
D
R

A
FT

Capo: Congestion-driven Placement for Standard-cell
and RTL Netlists with Incremental Capability

Jarrod A. Roy, David A. Papa and Igor L. Markov

The University of Michigan, Department of EECS
2260 Hayward Ave., Ann Arbor, MI 48109-2121
{royj,iamyou,imarkov}@eecs.umich.edu

Summary. In this chapter, we describe the robust and scalable academic placement tool
Capo. Capo uses the min-cut placement paradigm and performs (i) scalable multi-way par-
titioning, (ii) routable standard-cell placement, (iii) integrated mixed-size placement, (iv)
wirelength-driven fixed-outline floorplanning as well as (v) incremental placement.

1 Introduction

The success of min-cut techniques in fixed-die placement is based on the speed and strength of
multi-level hypergraph partitioners, the convenient top-down framework that efficiently cap-
tures available on-chip resources, and the fact that modern VLSI circuits admit a large number
of good placements, which include slicing placements. The recent trend for large amounts
of whitespace, clearly visible in the ISPD05 and ISPD06 contest benchmarks, particularly
increases the flexibility in the placement problem.

The earliest work describing the Capo placer was a paper from ISPD 1999 describing
the end-case placers and optimal partitioners as well as terminal propagation with inessential
nets used in Capo [13]. The Capo placer, first released at DAC 2000 [11], sought to produce
routable placements with a pure min-cut algorithm. To this end, Capo 8.0 was successful for
most industrial benchmarks evaluated, even though it did not build or use congestion maps. For
example, it produced a routable placement of an industrial design with 200K cells in 1.5 hours
on a single-processor workstation. Capo’s routability was evaluated with a full-fledged router
and demonstrated that early estimators of routability may produce misleading results [11].

Capo’s overall performance was on par with commercial tools, however an ISPD 2002
paper [41] proposed a new set of benchmarks on which Capo was less successful compared to
a newer tool, Dragon. Dragon found routable placements in most cases by building congestion
maps and biasing the placement process accordingly. This suggested that congestion-driven
placement was far from solved and several papers in 2003-2005 and later reported even better
results [1, 5, 23, 27].

Earlier versions of Capo distributed whitespace approximately uniformly, according to the
hierarchical whitespace distribution formula from [15]. However more recent work [4] intro-
duces tunable whitespace distribution for improved wirelength, while preserving a minimum
amount of local whitespace in most regions to ensure routability. Whitespace allocation and

D
R

A
FT

2 Jarrod A. Roy, David A. Papa and Igor L. Markov

detail placement have been further improved by analyzing the performance of Capo on feature
benchmarks [32] designed to stress different aspects of placers.

Unlike Dragon and FengShui [5], Capo does not explicitly use multi-way partitioning.
The addition of placement feedback [24] counteracts this potential limitation. Additionally,
cutline shifting in recursive bisection adds flexibility in partition shapes and sizes, as well as
whitespace allocation; this is not readily available in direct min-cut multi-way partitioning.

The most recent work on Capo has been on improving Capo’s performance on routing
benchmarks and difficult instances of floorplanning and mixed-size placement, and trans-
forming Capo into an incremental placement tool. As of Fall 2006, Capo produces the best
published routed wirelengths on several suites of routing benchmarks by directly optimiz-
ing Steiner wirelength and cut-line shifting based on congestion [35]. Capo also performs
efficiently with good solution quality on difficult instances of floorplacement which are not
legally placeable by several other academic techniques [31]. Incremental placement in Capo
consists of simulating the decisions a min-cut placer may have made to produce a given initial
placement [36]. For each decision that is made, Capo chooses to accept or reject the decision.
Accepting a particular decision means continuing the simulation of decisions whereas reject-
ing a decision results in replacement of a part of the design from scratch. Empirical results
show that Capo’s incremental placement moves objects minimally, produces solutions with
good HPWL, and runs faster than other available legalization techniques [36].

Using the min-cut floorplacement algorithm from [34] and improvements introduced
in [31,35,36], Capo 10 performs (i) scalable multi-way partitioning, (ii) routable standard-cell
placement, (iii) integrated mixed-size placement, (iv) wirelength-driven fixed-outline floor-
planning and (v) incremental placement. Capo was used by Synplicity in the Amplify ASIC
product. In particular, Amplify ASIC RC targeted LSI Logic’s RapidChip architecture. Most
RapidChip designs produced were placed with Capo, and successful customers include com-
panies such as HP, SGI, CISCO, Nortel Networks, Raytheon, Seagate, 3COM, Alcatel, Hi-
tachi, Fujitsu, IP Wireless, Cryptek, etc. Source code and executables of Capo 10 are available
at http://vlsicad.eecs.umich.edu/BK/PDtools/.

2 Min-cut Placement in Capo

Row-Based Placement. Internally, Capo’s placement representation closely resembles the
LEF/DEF and Bookshelf [14] file formats, which represent row information in standard-cell
layout. Configurations of rows supply constraints for cell placement. Each row consists of
non-overlapping subrows aligned to the coordinate of the row. All subrows in a row share the
same coordinate, height, site width and site spacing. Placement instances in the Bookshelf
format consist of several rows composed of one or more subrows.

Fixed objects may displace sites in the core region. Since fixed objects prevent standard
cells from being placed in those sites, they are obstacles. To prevent the placer from using
sites occupied by obstacles, one solution is to remove the sites beneath all fixed objects. Capo
accomplishes this by fracturing the rows containing the occupied sites into subrows, excluding
the sites beneath the obstacle [11, Sec. 4.2]. The result is a row-based placement structure
containing only legal locations for placing standard cells.

Min-Cut Bisection. Top-down placement algorithms seek to decompose a given placement
instance into smaller instances by sub-dividing the placement region, assigning modules to
subregions and cutting the netlist hypergraph [11] (see Figure 1). Min-cut placers generally use
either bisection or quadrisection to divide the placement area and netlist. Capo uses bisection

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 3

etc

Variables:
A queue of blocks

Initialization:
A single block represents
the original placement problem

Algorithm:
while (queue not empty)
dequeue a block
if (small enough) consider endcase
else {
bipartition into smaller blocks
enqueue each block
}

Fig. 1. High-level outline of the top-down partitioning-based placement process [13].
c©2000 IEEE.

as it allows for greater flexibility in cutline shifting to adapt to changing partition sizes [11,
Sec. 3.2].

Each hypergraph partitioning instance is induced from a rectangular region, or bin, in the
layout. In this context a placement bin represents (i) a placement region with allowed module
locations (sites), (ii) a collection of circuit modules to be placed in this region, (iii) all signal
nets incident to the modules in the region, and (iv) fixed cells and pins outside the region that
are adjacent to modules in the region (terminals). Top-down placement can be viewed as a
sequence of passes where each pass examines all bins and divides some of them into smaller
bins.

Capo implements three types of min-cut partitioners – optimal (branch-and-bound [13]),
middle-range (Fiduccia-Mattheyses [12]) and large-scale (multi-level Fiduccia-Mattheyses
partitioner MLPart [10]). Bins with seven or fewer cells use an optimal end-case placer. This
variety of algorithms facilitates partitioning with small tolerance, allowing Capo to distribute
the available whitespace uniformly [15] so as to facilitate routing. This provides a convenient
baseline for further wirelength improvement [4] by non-uniform distribution (this configura-
tion is now used by default).

The efficiency of the partitioners and placers implemented in Capo as well as the min-cut
placement framework are directly responsible for Capo’s speed and scalability. To this end,
large-scale partitioning is performed in O(P logP) time, where P is the number of pins in
the hypergraph. The overall run-time spent on middle-range partitioning (FM) scales linearly,
and so do cumulative run-times of all calls to optimal partitioning and placement. Further
complexity analysis shows that Capo’s asymptotic run-time scales as O(P log2 P) on standard-
cell designs.

3 Floorplacement

From an optimization point of view, floorplanning and placement are very similar problems –
both seek non-overlapping placements to minimize wirelength. They are mostly distinguished

D
R

A
FT

4 Jarrod A. Roy, David A. Papa and Igor L. Markov

Variables: queue of placement bins
Initialize queue with top-level placement bin

1 While (queue not empty)
2 Dequeue a bin
3 If (bin has large/many macros or is marked as merged)
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack

all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision. Merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else if (bin small enough)
12 Process end case
13 Else
14 Bi-partition the bin into smaller bins
15 Enqueue each child bin

Fig. 2. Min-cut floorplacement [34]. Bold-faced lines 3-10 are different from traditional min-
cut placement. c©2006 IEEE.

by scale and the need to account for shapes in floorplanning, which calls for different opti-
mization techniques. Netlist partitioning is often used in placement algorithms, where geo-
metric shapes of partitions can be adjusted. This considerably blurs the separation between
partitioning, placement and floorplanning, raising the possibility that these three steps can be
performed by one CAD tool. The authors of [34] develop such a tool and term the unified
layout optimization floorplacement following Steve Teig’s keynote speech at ISPD 2002.

Min-cut placers scale well in terms of runtime and wirelength minimization, but cannot
produce non-overlapping placements of modules with a wide variety of sizes. On the other
hand, annealing-based floorplanners can handle vastly different module shapes and sizes, but
only for relatively few (100-200) modules at a time. Otherwise, either solutions will be poor
or optimization will take too long to be practical. The loose integration of fixed-outline floor-
planning and standard-cell placement proposed in [3] suffers from a similar drawback because
its single top-level floorplanning step may have to operate on numerous modules. Bottom-up
clustering can improve the scalability of annealing, but not sufficiently to make it competitive
with other approaches. The work in [34] applies min-cut placement as much as possible and
delays explicit floorplanning until it becomes necessary. In particular, since min-cut placement
generates a slicing floorplan, it is viewed as an implicit floorplanning step, reserving explicit
floorplanning for “local” non-slicing block packing.

Placement starts with a single placement bin representing the entire layout region with all
the placeable objects initialized at the center of the bin. Using min-cut partitioning, the bin is
split into two bins of similar sizes, and during this process the cut-line is adjusted according to
actual partition sizes. Applying this technique recursively to bins (with terminal propagation)
produces a series of gradually refined slicing floorplans of the entire layout region. In very
small bins, all cells can be placed by a branch-and-bound end-case placer [13]. However, this
scheme breaks down on modules that are larger than their bins. When such a module appears

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 5

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL=2.574e+06, #Cells=12752, #Nets=14111

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

IBM01 HPWL=2.574e+06, #Cells=12752, #Nets=14111

Fig. 3. Progress of mixed-size floorplacement on the IBM01 benchmark from
IBM-MSwPins [34]. The picture on the left shows how the cut lines are chosen during the
first six layers of min-cut bisection. On the right is the same placement but with the floorplan-
ning instances highlighted by “rounded” rectangles. Floorplanning failures can be detected by
observing nested rectangles. c©2006 IEEE.

in a bin, recursive bisection cannot continue, or else will likely produce a placement with over-
lapping modules. Indeed, the work in [26] continues bisection and resolves resulting overlaps
later. In this technique, one switches from recursive bisection to “local” floorplanning where
the fixed outline is determined by the bin. This is done for two main reasons: (i) to preserve
wirelength [9], congestion [8] and delay [21] estimates that may have been performed early
during top-down placement, and (ii) avoid legalizing a placement with overlapping macros.

