
Analytical Placement of Hypergraphs | I

Andrew Kennings and Igor Markov

Abstract

G lobal placement of hypergraphs is critical to modern physical implementation methodology for large timing-
driven designs. Placement results are typically evaluated in terms of the half-perimeter wirelengths of hyper-

edges in the original circuit hypergraph. However, existing analytical placers rely on a heuristic transformation
into a graph to enable classical linear and quadratic edgelength minimizations. As a result, optimizing a wrong
objective leads to grossly suboptimal solutions, as con�rmed by our experiments.

We present a novel approach to minimization of the half-perimeter hyperedge wirelength without graph models
using provably good approximations of multivariate piece-wise linear functions. Our algorithm is tested on
industrial instances, particularly, in a top-down placement context.

1 Introduction

A nalytical placers are increasingly important in physical design as process technology advances and design
complexity increases. The fact that interconnect delays dominate device and cell delays in large netlists

entails a global optimization setting that focuses on the area and performance costs of interconnect. Analytical
placers �nd locations of modules (individual cells or macros) so as to minimize a wirelength estimate representing
a cumulative measure of interconnect delay and utilization; some algorithms also minimize speci�c timing-critical
paths. To be implementable, placement solutions must satisfy various combinatorial constraints, e.g., use only
prescribed module locations, avoid module overlaps etc. These constraints are temporarily relaxed for analytical
placement and are later taken care of by specialized code which may itself make repeated calls to analytical
placement. For example, a placement with excessive module overlaps or overutilization of routing resources can
be spread out using min-cut partitioning [4, 21, 23, 22, 11], transportation [12, 26] or force-directed techniques [6].

Circuits are represented by weighted hypergraphs GH(VH ; EH) with vertices VH = fv1; v2; � � � ; vng corresponding
to modules, and hyperedges EH = fe1; e2; � � � ; emg corresponding to signal nets. Vertex weights correspond to
module areas, while hyperedge weights correspond to criticalities and/or multiplicities. Vertices are either �xed

or free. Hyperedge ei 2 E connects pi � 2 vertices and each vertex vj 2 V is incident to dj � 0 hyperedges. pi
and dj are respectively called the vertex and hyperedge degrees, and are typically very small.1 We say that vj
has dj pins, and ei has pi pins, for a total of P =

Pm
j=1 dj =

Pn
i=1 pi pins in the hypergraph. Module placements

in x and y directions are captured by the placement vectors x = (x1; : : : ; yn) and y = (y1; y2; : : : ; yn).
Placement results are typically evaluated using the half-perimeter wirelength (HPWL) of the circuit hypergraph.

Although direct minimization of HPWL has been attempted via linear programming [9, 27], this approach has
proven too computationally intensive due to the sizes of the resulting linear programs. Thus, it is typical to
transform the circuit hypergraph into a graph prior to solving, or even formulating, any optimization problems.
Each hyperedge is modeled by a star [13, 19] or a clique [10, 24, 23] of edges. A commonly used star model adds
a new center vertex and represents the original net by edges connecting the center to previously existing vertices.
The clique model connects all pairs of vertices incident to the original hyperedge by edges of equal weight.

1In other words, circuit hypergraphs are sparse: the number of hyperedges varies from 0.8x to 1.5x of the number of free vertices
and half the number of terminals since each module typically has only one or two outputs, each of which represents the source of a new
signal net. In current applications, circuit hypergraphs may have up to one million device-, gate- and cell-level modules (instances of
sizes 1,000 through 1,000,000 are equally important), yet average vertex and hyperedge degrees typically between 3 and 5; 50-80%
of hyperedges have degree 2. Few vertices have degrees much higher than the average; these may correspond to large macro blocks.
Very few hyperedges are extremely large, with degrees reaching the hundreds or thousands; these represent clock, reset, test and other
global nets.
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Analytical placers based on the graph transformation have proven quite popular. Early algorithms [24, 23] based
on squared wirelength objectives were attractive since they relied on solving a single system of linear equations
to obtain a global module placement. However, the squared wirelength objective tends to overemphasize the
minimization of long wires at the expense of short wires; this increases the demand on routing resources, thereby
leading to a poorer layout. Mahmoud et al. [16] compared linear and squared wirelength objectives for analog
placement with the conclusion that the linear wirelength objective is superior. Hence, recent analytical placers
[20, 1] rely on a linear wirelength objective that is optimized, e.g., by iterated approximations with quadratic
wirelength objectives [20].

