
Hierarchical Whitespace Allocation

in Top-down Placement

Andrew Caldwell and Igor Markov

UCLA Computer Science Dept., Los Angeles, CA 90095-1596

fcaldwell,imarkovg@cs.ucla.edu

Abstract

Increased transistor density in modern commercial ICs typically originates in new manufacturing

and defect prevention technologies [13, 14]. Additionally, better utilization of such low-level transistor

density may result from improved software that makes fewer assumptions about physical layout in

order to reliably automate the design process. We observe that existing block- and chip-level layout

instances can have considerable amounts of whitespace { i.e., deliberately unused, costly layout area {

in order to reliably produce high-quality automatic layout solutions. Indeed, modern designs typically

have from several percent up to 20% or more whitespace [5].

Whitespace can be the result of several phenomena, including pin-limited designs, limits of power

distribution/dissipation density, and the need to maintain autoroutability. The �rst two of these

phenomena are intrinsic to the design; the third is the result of limits in the place-and-route tools.

A fourth cause of whitespace, also due to tool limitations, is the use of move-based hypergraph

partitioning in top-down placement of standard-cell row-based designs. As the partitioning tolerance

decreases in the partitioning instance, the results of modern hypergraph partitioners (cutsize, and

the ability to �nd a solution that meets balance constraints) deteriorate signi�cantly [7]. Partitioning

solutions that violate prescribed tolerance often lead to cell overlaps when future subproblems run

1



out of whitespace. Since non-uniform cell sizes generally worsen partitioner performance, modern cell

libraries that have widely varying drive strengths and cell sizes exacerbate the di�culties of move-

based partitioners. The role of partitioners in limiting the reduction of whitespace is the focus of our

present research.

It is known that solution quality for low-tolerance partitioning can be improved for the cost of

additional CPU time [7]. Furthermore, simply increasing the tolerance, e.g., when partitioning a

subinstance perpendicular to cell rows (since there is exibility in locating the resulting cutline),

results in smaller placement wirelength [4]. This work focuses on accurate computation of tolerances

to facilitate use of common move-based iterative partitioners, while avoiding cell overlaps. We propose

a mathematical model of hierarchical whitespace allocation in placement, which results in a simple

computation of partitioning tolerance purely from relative whitespace in the block and the number of

rows in the block. Partitioning tolerance slowly increases as the placer descends to lower levels, and

relative whitespace in all blocks is limited from below (unless partitioners return \illegal" solutions),

thus preventing cell overlaps. Our approach improves the use of the available whitespace, thus leading

to smaller whitespace requirements.

1 Introduction

Increased device density in commercial ICs, commonly perceived as necessary to maintain the pro-

gression of Moore's law [15, 13], has been primarily seen as a result of innovations in manufacturing

and defect prevention technologies [14]. At the same time, such device density for a given process

generation is also limited by the capabilities of EDA software [18]. A particular limitation is caused

by the whitespace that move-based physical design optimizations, in particular placement, require to

reliably converge to low-cost solutions.

The essential components of a typical placement problem are the placement region, possibly with

discrete allowed locations, the cells to be placed subject to various constraints, and the netlist topology

2



that shapes the minimized objective function. Academic and commercial standard-cell placers often

apply a top-down, divide-and-conquer approach to de�ne an initial global placement. The top-down

approach [17, 11, 1] decomposes the given placement problem into smaller problems by subdividing

the placement region, assigning cells to subregions, reformulating constraints, and cutting the netlist

| such that good solutions to subproblems combine into good solutions of the original problem.

The concept of placement blocks is pivotal. A block represents (i) a placement region with allowed

locations, (ii) a collection of cells to be placed in this region, (iii) all nets incident to the cells, and (iv)

locations of all cells beyond the given region that are adjacent to the cells to be placed in the region;

such external cells are considered to be terminals for the block, and their locations are �xed. A

high-level pseudocode for top-down global placement in terms of placement blocks is shown in Figure

1; su�ciently small partitioning instances are processed as end-cases by specialized partitioners or

placers.