While deferring to fixed-outline floorplanning is a natural step, successful fixed-outline
floorplanners have appeared only recently [2]. Additionally, the floorplanner may fail to pack
all modules within the bin without overlaps. As with any constraint-satisfaction problem, this
can be for two reasons: either (i) the instance is unsatisfiable, or (ii) the solver is unable to
find any of existing solutions. In this case, the technique undoes the previous partitioning
step and merges the failed bin with its sibling bin, whether the sibling has been processed or
not, then discards the two bins. The merged bin includes all modules contained in the two
smaller bins, and its rectangular outline is the union of the two rectangular outlines. This bin
is floorplanned, and in the case of failure can be merged with its sibling again. The overall
process is summarized in Figure 2 and an example is depicted in Figure 3.

It is typically easier to satisfy the outline of a merged bin because circuit modules be-
come relatively smaller. However, Simulated Annealing takes longer on larger bins and is
less successful in minimizing wirelength. Therefore, it is important to floorplan at just the
right time, and the algorithm determines this point by backtracking. Backtracking does incur
some overhead in failed floorplan runs, but this overhead is tolerable because merged bins take

D
R

A
FT

6 Jarrod A. Roy, David A. Papa and Igor L. Markov

considerably longer to floorplan. Furthermore, this overhead can be moderated somewhat by
careful prediction.

For a given bin, a floorplanning instance is constructed as follows. All connections be-
tween modules in the bin and other modules are propagated to fixed terminals at the periphery
of the bin. As the bin may contain numerous standard cells, the number of movable objects is
reduced by conglomerating standard cells into soft placeable blocks. This is accomplished by
a simple bottom-up connectivity-based clustering [25]. The existing large modules in the bin
are usually kept out of this clustering. To further simplify floorplanning, soft blocks consisting
of standard cells are artificially downsized, as in [4]. The clustered netlist is then passed to the
fixed-outline floorplanner Parquet [2], which sizes soft blocks and optimizes block orienta-
tions. After suitable locations are found, the locations of all large modules are returned to the
top-down placer and are considered fixed. The rows below those modules are fractured and
their sites are removed, i.e., the modules are treated as fixed obstacles. At this point, min-cut
placement resumes with a bin that has no large modules in it, but has somewhat non-uniform
row structure. When min-cut placement is finished, large modules do not overlap by construc-
tion, but small cells sometimes overlap (typically below 0.01% by area). Those overlaps are
quickly detected and removed with local changes.

Since the floorplacer includes a state-of-the-art floorplanner, it can natively handle pure
block-based designs. Unlike most algorithms designed for mixed-size placement, it can pack
blocks into a tight outline, optimize block orientations and tune aspect ratios of soft blocks.
When the number of blocks is very small, the algorithm applies floorplanning quickly. How-
ever, when given a larger design, it may start with partitioning and then call fixed-outline
floorplanning for separate bins. As recursive bisection scales well and is more successful at
minimizing wirelength than annealing-based floorplanning, the proposed approach is scalable
and effective at minimizing wirelength.

Empirical boundary between placement and floorplanning. By identifying the char-
acteristics of placement bins for which the algorithm calls floorplanning, one can tabulate the
empirical boundary between placement and floorplanning. Formulating such ad hoc thresholds
in terms of dimensions of the largest module in the bin, etc., allows one to avoid unnecessary
backtracking and decrease the overhead of floorplanning calls that fail to satisfy the fixed out-
line constraint because they are issued too late. In practice, issuing floorplanning calls too
early (i.e., on larger bins) increases final wirelength and sometimes runtime. To improve wire-
length, the ad hoc tests for large modules in bins (that trigger floorplanning) are deliberately
conservative.

These conditions were derived by closely monitoring the legality of floorplanning and
min-cut placement solutions. When a partitioned bin yields an illegal placement solution it is
clear that the bin should have been floorplanned and a condition should be derived. When a
call to floorplanning fails to satisfy the fixed outline constraint the placer has to backtrack. To
avoid paying this penalty, a condition should be derived to allow for floorplanning the parent
bin and prevent the failure.

These conditions are refined to prevent floorplanning failure by visual inspection of a plot
of the resulting parent bin and formulating a condition describing its composition. An example
of such a plot is shown in Figure 3. Floorplanned bins are outlined with rounded rectangles.
Nested rectangles indicate a failed floorplan run, followed by backtracking and floorplanning
of the larger parent bin. In our experience, these tests are strong enough to ensure that at most
one level of backtracking is required to prevent overlaps between large modules.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 7

Table 1. Floorplanning conditions used in floorplacement [34]. Test 1 is the most fundamen-
tal, for if a bin meeting test 1 were not floorplanned, a failure would be guaranteed at the next
level. Tests 2-6 detect bins dominated by large macros. Test 7 is a base case where only one
module exists, but it is large.

Floorplanning conditions for floorplacement
N,n: The numbers of large modules and movable objects in a given bin.
A(m): The area of the m largest modules in a given bin, m ≤ n.
C: The capacity of a given bin.
Test 1. At least one large module does not fit into a potential child bin.
Test 2. N ≤ 30 and A(N) < 0.80∗A(n) and A(n) > 0.6∗C.
Test 3. N ≤ 15 and A(N) < 0.95∗A(n) and A(n) > 0.6∗C.
Test 4. A(50) < 0.85∗C.
Test 5. A(10) < 0.60∗C.
Test 6. A(1) < 0.30∗C and N = 1.
Test 7. N = n = 1.

4 Flexible Whitespace Allocation

The min-cut bisection based placement framework offers much flexibility in whitespace allo-
cation. This section describes uniform allocation of whitespace for min-cut bisection place-
ment and two more sophisticated whitespace allocation techniques, minimum local whitespace
and safe whitespace, that can be used for non-uniform whitespace allocation and satisfying
whitespace constraints [38].

Uniform Whitespace. A natural scheme for managing whitespace in top-down place-
ment, uniform whitespace allocation, was introduced and analyzed in [15]. Let a place-
ment bin which is going to be partitioned have site area S, cell area C, absolute whitespace
W = max{S−C,0} and relative whitespace w = W/S. A bi-partitioning divides the bin into
two child bins with site areas S0 and S1 such that S0 + S1 = S and cell areas C0 and C1 such
that C0 +C1 = C. A partitioner is given cell area targets T0 and T1 as well as a tolerance τ for
a particular bi-partitioning instance. In many cases of bi-partitioning, T0 = T1 = C

2 , but this
is not always true [6]. τ defines the maximum percentage by which C0 and C1 are allowed to
differ from T0 and T1, respectively.

The work in [15] bases its whitespace allocation techniques on whitespace deterioration:
the phenomenon that discreteness in partitioning and placement does not allow for exact uni-
form whitespace distribution. The whitespace deterioration for a bi-partitioning is the largest
α, such that each child bin has at least αw relative whitespace. Assuming non-zero relative
whitespace in the placement bin, α should be restricted such that 0 ≤ α ≤ 1 [15]. The authors
note that α = 1 may be overly restrictive in practice because it induces zero tolerance on the
partitioning instance but α = 0 may not be restrictive enough as it allows for child bins with
zero whitespace, which can improve wirelength but impair routability [15].

For a given block, feasible ranges for partition capacities are uniquely determined by α.

The partitioning tolerance τ for splitting a block with relative whitespace w is (1−α)w
1−w [15].

The challenge is to determine a proper value for α. First assume that a bin is to be partitioned
horizontally n times more during the placement process. n can be calculated as dlog2 Re where
R is the number of rows in the placement bin [15]. Assuming end-case bins have α = 0 since
they are not further partitioned, w, the relative whitespace of an end-case bin, is determined to
be τ

τ+1 where τ is the tolerance of partitioning in the end-case bin [15].

D
R

A
FT

8 Jarrod A. Roy, David A. Papa and Igor L. Markov

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

adaptec1 Uniform Whitespace

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

adaptec1 Non-Uniform Whitespace

Fig. 4. The top row shows Capo 10 global placements of the contest benchmark adaptec1
with uniform whitespace allocation (left) and non-uniform whitespace allocation (right). Fixed
obstacles are drawn with double lines. The middle and bottom rows depict the local utilization
the placements. Lighter areas of the placement signify regions that violate the target placement
density whereas darker areas have utilization below the target. Areas with no placeable area
(such as those with fixed obstacles) are shaded as if they exactly meet the target density. The
target placement density for the middle row is 90% and the bottom row is 60% (adaptec1 has
57.34% utilization). The HPWL for the uniform and non-uniform placements are 10.7e7 and
9.0e7 respectively. As the intensity maps show, when 60% utilization is the target, uniform
whitespace allocation is much more appropriate than 12% minimum local whitespace. On the
other hand, 12% minimum local whitespace has much better wirelength is appropriate when
the target is 90% utilization.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 9

Assuming that α remains the same during all partitioning of the given bin gives a simple

derivation of α = n

√

w
w [15]. A more practical calculation assumes instead that τ remains the

same over all partitionings. This leads to τ = n

√

1−w
1−w − 1 [15]. w can be eliminated from the

equation for τ and a closed form for α based only w and n is derived to be α =
n+1√1−w−(1−w)

w(n+1√1−w)

[15].
If a bin has a user-defined “small” amount of whitespace or less, Capo attempts to divide

the cell area approximately in half, within a given tolerance. The appropriate partitioning tol-
erance is chosen based on whitespace deterioration as calculated above. After a partitionment
(i.e., a partitioning solution) is computed, the geometric cutline for the bin is positioned so
that each side of the cutline has an equal percentage of whitespace. As tolerance is calculated
assuming a fixed cutline, the cutline is shifted to make whitespace more uniform. Such whites-
pace allocation generally produces routable placements, at the cost of increased wirelength.

Minimum Local Whitespace. If a placement bin has more than a user-defined minimum
local whitespace (minLocalWS), partitioning will define a tentative cut-line that divides the
bin’s placement area in half. Partitioning targets an equal division of cell area, but is given
more freedom to deviate from its target. Tolerance is computed so that with whitespace dete-
rioration, each descendant bin of the current bin will have at least minLocalWS [38].