In this paper, we revisit the direct minimization of half-perimeter wirelength, by working with the circuit
hypergraph without relying on graph models of hyperedges. Our strategy is based on the observation that the
HPWL is a convex, but not everywhere di�erentiable function with singularities arising from \min" and \max"
functions. We advance the function smoothing techniques, recently proposed in [3] for various VLSI layout
problems, to handle HPWL.

The remainder of this paper is structured as follows. Section 2 demonstrates the di�culties inherent in the
direct minimization of HPWL due to its non-di�erentiability. Reductions to graphs and previous work on ana-
lytical placement are described. Section 3 discusses important practical considerations, in particular, the utility
of preconditioners based on direct solvers and the importance of the Newton-type methods for linear wirelength
minimization. In Section 4 we propose novel piece-wise linear multivariate regularizations that result in ap-
proximations of HPWL with arbitrarily small relative error. This enables graph-free HPWL minimization via
unconstrained smooth and convex optimization. Section 5 describes our analytical placement engine and presents
numerical results from testcases from the industry in the context of top-down placement. Section 6 concludes
with the directions of ongoing work.

2 Review of analytical placement

2.1 Hypergraph placement

Let Cn be the set of indices of hypergraph vertices incident to net en 2 EH . The x-direction HPWL estimate is
given by

HPWLx(x) =
X

en2EH

�
max
i2Cn

fxig � min
i2Cn

fxig
�
=

X
en2EH

max
i;j2Cn

jxi � xj j: (1)

HPWL is a convex function of x since jxi � xj j is convex for all i; j. However, HPWL is not strictly convex

and most often has uncountably many minimizers. HPWL minimization requires �xed vertices, with at least
two di�erent locations (otherwise placing all vertices to the same location will achieve an optimal solution with
wirelength 0). Fixed vertices in circuit hypergraph are conveniently provided by I/O pads and external pins. The
non-di�erentiability of the min and max functions disables classic smooth minimization techniques such as the
Newton's method. It can be shown that any single iteration of the steepest descent will end up in a solution where
gradient is not well-de�ned and the new steepest descent direction is not easily available.2

In [27], the HPWL estimate is converted into an equivalent linear program (LP) by adding, for each net ej ,
upper and lower bound variables uj and vj . The cost of the net is measured as the di�erence between the two,
and in an optimal solution each uj and vj will be equal to the rightmost and leftmost module locations of net ej .
Each variable comes with pi inequality constraints that restrict uj(vj) to be larger (smaller) than the locations
of every module incident to the net. Thus, for a circuit with n nets and m modules, the linear program will have
m+2n variables and 2P constraints. While LP will return optimal placements, the large instance sizes e�ectively
preclude any application to fast placement of large hypergraphs.

2An even bigger problem is demonstrated by a 3-clique of free vertices that is connected to a �xed vertex by one edge. As soon as
all free vertices are located at the same point, no movement of a single vertex can improve wirelength while moving all three toward
the �xed vertex will lead to the optimal placement. This shows that computing partials, even one-sided, may not give the steepest
descent direction.
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2.2 Reduction to graphs

Given the lack of relevant placement techniques for hypergraphs, heuristic modeling of circuit hypergraphs by
graphs is common. In such models, every hyperedge is represented by a group of equally weighted edges. The
unoriented star model adds a new center vertex and represents the original net by edges connecting the center
to previously existing vertices (modules) [13, 19]. The clique model (see [2, 10, 14] for a review) connects all
pairs of vertices (modules) incident to the original hyperedge by edges of non-unit weight.3 Clique models of
large hyperedges become prohibitively expensive due to the quadratic edge count. Therefore, large hyperedges
are typically modeled by stars or dropped completely.
Wirelength estimates for individual edges of a graph are weighted by edge weights and added up to produce

a total wirelength estimate. For an edge that connects modules with abscissae x1 and x2, the most popular x-
wirelength estimates are (a) linear (Manhattan) jx1�x2j and (b) square (Euclidean) (x1�x2)