Every block yields a hypergraph partitioning instance: nodes correspond to cells inside the block

as well as propagated external terminals [6], and hyperedges are induced over the node set from the

original netlist. In practice blocks are split through balanced min cut hypergraph bisection with

FM-type move-based heuristics [10, 8]; The performance of such heuristics on larger instances is

improved through the multilevel paradigm [2, 9]. Global placement solutions place all cells at legal

sites in cell rows with no overlaps. Detailed placement re�nement then makes small perturbations to

exploit such degrees of freedom as cell mirroring, electric equivalence substitution, or shifting a cell

slightly within its row to improve routability.

Hypergraph bisection instances arising in the placement process tend to have tight balance con-

straints [7], i.e., the sizes of partitions in the solution should not deviate from target partition sizes

3



by more than prescribed amounts (see [3] for a review of netlist partitioning formulations and con-

straints). Such constraints arise because the proportion of deliberately introduced free sites (i.e.,

whitespace) in leading edge deep-submicron designs is limited.1 To avoid overcapacity blocks, total

cell area assigned to a block must always closely match the area available for cells. Illegal solutions or

excessively relaxed balance tolerances lead to uneven area utilization (i.e., proportion of whitespace

in a given sub-block) and, eventually, overlapping cells. Even when a legal solution is obtained by

the partitioner, as the partitioner exploits its available tolerance one child of the partitioned block

can have relatively less whitespace than its parent, so that partitioning constraints become tighter on

lower levels of top-down placement even if average whitespace is large. Such deviations in available

whitespace cannot be easily corrected, essentially because cuts parallel to rows cannot be adjusted

after partitioning. On the other hand, attempting to maintain available whitespace by imposing

unnecessarily tight balance constraints will hurt solution quality and lead to increased wirelength in

the layout.2

In this work we develop a mathematical model to �nd better tolerances: not too small | to

generally avoid overcapacity blocks, and not too big | to facilitate common move-based partitioners.

The primary contribution of this work is a new whitespace computation whose utility is supported by

experimental evidence.

The remaining text is organized as follows. Basic notation is introduced in Section 2 and straight-

1Deliberate introduction of whitespace traditionally stems from three phenomena, namely, pin-limited designs, limits
of power distribution/dissipation density, and the need to maintain autoroutability. However, these phenomena are in-
creasingly addressed by packaging and process technology, better architecture and circuit design techniques, multilayer
interconnect processes, and cell library design. Thus, whitespace in modern block- and chip-level instances typically ranges
from several % to 20% [5].

2The work of [7] in particular showed that iterative move-based partitioners perform poorly with small tolerance.
The authors of [7] proposed the technique of intermediate relaxations to trade CPU time for solution quality in such
circumstances. Their work is orthogonal to ours: we address the question of how to best control the allocation of whitespace
(via bounds on partition sizes) during the top-down partitioning process.

4



Variables: A queue of blocks

Initialization: A single block represents the original placement problem

Algorithm: while (queue not empty)

dequeue a block

if (small enough) consider endcase

else

bipartition into smaller blocks

enqueue each block

Figure 1: High-level outline of the top-down partitioning-based placement process.

forward facts about whitespace are mentioned. In Section 3, we control splitting of single blocks

by maximizing partitioning tolerance for given whitespace deterioration. This process is described

mathematically. Most surprisingly, relative whitespace and relative tolerances are connected inde-

pendently of whitespace deterioration, site and cell areas. This leads to a simple computation of

bipartitioner parameters in terms of relative whitespace in the block and the number of rows in the

block. Experimental validation is presented in section 4. Section 5 concludes with directions for

ongoing work.

2 Whitespace fundamentals

Let the block have site area S, cell area C (typically with C � S), [absolute] whitespace W = maxfS�

C; 0g and relative whitespace w =W=S. A geometric bipartitioning of the block entails site areas S0

and S1 in child blocks (S0+S1 = S, S0 � S, S1 � S). Any hypergraph bipartitioning solution implies

cell areas C0 and C1 in child blocks (C1+C2 = C, 0 � C0, 0 � C1; if in the original block C � S, we

will also require C0 � S0, C1 � S1). The input to a hypergraph bipartitioner must specify both the

netlist and the allowed ranges for C0 and C1, i.e. bounds C
min
0 � C0 � Cmax

0 , Cmin
1 � C1 � Cmax

1

(with Cmax
0 +Cmax

1 > C possible). These bounds establish absolute Tj = Cmax
j �Cmin

j and relative

5



�j = Tj=C partitioning tolerances for j = 0; 1 (�0 = �1 not required, but often holds). Absolute and

relative whitespace in child blocks are de�ned by Wj = Sj � Cj and wj =
Wj

Sj
(see Figure 2).

