into their multilevel partitioning implementation and are reportedly performance-

critical. One is hyperedge removal during refinement, which is analogous to FM, except that a

single move “uncuts” a hyperedge by reassigning as many vertices as needed. Another heuristic

is V-cycling, a repetition of the clustering-partitioning-refinement process that uses a solution

produced by a previous execution of this process – vertices in different partitions cannot be
4This is the most common notation used for a multilevel partitioning hierarchy. hMETIS related works invert

the notation, including the naming of V-cycles which may be more appropriately called Λ-cycles (lambda-cycles).
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clustered. A similar technique is v-cycling, in which the refinement stage may stop before the

bottom-level hypergraph is reached and clustering resumed (starting from a solution for a clus-

tered hypergraph). Similarly, clustering may be stopped earlier than it would normally be, and

refinement resumed.

6.1 Coarsening

The multilevel partitioning framework begins by “coarsening” the input hypergraph which re-

sults in smaller hypergraphs that retain as much of the structure of the original hypergraph as

possible. Solutions to these coarsened hypergraphs are then interpreted as solutions to larger

hypergraphs during refinement. “Clustering,” the name for merging two or more vertices to-

gether, is the mechanism by which hypergraphs are coarsened. Here we cover the details of

two simple but effective clustering algorithms. A countless number of more complex schemes

exist in partitioning literature [34, 20, 21, 44, 33].

6.1.1 Edge Coarsening

A simple linear-time clustering strategy called (hyper)Edge Coarsening (EC) was proposed in

[10, 41]. The EC technique works by combining connected vertices and is commonly random-

ized by choosing a vertex and a random neighbor to merge. A straightforward but effective EC

implementation has the following attributes [16]:

• the hypergraph is updated continuously as the clustering occurs, i.e., the next pair of

merged clusters is selected with the knowledge of the last merged pair,

• no cluster can be merged with another if its weight is more than 4-5 times the average

cluster weight at the current level,

• hyperedge weights are additionally divided by the square root of the sum of cluster

weights in order to discourage merging large clusters,
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• clustering ratio used is 1:3, unclustering ratio is 1:2.8,

• clustering stops when the clustered hypergraph has 200 clusters or fewer.

6.1.2 Heavy Edge Matching

Heavy (hyper)Edge Matching (HEM) is an alternative clustering strategy which seeks to min-

imize the net cut of the coarsened hypergraph directly. This is achieved by contracting hyper-

edges with the highest possible weights. In the hypergraph version of this strategy, a vertex is

chosen and it will be probabilistically merged with its “nearest neighbor,” defined as that with

the largest weight connection. The net cut (and partitioning runtime) of a coarsened hyper-

graph can also be improved when nets disappear entirely due to all of its connected vertices

being merged into one. Since it is more likely that a smaller net will be removed, HEM weights

connections via smaller nets more highly. A common weighting scheme W is W (e) = 1

degree−1

for hyperedge e, but many variations of this are possible. HEM also seeks to minimize the num-

ber of remaining nets by favoring neighbors which have multiple connections via several nets.

So the weight of a connection (u, v) will be
∑

e∈E(W (e) if u, v ∈ e or 0 otherwise).

6.2 Top-level Partitioning

The FM algorithm is only capable of iteratively improving an initial solution. At the top-level

no previous solution is available to improve, therefore top-level partitioning requires initial so-

lution generation. A rather simple generator will suffice, because the FM algorithm will quickly

find a nearby local minimum. The following “randomized engineering method” (REM) creates

random, legal initial solutions. REM first sorts vertices according to decreasing size, so that

it can assign the largest vertices first to satisfy balance constraints and avoid “painting itself

into a corner.” It assigns vertices to partitions in sorted order using biased random selection

(“spinning a roulette wheel” such that each outcome has a prescribed probability). Assignment

probabilities are proportional to the hypothetical area remaining before the solution will sat-
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isfy minimal area requirements, the area slack, computed after assigning a given vertex to the

various partitions. This keeps area slacks approximately equal, yet provides a good degree of

randomness. REM will continue assigning vertices to partitions in this way until all partitions

reach the lower bound of their respective balance constraints, at which point it will compute

slacks relative to the upper bound.

6.3 Refinement

After a partitionment is chosen at a particular level, it is projected onto the less clustered (finer)

hypergraph at the next level. A vertex in the finer hypergraph is projected into the same partition

as the cluster it belongs to in the coarsened hypergraph. The solution for this hypergraph will

have cut identical to that for the more clustered hypergraph. However, it is likely that the

solution can be improved with respect to the finer hypergraph. This is done through iterative

improvement by calling FM on the partitioning solutions at each level.