2; the y-wirelength
is computed in the same way and added to the x-wirelength. While both functions are convex, only the square
wirelength is strictly convex for connected graphs, which guarantees a unique minimizer.
Minimization of squared (quadratic) wirelength

min
x

fPi>j aij(xi � xj)
2 : Hx = bg (2)

(H represents various linear constraints) is the easiest because, without going into further detail (see [24, 23]),
the unique solution to this optimization problem can be obtained by solving a single system of linear equations,
either positive-de�nite or symmetric-inde�nite depending on the approach. High-quality implementations of linear
system solvers are freely available and their performance is good enough for most VLSI placement applications.
Unfortunately, the squared wirelength objective tends to provide lower-quality placements.
Linear wirelength minimization has been proposed and achieves better placements while still using the above

reduction of circuit hypergraph to a graph. Linear wirelength minimization is formulated as

min
x

fPi>j aij jxi � xj j : Hx = bg (3)

and is not amenable to Newton-type methods since it is neither di�erentiable nor strictly convex. It can be solved
by GORDIAN-L [20] using iterated quadratic minimizations

min
x�
fPi>j

aij
jx��1
i

�x��1
j

j
(x�i � x�j )

2
: Hx� = bg (4)

where x��1 and x� denote the vectors of vertex positions at iterations � � 1 and �. A quadratic objective is used
to avoid the non-di�erentiability of the objective of (3), but the coe�cients of the objective are updated at each
iteration to approximate the linear wirelength estimate.
As an alternative, the following regularization of (3) has been proposed in [1]

min
x

fPi>j aij

q
(xi � xj)

2
+ � : Hx = bg (5)

and o�ers two solution approaches: with a linearly-convergent �xed-point method following Eckardt's [7, 8]
generalization of the Weiszfeld algorithm [28], and with a novel primal-dual Newton method having quadratic
convergence. Numerical testing in [1] illustrates the tradeo�s in values of � > 0 versus time and di�culty, and
the GORDIAN-L heuristic is interpreted as a special case � = 0 of a �xed-point method that has proven linear
convergence for � > 0. This can be seen by computing the partials of the objective in (5), setting � = 0 and
comparing to the partials of (4).

2.3 �-regularization

De�ne4 �-regularization of f(x) = jxj as f�(x) =
p
x2 + �, which is a twice di�erentiable strictly convex function

(thus amenable to Newton-type methods) that overestimates f(x) at most by
p
�. Similar techniques apply to

3A shortcut computation is available when the clique model is used with squared wirelength [20]. Given a hyperedge of degree p,
the squared wirelength of a clique with uniform edge weight 2

p
equals the squared wirelength of a star whose center vertex is placed

at the center of gravity of its p neighboring vertices. In this context, the center of the star is not an independently placed vertex; this
is in contrast to the general star model.

4See [3] for more general de�nitions.
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arbitrary convex univariate piece-wise linear functions [3], in particular, as � ! 0, the unique minimizer of the
regularized function approaches minimizers of the original function.
�-regularization extends to a wider class of possibly multivariate convex piece-wise di�erentiable functions with

cusps due to an absolute value or more general case analysis in their symbolic representation. Substituting a
symbolic fragment, e.g., jxj, with a regularization leads to a smooth function and allows to regularize multivariate
functions.
The convexity properties and the limit behavior of the fragment regularizations often extend to the resulting

function through sums, products etc. In particular, �-regularized linear wirelength is twice di�erentiable and, for
connected graphs, strictly convex (hence a unique minimizer).

Example: The function maxfa; bg = a+b+ja�bj
2 can be regularized with

a+b+
p
ja�bj2+�

2 , and minfa; bg =

a+b�ja�bj
2 with

a+b�
p
ja�bj2+�

2 .

In particular, for f(t) = maxf0; (t� t0)g, f�(t) = 1
2 ((t� t0)+

p
(t� t0)2 + �), which allows to represent timing-

critical path constraints by adding penalty terms to the objective function that turn to zero when the constraints
are satis�ed and grow rapidly with violations.

3 Practical considerations and pitfalls

While the utility of analytical placers has been empirically established, several inherent subtleties can potentially
impair implementations of novel algorithms (or even well-established ones), particularly given new application
contexts. One notable problem is the deterioration of convergence which results in iterations with no improvement
and wasted CPU time. In this section, we provide two constructions that motivate (a) the utility of preconditioners
based on exact (versus iterative) solvers, and (b) the superiority of Newton-type methods to the steepest descent
method for linear wirelength minimization. The latter, in particular, shows the bene�t of optimizing twice
di�erentiable functions with \second-order" information available with the Hessian.