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

C

C S

S

W

W

0

1

0

1

0

1

C W

Figure 2: Basic variables for a block and two child blocks: site

area S, cell area C and whitespace W = S � C.

In order to express w in terms of w0 and w1, write w = S�C
S

= S0�C0
S

+ S1�C1
S

= S0
S
W0

S0
+ S1

S
W1

S1
,

hence

w =
S0
S
w0 +

S1
S
w1 (1)

Since S1
S

= 1 � S0
S
, relative whitespace in a block is a convex combination of relative whitespace in

child blocks. Subsequently relative whitespace in a block is never smaller than that in every child

block. If one child block has more relative whitespace than its parent, then the other child block

has less. If we wish to limit relative whitespace in blocks from below, it su�ces to consider end-case

blocks only. In the special case when child blocks have equal site area, Equation (1) contains an

arithmetic average. In practice S0=S can be small, e.g., 1=3 when a three-row block is bipartitioned

horizontally, and even smaller than 1=3 when some sites in the one-row child block are obstructed by

special wiring.

Given a collection of non-overlapping placement blocks that cover the layout, e.g., in the course

of top-down placement, one can recursively apply (1), to show that the average relative whitespace

6



for the design (i.e. relative whitespace for the top-level block) is a convex combination of relative

whitespace in individual blocks.

Overcapacity cell area (or over�ll) in a block is de�ned by � = maxf0; C �Sg, relative over�ll |

by � = �=S. Given a collection of non-overlapping blocks that cover the layout, the total over�ll �0

for the design is the sum of over�ll in all blocks; average relative over�ll �0 for the design is computed

by dividing �0 by the site area in all blocks. Similarly to average relative whitespace, average relative

over�ll is a convex combination of relative over�lls in individual blocks.

For a given block, the relative whitespace and relative over�ll can not be simultaneously bigger

than zero, and ensuring non-zero whitespace in all blocks precludes over�ll. Assuming non-zero

average relative whitespace [at the top-level], we will require that for each block split the relative

whitespace in each child block is at least �w, where w is the relative whitespace in the block and

0 � � � 1 is whitespace deterioration, i.e.

w0 � �w and w1 � �w (2)

For practical purposes, � = 1 may be overly restrictive as it entails partitioning with zero tolerance

in the proportion of site area, while � = 0 may be too loose as it allows for child blocks with no

whitespace. It is reasonable, however, to assume � � 0 for end-case blocks and � � 1 for blocks at

high levels of large designs.

The following is the key observation for hierarchical whitespace allocation in top-down placement.

Theorem Assuming non-zero average relative whitespace w0 in the design, the result of top-down

placement will have zero total over�ll if every block split is performed with whitespace deterioration

7



�i > 0, possibly di�erent for every block.

Proof Relative whitespace in every end-case block will then be at least �0 : : : �nw0 > 0.

In partitioning-driven top-down placement, whitespace deterioration is controlled with balance

tolerance that constraints partitioning solutions.

Corollary Top-down placement results in a zero-over�ll placement if balance tolerances corre-

spond to strictly positive whitespace deterioration and all partitioning solutions are legal.

Excessively tight (i.e. to close to 1) whitespace deterioration may allow no legal solutions, e.g.,

for purely number partitioning reasons if it entails tolerance below the size of one site.3 Small

tolerance can also imply poorer partitioning quality because it restricts the solution space and may

incapacitate move-based partitioners by disallowing moves of large cells (when their sizes are bigger

than tolerance).

On the other hand, [4] empirically shows that higher partitioning tolerances result in small place-

ment wirelength. Therefore it is important to keep whitespace high enough to prevent overcapacity

blocks and, at the same time, keep partitioning tolerances high to ensure small cuts and, thus,

wirelength.