The assumption that the whitespace deterioration, α, in end-case bins is 0 made in [15] and
presented in Section 4 no longer applies, so the calculation of α must change. Since we want
all child bins of the current bin to have minLocalWS relative whitespace, in particular end
case bins must have at least minLocalWS and thus we may set w = minLocalWS, instead
of a function of τ. Using the assumption that α remain constant during partitioning, α can be

calculated directly as α = n

√

w
w [15]. With the more realistic assumption that τ remain constant,

τ can be calculated as τ = n

√

1−w
1−w −1 [15]. Knowing τ, α can be computed as α = (τ+1)− τ

w
[15].

After a partitionment is calculated, the cut-line is shifted to ensure that minLocalWS is
preserved on both sides of the cut-line. If the minimum local whitespace is chosen to be small,
one can produce tightly packed placements which greatly improves wirelength.

Safe Whitespace. The last whitespace allocation mode is designed for bins with “large”
quantities of whitespace. In safe whitespace allocation, as with minimum local whitespace
allocation, a tentative geometric cut-line of the bin is chosen, and the target of partitioning is
an equal bisection of the cell area. The difference in safe whitespace allocation mode is that the
partitioning tolerance is much higher. Essentially, any partitioning solution that leaves at least
safeWS on either side of the cut-line is considered legal. This allows for very tight packing
and reduces wirelength, but is not recommended for congestion-driven placement [38].

Figure 4 illustrates uniform and non-uniform whitespace allocation. The top row shows
global placements with uniform (left) and non-uniform (right) whitespace allocation on the
ISPD 2005 contest benchmark adaptec1 (57.34% utlization) [30]. In the non-uniform place-
ment shown, the minimum local whitespace is 12% and safe whitespace is 14%. The middle
and bottome rows show intensity maps of the local utilization of each placement. Lighter ar-
eas of the intensity maps signify violations of a given target placement density; darker areas
have utilization below the target. Regions completely occupied by fixed obstacles are shaded
as if they exactly meet the target density. The target densities for the middle and bottom rows
are 90% and 60%, respectively. Note that uniform whitespace produces almost no violations
when the target is 90% and relatively few when the target is 60%. The non-uniform placement

D
R

A
FT

10 Jarrod A. Roy, David A. Papa and Igor L. Markov

has more violations as compared to the uniform placement especially when the target is 60%,
but remains largely legal with the 90% target density.

5 Detail Placement

Capo uses several different techniques to further reduce HPWL after global placement such
as the sliding window optimizer RowIroning and a greedy cell movement scheme described
below. In addition, Capo 10 performs optimal whitespace allocation using min-cost network
flows without changing relative cell ordering [7, 39].

RowIroning. In RowIroning, optimal placers based on branch-and-bound and dynamic pro-
gramming techniques replace windows of cells and whitespace chosen from the placement
area [12]. These placers pack cells, and whitespace is represented by fake cells. To model
whitespace accurately, one fake cell per site is needed, but Capo evenly divides contiguous
regions of whitespace into at most three fake cells to limit runtime. This window of local
improvement moves over all cells in left-to-right and top-to-bottom order (or the opposite
directions).

Optimal Branch-and-Bound Placement. In the top-down partitioning based placement
approach, the original placement problem (considered as a “bin”) is partitioned into two sub-
problems (sub-bins) and then recursively into smaller and smaller subproblems (recall Figure
1). Eventually, wirelength can be directly optimized for bins with few nodes. We now describe
optimal placers that operate on arbitrary single-row end-case instances given by:1

• A hypergraph with nodes (cells) having (x,y)-dimensions. All cell heights are assumed
equal to the row height.

• Every hyperedge has a bounding box of fixed pin locations corresponding to the external
terminals incident to that net.

• Each hyperedge-to-node connection has a pin offset relative to the cell origin.
• A placement region, i.e., a subrow of a certain length.2

Additionally assuming the uniform distribution of whitespace, we can consider placement so-
lutions as permutations of hypergraph nodes. The end-case placement problem thus naturally
lends itself to enumeration and branch-and-bound. Implementations based on enumeration do
not appear competitive in this context and will not be covered further.

In our branch-and-bound placer, nodes are added to the placement one at a time, and the
bounding boxes of incident edges are extended to include the new pin locations. The branch-
and-bound approach relies on computing, from a given partial placement, a lower bound on the
wirelength of any completion of the placement. Extensions of the current partial solution are
considered only as long as this lower bound is smaller than the cost of the best seen complete
solution.

One difficulty in applying branch-and-bound to end-case placement is varying cell widths.
We restrict cells in the small instance to be packed with a fixed-size space between neighbors,
i.e., whitespace is distributed equally between them. Replacing a cell with a cell of different
width will change the location of at least one neighbor, triggering bounding box recomputa-
tions for incident nets. To simplify maintenance, the nodes are packed from left to right and

1 End-cases have only one row because Capo preferentially splits small multi-row blocks
between rows.

2 For unfortunately short subrows that cannot accommodate all cells without overlaps, our
end-case placer first minimizes overlap, then wirelength.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 11

Single Row Placement Branch-and-Bound
Input and Data Structures

cellWidth[0..N] width of each cell
Input pinOffsets[cellId][netId] pin-offsets for each cell-pin pair

terminalBoxes[netId] bounding boxes of net terminals
RowBox bounding box of the row
nodeQueue =[0....N-1] inverse initial ordering

Data nodeStack=< empty > placement ordering
Struct counterArray=< empty > loop counter array

idx=N −1 index
costSoFar= 0 cost of the current placement
bestYetSeen = Infinite cost of best placement yet found
nextLoc = row’s left edge location to place next cell at

Single-Row Placement with Branch-and-Bound : Algorithm
1 while(idx < numCells)
2 {
3 s.push(q.dequeue()) // add a cell at nextLoc (the right end)
4 c[idx] = idx
5 costSoFar = costSoFar + cost of placing cell s.top()
6 nextLoc.x = nextLoc.x + cellWidth[s.top()]
7
8 if(costSoFar ≤ bestCostSeen) bound
9 c[idx] = 0

10
11 if(c[idx] == 0) // the ordering is complete or has been bounded
12 {
13 if(idx == 0 and costSoFar < bestCostSeen)
14 {
15 bestCostSeen = costSoFar
16 save current placement
17 }
18 while(c[idx] == 0)
19 {
20 costSoFar = costSoFar - cost of placing cell s.top()
21 nextLoc.x = nextLoc.x - cellWidth[s.top()]
22 q.enqueue(s.pop()) // remove the right-most cell
23 idx++
24 c[idx]- -
25 }
26 }
27 idx- -
28 }

Fig. 5. Branch-and-Bound algorithm for single-row placement is produced from a lexico-
graphic enumeration of placement orderings by adding code for bounding in lines 8 and 9 (in
bold) [13]. c©2000 IEEE.

always added to or removed from the right end of the partially-specified permutation. Such
a lexicographic ordering naturally leads to a stack-driven implementation, where the states
of incident nets are “pushed” onto stacks when a node is appended on the right side of the
ordering, and “popped” when the node is removed. Bounding entails “popping” nodes at the
end of a partial solution before all lexicographically greater partial solutions have been visited.
Pseudocode is provided in Figure 5.

Greedy Cell Movement. Capo makes use of a gridded greedy movement technique to
improve both wirelength and whitespace distribution. A grid is imposed on the placement
region to analyze local placement density. For cells that are in regions with density violations,
candidate legal new locations are found in areas of lower density violation. Candidate moves
are ranked by how well they alleviate the violations and how they affect wirelength. Moves

D
R

A
FT

12 Jarrod A. Roy, David A. Papa and Igor L. Markov

Fig. 6. Calculating the three costs for weighted terminal propagation with StWL: w1 (left), w2
(middle), and w12 (right) [35]. The net has five fixed terminals: four above and one below the
proposed cut-line. For the traditional HPWL objective, this net would be considered inessen-
tial. Note that the structure of the three Steiner trees may be entirely different, which is why
w1, w2 and w12 are evaluated independently. c©2007 IEEE.

are made until a threshold of improvement is reached. We have found this to be a fast and
effective method of removing density violations without adversely affecting wirelength.

6 Placement for Routability

With uniform whitespace allocation, Capo typically produces routable placements, but some
congested areas remain. Capo 10 implements a whitespace allocation scheme described in [35]
to improve placement routability. This technique uses a congestion map to estimate routing
congestion after each layer of min-cut placement. Based on the congestion estimates, whites-
pace is allocated preferentially to areas of high congestion through cutline shifting. Coupled
with other techniques from ROOSTER [35], Capo 10 outperforms best published routed wire-
lengths and via counts as of Fall 2006.

6.1 Optimizing Steiner Wirelength

Weighted terminal propagation as described in [17] is sufficiently general to account for objec-
tives other than HPWL such as Steiner Wirelength (StWL) [35]. StWL is known to correlate
with final routed wirelength (rWL) more accurately than HPWL and the authors of [35] hy-
pothesize that if StWL could be directly optimized during global placement, one may be able
to enhance routability and reduce routed wirelength.

When bipartitioning a bin, the pins for a particular net may all fall into one partition
(leaving the net uncut) or be split amongst both partitions (cutting the net). We will refer
to the two possible partitions as partition 1 and partition 2. When using weighted terminal
propagation from [17], one must calculate three costs per net per partitioning instance: w1,w2
and w12. These costs represent the cost of the pins of a net all being placed in partition 1,
partition 2 or split between both, respectively.

The points required to calculate w1 for a given net are the terminals on the net (pins not
allowed to move) plus the center of partition 1. Similarly, the points required to calculate
w2 are the terminals plus the center of partition 2. Lastly, the points to calculate w12 are
the terminals on the net plus the centers of both partitions. See Figure 6 for an example of
calculating these three costs. Clearly the HPWL of the set of points necessary to calculate w12
is at least as large as that of w1 and w2 since it contains an additional point. By the same logic,
StWL also satisfies this relationship since RSMT length can only increase with additional

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 13

points. Since StWL is a valid cost function for these weighted partitioning problems, this is a
framework whereby it can be minimized [35].

The simplicity of this framework for minimizing StWL is deceiving. In particular, the
propagation of terminal locations to the current placement bin and the removal of inessential
nets [13] — standard techniques for HPWL minimization — cannot be used when minimizing
StWL. Moving terminal locations drastically changes Steiner-tree construction and can make
StWL estimates extremely inaccurate. Nets that are considered inessential in HPWL mini-
mization (where the x- or y-span of terminals, if the cut is vertical or horizontal respectively,
contains the x- or y-span of the centers of child bins) are not necessarily inessential when
considering StWL because there are many Steiner trees of different lengths that have the same
bounding box. Figure 6 illustrates a net that is inessential for HPWL minimization but essen-
tial for StWL minimization. Not only computing Steiner trees, but even traversing all relevant
nets to collect all relevant point locations can be very time-consuming. Therefore, the main
challenge in supporting StWL minimization is to develop efficient data structures and limit
additional runtime during placement [35].