3.1 Chain graphs

Consider a chain graph with unit weight edges, n free vertices and two end vertices �xed at �0 and �1 6= �0. All
free vertices are initially placed at �0. While the initial solution is optimal for linear wirelength (any solution
with all free nodes placed between �0 and �1 in the chain order is optimal), the unique minimizer for the squared
wirelength and for �- regularized linear wirelength has the free nodes distributed uniformly between �0 and �1
in the chain order. Indeed, equivalent unconstrained formulations are given by minimization of

fq(x) = (�0 � x1)
2 + (x1 � x2)

2 + : : :+ (xn � �1)
2

and
f�(x) =

p
(�0 � x1)2 + � +

p
(x1 � x2)2 + � + : : :+

p
(xn � �1)2 + �

The j-th partials are given by
@fq
@xj

= 4xj � 2xj�1� 2xj+1 and
@f�
@xj

=
2(xj�xj�1)p
(xj�xj�1)2+�

� 2(xj+1�xj)p
(xj+1�xj)2+�

. Since fq(x)

and f�(x) are di�erentiable and strictly convex, the necessary and su�cient condition for x to be the minimum
is for it to also zero all partials. Since the above partials turn to zero when xj = (xj+1 + xj�1)=2, the unique
minimizer of each function will space fxjg evenly between �0 and �1 according to the chain order.
No matter what a particular iterative method does, most existing algorithms are local in the sense that they look

at the neighbors of each vertex to �nd locations that improve wirelength of incident edges (or edges incident to
neighbors, etc.). Since all free vertices are initially placed at �0, all of them except one have all neighbors placed at
the same location. Therefore, the �rst iteration of a typical iterative placer, being concerned only with immediate
neighborhoods, is only capable of moving one vertex; the kth iteration will move no more than k vertices. The
cost of one iteration (i.e., the discovery of the vertices to be moved) is linear in most placers, implying an overall
quadratic complexity that is most likely unacceptable.5 During quadratic minimization, successive iterations are
made inside the linear solver, e.g., using successive overrelaxation. One particular reason for the above problem

5While theoretic complexities of some popular methods may be even higher, \early stops" after only a few initial iterations make
them practical. However, with the chain example no early stop is clearly possible.
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to not be critical is that iterative linear solvers often use preconditioners based on algorithms for exact solvers,
e.g., LU-factorization, which makes them insensitive to the problem discussed.

3.2 Cliques and clusters

The \second-order" information provided by the Hessian in Newton-type methods in linear wirelength minimiza-

tion appears critical to iteration count and run time. A very simple example, which can be found embedded
in typical circuit hypergraphs, shows that the Newton method can achieve an optimal placement in one itera-
tion, while the steepest descent method is slowed by the \lack of look ahead" and moves vertices in numerous
small-stepped iterations.6

Consider a clique of n � 3 free vertices, initially all located at x = �0, with all edges of unit weight. Connect a
single vertex �xed at �1 6= �0 to one of the free vertices (whose location is represented by x1) by an edge of unit
weight. The unique placement minimizing regularized (and original too) linear wirelength has all free vertices
located at �1.
An equivalent unconstrained problem minimizes

p
(�1 � x1)2 + � +

nX
i=1

X
j>i

q
(xj � xi)2 + � (6)

whose gradient is given by

@f

@x
= � (�1 � x1)p

(�1 � x1)2 + �
b1 +

nX
i=1

X
j>i

(xj � xi)p
(xj � xi)2 + �

bji

where bji = [ 0 : : : 1 0 : : : � 1 0 : : : 0 ]
T
and b1 = [ 1 0 : : : 0 ]