3 Whitespace allocation

In this section, we will control block splits by maximizing partitioning tolerance for given whitespace

deterioration; this results in a number of useful properties: (6), (7) and (8). Most surprisingly,

relative whitespace and relative tolerances are recursively connected (12) independent of whitespace

deterioration. This allows to compute optimal relative tolerance given the initial and �nal relative

3Cell sizes are typically small integer multiples of site size.

8



whitespace. The latter can be computed solely from the initial relative whitespace (10).

We show how to determine Cmin
j and Cmax

j for a block only from its relative whitespace and the

number of rows covered (16). Our formulae, derived to account for the worst case possible, can be

transparently adjusted for optimism, which may be useful in designs with abundant whitespace.

3.1 Splitting a block

We compute Cmax
j and Cmin

j for child blocks of a particular block assuming given �. The resulting

tolerances for both partitions appear equal and thus the relative tolerance � is determined by �. It is

somewhat surprising that �, w and � are connected independently of Sj or Cj and any two of them

imply a particular value for the third, which can be computed by a simple formula. These relations

facilitate further modeling of recursive block splits in the next subsection.

Rewrite (2) as

�
S � C

S
� Sj � Cj

Sj
) CjS � (1� �)SjS + �SjC ) Cj � (1� �)Sj + �

Sj
S
C

adding the original bounds for Cj we get

0 � Cj � minfC; Sj ; (1� �)Sj + �
C

S
Sjg

Since 0 � � � 1 and 0 � C � S, we have (1� �)Sj + �C
S
Sj � (1� �)Sj + �Sj � Sj .

9



The above is now simpli�ed4

0 � C0 � minfC; (1� �)S0 + �
C

S
S0g =: Cmax

0 (3)

0 � C1 � minfC; (1� �)S1 + �
C

S
S1g =: Cmax

1 (4)

The remaining constraint C0 + C1 = C is now equivalent to

C0 � maxf0; C � Cmax
0 g =: Cmin

0 ; C1 � maxf0; C � Cmax
1 g =: Cmin

1 (5)

When C is very small compared to S (i.e. the block has a lot of whitespace) and � su�ciently small,

Cmax
j and Cmin

j may degenerate into C and 0 respectively. In such cases, all cells are allowed to go

into one partition and no further analysis is required until a child block appears with small enough

white space to produce non-trivial partitioning tolerance.

In the following analysis, we assume that all cells can never go into one partition (worst case),

therefore5 Cmax
j = (1 � �)Sj + �

Sj
S
C and Cmin

j = C � Cmax
1�j . Now Tj = Cmax

j � Cmin
j = Cmax

0 +

Cmax
1 � C = (1 � �)(S � C), i.e. absolute tolerances for partitions are equal. Furthermore, � =

T=C = (1� �)(S=C � 1) from which straightforward calculations lead to

� =
(1� �)w

1� w
(6)

� = (� + 1)� �

w
(7)

4Here we also de�ne Cmax
0 and Cmax

1 , while Cmin
0 and Cmin

1 are de�ned in (5).
5Our analyses hold for blocks allowing all cells in one partition, however, the proposed values of Cmax

j on lower levels
are not the best possible. In a way, we assume the pessimistic case.

10



w =
�

� + 1� �
(8)

3.2 Hierarchical whitespace allocation

It has been shown above that, for a given block, feasible ranges for partition capacities are uniquely

determined by �. This section discusses methods of determining values of �.

We start with the top-level block having w0 whitespace and go on to further blocks with whitespace

wi+1 = �iwi (9)

We distinguish between blocks being split by cut lines parallel to rows and those perpendicular to

rows. This is because perpendicular cut lines can be adjusted after partitioning to achieve almost

even distribution of whitespace among child blocks, which has the e�ect of � � 1. In other words,

we only have to consider row-parallel cut-lines. Let R be the number of rows; the expected number

n of recursively applied parallel block splits will be n = dlog2Re, assuming that rows are distributed

evenly between child blocks at every block split.