Pointsets with multiplicities. Building Steiner trees for each net during partitioning is
a computationally expensive task. To keep runtime reasonable when building Steiner trees
for partitioning, the authors of [35] introduce a simple yet highly effective data structure —
pointsets with multiplicities. For each net in the hypergraph, two lists are maintained. The
first list contains all the unique pin locations on the net that are fixed. A fixed pin can come
from sources such as terminals or fixed objects in the core area. The second list contains all
the unique pin locations on the net that are movable, i.e., all other pins that are not on the
fixed list. All points on each list are unique so that redundant points are not given to Steiner
evaluators which may increase their runtime. To do so efficiently, the lists are kept in a sorted
order. For both lists, in addition to the location of the pin, the number of pins that correspond
to a given point is also saved [35].

Maintaining the number of actual pins that correspond to a point in a pointset (the mul-
tiplicity of that point) is necessary for efficient update of pin locations during placement. If
a pin changes position during placement, the pointsets for the net connected to the pin must
be updated. First, the original position of the pin must be removed from the movable point
set. As multiple pins can have the same position, especially early in placement, the entire net
would need to be traversed to see if any other pins share the same position as the pin that is
moving. Multiplicities allow to know this information in constant time. To remove the pin, one
performs a binary search on the pointset and decreases the multiplicity of the pin’s position
by 1. If this results in the position having a multiplicity of 0, the position can be removed
entirely. Insertion of the pin’s new position is similar: first, a binary search is performed on the
pointset. If the pin’s position is already present in the pointset, the multiplicity is increased by
1. Otherwise, the position is added in sorted order with a multiplicity of 1. Empirically, build-
ing and maintaining the pointset data structures takes less than 1% of the runtime of global
placement [35].

Performance. We compared three Steiner evaluators in terms of runtime impact and so-
lution quality. They chose the FastSteiner [22] evaluator for global placement based on its
reasonable runtime and consistent performance on large nets. Empirical results show the use
of FastSteiner leads to a reduction of StWL by 3% on average on the IBMv2 benchmarks [41]
(with a reduction of routed wirelength up to 7%) while using less than 30% additional run-
time [35].

D
R

A
FT

14 Jarrod A. Roy, David A. Papa and Igor L. Markov

6.2 Congestion-based Cutline Shifting

One of the most important reasons that we use bisection instead of quadrisection is the flex-
ibility that it allows in choosing the cutline of a partitioned bin. Before partitioning, we first
choose a direction for the cutline, usually based upon the geometry of the bin. We then choose
a tentative cutline in that direction to split the bin roughly in half.

After the partitioner returns a solution, we have the flexibility to keep the cutline as it was
chosen before partitioning or to change it to optimize an objective. The WSA [27] technique,
applied after placement, geometrically divides the placement area in half and estimates the
congestion in both halves of the layout. It then allocates more area to the side with greater
routing demand, i.e. shifts the cutline, and proceeds recursively on the two halves of the design.
In WSA, cells must be re-placed after the whitespace allocation. However, we can avoid this
re-placement because our cells have not yet been placed and will be taken care of naturally
during the min-cut process.

Cutline shifting used to handle congestion necessitates a slicing floorplan. The only work
in the literature that describes top-down congestion estimates and uses them in placement
assumes a grid structure [8]. Therefore we develop the following technique: before each round
of partitioning, we overlay the entire placement region on a grid. We choose the grid such that
each placement bin is covered by 2-4 grid cells. We then build a congestion map using the last
updated locations of all pins. We choose the mapping technique from [40] as it shows good
correlation with routed congestion.

When cells are partitioned and their positions are changed, the congestion values for their
nets are updated. Before cutline shifting, the routing demands and supplies for either side of
the cutline are estimated with the congestion map. Given the bounding box of a region, we
estimate its demand and supply by intersecting the bounding box with the grid cells of the
congestion map. Grid cells that partially overlap with the given bounding box contribute only
a portion of their demand and supply based on the ratio of the area of the overlap to the area
of the grid cell. Using these, we shift the cutline to equalize the ratio of demand to supply on
either side of the cutline.

To show the effectiveness of this dynamic version of WSA, we plot congestion maps of
placements of ibm01h produced with and without our technique in Figure 7. The left plot
illustrates uniform whitespace allocation and the right plot congestion-driven whitespace al-
location. Our whitespace allocation technique reduces the maximum congestion by 50% and
the number of overfull global routing cells from 3.95% to 3.18% (as reported by an industrial
router).

7 Improved RTL Placement

Industrial floorplacement problems are increasingly difficult due to factors such as an increas-
ing number of movable modules and a wide variation of module sizes. There is also insufficient
cohesion for whitespace allocation between top-down methods and macro-placement algo-
rithms. For example, a partitioner may misapproximate the area required by a set of macros
and incorrectly allocate whitespace. To address these issues, we have integrated into Capo 10
the SCAMPI (SCalable Advanced Macro Placement Improvements) work [31]. The top-down
partitioning flow is modified to selectively place large macros, while smaller macros are clus-
tered into soft modules that will be placed later. The robustness of the flow is also improved
by employing fast look-ahead Simulated Annealing on large macros of newly created bins.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 15

Fig. 7. Congestion maps for the ibm01h benchmark: uniform whitespace allocation (produced
with Capo -uniformWS) is illustrated on the left, congestion-driven allocation in ROOSTER
is illustrated on the right [35]. The peak congestion when using uniform whitespace is 50%
greater than that for our technique. When routed with Cadence WarpRoute, uniform whites-
pace produces 3.95% overfull global routing cells and routes in just over 5 hours with 120
violations. ROOSTER’s whitespace allocation produces 3.18% overfull global routing cells
and routes in 22 minutes without violations. c©2007 IEEE.

This allows early detection of bins difficult to floorplan, and alerts the placer to backtrack and
seek a different partitioning solution.

Selective floorplanning for multi-million gate designs. One case that is not consid-
ered by either the original floorplacement techniques [34] or those introduced in SCAMPI [31]
is where there are an extreme number of movable modules and an extreme ratio between the
largest and smallest macro. An example of this is the newblue1 benchmark from the ISPD’06
placement contest suite. The newblue1 benchmark contains 64 macros and 330073 standard
cells. As we show below, such a configuration is problematic for floorplacement tools.

Recall that a floorplacer utilizes a floorplanner to place macros. As the floorplanner uses
Simulated Annealing to pack blocks, clustering is performed on the netlist to improve scalabil-
ity. However, a very large number of small modules may stress clustering algorithms, which,
in the absence of refinement, may undermine the overall solution quality.3

Figure 9 shows the newblue1 benchmark placed with SCAMPI, before and after our most
recent improvements. In the original SCAMPI flow, the large block was designated for floor-
planning by Parquet at the top level. Parquet precedes annealing with clustering to reduce
the size of the netlist. However, given the large number of small modules, the simple-minded
clustering algorithm in Parquet ended up taking 16% of total runtime, whereas annealing took
only 4%. Additionally, even if clustering were more scalable, clustering such a large number
of small macros into large, soft macros can lead to unnatural or unrepresentative netlists. In
the original SCAMPI flow, the clusters formed by the standard cells in newblue1 became large

3 Refinement algorithms would need to operate on very large netlists and may require long
runtimes.

D
R

A
FT

16 Jarrod A. Roy, David A. Papa and Igor L. Markov

Variables: queue of placement partitions
Initialize queue with top-level partition

1 While (queue not empty)
2 Dequeue a partition
3 If (partition is not marked as merged)
4 Perform look-ahead floorplanning on partition
5 If look-ahead floorplanning fails
6 Undo one partition decision
7 Merge partition with sibling
8 Mark new partition as merged and enqueue
9 Else if (partition has large macros or

is marked as merged)
10 Mark large macros for placement after floorplanning
11 Cluster remaining macros into soft macros
12 Cluster std-cells into soft macros
13 Use fixed-outline floorplanner to pack

all macros (soft+hard)
14 If fixed-outline floorplanning succeeds
15 Fix large macros and remove sites beneath
16 Else
17 Undo one partition decision
18 Merge partition with sibling
19 Mark new partition as merged and enqueue
20 Else if (partition is small enough and

mostly comprised of macros)
21 Process floorplanning on all macros
22 Else if (partition small enough)
23 Process end case std cell placement
24 Else
25 Bi-partition netlist of the partition
26 Divide the partition by placing a cutline
27 Enqueue each child partition

Fig. 8. Our modified min-cut floorplacement flow [31]. Bold-faced lines are new compared
to [34].

enough to artificially constrain the movement of the large macro during floorplanning. This is
mainly a limitation of Simulated Annealing as it becomes impractical in solution quality and
runtime for over 100 modules.

Therefore, we propose the following method. Whenever a bin is designated for floor-
planning and the largest real module is smaller in area than the largest soft macro built from
clustering (this area can be estimated without actually performing clustering), we do not use
Simulated Annealing. Instead, a simple analytical placement technique, such as Successive
Over-Relaxation (SOR), is used to determine reasonable locations for the large macros.4 It
has been shown that analytical techniques are good at finding general areas where objects
should be placed [6], so this is a reasonable and efficient solution for placing a large macro
or macros in this situation. As such, this technique may also be useful in regions with large
amounts of whitespace as block-packing often overlooks good solutions in such situations.
Objectives other than HPWL, such as routing congestion and timing, are also important, and
any analytical placer used in this context should place macros with respect to the most relevant
objective(s). Our key observation is that placing such macros early is helpful.

4 Any analytical placement technique can be used, but SOR may be sufficient since we are
not necessarily looking for a non-overlapping placement. For example, we have also used
a linearized version of the SOR technique as well and seen improvements in HPWL at the
expense of moderately increased runtime.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 17

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2000 4000 6000 8000 10000 12000
 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2000 4000 6000 8000 10000 12000

Fig. 9. The newblue1 benchmark placed by SCAMPI before (left) and after (right) our recent
modifications. Before our improvements to SCAMPI, the clusters formed by the smaller mod-
ules at the top level constrain the movement of the largest module and result in it being placed
in the bottom-left corner of the core. After our improvements, the largest macro is placed using
Successive Over-Relaxation (SOR).

When there is only one large macro to be placed, the solution of the analytical tool is
used and the macro is fixed in its desired location. To place a small number of large macros
with this method, we again compute macro locations with the analytical tool, but must legal-
ize the macro locations to maintain the correct-by-construction paradigm of floorplacement.
Overlaps can be legalized in several ways. One way is to use a greedy macro legalization tech-
nique such as the macro legalizer described in [34, Section 3.3]. Another method for removing
macro overlap is the constraint-based floorplan repair algorithm FLOORIST [29]. Following
legalization, one can shift the macros so that their center of mass coincides with their center of
mass before legalization in keeping with the spirit of the analytical placement. This technique
contributed to HPWL improvement over the ISPD 2006 Placement Contest results of Capo
by 17% on newblue1, with an overall improvement in the contest score on the ISPD 2006
benchmark suite by 10%, moving Capo three positions higher.