T
. \1" and \-1" occupy the j-th

and i-th entries in bji respectively.
Due to the terms (xj � xi) in the numerators of the gradient components, all components except for the �rst

will zero out due to all free vertices in the clique having identical initial locations. Therefore the steepest descent
method will �rst move only one vertex by a very small step closer to the �xed vertex. At the next iteration the
remainder of the clique will move by an even smaller step, and this 2-step pattern will continue until the clique
is close enough to the �xed vertex. Clearly, this will take at least a linear (in terms of j�0 � �1j) number of
iterations.
By contrast, the Newton method will converge in just one iteration by using the \second-order" information

available in the Hessian:
@2f

@x2
=

�
1

[(�1 � x1)2 + �]1=2
�

(�1 � x1)2

[(�1 � x1)2 + �]3=2

�
b1b

T
1

+

nX
i=1

X
j>i

�
1

[(xj � xi)2 + �]1=2
�

(xj � xi)2

[(xj � xi)2 + �]3=2

�
bjib

T
ji

Given the above initial placement, a number of terms in the Hessian will disappear { the coe�cients for every
term in the double summation will become 1=

p
�.

Let the coe�cient of the b1b
T
1 term be denoted by �, and let 1=

p
� be denoted by !. The Hessian written in

matrix form is given by: 2
664

� + (n� 1)! �! �! � � � �!
�! (n� 1)! �! � � � �!
� � � � � � � � � � � � � � �
�! �! � � � �! (n� 1)!

3
775 (7)

The Hessian is positive de�nite and the right-hand side is not zero, implying a unique non-zero solution. It is
easy to show that all the components of �x are equal to each other. All vertices in the clique will move in unison
to the optimal location in one iteration using a reasonable line search method.
This phenomenon can be replicated with su�ciently dense clusters instead of cliques, and multiple instances

are typically encountered in large circuit hypergraphs. While the initial solution may be di�erent from what we
considered, iterations of analytical placers bring cliques and tightly connected clusters closer together. Therefore,
even after several large-stepped iterations, convergence of steepest descent may deteriorate.

6The comparison that we now make is di�erent from traditional comparison of linear convergence of the steepest descent versus
quadratic convergence of Newton-type methods.
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4 Regularizations of HPWL

Motivated by the convexity of HPWL, we seek an e�cient means of minimizing it without graph models. To
enable traditional smooth and strictly convex minimization techniques, we regularize HPWL with arbitrarily
small relative error, providing a unique minimizer and second-order information useable by e�cient Newton-type
methods.

4.1 Sequential �-regularization

(5) applies �-regularization [1, 3] to approximate graph edgelength by a smooth strictly convex function, e.g., in
the context of graph models of circuit hypergraphs. The approximation overestimates the original function by at
most

p
� and therefore accurately approximates HPWL for 2-pin nets.

The di�culty in HPWL approximation is for hyperedges of degree � 3, where HPWL is de�ned using maximum
and minimum of more than two arguments. To resolve this di�culty, we rewrite those terms as sequences of

nested two-variable maximum and minimum functions then regularize maxfa; bg = a+b+ja�bj
2 with

a+b+
p
ja�bj2+�

2
and similarly for min.7 Unfortunately, this regularization of HPWL is quite di�cult to compute e�ciently.
Moreover, it is not a symmetric function of vertex locations if hyperedge degree � 3, leading to a bias in search
directions produced by gradients and Hessians which will slow convergence with respect to true HPWL. A simpler
regularization is available, symmetric and computationally competitive.

4.2 Multivariate p-regularization

In what follows we will use the well-known fact that Lp-norms converge to the L1-norm as p!1.

This is illustrated in Figure 1, where unit-norm curves

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

a1

a2

p=2

p=4

p=16
p=inf

Figure 1: Unit-norm curves for Lp-norms.

(\unit circles") for Lp-norms on the plane are seen converg-
ing to the the \unit circle" k(a1; a2)k1= max(a1; a2) = 1.

For p > 1 and k-dimensional vector a = (a1; a2; : : : ; ak),

let k a kp= (
Pk

j=1 jaj jp)1=p and recall
Fact 1

(a) k a kp�k a kp+1�k a k1
(b) limp!1 k a kp =k a k1= maxj jaj j, in

particular, k a k1�k a kp� k1=p k a k1
(c) %(a) =k a kp is strictly convex and

in�nitely di�erentiable except at a=0

Proof maxfja1j; � � � ; jakjg = (maxfja1jp; � � � ; jakjpg)1=p � (ja1jp+ � � �+ jakjp)1=p � (kmaxfja1jp; � � � ; jakjpg)1=p =
k1=pmaxfja1j; � � � ; jakjg implies k a kp�k a k1 and proves (b). k a kp�k a kp+1 can be reduced by induction
to the case k = 2. Assume positive ai, x and y. The induction step can now be accomplished by introducing
d1 = (ap2+ : : :+apk)