To prevent overcapacity blocks and improve routability, assume also that whitespace in every

block is at least �w (� w0). We �nd �w, observing that end-case blocks have � = 0 since they are not

partitioned further. Thus from (8) we get

�w = wn =
��

�� + 1
(10)

11



A straightforward way to determine �i is to assume that they are all equal. This leads to6

� = n

r
�w

w0
= n

r
��

w0(�� + 1)
(11)

However, assuming all �i equal appears more practical since balanced partitioners typically require

a certain relative tolerance to be successful regardless of whitespace deterioration. In a di�erent,

improved approach we combine (7) and (9) to get rid of �

wi+1 = (�i + 1)wi � �i (12)

Now, assuming all �i equal yields wn = (�+1)nw0��(�+1)n�1� : : :�� = (�+1)nw0�� (�+1)n�1
(�+1)�1

resulting in

�w = wn = (� + 1)nw0 � (� + 1)n + 1

and

(� + 1)n =
1� �w

1� w0
(13)

Therefore we can replace the straightforward Equation (11) with

� = n

r
1� �w

1� w0
� 1 (14)

6Due to essentially uncontrollable distribution of whitespace in child blocks and to compensate for small whitespace
uctuations after perpendicular block splits, �i can be recomputed for every block, given the actual amount of whitespace
in the block.

12



and combine (13) and (10) with �n = � to �nd a closed expression for �

� =
1

n+1
p
1� w0

� 1 (15)

Finally, (15) and (7) give a closed expression for whitespace deterioration � in terms of relative

whitespace w in the current block and the number R of rows in the block.

� =
n+1
p
1� w � (1� w)

w n+1
p
1� w

; n = dlog2Re (16)

Values Cmax
j and Cmin

j (j = 0; 1) supplied to partitioner can be directly computed by (3), (4) and

(5).

This computation of Cmax
j and Cmin

j can be performed for every block using the exact amount

of whitespace available after partitioning.7 While resulting tolerances are likely to increase towards

lower levels, they will preserve original lower bounds for relative whitespace in every block8 and

thus prevent overcapacity blocks. Compared to the pessimistic a priori tolerances, such increased

tolerances can result in cut improvements during hypergraph partitioning and cause smaller total

placement wirelength.

3.3 Splitting overcapacity blocks

While our approach guarantees no overcapacity blocks and no cell overlaps under certain conditions,

these conditions may not always hold. In particular, a partitioner may return illegal solutions when

there are cells larger than partitioning tolerance or, more generally, when balanced solutions do not

7Compared to a possible a priori computation for all blocks that only assumes relative whitespace at the top level and
the number of rows in the design, but assumes that every block has the worst possible relative whitespace after partitioning.

8In the assumption that all partitioning tolerances are satis�ed.

13



exist for number partitioning reasons. This typically happens when partitioning small blocks with

tight tolerances, where each cell accounts for a considerable percent of the block's total cell area.

When splitting such blocks, we will minimize the maximal relative over�ll in child blocks, which

is equivalent to equal relative over�ll according to Section 2.9 Hence, the desired partition capacities

C1 and C2 need to satisfy �0 = C0�S0
S0

= C1�S1
S1

= �1 and C0 + C1 = C; they can be computed via

C0 =
S0
S
C; C1 =

S1
S
C (17)

These considerations do not allow for nonzero partitioning tolerance since even the slightest imbalance

in the resulting partitioning solution would lead to an increase in relative over�ll. However, there are

currently no practical algorithms available for zero-tolerance partitioning. Therefore, it is necessary

to arti�cially introduce partitioning tolerance. Appropriate values should be chosen corresponding

to the cell area distribution and the capabilities of the partitioning algorithm used. Formulae (17)

are used for computing target partitioning capacities.

4 Experimental validation

In this section we present a comparison of our proposed method with a simpler alternative whitespace

allocation strategy for horizontal cuts. In this simpler method, the target partition balances are

proportional to site areas in the resulting partitions and horizontal cut tolerances are constant.

9Since the relative over�ll in the original block is a convex combination of the relative over�lls in child blocks, one of
the child blocks having smaller over�ll implies the other having a higher over�ll.