Temporary Macro Deflation. Low-whitespace conditions in block-packing instances
formed during floorplacement can worsen solution quality significantly. In such cases, the
block-packing engine focuses mainly on finding legal solutions rather than those that have
good wirelength. In addition, a legal solution may not be found which leads to backtracking
and increased runtime as well. To improve the solution quality of block-packing instances
created during floorplacement, we prevent these low-whitespace conditions.

To account for standard cells in the floorplacement framework, standard cells are clustered
into soft blocks for instances of block-packing [1]. To improve the likelihood of finding a legal
fixed-outline solution, these soft blocks representing standard cells are reduced in size [1]. We
propose extending this deflation to include hard blocks in addition to soft blocks. When a
block-packing instance is formed, we adjust the sizes of hard blocks to maintain a minimum
amount of whitespace. All blocks in the instance are sized in the same way and aspect ratios

D
R

A
FT

18 Jarrod A. Roy, David A. Papa and Igor L. Markov

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

HPWL = 3.372e+06, #Cells = 1157, #Nets = 5829

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

HPWL = 3.22e+06, #Cells = 1157, #Nets = 5829

Fig. 10. A placement of the ibm-HB01 benchmark produced by Capo 9.4 that exhibits an
overly generous whitespace allocation scheme in Capo. After re-allocating whitespace with a
min-cost max-flow technique, we decrease HPWL by 4.5%.

are maintained. The resized instance, made easier by the addition of whitespace, is placed
using Simulated Annealing as normal.

Resizing the hard blocks in this way has the positive effect of making fixed-outline block-
packing easier, which allows the block-packing engine to focus on HPWL minimization
rather than mere legality in cases where whitespace is limited, but removes the correct-by-
construction property upon which floorplacement is built. To alleviate this problem, we apply
legalization to macros after packing. We use the fast and robust constraint-based floorplan re-
pair algorithm FLOORIST [29] after each layer of placement where block-packing took place.
FLOORIST moves macros minimally when repairing macro overlaps, so the reduced HPWL
found in easier block-packing instances is preserved.

Empirically we find that the overhead of running FLOORIST for legalization is mitigated
by the fact that block-packing is easier and therefore faster. In terms of solution quality, we
find that temporary macro deflation reduces HPWL by 2-3%.

Whitespace Re-allocation Using Linear Programming and Min-cost Max-flow.
As we have noted earlier, in order to avoid cases of backtracking which can dramatically
increase both HPWL and runtime, Capo allocates whitespace uniformly during partitioning
when macros are present. We have shown in Figure 10 this whitespace allocation scheme can
lead to HPWL that is much larger than a tighter packing. In order to reclaim some of the
HPWL lost due to uniform distribution during global placement, we propose a technique to
re-allocate whitespace during detail placement.

Our technique builds upon the well-known linear programming formulations used, e.g.,
in [39] and [33] in that we impose linear constraints for movable objects based on their rel-
ative positions with respect to core boundaries and other movable objects. More details on
the linear programming formulation such as types of constraints and the objective function
are given below. We include additional linear inequalities to account for fixed obstacles and
region constraints. One major difference from previous work is that we guarantee that the x
and y locations found align to legal sites and rows, as explained later in this section.

We handle re-allocation of whitespace separately for the horizontal and vertical directions,
and preserve local relative ordering of movables in each direction. In other words, movable
objects may not jump over each other or any fixed obstacles when whitespace is being re-
allocated. Unlike in global-placement [33], we start with legal or nearly-legal locations. This
simplifies our selection of relative constraints to include into the LP formulation as follows. In
the horizontal case, we examine each row individually. For each cell or macro that intersects

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 19

the row, we determine its immediate neighbors to the left and to the right (those objects with
which the current object could feasibly overlap if it would slide to the left or right). These
neighbors can include movable objects, row or region boundaries as well as fixed obstacles.
After the neighborhood relations are determined, we constrain an object to lie between its
left- and right-hand neighbors. Construction of constraints for the vertical case is analogous
where rows are replaced with columns and site width is replaced by row height. Unlike the
formulation from [33], ours guarantees an overlap-free placement and needs to be solved only
once. In contrast with [39], we include only several constraints per movable object rather
than a quadratic number of constraints read from a sequence-pair. This significantly improves
scalability and allows one to pack more tightly.

In addition to the constraints above, we minimize HPWL. This is done by adding
xmin,xmax,ymin,ymax variables for each net, and the terms (xmax − xmin) and (ymax − ymin) to
the objective function. To solve the entire LP efficiently, we dualize it as in [39] and cast the
dual as a min-cost max-flow instance. The latter is solved using the scaling push-relabeling
algorithm of Goldberg [19]. An important feature of our technique is the use of integrality
of the solutions found by this algorithm — we scale the coordinates so that integer x values
correspond to legal sites and integer y values correspond to standard-cell rows. Figure 10 illus-
trates whitespace re-allocation in the horizontal and vertical directions applied to a placement
of the ibm-HB01 benchmark. HPWL is improved by 4.5% while runtime of the technique is
less than 1% of placement runtime.

8 Incremental Placement

To develop a strong incremental placement tool, ECO-system, we build upon an existing
global placement framework and must choose between analytical and top-down. The main
considerations include robustness, the handling of movable macros and fixed obstacles, as
well as consistent routability of placements and the handling of density constraints. Based on
recent empirical evidence [31, 35, 38], the top-down framework appears a somewhat better
choice. Indeed the 2 out of 9 contestants in the ISPD 2006 Competition that satisfied density
constraints were top-down placers. However, analytical algorithms can also be integrated into
our ECO-system when particularly extensive changes are required. ECO-system favorably
compares to recent detail placers in runtime and solution quality and fares well in high-level
and physical synthesis.

General Framework. The goal of ECO-system is to reconstruct the internal state of a
min-cut placer that could have produced a given placement without the expense of global
placement. Given this state, we can choose to accept or reject previous decisions based on
our own criteria and build a new placement for the design. If many of the decisions of the
placer were good, we can achieve a considerable runtime savings. If many of the decisions are
determined to be bad, we can do no worse in terms of solution quality than placement from
scratch. An overview of the application of ECO-system to an illegal placement is depicted in
Figure 12. See the algorithm in Figure 11.

To rebuild the state of a min-cut placer, we must reconstruct a series of cut-lines and
partitioning solutions efficiently. To extract a cut-line and partitioning solution from a given
placement bin, we examine all possible cut-lines as well as the partitions they induce. We start
at one edge of the placement bin (left edge for a vertical cut and bottom edge for a horizontal
cut) and move towards the opposite edge. For each potential cut-line encountered, we maintain
the cell area on either side of the cut-line, the partition induced by the cut-line and the net cut.

D
R

A
FT

20 Jarrod A. Roy, David A. Papa and Igor L. Markov

Variables: queue of placement bins
Initialize queue with top-level placement bin

1 While(queue not empty)
2 Dequeue a bin
3 If(bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cut-line which has

the smallest net-cut considering
cell area balance constraints

7 If(cut-line causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cut-line
10 Improve net-cut of partitioning with

single pass of Fiduccia-Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cut-line and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If(bin small enough)
17 Process end case
18 Else
19 Bi-partition the bin into child bins
20 Mark child bins to place from scratch
21 Enqueue each child bin

Fig. 11. Incremental min-cut placement [36]. Bold-faced lines 3-15 and 20 are different from
traditional min-cut placement. c©2007 IEEE.

Fast Cut-line Selection. For simplicity, assume that we are making a vertical cut and
are moving the cut-line from the left to the right edge of the placement bin (the techniques
necessary for a horizontal cut are analogous). Pseudo-code for choosing the cut-line is shown
in Figure 13. To find the net cut for each possible cut-line efficiently, we first calculate the
bounding box of each net contained in the placement bin from the original placement. We
create two lists with the left and right x-coordinates of the bounding boxes of the nets and
sort them in increasing x-order. While sliding the cut-line from left to right (in the direction
of increasing x-coordinates), we incrementally update the net-cut and amortize the amount
of time used to a constant number of operations per net over the entire bin. We do the same
with the centers of the cells in the bin to incrementally update the cell areas on either side of
the cut-line as well as the induced partitioning. While processing each cut-line, we save the
cut-line with smallest cut that is legal given partitioning tolerances. An example of finding the
cut-line for a partitioning bin is shown in Figure 12.

Once a partitioning has been chosen, we accept or reject it based on how much it can be
improved by a single pass of a Fiduccia-Mattheyses partitioner with early termination
(which takes only several seconds even on the largest ISPD’05 circuit). 5 The intuition is that
if the constructed partitioning is not worthy of reuse, a single Fiduccia-Mattheyses pass could
improve its cut non-trivially. If the Fiduccia-Mattheyses pass improves the cut beyond a certain
threshold, we discard the solution and bisect the entire bin from scratch. If this test passes, we
check legality: if a child bin is overfull, we discard the cut-line and bisect from scratch.

Scalability. Pseudo-code for the cut-line location process used by ECO-system is shown in
Figure 13. The runtime of the algorithm is linear in the number of pins incident to the bin,

5 We do not assume that the initial placement was produced by a min-cut algorithm.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 21

Fig. 12. Fast legalization by ECO-system [36]. The image on the left illustrates choosing a
vertical cut-line from an existing placement. Nets are illustrated as red lines. Cells are indi-
vidually numbered and take 2 or 3 sites each. Cut-lines are evaluated by a left-to-right sweep
(net cuts are shown above each line). A cut-line that satisfies partitioning tolerances and min-
imizes cut is found (thick green line). Cells are assigned to “left” and “right” according to the
center locations. On the right, placement bins are subdivided using derived cut-lines until i)
a bin contains no overlap and is ignored for the remainder of the legalization process or, ii)
the placement in the bin is considered too poor to be kept and is replaced from scratch using
min-cut or analytical techniques. c©2007 IEEE.

cells incident contained in the bin, and possible cut-lines for the bin. Since a single Fiduccia-
Mattheyses pass takes also takes linear time [18], the asymptotic complexity of our algorithm
is linear. If we let P represent the number of pins incident to the bin, C represent the number
of cells in the bin and L represent the number of potential cut-lines in the bin, the cut-line
selection process runs in O(P+C + L) time. In the vast majority of cases, P > C and P > L,
so the runtime estimate simplifies to O(P).

The number of bins may double at each hierarchy layer, until bins are small enough for
end-case placement. End-case placement is generally a constant amount of runtime for each
bin, so it does not affect asymptotic calculations. Assume that ECO-system is able to reuse
all of the original placement. Since ECO-system performs bisection, it will have O(logC)
layers of bisection before end-case placement. At layer i, there will be O(2i) bins, each taking
O

(P
2i

)

time. This gives a total time per layer of O(P). Combining all layers gives O(P logC).
Empirically, the runtime of the cut-line selection procedure (which includes a single pass of
a Fiduccia-Mattheyses partitioner) is much smaller than partitioning from scratch. On large
benchmarks, cut-line selection requires 5% of ECO-system runtime time whereas min-cut
partitioning generally requires 50% or more of ECO-system runtime.