1=p and d2 = (ap+12 + : : :+ap+1k )1=(p+1) for which d1 � d2 holds by induction hypothesis. Then

(ap1 + ap2 + : : :+ apk)
1=p � (ap1 + dp1)

1=p � (ap1 + dp2)
1=p�(ap+11 + dp+12 )1=(p+1) � (ap+11 + ap+12 + : : :+ ap+1k )1=(p+1),

the middle inequality being case k = 2: (xp + yp)1=p � (xp+1 + yp+1)1=(p+1). Equivalently (xp + yp)p+1 =
(xp + yp)(xp + yp)p � (xp+1 + yp+1)p, where both sides can be interpreted as binomials with equal number of
terms. It now su�ces to prove that the inequality holds term by term (xp + yp)(xp)i(yp)p�i � (xp+1)i(yp+1)p�i

(equal constants cancelled out), which follows from (xp + yp) � maxfxp; ypg � xiyp�i.

The di�erentiability can be proven by taking partials, e.g., @f
@ai

= pap�1i (
Pk

j=1 jaj jp)
1
p
�1. Namely, all n-th

partials will be polynomials of ai; i = 1::k and (
Pk

j=1 jaj jp)
1
p
�l; l = 1::n. The latter have a pole at a = 0 and are

di�erentiable elsewhere since 1
p � l < 0. Strict convexity can be deduced by considering second partials. 2

7E.g., for a 3-pin net, maxfjx1 � x2j; jx1 � x3j; jx2 � x3jg can be rewritten as maxfjx1 � x2j;maxfjx1 � x3j;maxfjx2 � x3jggg to
which �-regularization can be applied sequentially.
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Figure 2: Illustration of HPWL(left) for a 3-pin net; HPWL = maxfx1; x2; 1g � minfx1; x2; 1g = maxfjx1 �
x2j; jx1 � 1j; jx2 � 1jg over the intervals x1 2 [0; 3] and x2 2 [0; 2]. The p-regularization (right) is ((jx1 � x2j

p

+jx1 � 1jp + jx2 � 1jp + �)1=p. Here p = 8 and � = 1:0e6.

To approximate the HPWL of an m-pin net, we enumerate all m(m�1)
2 pairwise distances of the form xi � xj

and rewrite the HPWL as their L1-norm (see Equation 1), then approximate with Lp-norms.
8 The resulting

function will be convex as composition of linear and convex functions.

The multiplicative upper bound of (m(m�1)
2 )1=p on overestimation for HPWL of one m-pin net, as given by Fact

1(b), appears very loose since all m(m�1)
2 distances cannot be equal unless being 0. Tighter bounds can be derived

given that the L1-norm is applied only to vectors, whose coordinates are all pairwise distances between m points
on the real line. Such tighter bounds for our regularization of the HPWL of small nets are given in Table 1.9

Net size Upper bounds Maximal relative overestimation
m loose tight p=2 p=4 p=8 p=16 p=32 p=64

3 31=p 21=p 41% 19% 9% 4% 2% 1%

4 61=p 41=p 100% 41% 19% 9% 4% 2%

5 101=p 61=p 145% 56% 25% 12% 6% 3%
6 151=p 91=p 200% 73% 32% 15% 7% 3%

Table 1: Upper bounds for HPWL overestimation by p-regularization for single nets.

As follows from Fact 1(c), overestimating maxfja1j; ja2j; � � � ; jakjg by its p-regularization (ja1jp + ja2jp + � � � +
jakjp)1=p removes all nondi�erentiabilities except for a = 0. Additional overestimation by �-regularization (ja1jp+
ja2jp + � � �+ jakjp + �)1=p smoothens the function at a = 0.
The resulting approximation of HPWL

HPWL(x) � HPWLreg(x) =
X

en2EH

(

jCnjX
i;j

jxi � xj jp + �)1=p (8)

is a smooth and strictly convex10 upper bound on exact HPWL with arbitrary small relative error of approximation
as p!1 and � ! 0. An illustration of the combined p- and �-regularization for the HPWL example in Figure
2. Finally, we note that restricting p to powers of 2 allows for particularly e�ective computations.