14



4.1 Top-down placement testbench

We have implemented a full-edged global placer that reads standard-cell row-based designs from

Cadence Design Systems, Inc. proprietary physical design interchange formats and produces cell

placements with little or no overlap. Placement blocks are split via min-cut partitioning, which is

implemented as a variant of multilevel Fiduccia-Mattheyses [8] for blocks with 200 cells or more

and [at] Fiduccia-Mattheyses for smaller blocks. The placer chooses vertical or horizontal block

splits depending on the blocks' to always cut along the longest side of a block. When partitioning is

performed with vertical cut line, the current block is bisected by a straight line and sites in the two

resulting regions are counted to produce the site area in each region. The target partition capacities

(cell areas) are then computed to be proportional to the site areas and add up to the cell area

in the block. Vertical partitioning is performed with 10% tolerance in all our experiments. After

partitioning, when the actual total cell area in each partition is available, the vertical straight line

determining block boundaries is optimally shifted to equalize relative whitespace in the blocks.

We use two di�erent methods to allocate whitespace for blocks split by horizontal cut lines.

In one set of experiments we simply used the same computations as for the vertical block splits

with partitioning tolerance being 2%, except for the inability to adjust horizontal cut lines after

partitioning.10 The second method follows Formulae (16), (3), (4) and (5). All overcapacity blocks

are treated as explained in Subsection 3.3.

We do not apply \legalization", \cycling", \overlapping" [12] or any other techniques that would

move cells between existing blocks or change block boundaries other than during top-down block

splits. Without such post-processing the e�ects of di�erent approaches to whitespace allocation

10Which explains our choice of smaller tolerance.

15



come clear, and fair comparisons can be made. Moreover, even with such pessimistic view of cell

overlaps, our top-down placements have very few cell overlaps.

Our top-down placer is implemented in the C++ language with extensive use of the Standard

Template Library.11 Executables are compiled with the SunPro CC4.2 compiler on Solaris2.6 and

optimized with -O5. We use Sun Ultra-10 300MHz workstations with 256Mb of memory.

Test Case Core cells Pads Nets core rows % whitespace
case1 2741 545 2842 24 11.29
case2 11471 662 11673 42 24.28
case3 12146 711 10880 53 23.40
case4 20392 185 21987 88 14.07
case5 85395 177 87272 301 30.15
case6 117440 177 101726 250 14.21

Table 1: Statistics for the testcases used in our experiments.

4.2 Results

We report experimental results for six industrial testcases, ranging from 2:7Kcells to more than

117Kcells, with whitespace from 11% to 30% (see Table 1).12 Relative average over�ll for �nal

placements is evaluated as explained in Section 2 and is given together with �nal wirelength and

CPU time in Table 2.

Our experiments show that

� Our proposed method allows for maximal use of available whitespace, producing placements

with typically 10% smaller wirelength than the �xed 2% method.

� Increasing the �xed tolerance enough to achieve competitive wirelengths produces placements

11However, we carefully veri�ed that our code is not slower than equivalent C code when optimized with the -O5 switch.
12White space is measured by dividing the site area available to cells by the total cell area in the netlist. In this we

accounted for sites put out of use by power stripes and other obstacles, but such adjustments turn out to be very small.

16



Proposed Fixed Tolerance 5% Fixed Tolerance 2%
HPWL CPU R/O HPWL CPU R/O HPWL CPU R/O

case1 5.85e5 28.5 0.00 5.95e5 27.4 0.00 6.32e6 28.1 0.00
case2 2.75e5 158.2 0.00 2.80e5 151.1 0.00 3.03e5 158.7 0.00
case3 2.50e5 140.5 0.00 2.61e5 140.3 0.00 2.89e5 153.8 0.00
case4 5.83e6 298.3 0.03 5.83e6 282.9 0.04 6.38e6 295.1 0.00
case5 2.26e7 1894 0.00 2.29e7 1802 0.00 2.45e7 1784 0.00
case6 1.16e8 2479 0.01 1.16e8 2438 0.08 1.25e8 2424 0.00

Table 2: Placer run-time (CPU seconds on a 300MHz Sun Ultra-10), half-perimeter wirelength of �nal place-
ments and average relative over�ll (R/O) in percent for our proposed tolerance computation method and a
straightforward method with �xed tolerance. All numbers are averages of �ve runs.

with signi�cantly more overlap than our proposed method.

� For every test case, our proposed method produces either lower wirelength and the same amount

of relative overlap, or no relative overlap and lower wirelength, than the �xed 5% method.