7 Available Software and Benchmarks

There are two common, freely-available academic tools for performing hypergraph partition-

ing. MLPart [53] is an open source C++ implementation of MLFM hypergraph partitioning

geared toward circuit hypergraphs and partitioning based placement. hMETIS [52] is the hyper-

graph version of METIS, a multilevel graph partitioning algorithm implemented in C. hMETIS

is distributed freely for academic use in the form of a precompiled library and executables.

These two partitioning tools use different file formats to represent hypergraphs. hMETIS

uses one text file to represent a hypergraph, while MLPart uses several text files in the Bookshelf

format to represent partitioning problems, which includes a hypergraph.5 Both tools addition-

ally define balance constraints in terms of partition capacity targets, and a tolerance parameter
5In addition, industrial VLSI design tools commonly use LEF/DEF files to represent hypergraphs. Tools exist

to convert LEF/DEF to the Bookshelf format. Please see [50, 61] for more information.

24



1 MLFM(hypergraph)
2 level = 0;
3 hierarchy[level] = hypergraph;

//Coarsening phase
5 while(hierarchy[level].vertex count() > 200)
6 next level = cluster(hierarchy[level]);
7 level = level + 1;
8 hierarchy[level] = next level;

//Top level partitioning phase
10 partitionment[level]

= a random initial partitionment for top-level hypergraph;
11 FM(hierarchy[level], partitionment[level])

//Refinement phase
13 while(level > 0)
14 level = level - 1;
15 partitionment[level]

= project(partitionment[level+1], hierarchy[level]);
16 FM(hierarchy[level], partitionment[level])

17 return partitionment[0];

Figure 9: Pseudo-code for the MLFM algorithm.

that specifies how far it is allowed to deviate from its target.

7.1 hMETIS Benchmark Format

The input hypergraph to hMETIS has a simpler format than Bookshelf. The first line contains

the number of hyperedges, the number of vertices, and an optional format bit-flag that indicates

the presence of weights for hyperedges, vertices or both. If the vertices have weights, the file

will have |E| + |V | + 1 lines, and |E| + 1 lines otherwise. The file may additionally contain

commented lines preceded by %. Each of the following |E| lines represents one hyperedge,

and will optionally contain an integer weight, followed by a list of the indices of vertices on

that hyperedge. If vertex weights are present, the remaining |V | lines will contain the integer
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Line Graph Solution
no. file file
1 7 8 1
2 1 2 1
3 5 4 0
4 3 4 6 0
5 2 3 0
6 4 7 0
7 2 7 1
8 7 8 1

Figure 10: An example of an hMETIS graph file and partitioning solution for the
hypergraph on the right. Line 1 of the graph file specifies that there are 7 hyperedges
and 8 vertices. The remaining lines specify hyperedges. The ith line of the solution
file specifies the partition of the ith vertex.

weight of each vertex. The solution is specified by giving the partition of the ith vertex on the

ith line of the solution file. Partitioning tolerance is specified with a parameter called UBfactor

that can be specified on the command line or when making calls to the hMETIS library. This

number specifies how far any partition’s total weight can deviate from the average weight of a

partition, as a percentage. For more details and examples, please see Figure 10 and [45].

7.2 Bookshelf Benchmark Format

The Bookshelf benchmark format is more expressive because it is used in other VLSI appli-

cations than hypergraph partitioning, including placement and floorplanning. Each Bookshelf

partitioning benchmark will be represented with several files, at minimum: a .nodes file con-

taining a list of vertices and their sizes, a .nets file containing a list of nets (hyperedges) and

the vertices they connect to, a .blk file specifying partitions and their balance constraints, and

a .aux file containing one line listing all of the other filenames. Balance constraints are speci-

fied by a target for each partition, and one capacity tolerance as a percent. The balance con-

straint of a particular partition will be (target ∗ (1 − capacity tolerance/100), target ∗ (1 +

capacity target/100)). Other optional files may be included, namely: a .wts listing vertices
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Line no. example.aux
1 PartProb : example.nodes example.nets example.wts example.blk

Line no. example.nodes
1 UCLA nodes 1.0
2 NumNodes : 8
3 NumTerminals : 0
4 v1
5 v2
6 v3
7 v4
8 v5
9 v6