8Nets with prohibitively big
m(m�1)

2
can be ignored or handled with sequential �-regularization from subsection 4.1. Yet, a simpler

approach appears to be as e�cient: Lp-norm can be taken over edges of a star model with the center located at the barycenter of the
net's pins.

9E.g., for a 3-pin net, the Lp-norm is (jx1 � x2jp + jx1 � x3jp + jx2 � x3jp)1=p. Clearly, the three terms cannot be equal (unless
0). Assume an arbitrary ordering x1 � x2 � x3 and maximize the Lp-norm for �xed x1 and x3: the maximal overestimation 21=p

is reached when x2 is placed on top of either x1 or x3. A similar argument for 4-pin nets yields a tight bound of 41=p even though
there are 6 terms involved in the Lp-norm for a 4-pin net.

10Strict convexity requires that all free vertices be reachable from �xed vertices. Otherwise there will be multiple optimal solutions,
contradicting strict convexity.
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4.3 Scale-independent �

To determine speci�c values of � to evaluate the regularization or its derivatives, [3] multiplied the p-th exponent
of the maximal jxj value associated to problem instances by an instance-independent value �0.
However, with the newly proposed regularization, such a selection results in minimum function values dependent

on p. Therefore, � is computed as the product of the p-th exponent of the maximal distance value with the p-th
exponent of the instance-independent value �0.

5 Experimental results

5.1 Numerical solver

We tested the proposed approach with a modi�ed Newton method for minimizing our HPWL approximation
that is both smooth and strictly convex. Both the objective and the gradient can be computed analytically, but
the Hessian computations are hard and time-consuming. Nevertheless, given the necessity of handling cliques
and clusters of modules, the second-order information provided by the Hessian is critical for fast convergence as
explained in Section 3.
To this end, we have implemented a limited memory quasi-Newton method which can be viewed as a means of

extending the simple conjugate gradient method by using additional storage to accelerate convergence or as an
implementation of a quasi-Newton method in which storage is restricted [15, 17]. Simply stated we use limited
memory BFGS updates [18, 15]. Let the solution at iteration k be xk and de�ne sk = xk+1�xk and yk = gk+1�gk.
At iteration k, a search direction is computed as dk = �Hkgk where Hk is an inverse Hessian approximation. The
iterate is updated as xk+1 = xk + �kdk where �k is determined from a line search to satisfy descent conditions.
At each iteration, an approximation to the inverse of the Hessian is computed as Hk+1 = V T

k HkVk + �ksks
T
k

(�k = 1=yTk sk and Vk = I � �yks
T
k ); Hk is not represented explicitly, but rather computed by storing m� n pairs

fsk; ykg that de�nes Hk implicitly through the BFGS update formula. Since m � n, once the storage space is
exhausted, the oldest pair fsk�m; yk�mg is discarded to make room for the newest one fsk; ykg.
Our implementation maintains storage for seven past iterations. Iterations continue until (i) a prescribed

iteration limit is exceeded OR (ii) the improvement in the objective function drops below a prescribed threshold
(indicating little progression to optimality) OR (iii) the gradient norm falls below a prescribed threshold.

5.2 Results

Our experimental testbed includes �ve testcases provided by the in- Instance Modules Nets
Fixed Free

test0 76 200 242
test1 545 2686 2840
test2 2155 6739 7330
test3 2191 3205 3835
test4 6545 17380 20902

Table 2: Testcase parameters

dustry (see Table 2) which are either original (\top-level") placement
instances or have arisen on further levels of top-down placement. The
proposed placement algorithm named BoxPlace-1 has been implemented
in C++, compiled with the SunPro CC 4.2 compiler (optimization level
-O5) and executed within Solaris 2.6 operating system on a Sun Ultra-
1 workstation running at 140MHz. Our regularizations have been used
with p = 16 and �0 = 0:01.
Several of our test circuits had disconnected (bonus) cells not reachable

from �xed terminals. To prevent multiple optimal placement solutions
and subsequent breakdown of numerical solver, we assured that only free vertices reachable from �xed vertices
have been passed to the solver. Others have been placed in the center of the layout to minimize WL.
To test the global convergence of the proposed algorithm, we have produced placements from multiple random