5 Conclusions and future work

We have derived simple formulae for optimal13 hierarchical whitespace allocation in top-down partitioning-

driven placement of standard-cell row-based ASIC designs. With a straightforward practical adjust-

ment, partitioning tolerance slowly increases as the placer descends to lower levels. We limit relative

whitespace in all blocks from below, and this constraint prevents overcapacity blocks in the assump-

tion that all partitioning solutions are legal.

Experiments on industrial testcases with up to 114K cells show that our technique practically

achieves cell overlaps in hundredths of a percent of the total areas and is superior to a commonly

used straightforward technique since it achieves better wirelength in the assumption of comparable

cell overlaps (which can be provided by su�ciently small partitioning tolerance).

13In the worst-case sense; also in the assumption of constant partitioning tolerance and legal partitioning solutions on
all levels.

17



We suggest that the future work on this subject address the theoretical comparison [16] of ba-

lanced recursive bisection with direct multi-way partitioning. In particular, whether direct k-way

partitioning for small k allows greater relaxation of partitioning tolerances than recursive bisection

and whether the use of direct k-way partitioning can improve �nal placement wirelength.

References

[1] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov and K. Yan, \Quadratic Placement Revisited",

Proc. ACM/IEEE Design Automation Conference, 1997, pp. 752-757.

[2] C. J. Alpert, J.-H. Huang and A. B. Kahng,\Multilevel Circuit Partitioning", ACM/IEEE Design

Automation Conference, pp. 530-533.

[3] C. J. Alpert and A. B. Kahng, \Recent Directions in Netlist Partitioning: A Survey", Integration,

19(1995) 1-81.

[4] A. E. Caldwell, A. B. Kahng and I. L. Markov, \Relaxed Partitioning Balance Constraints in

Top-Down Placement", In Proc. ASIC '98

[5] W. Deng, personal communication.

[6] A. E. Dunlop and B. W. Kernighan, \A Procedure for Placement of Standard Cell VLSI Cir-

cuits", IEEE Transactions on Computer-Aided Design 4(1) (1985), pp. 92-98

[7] S. Dutt and H. Theny, \Partitioning Around Roadblocks: Tackling Constraints With Interme-

diate Relaxations", Proc. IEEE International Conference on Computer-Aided Design, 1997, pp.

350-355.

[8] C. M. Fiduccia and R. M. Mattheyses, \A Linear Time Heuristic for Improving Network Parti-

tions", Proc. ACM/IEEE Design Automation Conference, 1982, pp. 175-181.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, \Multilevel Hypergraph Partitioning:

Applications in VLSI Design", Proc. ACM/IEEE Design Automation Conference, 1997, pp.

526-529.

18



[10] B. W. Kernighan and S. Lin, \An E�cient Heuristic Procedure for Partitioning Graphs", Bell

System Tech. Journal 49 (1970), pp. 291-307.

[11] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, \GORDIAN: VLSI Placement by Quadratic

Programming and Slicing Optimization", IEEE Trans. on Computer Aided Design 10(3) (1991),

pp. 356-365.

[12] , D. J. Huang and A. B. Kahng, `Partitioning-Based Standard Cell Global Placement with an

Exact Objective", Proc. ACM/IEEE International Symposium on Physical Design, 1997, pp.

18-25.

[13] David Jensen, Charles Gross, Dinesh Mehta, \New industry document ex-

plores defect reduction technology challenges", Micro Magazine, January 1998,

http://www.micromagazine.com/archive/98/01/jensen.html

[14] David Jensen and William Fosnight, \Defect prevention and elimination:

Where the rubber hits the road(map)", Micro Magazine, October 1998,

http://www.micromagazine.com/archive/98/10/jensen.html

[15] Semiconductor Industry Association, National Technology Roadmap for Semiconductors, San

Jose, CA, SIA, 1997.

[16] H. D. Simon and S.-H. Teng, \How Good is Recursive Bisection?", SIAM J. Scienti�c Computing

18(5) (1997), pp. 1436-1445.

[17] R. S. Tsay and E. Kuh, \A Uni�ed Approach to Partitioning and Placement", IEEE Trans. on

Circuits and Systems, 38(5) (1991), pp. 521-633.

[18] Semiconductor Research Corporation, \Physical Design Top Ten Problems",

http://www.src.org/areas/cadts/pd.dgw

19