Handling Macros and Obstacles. With the addition of macros, the flow of top-down
placement becomes more complex. We adopt the technique of “floorplacement” which pro-
ceeds as traditional placement until a bin satisfies criteria for block-packing [31,34]. If the cri-
teria suggest that the bin should be packed rather than partitioned, a fixed-outline floorplanning
instance is induced from the bin where macros are treated as hard blocks and standard cells
are clustered into soft blocks. The floorplanning instance is given to a Simulated Annealing-
based floorplanner to be solved. If macros are placed legally and without overlap, they are
considered fixed. Otherwise, the placement bin is merged with its sibling bin in the top-down

D
R

A
FT

22 Jarrod A. Roy, David A. Papa and Igor L. Markov

Input: placement bin, balance constraint
Output: x-coord of best cut-line
1 numCutlines =

1+ b(rightBinEdgeX−leftBinEdgeX)/cellSpacingc
2 Create three arrays of size numCutlines:

LEFT, RIGHT, AREA
3 Set all elements of LEFT, RIGHT, and AREA to 0
4 Foreach net
5 Calculate x-coord of left- and right-most pins
6 leftCutlineIndex =

max(0,d(leftPinX−leftBinEdgeX)/cellSpacinge)
7 rightCutlineIndex =

max(0,d(rightPinX−leftBinEdgeX)/cellSpacinge)
8 if(leftCutlineIndex < numCutlines)
9 LEFT[leftCutlineIndex]+ = 1
10 if(rightCutlineIndex < numCutlines)
11 RIGHT[rightCutlineIndex]+ = 1
12 Foreach cell
13 Calculate x-coord of the center of the cell
14 cutlineIndex =

max(0,d(centerX−leftBinEdgeX)/cellSpacinge)
15 if(cutlineIndex < numCutlines)
16 AREA[cutlineIndex]+ =cellArea
17 Set X = leftBinEdge, CURCUT = 0, BESTCUT = ∞

BESTX = ∞, LEFTPARTAREA = 0
18 For(I = 0;I < numCutlines;I+ =1,X+ =cellSpacing)
19 CURCUT+ =LEFT[I]
20 CURCUT−=RIGHT[I]
21 LEFTPARTAREA+ =AREA[I]
22 If(CURCUT < BESTCUT and

LEFTPARTAREA satisfies balance constraint)
23 BESTCUT = CURCUT
24 BESTX = X
25 Return BESTX

Fig. 13. Algorithm for finding the best vertical cut-line from a placement bin. Finding the
best horizontal cut-line is largely the same process. Note that the runtime of the algorithm is
linear in the number of pins incident to the bin, cells incident contained in the bin, and possible
cut-lines for the bin.

hierarchy and the merged bin is floorplanned. Merging and re-floorplanning continues until
the solution is legal.

We add a new floorplanning criterion for our legalization technique. If no macros in a
placement bin overlap each other, we generate a placement solution for the macros of the
bin to be exactly their placements in the initial solution. If some of the macros overlap with
each other, we let other criteria for floorplanning decide. If block-packing is invoked, we must
discard the placement of all cells and macros in the bin and proceed as described in [34].

During the cut-line selection process, some cut-line locations are considered invalid —
namely those that are too close to obstacle boundaries but do not cross the obstacles. This is
done to prevent long and narrow slivers of space between cut-lines and obstacle boundaries.
Ties for cut-lines are broken based on the number of macros they intersect. This helps to
reduce overfullness in child bins allowing deeper partitioning, which reduces runtime.

Relaxing Overfullness Constraints. One of the primary objectives of ECO-system is
to reuse as much relevant placement information as possible from a given placement. As de-
scribed above, it is possible to find a cut-line which has a good cut but is not legal due to space

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 23

D
R

A
FT

D
R

A
FT

Fig. 14. Shifting a cut-line chosen during ECO cut-line selection. Unlike the WSA tech-
nique [27, 28], cut-line shifting during ECO is not done on geometric cut-lines but instead on
those cut-lines which are chosen during fast cut-line selection. The image on the left shows
a placement that has been divided into bins during the course of ECO-system. In the image
on the right, the chosen cut-line of the bottom-right bin is shifted to the right. The density of
vertical lines represents the initial placement and its scaling around the moving cutline (shown
in red).

constraints. In these cases, ECO-system must discard these good solutions and partition from
scratch.

In order to make better use of the given placement, we propose the following addition
to ECO-system. In these situations, we allow ECO-system to shift the cut-line to legalize the
derived partition with respect to area. Cut-line shifting is a technique commonly used in the
top-down min-cut placement for allocation of whitespace [4, 27, 28, 35, 38]. The cut-line is
shifted as little as possible to make the derived partitioning legal with respect to area. If it is
impossible to find an area-legal cutline, the derived partitioning must be discarded and ECO-
system proceeds normally.

If cut-line shifting is successful in correcting the illegality, the original placement must
be modified for purposes of consistency. To do so, cells are scaled proportionately within
the placement bin based on their original positions, the position of the originally chosen cut-
line and the position of the shifted cut-line in a manner similar to that in the WSA technique
[27,28]. As the centers of cells are used to determine in what partitions cells belong during fast
cut-line selection, we shift cell locations based on center locations as well to ensure that cut-
line shifting will not change derived partitions. We seek to shift cell locations and maintain the
following property: the relative position between cells before and after shifting is maintained.
Also, if a cell were in the middle of a partition before shifting, it should remain in the middle
of a partition after shifting. Let xL and xR represent the x-coordinates of the left and right sides
of the placement bin, xcut

orig and xcut
new the x-coordinates of the original and new cuts, and, lastly,

xcell
orig and xcell

new the x-coordinates of the center of a particular cell before and after shifting. We
wish to maintain the following ratios (for vertical partitioning):

xcell
orig − xL

xcut
orig − xL

=
xcell

new − xL

xcut
new − xL

, xcell
orig ≤ xcut

orig

xR − xcell
orig

xR − xcut
orig

=
xR − xcell

new

xR − xcut
new

, xcell
orig > xcut

orig

Solving for xcell
new :

D
R

A
FT

24 Jarrod A. Roy, David A. Papa and Igor L. Markov

xcell
new =

xL +
(

xcell
orig − xL

)

xcut
new−xL

xcut
orig−xL

, xcell
orig ≤ xcut

orig

xR −
(

xR − xcell
orig

)

xR−xcut
new

xR−xcut
orig

, xcell
orig > xcut

orig

The new y-coordinates of cells shifted during horizontal partitioning are calculated analo-
gously.

Figure 14 illustrates the scaling involved when a cut-line is shifted. In the figure, the cut-
line of the bottom-right bin is shifted to the right. All objects to the left and right of the cut-line
are scaled appropriately. Objects that were to the left of the original cut-line remain to the left
and are spread out and objects on the right are packed closer together.

Shifting proportionately in this way maintains the relative ordering of all the cells within
the current placement bin. Also the partitioning induced by the cutline remains unchanged
so ECO-system can proceed as normal. Shifting the cut-line in this manner can allow deeper
ECO partitioning which can reduce both runtime and cell displacement.

Satisfying Density Constraints. A common method for increasing the routability of a
design is to inject whitespace into regions that are congested [4, 27]. One can also require a
minimum amount of whitespace (equivalent to a maximum cell density) in local regions of the
design to achieve a similar effect [38]. As one of ECO-system’s legality checks is essentially
a density constraint (checking to see if a child bin has more cell area assigned to it than it can
physically fit), this legality check is easy to generalize. The new criterion for switching from
using the initial placement and partitioning from scratch is based on a child bin having less
than a threshold percent of relative whitespace, which is controlled by the user.

The cut-line shifting feature of ECO-system can also be used to satisfy density constraints.
As ECO-system proceeds, cut-lines can be shifted as described above to implement a variety
of whitespace allocation schemes [27, 28, 35, 38]. Specifically, ECO-system can implement
the hierarchical whitespace injection of WSA [27, 28]. WSA chooses cut-lines based only on
the geometry of a placement bin and shifts these cut-lines from the top down. ECO-system
chooses cut-lines that are more natural to the original placement, shifts cut-lines top-down,
and also supports fixed objects and movable macros.

9 Memory Profile

Capo’s non-uniform whitespace allocation techniques tend to produce unbalanced partition-
ments at the top layers. As peak memory usage grows with partitioning problem size, memory
consumption can stay near the peak for longer periods of time during placement. To counter-
act the increased possibility of thrashing, Capo 10 has several memory improvements which
include the slimming down of data structures and carefully choosing the lifetimes of major
data structures so that fewer need to be in main memory simultaneously. The most radical of
these changes involves removing the netlist hypergraph from main memory during the largest
partitioning instances and rebuilding it from scratch afterwards. These changes reduce peak
memory consumption by 2x compared to Capo 9.1 but slow down global placement by 10%.

10 Performance on Publicly-Available Benchmarks

To illustrate Capo’s ability to handle a wide range of placement instances, we evaluate Capo on
benchmarks with routing information, mixed-size benchmarks and the extremely large bench-
marks with generous amounts of whitespace from the ISPD 2005 and 2006 placement com-
petitions.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 25

Table 2. A comparison of ROOSTER to the most recent version of mPL-R + WSA and
APlace 2.04 on the IBMv2 benchmarks [41]. All routed wirelengths (rWL) are in meters.
“Time” represents routing runtime in minutes. Note that while APlace 2.04 achieves overall
smaller wirelength than ROOSTER, it routes with violations on 2 of the 16 benchmarks. Best
legal rWL and via counts are in bold.