initial starting points. The iteration limit of the numerical solver was set to 200 in those runs to permit full
progression. Alternatively, we started with a \one-point" solution placing all vertices into the same location. This
yielded much better initial wirelength and faster convergence to a solution of essentially the same quality as in
the randomized experiment. The same placement instances have been solved by minimizing quadratic wirelength.
While quadratic minimization is certainly faster, the resulting linear wirelength was signi�cantly worse than that
produced by our analytical placer. Results presented in Table 3 include initial and �nal wirelengths observed
in the three experiments as well as cumulative run times for x- and y-directions. Finally, we were able to �nd
optimal placements for test0 and test1 in 23.2 sec and 64 min respectively by formulating these instances as linear
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BoxPlace-1 from random ... from \one-point" Quadratic Weiszfeld
ini/�nal WL CPU� ini/�nal WL CPU� WL CPU� WL CPU�

test0 5.93e7/6.39e6 2.3 6.72e6/6.32e6 2.3 7.66e6 0.22 6.76e6 1.1
test1 3.07e8/3.13e7 111.4 3.51e7/3.11e7 58.6 4.20e7 7.5 3.88e7 24.4
test2 6.27e6/2.31e6 175.1 2.69e6/2.31e6 63.2 2.75e6 39.7 2.7e6 90.8
test3 5.37e6/1.45e6 88.7 1.91e6/1.44e6 32.3 1.61e6 10.8 1.96e6 42.4
test4 3.75e7/1.47e7 565.9 1.50e7/1.34e7 230.9 1.50e7 144.2 1.62e7 360.5

Table 3: Placement results for the BoxPlace-1 algorithm compared against quadratic minimization.
Total HPWL (the sum of x- and y-values) is presented with initial/�nal values.

programs and solving with the public domain package LPSolve. The optimal HPWL values of 5:03e6 and 2:75e6
allow to estimate the suboptimality of solutions produced by fast placement algorithms. LPSolve was unable to
solve larger linear programs in 3 days on an Ultra-1 workstation with su�cient memory.

During our experiments we have discovered that the applicability of analytical wirelength minimization in top-
down placement is somewhat limited by the requirement of su�ciently many �xed vertices. Indeed, with too
few �xed vertices, the \one-point" solution minimized wirelength since most nets were not incident to terminals
and had zero wirelength. In circuits which are not pad driven, analytical wirelength minimization may not be
able to separate cells until su�ciently many terminals are generated during several top-down levels. In such
circumstances, min-cut partitioners apparently have little competition.

6 Conclusions and ongoing work

Q uadratic placers and linear variants are popular primarily due to their ease of implementation and empirical
successes. However, such methods are strictly indirect in their treatment of the minimization of half-

perimeter wirelength and result in grossly suboptimal solutions, as evidenced by our results in Table 3. Graph-free
minimization of HPWL has been di�cult due to both the non-di�erentiable nature of the objective function and
the lack of strict convexity. We have demonstrated the feasibility of approximating HPWL of a hyperedge with an
arbitrarily close upper bound derived from a multivariate regularization of the maxfg function; minimization of
this upper bound provides a reliable means of minimizing HPWL without representing the circuit hypergraph with
graphs. We have also pointed out that \second-order" information is important for handling the clique/clustered
nature of circuit hypergraphs which encourages approximations by twice-di�erentiable functions and the use
of Newton-type methods. To avoid the di�culties of computing Hessian information in the context of HPWL
minimization, we have proposed a limited memory quasi-Newton method which implicitly keeps track of second
order information derived from gradient/solution computations.

Comparisons to the Weiszfeld placement algorithm [1], which is representative of the GORDIAN-L algorithm [20],
indicate that the proposed placer achieves superior half-perimeter wirelength while spending similar amount of
time.11 Numerical results demonstrate global convergence of our method and its ability to signi�cantly improve
upon results achieved by quadratic minimization.

The ongoing work includes speed improvements and embedding the proposed analytical placer into a running
top-down placer. An extension called BoxPlace-2 is planned to reduce the gap between theoretically minimal
half-perimeter wirelength (as produced by linear programming) and what can be achieved within an acceptable
CPU time budget. We are also interested in detection of placement instances for which analytical placers are not
useful due to insu�cient �xed vertices.

11The implementation of Weiszfeld that we used has a small overhead to support additional features not used in this paper. While
we do not claim strict run time comparisons, solution quality should not have been a�ected.
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