10 v7
11 v8

Line no. example.wts
1 UCLA wts 1.0
2 v1 1
3 v2 1
4 v3 1
5 v4 1
6 v5 1
7 v6 1
8 v7 1
9 v8 1

Line no. example.blk
1 UCLA blk 1.0
2 Regular partitions : 2
3 Pad partitions : 0
4 Relative capacities : no
5 Capacity tolerances : 25%
6 b0 rect 0 0 2 3 : 4
7 b1 rect 2 0 4 3 : 4

Line no. example.nets
1 UCLA nets 1.0
2 NumNets : 7
3 NumPins : 15
4 NetDegree : 2
5 v1 B
6 v2 B
7 NetDegree : 2
8 v4 B
9 v5 B

10 NetDegree : 3
11 v3 B
12 v4 B
13 v6 B
14 NetDegree : 2
15 v2 B
16 v3 B
17 NetDegree : 2
18 v4 B
19 v7 B
20 NetDegree : 2
21 v2 B
22 v7 B
23 NetDegree : 2
24 v7 B
25 v8 B

Line no. example.sol
1 UCLA sol 1.0
2 Regular partitions : 2
3 Pad partitions : 0
4 Fixed Pads : 0
5 Fixed NonPads : 8
6 v1 : b1
7 v2 : b1
8 v3 : b0
9 v4 : b0

10 v5 : b0
11 v6 : b0
12 v7 : b1
13 v8 : b1

Figure 11: An example of a Bookshelf format partitioning problem for the hyper-
graph above. example.aux is a list of all of the other files. NumPins on line 3 of
example.nets specifies the sum of hyperedge degrees. example.blk specifies bal-
ance constraints, the sum of vertex weights in each partition must be 4 ± 25%. An
example solution is given in example.sol.
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and nets with one or more weights, a .fix file which lists vertices and which partitions they are

constrained to, and a .sol file which contains an input partitionment. All bookshelf benchmarks

may contain commented lines beginning with ’#’. Solutions are specified by listing all vertices

and their partition assignments.

7.3 Integrated Circuit Benchmarks from IBM

A set of standard benchmarks derived from VLSI circuits at IBM were presented in ISPD in

1998 [3]. These instances range from 12506 vertices in IBM01 to 210341 vertices in IBM18.

Additionally, partitioning in the context of VLSI placement results in hypergraphs with

fixed vertices. Benchmark hypergraphs with fixed vertices were released at ISPD in 1999 [8].

Techniques for evaluating partitioning heuristics and experiments using these benchmarks were

given in [17]. Examples of such comparisons between hMETIS and MLPart are found in [16].

Appendix: Empirical Results

Table 12 gives runtimes and average solution qualities for 10 runs of MLPart and hMETIS on

the ISPD ’98 IBM benchmark suite with partitioning tolerances of 2 and 10%. Smaller net cut

is better. Runs were performed by a 2.0GHz Pentium IV Xeon workstation with 2GB of RAM

running Linux.

The size of benchmarks range from 12506 vertices in IBM01 to 210341 vertices in IBM18.

MLPart is generally faster than hMETIS, but hMETIS often produces better partitioning results.

Both tools produce better solutions when the tolerance is higher. By curve-fitting this data, we

find empirically that the runtime and memory usage of both partitioners grows nearly linearly

with the size of the benchmark.

We estimate that one can partition a 3.5 million vertex hypergraph in 20 minutes on a 32-bit