ROOSTER Latest mPL-R + WSA APlace 2.04 -R 0.5
rWL #Vias #Vio.Time rWL #Vias #Vio.Time rWL #Vias #Vio.Time

ibm01e 0.733 122286 0 42 0.718 123064 0 11 0.790 158646 85 132
ibm01h 0.746 124307 0 32 0.691 213162 0 11 0.732 161717 2 121
ibm02e 2.059 259188 0 13 1.821 250527 0 11 1.846 254713 0 9
ibm02h 2.004 262900 0 14 1.897 260455 0 13 1.973 268259 0 14
ibm07e 4.075 476814 0 17 4.130 492947 0 21 3.975 500574 0 17
ibm07h 4.329 489603 0 19 4.240 516929 0 26 4.141 518089 0 23
ibm08e 4.242 559636 0 17 4.372 579926 0 23 3.956 588331 0 18
ibm08h 4.262 574593 0 20 4.280 599467 0 26 3.960 595528 0 18
ibm09e 3.165 466283 0 11 3.319 488697 0 17 3.095 502455 0 11
ibm09h 3.187 475791 0 11 3.454 502742 0 19 3.102 512764 0 12
ibm10e 6.412 749731 0 22 6.553 777389 0 30 6.178 782942 0 23
ibm10h 6.602 775018 0 27 6.474 799544 0 33 6.169 801605 0 28
ibm11e 4.698 605807 0 15 4.917 633640 0 22 4.755 648044 0 18
ibm11h 4.697 618173 0 16 4.912 660985 0 25 4.818 677455 0 24
ibm12e 9.289 918363 0 36 10.185 995921 0 57 8.599 921454 0 32
ibm12h 9.289 938971 0 43 9.724 976993 0 50 8.814 961296 0 50

Ratio 1.000 1.000 1.007 1.069 0.968 1.073

Table 3. A comparison of Capo with ROOSTER extensions to Cadence AmoebaPlace on the
IWLS 2005 Benchmarks [20]. All routed wirelengths (rWL) are in meters. “Time” represents
routing runtime in minutes. ROOSTER outperforms AmoebaPlace by 12.0% in rWL and 1.1%
in via counts. Best rWL and via counts are in bold.

ROOSTER + NanoRoute AmoebaPlace + NanoRoute
Benchmark rWL #Vias #Vio. Time rWL #Vias #Vio. Time

aes core 1.339 125939 2 32 1.657 131049 1 28
ethernet 7.287 467777 1 27 7.745 471800 1 28
mem ctrl 1.061 87276 0 22 1.224 90067 0 21

pci bridge32 1.336 114880 0 35 1.598 117326 2 35
usb funct 0.995 84717 0 19 1.106 85739 0 19
vga lcd 25.906 1131591 2 57 25.405 1076178 2 90

Ratio 1.000 1.000 1.120 1.011

Routing Benchmarks. To show Capo’s performance on placement instances with rout-
ing information, we show results for the IBMv2 [41], IWLS [20] and Faraday suites of
benchmarks [1] in Tables 2, 3 and 4. Capo with ROOSTER extensions consistently produces
routable placements with the best published routed wirelength on several benchmarks and best
via counts overall.

Mixed-size Benchmarks. To show Capo’s performance on difficult mixed-size placement
instances, we show results on difficult floorplanning instances identified by the authors of
[31]. Comparisons of Capo with other tools on two difficult benchmark suites are shown in
Tables 5 and 6. Most other tools are unable to place these benchmarks legally within the
time limit, but Capo with SCAMPI extensions completes all of these benchmarks quickly and
legally. Considering the designs successfully placed by PATOMA 1.0 and Capo 9.4, Capo with
SCAMPI extensions produces placements with smaller HPWL by 31% and 13%.

D
R

A
FT

26 Jarrod A. Roy, David A. Papa and Igor L. Markov

Table 4. Routing results on the Faraday benchmarks with movable macro blocks fixed [1]. All
routed wirelengths (rWL) are in meters. “Time” represents routing runtime in minutes. Best
rWL and via counts are highlighted in bold.

Bench- ROOSTER Silicon Ensemble Ultra v5.4.126
mark rWL #Vias #Vio.Time rWL #Vias #Vio Time
DMA 0.554 116414 0 3 0.644 125328 0 3
DSP1 1.110 209274 0 5 1.224 204863 0 6
DSP2 1.067 194971 0 6 1.230 207521 0 6
RISC1 1.868 328699 5 9 1.957 345615 4 6
RISC2 1.786 324278 5 7 1.959 347515 2 5

Ratio 1.000 1.000 1.112 1.048

Table 5. Runs of Capo with SCAMPI extensions and other tools on recent designs from Ca-
lypto Design Systems, Inc. [31]. Best legal solutions are emphasized in bold.

PATOMA 1.0 Capo 9.4 -faster APlace 2.0 FengShui 5.1 SCAMPIcal
HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp timebench
(e+04) (%) (s) (e+04) (%) (s) (e+04) (%) (s) (e+04) (%) (s) (e+04) (%) (s)

vs.
PATOMA
(HPWL)

vs.
CAPO

(HPWL)

040 177.2 0.0 9.6 18.7 0.0 45.4 20.7 0.3 ⊗ 239.0 20.6 0.0 37.9 17.7 0.0 39.5 0.10x 0.94x
098 52.3 0.0 11.2 31.8 1.3 788.2 22.6 0.3 271.6 24.0 0.0 ⊗ 6.0 26.9 0.0 264.4 0.51x -
336 2.8 0.0 1.2 3.5 9.1 22.5 2.2 0.1 ⊗ 83.5 7.6 0.0 0.2 2.8 0.0 11.4 0.99x -
353 7.6 0.0 1.0 6.5 0.5 52.6 4.6 0.3 211.8 31.5 1.6 ⊗ 0.8 5.5 0.0 26.0 0.73x -
523 123.7 0.0 3.4 34.7 0.3 240.2 27.5 0.3 920.3 348.7 0.0 2.8 30.3 0.0 157.2 0.24x -
542 0.9 0.0 0.1 0.8 0.0 3.3 0.7 0.1 42.8 × × × 0.8 0.0 2.0 0.85x 0.96x
566 83.6 0.0 4.9 63.8 1.9 225.7 46.9 0.5 341.1 493.6 3.8 ⊗ 3.2 71.6 0.0 188.5 0.86x -
583 47.0 0.0 2.3 26.1 0.6 190.6 20.6 0.2 421.2 × × × 21.5 0.0 141.3 0.46x -
588 8.8 0.0 0.7 6.3 1.1 60.4 4.8 0.5 41.5 × × × 5.6 0.0 26.4 0.63x -
643 4.9 0.0 0.6 3.8 0.9 18.8 3.0 0.4 29.3 15.3 0.2 ⊗ 0.5 3.4 0.0 11.5 0.68x -

DCT × × × × × >1800 33.1 1.7 ⊗ 719.4 184.7 0.0 8.0 37.2 0.0 123.5 - -
Average 0.51x 0.95x

× indicates time-out, crash, or a run completed without producing a solution; ⊗ indicates an out-of-core solution

ISPD Contest Benchmarks. The ISPD 2005 and 2006 Placement Contests introduced
sixteen new benchmarks into the public domain based on industrial designs. These designs
have many movable objects, an abundance of fixed obstacles and relatively low utilizations.
Tables 7 and 8 compare Capo’s performance at the contests to Capo’s current performance on
the 2005 and 2006 contest benchmarks, respectively. Since the contests, Capo has been able to
improve its solution quality by 3.1% on the ISPD 2005 benchmarks (while using considerably
less runtime than the week allowed for the original contest) and 6.3% for the ISPD 2006
benchmarks.

Since the ISPD 2005 and 2006 contests, variants of the contest benchmarks have been pro-
posed with known optimal or near-optimal wirelengths in order to gauge how much room for
improvement is left with state-of-the-are placement methods. In the original work on place-
ments with known optimal solutions, Capo 8.6 placements had nearly twice the HPWL of
optimal placements [16]. As shown in Table 9, Capo placements are less than 60% from opti-
mal which represents a significant improvement, especially on such challenging benchmarks
as the ISPD 2005 contest benchmarks. The focus of the ISPD 2006 benchmarks is less on
HPWL and more on satisfying the required density constraints, and on these benchmarks Capo
achieves the density constraint requirements but, as Table 10 shows, at the expense of HPWL
were Capo produces solutions with more than twice the optimal wirelength on average.

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 27

Table 6. Runs of Capo with SCAMPI extensions and other tools on the IBM-HB+ benchmarks
[31]. Best legal solutions are emphasized in bold.

ibm PATOMA 1.0 Capo 9.4 -faster APlace 2.0 FengShui 5.1 SCAMPI
-HB+ HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp time HPWL ovlp time

bench (e+06) (%) (s) (e+06) (%) (s) (e+06) (%) (s) (e+06) (%) (s) (e+06) (%) (s)
vs.

PATOMA
(HPWL)

vs.
CAPO

(HPWL)

01 3.9 0.0 5.6 5.4 1.4 651.5 2.7 2.7 68.0 3.0 0.2 ⊗ 16.6 3.2 0.0 57.6 0.83x -
02 × × × 19.1 0.0 1539.7 5.0 2.6 101.5 8.7 0.9 ⊗ 43.6 6.9 0.0 185.4 - 0.36x
03 × × × × × >1800 7.4 2.1 101.3 × × × 10.1 0.0 179.9 - -
04 × × × × × >1800 8.2 2.8 113.9 10.8 0.2 ⊗ 41.4 11.1 0.0 145.8 - -
06 × × × × × >1800 8.2 1.0 122.5 10.7 1.4 ⊗ 36.0 9.3 0.0 201.7 - -
07 16.8 0.0 13.6 15.8 0.0 115.31 13.7 1.4 218.4 37.1 0.0 5.1 16.1 0.0 90.7 0.96x 1.02x
08 × × × × × >1800 16.6 1.0 ⊗ 294.2 21.8 0.5 ⊗ 60.6 18.8 0.0 240.0 - -
09 × × × 20.2 0.2 188.9 15.1 0.9 222.4 20.6 1.2 ⊗ 42.9 20.9 0.0 185.7 - -
10 × × × 45.9 2.7 263.7 39.9 0.4 544.8 × × × 55.2 0.0 319.9 - -
11 25.3 0.0 49.2 28.1 0.0 140.5 24.5 1.1 270.3 30.4 0.2 ⊗ 63.8 26.9 0.0 137.3 1.06x 0.96x
12 × × × 63.4 0.0 482.2 × × >1800 52.3 0.0 ⊗ 39.2 64.0 0.0 397.6 - 1.01x
13 37.5 0.0 34.7 39.6 0.0 221.5 31.7 0.5 240.4 × × × 39.7 0.0 159.8 1.06x 1.00x
14 68.7 0.0 70.9 68.2 0.0 320.7 57.1 1.0 ⊗ 392.9 74.0 2.7 89.7 63.8 0.0 238.8 0.93x 0.94x
15 × × × × × >1800 87.5 1.5 422.2 90.6 0.0 ⊗ 100.3 86.4 0.0 508.3 - -
16 100.3 0.0 74.4 106.9 0.0 431.5 89.8 0.3 528.1 × × × 101.8 0.0 254.2 1.01x 0.95x
17 141.4 0.0 95.9 152.6 0.1 397.1 133.9 0.5 799.3 × × × 146.3 0.0 380.0 1.03x -
18 72.6 0.0 67.2 75.9 0.7 220.1 69.1 0.6 344.0 × × × 74.7 0.0 181.9 1.03x -

Average 0.99x 0.85x

× indicates time-out, crash, or a run completed without producing a solution; ⊗ indicates an out-of-core solution

Table 7. Comparison of Capo’s current performance to that at the ISPD 2005 Placement
Contest. Capo was run using the commandline options “-ispd05” and “-tryHarder”. The results
for Capo at the ISPD 2005 Placement Contest were the best placements produced over the
period of 1 week. Current Capo results are the best of three independent runs of Capo.