machine with the above processor and 4GB of memory.
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Benchmark Tolerance Solver Cut Runtime Solver Cut Runtime
IBM01 2% MLPart 240.6 1.725 hMETIS 243 3.402
IBM01 10% MLPart 231.9 1.535 hMETIS 238.3 3.304
IBM02 2% MLPart 319.4 3.005 hMETIS 300.3 5.775
IBM02 10% MLPart 294.4 2.715 hMETIS 296.1 5.159
IBM03 2% MLPart 868.6 3.891 hMETIS 867.3 7.983
IBM03 10% MLPart 804.8 3.756 hMETIS 766 7.952
IBM04 2% MLPart 562.4 5.730 hMETIS 529.3 8.707
IBM04 10% MLPart 494.0 4.806 hMETIS 449.5 9.469
IBM05 2% MLPart 1752.2 6.465 hMETIS 1743.7 12.556
IBM05 10% MLPart 1757.8 6.194 hMETIS 1719.8 12.270
IBM06 2% MLPart 815.6 5.179 hMETIS 580.3 12.068
IBM06 10% MLPart 451.1 5.668 hMETIS 392.7 11.567
IBM07 2% MLPart 828.7 8.645 hMETIS 772.5 19.809
IBM07 10% MLPart 792.0 8.576 hMETIS 767.3 19.782
IBM08 2% MLPart 1210.4 9.078 hMETIS 1209 25.074
IBM08 10% MLPart 1193.4 10.234 hMETIS 1158.6 25.031
IBM09 2% MLPart 553.2 10.170 hMETIS 524.2 20.419
IBM09 10% MLPart 549.4 9.831 hMETIS 524.4 19.593
IBM10 2% MLPart 1325.1 13.062 hMETIS 1166.4 38.577
IBM10 10% MLPart 1057.8 13.844 hMETIS 783.4 32.762
IBM11 2% MLPart 864.1 11.711 hMETIS 823.1 30.754
IBM11 10% MLPart 731.9 15.100 hMETIS 711.5 30.717
IBM12 2% MLPart 2563.3 16.238 hMETIS 2108.4 45.575
IBM12 10% MLPart 2310.5 16.885 hMETIS 1994.9 46.142
IBM13 2% MLPart 973.5 15.510 hMETIS 913.3 41.623
IBM13 10% MLPart 965.3 18.908 hMETIS 904.6 39.130
IBM14 2% MLPart 1979.9 29.567 hMETIS 1837.1 119.690
IBM14 10% MLPart 1780.5 31.452 hMETIS 1618.3 115.664
IBM15 2% MLPart 2569.7 40.225 hMETIS 2222.5 117.491
IBM15 10% MLPart 2190.9 42.251 hMETIS 1945.6 114.842
IBM16 2% MLPart 1956.8 45.616 hMETIS 1720.4 155.785
IBM16 10% MLPart 1988.7 47.512 hMETIS 1713.8 148.252
IBM17 2% MLPart 2380.2 63.992 hMETIS 2445.5 217.874
IBM17 10% MLPart 2291.4 62.204 hMETIS 2274.1 221.417
IBM18 2% MLPart 1840.4 47.253 hMETIS 1687.5 225.259
IBM18 10% MLPart 1583.5 51.323 hMETIS 1548.7 184.307

Figure 12: Performance of available software tools on common circuit hypergraph partition-
ing benchmarks. Results are the average of 10 runs with default configuration. Runs were
performed by a 2.0GHz Pentium IV Xeon workstation with 2GB of RAM running Linux.
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Flat partitioning, 9
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update, 15
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applications, 3
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definitions, 7
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Locked vertex, 13

Move based heuristics, 1
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Multi-level Fiduccia-Mattheyses, see Algo-

rithms for Hypergraph Partitioning

Net cut, 8

Partition, 1, 8

balance, see Balance constraints

refinement, 24

tolerance, see Balance constraints

Partitioning, see Hypergraph Partitioning

Partitionment, see k-wa y Partitionment

Pass-based heuristics, 14

Software for Hypergraph Partitioning, 24

hMETIS, 24

MLPart, 24

Tolerance, see Balance constraints

Uncoarsening, see Multi-level Fiduccia-Mattheyses

V-cycling, see Algorithms for Hypergraph

Partitioning
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1 gain update special cases ( move )
2 source part = partition that move.vertex() is in;
3 dest part = partition where move.vertex() is going;
2 for each(hyperedge e incident to move.vertex() )
3 if( e.degree() == 2)
4 v = the vertex on e that is not move.vertex();
5 if( v is not locked and v is in source part)
6 gain container.update( v, dest part, 2*e.weight() );
7 else if( v is not locked)
8 gain container.update( v, source part, -2*e.weight() );
9 else if( tallies[dest part] == 0)

10 for each( vertex v on e )
11 if( not locked( v )
12 gain container.update( v, dest part, e.weight());
13 else if( tallies[source part] == 1)
14 for each( vertex v on e )
15 if( not locked( v )
16 gain container.update( v, source part, -e.weight());
17 else
18 for each( vertex v on e )
19 if( not locked( v ) )
20 if( v is in source part )
21 if( tallies[source part] == 2 )
22 gain container.update( v, dest part, e.weight() )
23 break;
24 else if( tallies[dest part] == 1)
25 gain container.update( v, source part, -e.weight() )
26 break;

Figure 13: Pseudo-code for a faster gain update that takes advantage of special cases.
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