ISPD 2005 Current
Benchmark HPWL HPWL Runtime HPWL

(e8) (e8) (m) Ratio
adaptec1 - 0.863 95 -
adaptec2 0.997 1.001 128 1.004
adaptec3 - 2.340 274 -
adaptec4 2.113 2.071 257 0.980
bigblue1 1.082 1.071 152 0.990
bigblue2 1.723 1.624 291 0.943
bigblue3 3.826 4.006 984 1.047
bigblue4 10.988 9.470 1335 0.862
Average 0.969

11 Conclusions

In this chapter, we have described in detail the workings of the robust and scalable aca-
demic placement tool Capo. Capo is a min-cut floorplacer that provides (i) scalable multi-
way partitioning, (ii) routable standard-cell placement, (iii) integrated mixed-size placement,
(iv) wirelength-driven fixed-outline floorplanning as well as (v) incremental placement. Capo
produces best published results on several publicly available benchmark suites for routabil-
ity as well as difficult instances of floorplacement. Capo has been used as part of Syn-
plicity’s Amplify ASIC product and is freely available for all uses as part of the UMpack
(http://vlsicad.eecs.umich.edu/BK/PDtools/).

D
R

A
FT

28 Jarrod A. Roy, David A. Papa and Igor L. Markov

Table 8. Comparison of Capo’s current performance to that at the ISPD 2006 Placement
Contest. “Overflow” represents the HPWL penalty for not effectively enforcing density con-
straints on the benchmarks. Results at the ISPD06 contest were the result of a single run of
Capo. Current results are the median of three independent runs of Capo. Using the SCAMPI
improvements, Capo’s HPWL is reduced by 6.3% overall.

ISPD 2006 Current
Benchmark HPWL Over- Runtime HPWL Over- Runtime HPWL

(e8) flow% (m) (e8) flow% (m) Ratio
adaptec5 4.916 0.62 162 4.836 0.42 153 0.984
newblue1 0.984 0.13 43 0.850 0.12 47 0.864
newblue2 3.086 0.29 94 2.866 0.21 125 0.929
newblue3 3.612 0.01 101 3.299 0.01 92 0.913
newblue4 3.583 1.15 115 3.512 0.83 96 0.980
newblue5 6.574 0.33 348 6.391 0.26 212 0.972
newblue6 6.683 0.05 308 6.522 0.05 251 0.976
newblue7 15.185 0.02 916 13.482 0.01 525 0.888
Average 0.937

Table 9. Comparison of Capo’s current performance on the PEKO-ISPD 2005 benchmarks
to optimal results. Capo results are the best of three independent runs of Capo. These re-
sults represent an improvement in Capo’s performance vs. optimal since the original work on
placements with know optimal solutions where Capo placements had nearly twice optimal
wire length [16].

Optimal Capo
Benchmark HPWL HPWL Runtime HPWL

(e8) (e8) (m) Ratio
adaptec1 0.201 0.301 35 1.498
adaptec2 0.250 0.401 42 1.604
adaptec3 0.410 0.657 376 1.602
adaptec4 0.394 0.578 455 1.467
bigblue1 0.209 0.296 51 1.416
bigblue2 0.423 0.664 141 1.570
bigblue3 0.944 1.898 321 2.011
bigblue4 1.714 2.533 889 1.478
Average 1.572

References

1. Adya SN, Chaturvedi S, Roy JA, Papa DA and Markov IL (2004) Unification of parti-
tioning, placement and floorplanning. In Proc ICCAD 550–557

2. Adya SN, Markov IL (2003) Fixed-outline floorplanning: enabling hierarchical design.
IEEE Trans on VLSI 11(6):1120–1135

3. Adya SN, Markov IL (2005) Combinatorial techniques for mixed-size placement. ACM
Trans on Design Auto of Elec Sys 10(5)

4. Adya SN, Markov IL, Villarrubia PG (2006) On whitespace and stability in physical
synthesis. Integration: the VLSI Journal 25(4):340–362

D
R

A
FT

Capo: Congestion-driven Placement with Incremental Capability 29

Table 10. Comparison of Capo’s current performance on the PEKO-ISPD 2006 benchmarks
to optimal results. Capo results are the best of three independent runs of Capo.

Optimal Capo
Benchmark HPWL HPWL Over- Runtime HPWL

(e8) (e8) flow% (m) Ratio
adaptec5 0.611 1.295 4.97 322 2.119
newblue1 0.195 0.563 1.53 29 2.887
newblue2 0.273 0.910 1.17 46 3.333
newblue3 0.303 1.210 1.72 136 3.993
newblue4 0.436 0.792 6.43 196 1.817
newblue5 0.858 1.679 6.33 615 1.957
newblue6 0.800 1.952 2.30 578 2.440
newblue7 1.510 4.196 2.11 1439 2.779
Average 2.580

5. Agnihotri A et al. (2003) Fractional cut: improved recursive bisection placement. In Proc
ICCAD 307–310

6. Alpert CJ, Nam G-J, Villarrubia PG, (2003) Effective free space management for cut-
based placement via analytical constraint generation. IEEE Trans on CAD 22(10):1343–
1353

7. Brenner U, Vygen J (2000) Faster optimal single-row placement with fixed ordering. In
Proc DATE 117–121

8. Brenner U, Rohe A (2003) An effective congestion driven placement framework. IEEE
Trans. on CAD 22(4):387–394

9. Caldwell AE, Kahng AB, Mantik S, Markov IL, Zelikovsky A (1999) On wirelength
estimations for row-based placement. IEEE Trans on CAD 18(9):1265–1278

10. Caldwell AE, Kahng AB, Markov IL (2000) Improved algorithms for hypergraph bipar-
titioning. In Proc ASPDAC 661–666

11. Caldwell AE, Kahng AB, Markov IL (2000) Can recursive bisection alone produce
routable placements? In Proc DAC 477–482

12. Caldwell AE, Kahng AB, Markov IL (2000) Design and implementation of move-based
heuristics for VLSI hypergraph partitioning. ACM Journ of Experimental Algorithms 5

13. Caldwell AE, Kahng AB, Markov IL (2000) Optimal partitioners and end-case placers
for standard-cell layout. IEEE Trans on CAD 19(11):1304–1314

14. Caldwell AE, Kahng AB, Markov IL. VLSI CAD bookshelf. http://vlsicad.
eecs.umich.edu/BK/. See also Caldwell AE, Kahng AB, Markov IL (2002) To-
ward CAD-IP reuse: the MARCO GSRC bookshelf of fundamental CAD algorithms.
IEEE Design and Test 72–81

15. Caldwell AE, Kahng AB, Markov IL (2003) Hierarchical whitespace allocation in top-
down placement. IEEE Trans on CAD 22(11):716–724

16. Chang C-C, Cong J, Romesis M, Xie M (2004) Optimality and scalability study of exist-
ing placement algorithms. IEEE Trans on CAD 23(4):537–549

17. Chen TC, Chang YW, Lin SC (2005) IMF: interconnect-driven multilevel floorplanning
for large-scale building-module designs. In Proc ICCAD 159–164

18. Fiduccia CM, Mattheyses RM (1982) A linear-time heuristic for improving network par-
titions. In Proc DAC 175–181

19. Goldberg AV (1997) An efficient implementation of a scaling minimum-cost flow algo-
rithm. ACM J. Algorithms 22:1–29

D
R

A
FT

30 Jarrod A. Roy, David A. Papa and Igor L. Markov

20. IWLS 2005 Benchmarks, http://iwls.org/iwls2005/benchmarks.html
21. Kahng AB, Mantik S, Markov IL, (2002) Min-max placement for large-scale timing

optimization. In Proc ISPD 143–148
22. Kahng AB, Mandoiu II, Zelikovsky A (2003) Highly Scalable Algorithms for rectilinear

and octilinear steiner trees. In Proc ASPDAC 827–833
23. Kahng AB, Wang Q (2005) Implementation and extensibility of an analytic placer. IEEE

Trans on CAD 25(5):734–747
24. Kahng AB, Reda S (2004) Placement feedback: a concept and method for better min-cut

placement. In Proc DAC 143–148
25. Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel hypergraph partitioning:

applications in VLSI domain. In Proc DAC 526–629
26. Khatkhate A, Li C, Agnihotri AR, Yildiz MC, Ono S, Koh C-K, Madden PH (2004).

Recursive bisection based mixed block placement. In Proc ISPD 84–89
27. Li C, Xie M, Koh C-K, Cong J, Madden PH (2004) Routability-driven placement and

white space allocation. In Proc ICCAD 394–401
28. Li C, Koh C-K, Madden PH (2005) Floorplan management: incremental placement for

gate sizing and buffer insertion. In Proc ASPDAC 349–354
29. Moffitt MD, Ng AN, Markov IL, Pollack ME (2006) Constraint-driven floorplan repair.

In Proc DAC 1103–1108
30. Nam G-J, Alpert CJ, Villarrubia P, Winter B, Yildiz M (2005) The ISPD 2005 placement

contest and benchmark suite. In Proc ISPD 216–220
31. Ng AN, Markov IL, Aggarwal R, Ramachandran V (2006) Solving hard instances of

floorplacement. In Proc ISPD 170–177
32. Papa DA, Adya SN, Markov IL (2004) Constructive benchmarking for placement. In

Proc GLSVLSI 113–118 http://vlsicad.eecs.umich.edu/BK/FEATURE/
33. Reda S, Chowdhary A (2006) Effective linear programming based placement methods.

In Proc ISPD 186–191
34. Roy JA, Adya SN, Papa DA, Markov IL (2006) Min-cut floorplacement. IEEE Trans on

CAD 25(7):1313–1326
35. Roy JA, Markov IL (2007) Seeing the forest and the trees: Steiner wirelength optimiza-

tion in placement. IEEE Trans on CAD 26(4):632–644
36. Roy JA, Markov IL (2007) ECO-system: embracing the change in placement. In Proc

ASPDAC 147–152
37. Roy JA, Papa DA, Adya SN, Chan HH, Lu JF, Ng AN, Markov IL (2005) Capo: robust

and scalable open-source min-cut floorplacer. In Proc ISPD 224–227
38. Roy JA, Papa DA, Ng AN, Markov IL (2006) Satisfying whitespace requirements in

top-down placement. In Proc ISPD 206–208
39. Tang X, Tian R, Wong MDF (2005) Optimal redistribution of white space for wire length

minimization. In Proc ASPDAC 412–417
40. Westra J, Bartels C, Groeneveld P (2004) Probabilistic congestion prediction. In Proc

ISPD 204–209
41. Yang X, Choi B-K, Sarrafzadeh M (2002) Routability driven white space allocation for

fixed-die standard-cell placement. IEEE Trans on CAD 22(4):410–419

